
HAL Id: hal-00783328
https://hal.sorbonne-universite.fr/hal-00783328v2

Preprint submitted on 20 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic generation of parallel and coherent code
using the YAO variational data assimilation framework

Luigi Nardi, Julien Brajard, Sylvie Thiria, Fouad Badran, Pierre Fortin

To cite this version:
Luigi Nardi, Julien Brajard, Sylvie Thiria, Fouad Badran, Pierre Fortin. Automatic generation of par-
allel and coherent code using the YAO variational data assimilation framework. 2016. �hal-00783328v2�

https://hal.sorbonne-universite.fr/hal-00783328v2
https://hal.archives-ouvertes.fr

Automatic generation of parallel and coherent

code using the YAO variational data assimilation

framework

Luigi Nardi1,2, Julien Brajard1, Sylvie Thiria1, Fouad Badran2 and
Pierre Fortin3

1 LOCEAN, Laboratoire d’Océanographie et du Climat:
Expérimentations et approches numériques. UMR 7159 CNRS /
IRD / Université Pierre et Marie Curie / MNHN. Institut Pierre

Simon Laplace. 4, place Jussieu Paris 75005, France.
2 CEDRIC, Centre d’Etude et De Recherche en Informatique du

CNAM. EA 1395, 292 rue St Martin Paris 75003, France.
3 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6,
F-75005, Paris, France CNRS, UMR 7606, LIP6, F-75005, Paris,

France

01/07/2016

Abstract

Variational data assimilation estimates key control parameters of a
numerical model to minimize the misfit between model and actual obser-
vations. YAO is a code generator based on a modular graph decomposition
of the model; it is particularly suited to generating adjoint codes, which
is the basis for variational assimilation experiments. We present an algo-
rithm that checks the consistency of the calculations defined by the user.
We then present how the modular graph structure enables an automatic
and efficient parallelization of the generated code on shared memory ar-
chitectures avoiding data race conditions. We demonstrate our approach
on actual geophysical applications.

1 Introduction

Numerical models are widely used for studying physical phenomena. Most of
the time, models are used to forecast or simulate the evolution of a phenomenon.
Since a model is imperfect, discrepancy between its forecast values and the so-
called “reality” may be significant due to model parametrizations, numerical

1

discretization, and uncertainties on initial and boundary conditions. Observa-
tions, either in-situ or remote-sensing using radars or satellite, give an accurate
measurement of physical variables of interest. However they are not error free,
for example due to noise of the sensor measurement, and they are in general
sparse in time and space.

Data assimilation is a theoretical framework that can blend imperfect knowl-
edge from a numerical model and imperfect measurements from an observational
system to give an optimal estimate of control parameters (initial conditions, pa-
rameters). In this work we focus in particular on variational data assimilation
[1], also known as 4D-VAR. This class of methods are widely used in various
contexts, e.g. meteorology [2], oceanography [3], and in particular for full three
dimensional models. 4D-VAR is based on a minimization with respect to control
parameters of a cost function J which measures the misfit between the direct
numerical model outputs and the observations. The minimization is performed
using a gradient method, which requires calculating the gradient of J as a func-
tion of the control parameters. The gradient computation requires the product
of the transposed Jacobian matrix of the direct numerical model with the deriva-
tive vector of J defined at the observation points. This product is computed
through a numerical model, the so-called adjoint model. Since the direct nu-
merical model is usually very complex, the implementation of the programming
code which represents the adjoint model is often a real issue.

The YAO framework, already presented in [4, 5], is a code generator dedi-
cated to variational data assimilation. With the YAO domain-specific language
(DSL), the user defines, using specific directives and C programming, the speci-
fications of the numerical model. It then automatically generates the numerical
and the adjoint model codes via C++ object-oriented programming. In prac-
tical, if an implementation (e.g. using Fortran or C) of the numerical model
already exists, the user may have to recode a non negligible part of the original
code. Nevertheless, in the actual YAO applications, it has been noticed that the
overhead of the implementation in the YAO formalism is far less than the cost
needed to implement the adjoint model from scratch. YAO has already been
used with success on several actual applications in oceanography: Shallow-water
[4, 5], Marine acoustics [6, 7], Ocean color [8], PISCES [9] and the GYRE con-
figuration of NEMO [10]. YAO is distributed under the free software license
CeCILL. Documentation and download are available [11].

Numerical models are based on a discretization of the computational space
and apply a number of basic functions at these points. Using YAO the user
defines the computational space, the basic functions and their interdependencies.
The YAO formalism is based on a dependence graph called a modular graph,
which is similar to those used in automatic parallelization of nested loops [12].
The traversal of the modular graph allows us to perform all the basic calculations
of the numerical model. The user describes, using YAO-specific directives, a
traversal of the graph in the form of nested loops, which must be consistent
with the different dependencies defined by the modular graph. This task is
not trivial for a complex numerical model, thus it is important to check the
coherence of the directives defined by the user for a traversal. We present in

2

this paper an algorithm which allows YAO to automatically check the coherence
of a traversal and to detect inconsistencies.

In the field of automatic parallelization of nested loops, several concepts and
algorithms have been introduced; these algorithms enable the analysis of nested
loops, as well as their decomposition and fusion [12, 13, 14]. The decomposition
obtained is well suited to a multi-thread parallelization on shared memory archi-
tectures where no communication is required. In this paper, we also show how
the YAO modular graph enables us to integrate and adapt these algorithms in
order to identify the available parallelism, and to allow the automatic generation
of parallel code with YAO while completely avoiding the data race conditions
(write/write conflicts). With OpenMP directives, it is then possible to generate
a multi-threaded parallel code that runs efficiently on shared memory architec-
tures. This is an important improvement over the previous version of YAO [3],
which can generate only sequential code. A large community in geophysics may
thus automatically and transparently exploit decades of research in automatic
parallelization and benefit from important speedups in computation times on
multicore architectures without any additional effort and without any knowledge
of parallel programming.

For the automatic generation of parallel code, the development of algorithms
specific to YAO is necessary. Indeed, the existing software tools for automatic
parallelization with OpenMP directives have specific constraints related to their
design, and can therefore currently not be integrated in the YAO generator. For
example, the CAPO toolkit [15] supports only Fortran and relies on user inter-
action to improve the parallelization process. The Gaspard2 framework [16]
enables automatic OpenMP code generation, but the available parallelism must
first be specified by the user in a UML model. The PLuTo tool [17] can effi-
ciently parallelize nested loops while taking into account, via tiling, data locality
on multicore architectures with complex hierarchical memory. However PLuTo
does not currently support object-oriented programming for input source codes
and it has specific limitations, e.g. only SCoP programs with pure function
calls, no dynamic branch conditions, which also prevent a direct integration
into YAO. Finally and most importantly, as detailed below there are data race
conditions (write/write conflicts) in the generated code. These data race con-
ditions prevent any automatic parallelization from such tools according to their
own data-dependency analysis. To our knowledge, none of these tools can au-
tomatically insert, for example, OpenMP atomic directives to avoid these race
conditions and thus enable parallelization. We here show how to efficiently
accomplish this in YAO thanks to its modular graph.

Adapting state-of-the-art algorithms to YAO while relying on its modu-
lar graph also has several advantages. First, there is no additional constraint
on the application code written by the user. Second, a high-level dependency
graph is directly provided by the modular graph, which enables us to avoid
data-dependency analysis, to naturally obtain a coarse-grain parallelism, and to
possibly scale on real-life applications with thousands of statements.

This paper extends a previous work [18] with two additional contributions.
First, we introduce a new algorithm, thereafter referred to as the coherence

3

algorithm, allowing us to detect inconsistencies in the user-defined YAO modular
graph traversal. Second, the coherence and the parallelization algorithms are
tested on the European reference model for global oceanography forecasting
(NEMO, Nucleus for European Modelling of the Ocean), which demonstrates
that the proposed framework and algorithms are already operational.

In the following section, we will give a brief overview of the YAO framework.
Section 3 introduces the coherence algorithm. Then, in section 4, we will show
how the modular graph can be used to automatically and efficiently parallelize
the generated code on shared memory architectures. Performance results for
three actual YAO applications on a multicore CPU are detailed in section 5,
including the NEMO application. Finally, in section 6 concluding remarks are
presented and future work is discussed.

2 YAO overview

2.1 The modular graph

We present here the concept of a modular graph, which is fundamental in YAO,
as well as the forward and backward procedures: more details can be found in
[4, 5]. We first define the following terms:

• A module is an entity of computation; it receives inputs from other mod-
ules or from an external context1 and it transmits outputs to other mod-
ules or to an external context.

• A connection is a transmission of data from a module to another or be-
tween a module and an external context.

• A modular graph is a data-flow graph composed of a set of several intercon-
nected modules; it summarizes the sequential order of the computations.

In order to perform data assimilation, at each time step a modular graph is
traversed by the forward procedure and then by the backward procedure.

2.1.1 The forward procedure

The input data set of a module Fp is a vector denoted xp and its output data
set is a vector denoted yp (namely yp = Fp(xp)). As a consequence, a module
Fp can be executed only if its input vector xp has already been processed, which
implies that all its predecessor modules have been executed beforehand. Thus
there are only flow dependencies [12] between modules. Since the modular graph
is acyclic, it is then possible to find a module ordering, i.e. a topological order,
which allows us to correctly propagate the calculation through the graph. If we
denote by x the vector corresponding to all the graph input data, provided by
the external context, the forward procedure enables the calculation of the vector

1An external context is an entity which initializes and retrieves the computation of certain
modules.

4

y corresponding to all the graph output values. The modular graph defines an
overall function Γ and makes it possible to compute y = Γ(x). The function Γ
has a physical meaning: it represents a direct numerical model M , with respect
to YAO formalism. The forward procedure allows us to compute the outputs
of the numerical model according to its inputs. The incoming connections from
the external context are, for example, initializations or boundary conditions.
Outgoing connections transmit their values to compute, as an example, a cost
function.

2.1.2 The backward procedure

This procedure enables the computation of the adjoint of the cost function J
with respect to the control parameters. We suppose that for each module Fp,
with an input vector xp and receiving in its output data points a “perturbation”

vector dyp, we can compute the matrix product dxp = FT
p dyp, where FT

p is
the transposed Jacobian matrix of the module Fp calculated at point xp. It is
possible [5] to compute the gradient of J with respect to the control parameters
by traversing the modular graph in a reverse topological order and executing
local computations on each module in order to compute dxp. Given that an
output of a module may transmit its data to multiple entries for other modules,
it has been shown [4, 5] that this reversed traversal leads to a back propagation
on the modular graph characterized by additions (i.e. accumulations) of several
local computations. Each of these additions is computed in an intermediate step
and then back propagated. Thus there are here flow and output dependencies
[12].

2.1.3 YAO formalism

Running simulations or data assimilations using an operational numerical model
M requires the definition of a modular graph representing the sequence of the
computations. A numerical model operates on a discrete grid, where the physical
process is computed at each grid point I and at each time step t. As the same
phenomenon is under study at each grid point, only the modular subgraph
representing a grid point is needed. YAO obtains Γ by duplicating this subgraph
for each I and t.

If several scales (in space and times) are present in the numerical model,
YAO allows to duplicate some subgraphs for different space and time schemes.
In the following, only one space/time trajectory is considered to simplify the
notations.

In YAO formalism, the user must define a set of basic functions
{F1, F2, . . . Fk} which has to be applied to each grid point I and at each time step
t. The user also has to define the dependencies between these functions. From
this information, YAO generates the overall modular graph Γ. The modules of
the modular subgraph ΓI,t are denoted by Fp(I, t), where I represents a grid
point (1D, 2D or 3D), t is a time step and Fp a basic function. Thus, a module
is the computation of the function Fp at grid point I and at time t. We denote

5

by i (j and k) the indices of the first axis (respectively of the second and third
axis). An edge from a source module Fs(I’, t

′) to a destination module Fd(I, t)
corresponds to a data transmission from Fs(I’, t

′) to Fd(I, t) (s may be equal to
d).

The modular graph is similar to the Expanded Dependence Graph (EDG)
used for the parallelism detection in nested loops [12]. The main difference with
the modular graph is in the EDG the nodes represent one operation (the instance
of a statement), whereas the nodes of the modular graph are a set of operations
(the instance of a function composed by a set of statements) represented by
the module Fp(I, t). Thus, the granularity of the nodes differs. In practice the
dimension of a YAO basic function depends on the application and on the user
design. In general, a YAO module has dozens of statements but in particular
cases it may be much larger.

2.2 User specifications and code generation

This section presents two YAO directives, ctin and order. YAO automatic code
generation relies on these two directives, which are part of the YAO DSL and
allow us to traverse the modules Fp(I, t).

2.2.1 order and ctin directives

The ctin directive has the following syntax: “ctin from Fs to Fd list of coor-
dinates”. Such a directive represents one edge (or connection) of the modular
graph, which is then automatically replicated by YAO in space and time. list of
coordinates represents, for a generic point I and time step t of the destination
module Fd, the point I’ and the time t′ of the source module Fs (with t ≥ t′).
If S′ and S are the spaces associated to Fs and Fd respectively, we denote with
L′ and L the set of axes of S′ and S;2 YAO allows S′ to be a subspace of S
but not S to be a subspace of S′, meaning that L′ ⊂ L. We denote with (I, t)
the current position of Fd, with (I’, t′) the relative position corresponding to Fs

and with d the distance vector defined by d = I’− Î, where Î is the projection
of I on the axes of L′. Thus, d has the same dimension of I’.3 We denote with
dl ∈ Z its component on the l axis and with dt = t′− t (≤ 0) the delay between
the time steps t′ and t. The user has to specify in the list of coordinates the
distance vector and dt as a function of the generic point I of the destination
module, which is the same in all connections. Figure 1a gives an example of
ctin directives.

Every ctin directive generates an edge from Fs to Fd labeled by the dis-
tance vector d and t′ − t. The resulting graph is a directed multigraph4 which

2The iteration vector I can be defined on one (I = (i)), two (I = (i, j)) or three dimensions
(I = (i, j, k)) as a function of the space. Likewise for the vector I’ which is I’ = (i + di),
I’ = (i + di, j + dj) or I’ = (i + di, j + dj , k + dk) as a function of the space S′.

3The distance vector d has a dimension which corresponds to the number of common
components between S and S′. As an example, if S′ is 2D and S is 3D the distance vector is
2D and is equal to (di, dj).

4A directed multigraph is a graph with multiple parallel edges.

6

(a)

ctin F1 from F1 i j-1 t-1

ctin F2 from F1 i j+1 t

ctin F2 from F3 i-1 j+1 t

ctin F2 from F3 i j t-1

ctin F2 from F4 i+1 j t

ctin F3 from F1 i-1 j t-1

ctin F4 from F3 i j t

ctin F4 from F2 i j+1 t

(b)

order YA1

order YA2

F1 F3

order YB1

order YB2

F2 F4

Figure 1: (a) Part of the DSL used by the user with 2D space modules. The
second ctin directive specifies the connection from F1 at point (i,j+1,t) to F2 at
point (i,j,t). (b) The order directives indicate the ordering in which we compute
the Fp functions and the ordering of the grid traversal.

F2F1

F3

0,−1,−1

F4

0,+1,0

0
,+

1
,0

+
1
,0

,0

0,0,0

−
1
,0

,−
1

−1,
+
1,
0

0,
0,
−1

Figure 2: RDG issued
by the ctin directives of
Fig. 1a.

loop i ascendant

loop j ascendant

F1(i,j,t).forward(F1(i,j-1,t-1))

F3(i,j,t).forward(F1(i-1,j,t-1))

loop i descendant

loop j ascendant

F2(i,j,t).forward(F1(i,j+1,t), F3(i-1,j+1,t),

F3(i,j,t-1), F4(i+1,j,t))

F4(i,j,t).forward(F3(i,j,t), F2(i,j+1,t))

Figure 3: YAO generator translation of the di-
rectives of Figs. 1a and 1b.

represents all the dependencies between the basic functions. This multigraph
corresponds to the Reduced Dependence Graph (RDG) [12] used for the auto-
matic generation of parallelism in nested loops5. Figure 2 presents the RDG of
the former example.

Since the space dimension is two, the edges are labeled by (di, dj , dt) which
indicates that the destination module at time t and at point (i, j) takes its
inputs from the source module at time t + dt and point (i + di, j + dj) with
di, dj ∈ Z and dt ∈ Z≤0.

The YAO order directive allows the user to define a traversal of the modular
graph following a topological order. This directive allows us to visit all the
grid points of the space, and enables the generation of the corresponding nested
loops. The user specifies one order directive for each dimension of the space.
Thus, a program generated by YAO contains an outermost loop representing
the time. Within this loop the user defines, thanks to the order directives,

5As for the analogy between the EDG and the modular graph, the RDG has one statement
per node while YAO RDG has a basic function (a set of statements) per node.

7

the different loops that allow the traversal of the space for each time step. In
general, we have several ways to traverse a space. In the order directive, YA1
(Y AO Afterward axis 1) means that we are managing the i loop and we go
along this axis in an ascendant way. YA2 means the same but for the j axis,
whereas YB1 (Y AO Backward axis 1) means that we go along the i axis in a
descendant way. Fig. 1b gives an example of such order directives.

2.2.2 Generation of the forward and backward procedures

In Fig. 3 we give the translation, performed by the YAO code generator, of
the ctin and order directives given in Figs. 1a and 1b. This represents the
translation, in a pseudo code language, of the forward procedure. Each order
directive generates one loop, one for each dimension of the space. The way we
traverse the axes, ascendant or descendant, and the scheduling of the modules
are both specified in the order directives. For each object of each Fp module
C++ class the local forward function (a C++ method) is called using the output
of its predecessor modules as inputs. For each basic function, the body of
the local forward functions are defined by the user. It has to be noticed that
all forward functions are thread-safe because they compute their results with
respect to the generic grid point I, as shown in Fig. 3. The nested loops allow
us to compute the output of the modules for all the grid points and for one time
step. An overall loop, not shown in the figure, which allows us to traverse the
time steps in an incremental order t, t+ 1, t+ 2 etc., encompasses all the local
forward functions. The time loop may be considered as a computation barrier
where at current time t, all the computations for time t′ < t are done.

As presented in section 2.1.2, the backward procedure traverses the modular
graph in a reverse topological order. For ease of presentation we do not detail
the pseudo code of the backward procedure since this one is very similar to
the forward procedure one. However it is important to point out the addition
(accumulation) in the back propagation, detailed in [4, 5] and specific to the
backward procedure. This accumulation results in output dependencies which
occur between two time steps. This computation is briefly explained in Fig. 4,
which is a partial graph example. The yp variables (p ∈ 1, 2, 3) are the outputs
of the local forward functions. The propagation allows YAO to provide the
predecessor module computations to the successor modules. On the other hand,
the back propagation allows us to back propagate the gradient of J by using the
Jacobian matrix (Jp in the figure) for computing dxp. The back propagation of
several dxp (dx3 and dx2 in Fig. 4) which have the same predecessor enforces
the addition of the dxp (the symbol

∑
in the figure).

3 Coherence in the computational ordering

The ctin and the order directives are the basis of YAO DSL. Sometimes the
traversal defined using order directives can be difficult and in real-world YAO
applications the user can make some mistakes in the definition of such an or-

8

x dx1

x
3 dx3

=F()
1 11

1=
y

1

x
1

1F

=F()
1 11

1=
y

1

x
1

1F
y

1 dy1

=F()
3 33

3=
y

3

x
3

3F

y
3 dy

3

timet-1 t

y
1 dy11

y

y

y

J

J

J

x

x

x

l+1

l

Figure 4: Addition, represented by the symbol
∑

, in the back propagation of the
backward procedure. These two connections represent a data transfer between
two time steps. The two modules F3 and F1 perform the transfer towards F1 at
time step t− 1. This partial graph example case is given by the YAO directives
shown in Fig. 1.

dering. Defining a wrong traversal implies that when YAO schedules a module
for computation its inputs are not ready because its predecessors have not been
computed yet. These mistakes directly affect the numerical results of the data
assimilation process.

The coherence of a ctin directive is defined as follows.

Definition 1 Assume that Fs(I’, t
′)→ Fd(I, t) represents a ctin directive. This

ctin is said to be coherent if, for each (I, t), the order directives ensures that the
basic function Fs has already been computed at (I’, t′). The connection is said
to be incoherent otherwise.

In this section we present the rules which allow us to test the coherence of
a ctin directive. The case where two basic functions Fs and Fd are computed
at the same time step (t = t′) from two different outermost loops (i.e. from two
different nests of order directives), with respect to the L′ axes, represents the
most simple case:

Rule 1 Assume that Fs(I’, t
′) → Fd(I, t), with t′ = t, is a connection between

the basic functions Fs and Fd. We suppose that Fs and Fd belong to two differ-
ent outermost loops. If the outermost loop containing Fs is written before the
outermost loop containing Fd, then the ctin directive is coherent otherwise the
ctin directive is incoherent.

The coherence verification is more difficult as soon as the two basic functions
Fs and Fd are in the same outermost loop. Given a set of order directives, we
introduce in section 3.1 two rules to determine the coherence of a ctin directive.
Then, in section 3.2 we present a general verification algorithm.

9

3.1 Verification rules

Rule 2 Assume that Fs(I’, t
′) → Fd(I, t) is a connection between two basic

functions contained in an outermost loop l ∈ L′ ∪ {t}, with distance dl 6= 0.6 If
dl < 0 (dl > 0) and the loop l is ascendant (respectively descendant), then this
connection is coherent. In the same way, if dl < 0 (respectively dl > 0) and the
loop l is descendant (respectively ascendant), then this connection is incoherent.

Justification Suppose the loop l is ascendant. Consider a point P = (I, t)
with I ∈ S and suppose lP its component relative to the l loop. Suppose also
lP ′ the component relative to the l loop for the point P ′ = (I’, t′) with I ′ ∈ S′.
If l is the outermost loop then, at the moment of the computation of P, all the
points with lP ′ < lP have already been computed due to the ascendant direction
of the loop. In fact, when the nested loops compute the iteration lP , all the
instructions which correspond to an iteration vector P’ with a component lP ′

lower than lP have already been computed by the loop l. If dl < 0, then the
iteration vector P’ has lP ′ = lP + dl < lP which demonstrates the coherence of
the connection. As a consequence if dl > 0, then module Fs(P’) has not been
computed yet and the connection is incoherent. The case of a descendant loop
is similarly justified.

Remark 1 Given that the outermost loop concerns the temporal trajectory,
rule 2 points out that if dt = t′ − t < 0 then the ctin directive is coherent for
any set of order directives. The verification process must start by testing the
coherence with respect to this outermost loop (time). As in YAO the time loop
is always ascendant and the delays dt ≤ 0 if a ctin directive has dt 6= 0 then the
coherence condition always holds. For ease of presentation if we refer to Fs(I)
we suppose that the time step is t.

Figure 5a illustrates a traversal on a 2D space, where basic functions A
and B are defined. The point (i, j), circled in the figure, refers to the current
computation point. The grid points computed in the previous iterations are
colored in grey. The arrows are all coherent connections with respect to this
specific nested order directives. These are the connections Fs(i − 1, j + 1) →
Fd(I), Fs(i− 1, j)→ Fd(I), Fs(i− 1, j − 1)→ Fd(I). The three elements which
ensure a coherent computation are the outermost loop (the i axis), the direction
YA1 (ascendant) and the sign (-) of di, as shown by rule 2. Note that Fs and
Fd may be indistinctly A or B.7 Figure 5b illustrates another example of a
2D traversal with a descendant outermost loop j; the arrows are all incoherent
connections.

Rule 3 Assume that Fs(I’, t
′) → Fd(I, t) is a connection between two basic

functions contained in an outermost loop l ∈ L′ ∪ {t}, with distance dl = 0. In
order to test the coherence we have to remove the outermost loop and keep the

6L′ is the set of axes of the space S′.
7A(i − 1, j + 1) → A(I), B(i − 1, j) → A(I) and B(i − 1, j − 1) → B(I) are also coherent

connections.

10

a)

order YA1

order YA2

A B

1, 1 2, 1 3, 1 4, 1 5, 1

1, 2 2, 2 3, 2 4, 2 5, 2

1, 3 2, 3 3, 3 4, 3 5, 3

1, 4 2, 4 4, 43, 4 5, 4

1, 5 2, 5 3, 5 4, 5 5, 5

i1 i2 i3 i4 i5

j
1

j
2

j
3

j
4

j
5

b)

order YB2

order YB1

A B

1, 1 2, 1 3, 1 4, 1 5, 1

1, 2 2, 2 3, 2 4, 2 5, 2

1, 3 2, 3 3, 3 4, 3 5, 3

1, 4 2, 4 4, 43, 4 5, 4

1, 5 2, 5 3, 5 4, 5 5, 5

i1 i2 i3 i4 i5

j
1

j
2

j
3

j
4

j
5

Figure 5: Traversal given by two nested order directives on a 5× 5 space. Grid
point I = (i, j) = (3, 3) is the current iteration point. The grey and white
squares represent the computed and not yet computed grid points respectively.
The arrows represent coherent connections (a) and incoherent connections (b).

rest of its instructions (loops and basic functions). We may have two cases for
the remaining instructions:

• Fs and Fd are in the same embedded loop: we apply rule 2 or rule 3
recursively.

• Fs and Fd are in two different instructions: we apply rule 1.

Justification In case dl = 0, the basic functions Fs and Fd are computed in
the same iteration of the loop computing the l axis. This loop computes one or
several instructions which represent the computation of either a basic function
or a loop (nested in the former l loop). Thus, if the basic functions Fs and Fd

are computed with the same loop nested in l, then we must verify the coherence
with respect to this inner loop, for this reason we must apply either rule 2 or
3. However, if the basic functions Fs and Fd are computed by two different
instructions in the l loop, rule 1 is applied, i.e. the instruction containing Fs

must be computed before the one containing Fd.

Example 1 Test the coherence of connection A(i, j + dj , t) → B(I, t), with
dj ∈ {−1, 0,+1}, given the order directives on the left side:

order YA1

order YB2

A

order YB2

B

order YB2

A

order YB2

B

We apply rule 3. After removing the outermost loop on t and then the one on i

11

order YA1

A

order YA2

B C

order YA2

order YA1

D

order YB3

E

Figure 6: Example of
order directives defined
by the user. The ba-
sic function E is applied
to a three dimension
space, whereas B,C,D
and A are applied to
two and one dimension
spaces respectively.

t

YA1 YA2

YA2A

B C

YA1

YB3

E

D

level 1

level 2

level 3

level 4

1

1 1

2

1 1

1

2

2 2

Figure 7: Tree representation of the order di-
rectives of Fig. 6. Leafs and internal nodes
represent basic functions and loops respectively.
They are characterized by Y Xl (X ∈ {A,B},
l ∈ {1, 2, 3}) and child number.

we obtain the directives on the right side. Since A and B are contained in two
different outermost loops and since A precedes B, the connection is coherent
(rule 1).

3.2 Coherence algorithm

The overall verification process is given by testing the coherence of each ctin
directive. The algorithm parses each connection independently. Taking into
account remark 1, we know that every ctin directive which verifies dt 6= 0 is
coherent. Thus we limit the coherence process to the verification of the ctin
directives which verify dt = 0. To introduce the coherence algorithm we present
in Fig. 6 an example of order directives.

In this example the user specifies two nested order directives. The forward
procedure starts with the computation of the nested orders containing A, B
and C; then the second nested orders, which contain the basic functions D and
E, are computed. Each nest of order directives is composed of an outermost
loop, described by the parameter Y Xl, with X ∈ {A,B} and l ∈ {1, 2, 3}
standing for {i, j, k}. The body of an outermost loop is composed of three types
of instruction lists: (i) a list of loops; (ii) a list of basic functions; (iii) a list
composed of both loops and basic functions.

As in the compiler theory [19], it is possible to organize the order directives

12

by an Abstract Syntax Tree (AST). Figure 7 shows the tree corresponding to
the example of Fig. 6. The root children are the outermost order directives (two
in the example); these nodes correspond to level 1 (the root being at level 0). In
general, each node of the tree corresponds to one instruction. This instruction
may be either a loop, corresponding to an order directive, or the computation
of a basic function. A node which computes a basic function has no children
and is represented by a leaf of the tree. A node which corresponds to a loop
has as many children as the number of instructions contained in its loop. These
children are placed in the successive level with respect to the level of the parent
(parent level plus one).

Each internal node (which is not a leaf or the root) represents a loop defined
by its axis and its direction. The children of a node are numbered in the ordering
of the user declaration. We denote this number as child number. An internal
node of the tree contains also the parameter Y Xl, which specifies the loop axis
and the direction. A leaf contains the basic function name.

With this representation if we want to characterize the nested loops which
enclose the calculation of a basic function, we only have to determine the path
from the root to the leaf which represents the basic function. The internal
nodes of this path represent the nested loops which allow the computation of
the basic function. If we do not consider the root, the first node of the path
corresponds to the outermost loop and the last node corresponds to the basic
function. Thus, for each basic function, we can create a list which represents
the path with at most three intermediate internal nodes. Each internal node
contains the following fields: (i) child number, ordering from left to right of the
children of a parent node; (ii) axis, loop index (axis ∈ {i, j, k}); (iii) direction,
ascendant or descendant of the loop. The axis and the direction are represented
in Fig. 7 by the parameter Y Xl. Thanks to the rules introduced in the previous
sections and to the tree structure, we can verify the coherence of a particular
ctin directive using Algorithm 1. We explain the general idea of this algorithm
through some examples.

Example 2 In Fig. 7, we consider a connection B(i − 1, j) → C(i, j), where
di = −1 and dj = 0, and we check its coherence. Figure 8a shows the paths Pb

and Pc for the basic functions B and C: they have three levels (n = 3). At the
first iteration m = 1, the child number, the axis and the direction of nodes Ns

and Nd are 1 and YA1. The conditions of lines 8 and 11 are false, we are in the
same loop. Since direction = ascendant and di < 0, rule 2 of line 16 gives that
the ctin is coherent, the algorithm ends returning true.

Example 3 We now consider a connection A(i) → B(i, j), and we test its
coherence. This is the case of data transfers between computational spaces
which have a relation of projection: A and B are basic functions applied to 1D
and 2D spaces respectively. Ps and Pd have two and three levels respectively
(Fig. 8b). At iteration m = 1, the basic functions are in the same loop (the
conditions of lines 8 and 11 are false) and, since di = 0, m is incremented. At
iteration m = 2, the condition at line 8 is true, because we have on one hand

13

ALGORITHM 1: Coherence verification of a given ctin directive with
respect to the order directives.

Require: Denote by Fs(I’, t
′)→ Fd(I, t) the connection which represents the

ctin directive. dl is the distance of the vector d = I’− Î with respect to
the l axis.

Ensure: true if the ctin is coherent, false otherwise.
1: if dt < 0 then
2: return true
3: end if
4: Find two paths Ps and Pd from the root to the leafs Fs and Fd.
5: Let n be the minimum length of Ps and Pd.
6: for m = 1 to n do
7: Determine at the level m the two nodes Ns and Nd of the tree which are

located on the two paths Ps and Pd respectively. {Ns and Nd are either
the same or two siblings.}

8: if child number of Ns < child number of Nd then
9: return true

10: end if
11: if child number of Ns > child number of Nd then
12: return false
13: end if{At this point the two nodes are identical.}
14: Assume that l is the axis corresponding to the common loop.
15: if dl 6= 0 then
16: return the result of rule 2.
17: end if
18: m← m+ 1 {Continue to the successive level, i.e. apply rule 3.}
19: end for
20: return false

the node of the basic function A, and on the other hand the j loop containing
B. We test rule 1, i.e. the precedence of A with respect to B, which is given by
child number of Ns and Nd. The algorithm returns true.

3.3 Results of the coherence algorithm

The coherence algorithm solves the problem of verifying that a given ctin direc-
tive is correctly computed using the user-defined graph traversal. This algorithm
is applied to each user-defined connection. If all values returned are true we can
ensure that ctin and order directives are written coherently. The coherence
algorithm has been implemented and tested on both fictitious and actual YAO
applications. It plays an important role during the development of a YAO ap-
plication with hundreds of ctin and order directives, enforcing the robustness of
the variational data assimilation process. The tests on actual applications have
led to the detection of a couple of real incoherences which had never been de-

14

t

YA1

YA2

B C

level 1

level 2

level 3

1

1

2

2

t

YA1

YA2A

B

1

1

1

2

(a) (b)

Figure 8: Two examples of path Ps and Pd for the tree of Fig. 7 and the basic
functions: (a) B and C; (b) A and B.

tected by human observations. The detection of these incoherences has led to an
improvement in the precision of the numerical results of these YAO applications.

The next section deals with the automatic parallelization of the forward and
backward procedures based on coherent directives. The coherence algorithm
itself is excluded by the parallelization process. Indeed, it does not represent a
performance bottleneck, being able to analyze at generation-time thousands of
directives in a matter of milliseconds.

4 Algorithm for automatic parallelization

4.1 Parallelization of the forward procedure

In section 2 we have noted an interesting similarity between YAO formalism
and the theories of compilation and of automatic parallelization of nested loops
[12]. Thanks to this similarity we can adapt these techniques and algorithms to
YAO automatic code generator. We thus propose here to integrate and adapt
such algorithms in order to automatically parallelize the forward procedure
generated by YAO on parallel shared memory architectures with multi-thread
programming. No communication is required and we only have to maximize the
number of parallel loops. Because of the strong time dependencies in all data
assimilation applications the temporal loop is not parallelized and we focus on
data parallelism at each time step. The domain decomposition between threads
is performed as a 1D block distribution on the space and we rely on a static load
balancing since in all the current YAO applications the computation load of each
module is constant at each grid point. Our goal is thus to label, as “parallel”
or “not parallel”, each outermost order directive so that the corresponding loop
can be generated as parallel or sequential in the final code (thanks to OpenMP

15

F2F1

F3 F4

2

4

0,+

1

−,+

0,0

3

5

+,00,+

Figure 9: RDG obtained by simplifica-
tion of the RDG of Fig. 2. The edges
are numbered from 1 to 5.

j

30 1 2 4 5

T T T1 2 3

5
2

3

4

1

i

Figure 10: Flow dependencies between
three threads T1, T2 and T3. Same
edge numbers as in Fig. 9.

directives). In order to maintain the coherence hypothesis of one given nest of
order directives, we opted not to change or invert the order defined by the user.
However we can still use techniques such as loop distributions possibly followed
by loop fusions in order to detect the maximum available parallelism and to
reduce the synchronization points.

Since the temporal loop is not considered in the parallelization algorithm the
edges whose t′ − t are negative can be removed from the RDG. The remaining
graph is shown in Fig. 9: we denote it RDG. This is obtained by removing
all dt = −1 connections and by writing only the signs of the distance vector
components. Thus (0,+) means a distance vector equal to (0,+1).

Considering some nested order directives which have as outermost axis l and
a connection from Fs to Fd, we consider a connection as critical with respect to
these nested order directives if:

• Fs and Fd are contained by the nested directives,

• dt = 0 and dl 6= 0.

The analysis of the RDG highlights the critical connections which prevents
parallelization because of flow dependencies between threads, as presented in
Fig. 10. The connections from F4 to F2 and from F3 to F2 (edges #2 and #4 in
Figs. 9 and 10) result in two flow dependencies between the couples of threads
(T1, T2) and (T2, T3) because dl 6= 0 (in this example l is the i axis). This
is not the case for the connections #1, 3 and 5 because the two corresponding
grid points belong to the domain computed by one thread, as shown in Fig. 10.
The connection #2 is not critical, since F3 and F2 are not in the same nested
loops (see Figs. 1b and 3). Therefore, in this example only the connection #4
is critical.

For the analysis of one outermost loop l composed of functions F1, F2, . . . ,
Fr we consider the subgraph Gl of the RDG limited to the r basic functions
and to the edges between them. On the edges of this subgraph we retain only

16

information concerning the distance dl.
8 As far as the dl value is concerned we

retain only the sign of dl, (−,+) if dl 6= 0 and 0 if dl = 0. The analysis of
Gl allows us to decompose the loop into several loops preserving the computa-
tion coherence hypothesis. Taking into account that the forward functions are
thread-safe, we can apply the Allen-Kennedy algorithm [14] to decompose the
loop into parallel loops as follows.

• Calculate the Strongly Connected Components (SCCs) of Gl.

• Consider the reduced Directed Acyclic Graph (DAG), denoted by Gl/SCC ,
by shrinking each SCC down to a single vertex and by drawing one, and
only one, edge between two SCCs if there is at least one edge from the
first to the second in the graph Gl. If at least one of the edge in Gl which
connects these two SCCs is labeled by non 0 (that is to say either − or +),
then label the corresponding edge in Gl/SCC by this value. Otherwise, if
all the labels are 0, then label the corresponding edge in Gl/SCC by 0.

• Sort in a topological order the Gl/SCC graph and enumerate all the SCCs
following this order. For each SCC generate an l loop which computes its
basic functions.

This decomposition is a maximum loop distribution of the initial loop; in other
words, we can not further decompose without breaking the coherence hypothe-
sis.

We can analyze each SCC loop in order to see if we can perform a domain
decomposition on the l axis. For a particular SCC we consider all the edges of
the graph Gl between two basic functions being part of this SCC. If at least
one of these connections is labeled by + or −, namely if dl 6= 0, the SCC is
considered to be not parallelizable. The loop is parallelizable if all these edges
are labeled by 0. In other words it is parallelizable if it does not contain any
flow dependency between threads. We label by p and p̄ the loops which are par-
allelizable and not parallelizable respectively. Such maximum loop distribution
gives the largest number of parallel loops. The critical connections of the RDG
have been minimized. An example of this algorithm is presented in section 4.4.

4.2 Reducing synchronization points

In the previous section, we have applied the Allen-Kennedy algorithm to YAO
thanks to the analogies between the EDG and the modular graph. This algo-
rithm enables us to automatically label as parallel or not the SCCs resulting in
a maximum loop distribution. With regards to performance, this loop distribu-
tion is not the best solution because it increases the number of synchronization
points. Following Kennedy-McKinley [13] it is possible to propose a loop fusion
algorithm that will reduce the number of synchronization points. As the Gl/SCC

is a DAG, we can reorganize the SCCs in levels. The levels are numbered from

8All the distances dl in Gl are either ≤ 0 if the l loop is ascendant, or ≥ 0 if the l loop is
descendant, as they correspond to the same outermost loop.

17

ALGORITHM 2: Fusion with levels approach.

1: Organize the graph Gl/SCC in Mlevel levels. The vertices are labeled by either p
or p̄.

2: Traverse the graph and for each level merge the vertices of the same label.
Update edges and their labels (0, − or +).

3: k := 1
4: while k < Mlevel do
5: Consider two consecutive levels k and k + 1:
6: if there are two vertices labeled by p and there is no critical edge between

them then
7: Fusion the two in one vertex labeled by p
8: else
9: if there are two vertices labeled by p̄ then

10: Fusion the two in one vertex labeled by p̄
11: end if
12: end if
13: if a fusion has been performed then
14: Reorganize the new reduced graph in levels and update Mlevel

15: else
16: k := k + 1
17: end if
18: end while

k = 1 to k = Mlevel, where Mlevel is the maximum number of levels. The first
level, k = 1, contains the SCCs without predecessors; the predecessors of a SCC
at level k, with k > 1, are located in the preceding levels k′ (k′ ≤ k−1), with at
least one predecessor located at level k − 1. Because of the level reorganization
there is no edge between two vertices at the same level. For each level it is then
possible to merge all vertices labeled as p and separately all vertices labeled as
p̄. We obtain a reduced graph with the same number of levels but with one
or two vertices per level. If a level contains two vertices they are mandatory
labeled as p and p̄.

The fusion process can be extended to the vertices located at two consecutive
levels as follows: for all levels k and k + 1,

• merge two vertices labeled as p̄: this gives a new p̄ vertex;

• merge two vertices labeled as p which are not connected by a critical edge
(dl = 0): this gives a new p vertex.

The fusion process between different levels may modify the vertex level reparti-
tion. However the modification can affect only some levels: it does not impact
the levels which precede k. Algorithm 2 allows us to manage the fusion of the
vertices with the level technique which maintains the highest degree of paral-
lelization. The final reduced graph is treated by YAO, which generates code
according to the following steps.

18

 inner

subdomain

b
o

rd
e

r

b
o

rd
e

r
T1 T2 T3

d
l m

a
x

d
l m

a
x

Figure 11: Subdomain decomposition with dlmax
= 1 for threads T1, T2 and T3.

Each thread domain is decomposed into two border subdomains with dlmax grid
points in the parallel dimension, and one inner subdomain.

• Sort in a topological order the final reduced graph and enumerate all its
vertices following this topological order.

• Write one nest order directives for each vertex. These order directives
have the same axes as the one provided by the user and contain the basic
functions merged in the vertex.

• Generate OpenMP directives for vertices labeled by p.

An example of this algorithm is presented in section 4.4.

4.3 Parallelization of the backward procedure

The same parallelization algorithm can also be applied to the backward pro-
cedure, which results in a complete parallelization of all computations at each
time step. The total elapsed time in a YAO application is mainly composed of
the forward and the backward elapsed times. Parallelizing these two procedures
means that most of the application has been optimized. Profiling measurements
on some YAO applications showed that 99 percent of the total elapsed time is
generally in these procedures.

The RDG used for the backward procedure is the same as for the forward
procedure but the arrows are reversed with respect to the original RDG. These
two RDGs have the same SCCs. As the outermost loops also have the same
axis, the same method used to parallelize the forward procedure is also valid to
parallelize the backward procedure. Likewise, it is easy to see that the rules used
to merge loop blocks previously introduced remain valid for the backward pro-
cedure. Thus, parallel order directives obtained by the decomposition/merging

19

methods defined for the forward procedure can be fully retained for the backward
procedure.

However the parallelization of the backward procedure has a further difficulty
in terms of thread synchronization. This synchronization is required by the
addition (accumulation) presented in section 2.2.2. As shown in Fig. 4, in a
parallel context this addition may result in a data race condition (write/write
conflicts) if the back propagations of dxp are performed concurrently by several
threads. Such conflicts may occur between two time steps. Hence, the analysis
of the RDG is not sufficient to detect all the data race conditions of the backward
procedure.

This issue can be solved with OpenMP atomic directives which ensure that
each addition is performed atomically. However these atomic instructions are
costly, as well as numerous in the backward parallel code, which prevents us
from obtaining good parallel performances in practice. In order to avoid these
OpenMP atomic directives, we rely on the distance vectors of the RDG to de-
termine the maximum |dl|, denoted dlmax

. In the 1D block decomposition, we
can now further decompose each thread domain into three subdomains: two
border subdomains with dlmax grid points in the parallel dimension, and one
inner subdomain with usually much more than dlmax grid points in the parallel
dimension. An example with dlmax

= 1 is presented in Fig. 11. Data race
conditions are now avoided by ensuring that all threads compute the three sub-
domains in the same ordering. OpenMP barrier directives are required between
each subdomain computation.

Taking all this into account, the overall parallelization algorithm ensures the
parallelization of all the computations done by a YAO generated application.
It gives a domain decomposition with respect to the outermost loop l, which
can then be automatically parallelized in the final generated code thanks to
OpenMP directives. Furthermore if a multi-level parallelization is desired, it is
then possible to apply the same algorithm for each subloop. We emphasize that
the parallel code generated by YAO respects the order and the ctin directives,
which implies that the result of the parallel code is the same as the sequential
code.

4.4 Marine acoustics example

This section presents an example of the decomposition algorithm on a 2D modu-
lar graph taken from an actual YAO application. The Marine acoustics example
has a small number of functions Fi, which allows us to easily show the evolu-
tion of the RDG graph. We use the same function names as [7, 6]. This YAO
application deals with marine acoustics and allows us to assimilate actual ob-
servations of acoustic pressure in order to retrieve some geoacoustic parameters
like celerity, density and attenuation. In [7] the basic functions are denoted by
n(z), C, B, bet, gam, R, Xt, ψ and ψfd. To make it simpler we denote them by
F1, . . . , F9 respectively. Figure 12 shows the RDG composed of r=9 basic func-
tions and the edges labeled with the coefficient signs of the ctin directives. In
this figure the SCCs are outlined by the dashed lines and numbered from 1 to 6.

20

1

F2
0,0

F3

2

3

F4

4

5

F7

0,−1

F8

0,+1

6

−1,+1
−1,−1
−1,0

0,−

0,0

0,0

0,0

0,0
0,0

0,
0

0,
+
1

0,+
1F1

F9F5

F6

Figure 12: RDG: the dashed lines are the
Strongly Connected Components.

order YA1
order YA2
F1 F3 F2 F5 F4 F6

F7

order YB2
F8 F9

Figure 13: order direc-
tives defined by the user
for the Marine acoustics
example.

The order directives specified by the user are given in Fig. 13. In this case, the
outermost loop is related to the ascendant i axis. After computing the Gl/SCC

graph, we label each vertex and we proceed with the level reorganization, as
presented in Fig. 14, where Mlevel equals 5; the single circle denotes a paral-
lelizable vertex (p) and the double circle a non parallelizable vertex (p̄). Fig.
16 shows the fusion of the vertices 2 and 3 labeled by p in a new vertex called
2,3 of the same label. This is done in the initialization phase of the algorithm
(line 2). Then the vertices 1 and 2,3 can be merged in a new vertex called 1,2,3
which is parallel too. The two vertices are located on levels k = 1 and k = 2.
A level reorganization reduces Mlevel to 4. The same operation is done on the
vertices 1,2,3 and 4, followed again by a level reorganization (Mlevel reduced to
3). The topological order is then: [1,2,3,4], [5], [6] as shown in Fig. 17. The
algorithm ends because it is no longer able to fuse and the level counter has
reached Mlevel equals 3. This topological order is translated in an ordering of
the modules. The final scheduling respects the ordering given by the user and
corresponds to: [F1 F3 F2 F5 F4], [F6 F7 F8], [F9] or [n(z) B C gam bet], [R Xt

ψ], [ψfd]. The final decomposition of the order directives is given in Fig. 15.
With the keywords parallel and non parallel this figure outlines the outermost
loops (order directives) that the algorithm has recognised as parallel or not.

5 Performance results

We present the performance results of the parallel code generated by YAO
(changelist 613 [11]) for both simple and complex actual applications of data
assimilation. Experiments are performed on a server at Polytech Paris-UPMC
(France), composed of one AMD Magny-Cours Opteron 6168 processor and
16 GB of memory. This processor has 12 cores running at 1.9 GHz which
have private L1/L2 (64KB/512KB) caches and share two 6MB L3 caches. All
computations are performed in double precision.

21

3

2 6

50

4

1

0

0

0

0
0

Figure 14: Gl/SCC where the double circle rep-
resents a non parallelizable vertex.

order YA1 (parallel)
order YA2

F1 F3 F2 F5 F4

order YA1 (non paral-
lel)

order YA2
F6 F7

order YB2
F8

order YA1 (parallel)
order YA2

F9

Figure 15: order di-
rectives recomputed
by the algorithm for
the Marine acoustics
example.

1 4 652,3
0 0

0

0 0

Figure 16: Fusion of the vertices 2 and
3 in a new p vertex called 2,3.

5 61,2,3,4
00

0

Figure 17: Fusion of the vertices 1,2,3
and 4 in a new p vertex called 1,2,3,4.

5.1 Simple data assimilation applications

We focus here on two simple, but actual, data assimilation applications: the
Shallow-water and the Marine acoustics applications mentioned before.

The RDG of the Shallow-water application is composed of 6 SCC (each SCC
contains one basic function), see [4, 5] for more details. The parallelization al-
gorithm returns that all SCCs are parallelizable. Figure 18 shows the elapsed
times and the parallel speedups for an increasing number of cores used (with
one OpenMP thread per core) and for different computational space sizes, with
both OpenMP atomic directives and our subdomain decomposition. The data
race conditions in the backward procedure are more efficiently avoided with
our subdomain decomposition which clearly offers better performance than the
atomic directives. We emphasize that such OpenMP code automatically gener-
ated by YAO is equivalent to a (non-trivial) manual parallelization, and offers
good speedups (up to 9.4 on 12 cores). Moreover for a fixed number of cores
the speedup increases with the computational space size since this increases the
computation grain of each thread.

22

1 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

Cores

T
im

e
 (

s
e

c
o

n
d

s
,

lo
g

 1
0

 s
c
a

le
)

512x512 subdomain
1024x1024 subdomain

2048x2048 subdomain

512x512 atomic

1024x1024 atomic
2048x2048 atomic

1 2 4 6 8 10 12
0

2

4

6

8

10

12

Cores

S
p

e
e

d
u

p

512x512 subdomain

1024x1024 subdomain
2048x2048 subdomain

512x512 atomic

1024x1024 atomic
2048x2048 atomic

ideal speedup

Figure 18: Shallow-water performance measurements for three 2D computa-
tional space sizes over one time step (time averaged over 30 time steps). Both
performance results with OpenMP atomic directives and subdomain optimiza-
tion are shown. The times encompass both the forward and the backward pro-
cedures.

The performance results on the Marine acoustics are very different. In sec-
tion 4.4 we have shown that the parallelization algorithm does not parallelize
the whole RDG. Three modules, which unfortunately contain most of the com-
putation, are excluded from the parallel region. Figure 19 shows the elapsed
times and the parallel speedups, as well as the theoretical maximum speedup
according to Amdahl’s law for this application. The parallel speedup is very
limited, but the code generated by YAO offers most of the speedup available in
this application. Again, the performance gain increases with the computational
space size.

5.2 A complex data assimilation application

We now focus on the much more complex NEMO application, which requires
a greater number of modules. NEMO [10] is a state-of-the-art complete three-
dimensional ocean modeling framework based on the finite difference approxi-
mation of Navier-Stokes equations. NEMO is used by a large community: 240
projects in 27 countries (14 in Europe, 13 elsewhere) and its evolution and re-
liability is controlled by an European consortium9. The GYRE configuration
of NEMO is considered in this work. In this configuration, the dimension of
the computational space is fixed at 32 × 22 × 31 for each time step. The YAO
implementation of this numerical model involves 82 modules that are computed
within 11 nested loops. Among these 11 loops, 2 loops (containing 1 module
each) are excluded from the parallel region and represent 2.1% of the serial ex-
ecution time. 80 out of the 82 modules are thus parallelized by YAO. Due to
the limited dimensions of the computational space of the GYRE configuration,

9http://www.nemo-ocean.eu/

23

1 2 4 6 8 10 12
0

2

4

6

8

10

12

Cores

T
im

e
 (

s
e

c
o

n
d

s
)

256x4096

512x8192

768x16384

1 2 4 6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

1.6

Cores

S
p
e
e
d
u
p

256x4096 real
256x4096 Amdahl
512x8192 real
512x8192 Amdahl
768x16384 real
768x16384 Amdahl

Figure 19: Marine acoustics performance measurements for three 2D computa-
tional space sizes over one time step (time averaged over 30 time steps). The
times encompass both the forward and the backward procedures.

parallel performance tests were performed only up to 8 cores. We use here our
subdomain decomposition in order to obtain the best parallel speedups.

Figure 20 shows the elapsed times and the parallel speedups, as well as the
theoretical maximum speedup according to Amdahl’s law for this NEMO appli-
cation, as generated by YAO with OpenMP. Thanks to YAO, we automatically
obtain good parallel speedups: up to 5.71 on 8 cores. According to Amdahl’s
law, this represents 81.8% of the maximum theoretical speedup (namely 6.98)
available on 8 cores for this complex and actual data assimilation application.

6 Conclusion and perspectives

In this paper we have shown how the modular graph formalism of YAO allows
us to address some important automatic generation tasks. During the develop-
ment of a new YAO application the writing of the order directives is a costly
phase. The coherence algorithm allows the user to speed up this development.
We have highlighted some rules which may in the future open the way to a
completely automatic generation of the order directives. Moreover, the user-
defined order directives are important from a performance point of view. The
automatic generation of order directives may allow nested loops which minimize
the computation time by exploiting at best the CPU memory hierarchy. This
is a subject under study.

We have also shown how the modular graph allows us to address the issue
of the automatic parallelization of the code generated by YAO. Indeed, a YAO
modular graph is generated by a reduced graph, which is similar to the Reduced
Dependence Graph (RDG) used in the automatic parallelization of nested loops.
This similarity allows the adaptation to YAO of the algorithms that were devel-
oped in this research field. We have thus presented here how the Allen-Kennedy
[14] and Kennedy-McKinley [13] algorithms can be integrated and adapted in

24

1 2 4 8
0

0.05

0.1

0.15

0.2

0.25

Cores

T
im

e
 (

s
e

c
o

n
d

s
)

1 2 4 8
0

1

2

3

4

5

6

7

8

Cores

S
p

e
e

d
u

p

real speedup

Amdahl speedup

Figure 20: NEMO performance measurements over one time step (time averaged
over 30 time steps). The times encompass both the forward and the backward
procedures.

order to enable the automatic parallelization, via multiple threads on parallel
shared memory architectures, of the application code generated by YAO. In the
backward procedure the modular graph is furthermore used to decompose each
thread domain into three subdomains, whose appropriate sizes enable us to com-
pletely avoid the race conditions occurring in this backward procedure. We have
also presented performance results of the parallel generated code with OpenMP
on a multicore CPU for both simple (Shallow-water, Marine acoustics) and com-
plex (NEMO) actual applications. We automatically obtain good speedups for
these applications with up to around 80% of parallel efficiency on 8 or 12 CPU
cores, within the limits of the parallelism available in each application.

More advanced transformations (unimodular transformation, loop inversion,
SIMD vectorization, tiling, . . .) have already been developed in the context of
automatic loop parallelization, especially via the polyhedral model [12, 17]. We
are currently studying if and how this polyhedral model can be integrated in
the YAO framework. In the future, we also plan to investigate the automatic
generation of MPI code from OpenMP code in the YAO context in order to
automatically scale data assimilation applications on distributed memory archi-
tectures. It can be noticed that the subdomain decomposition between border
and inner subdomains, presented here to avoid race conditions, may help overlap
MPI communications with computation in order to obtain the best speedups in
a distributed memory context: here again, the modular graph of YAO may be
very useful to automatically determine this subdomain decomposition for any
variational data assimilation application. Finally, these automatically inserted
OpenMP directives could also be rewritten as OpenACC10 directives in order
to automatically generate parallel code for GPUs (Graphics Processing Units).

10Open industry standard of compiler directives for accelerators, see: http://www.

openacc-standard.org/

25

References

[1] O. Talagrand. Assimilation of Observations, an Introduction. J. Meteor.
Soc. Japan, 75:191–209, 1997.

[2] AM Clayton, Andrew C Lorenc, and Dale M Barker. Operational im-
plementation of a hybrid ensemble/4d-var global data assimilation system
at the met office. Quarterly Journal of the Royal Meteorological Society,
139(675):1445–1461, 2013.

[3] Hans Ngodock and Matthew Carrier. A 4dvar system for the navy coastal
ocean model. part i: System description and assimilation of synthetic ob-
servations in monterey bay*. Monthly Weather Review, 142(6):2085–2107,
2014.

[4] L. Nardi, C. Sorror, F. Badran, and S. Thiria. YAO: A Software for Vari-
ational Data Assimilation Using Numerical Models. In LNCS 5593, Com-
putational Science and Its Applications (ICCSA), pages 621–636, 2009.

[5] L. Nardi. Formalisation et automatisation de YAO, générateur de code
pour l’assimilation variationnelle de données. Ph.D. thesis, CNAM, 2011.

[6] F. Badran, M. Berrada, J. Brajard, M. Crépon, C. Sorror, S. Thiria, J.-P.
Hermand, M. Meyer, L. Perichon, and M. Asch. Inversion of Satellite Ocean
Colour Imagery and Geoacoustic Characterization of Seabed Properties:
Variational Data Inversion Using a Semi-automatic Adjoint Approach. J.
of Marine Systems, 69:126–136, 2008.

[7] M. Berrada. Une approche variationnelle de l’inversion, de la recherche
locale à la recherche globale par carte topologique: application en inversion
géoacoustique. Ph.D. thesis, UPMC, France, 2008.

[8] J. Brajard, C. Jamet, C. Moulin, and S. Thiria. Use of a Neuro-variational
Inversion for Retrieving Oceanic and Atmospheric Constituents from Satel-
lite Ocean Colour Sensor: Application to Absorbing Aerosols. Neural Net-
works, 19(2):178–185, 2006.

[9] A. Kane, S. Thiria, and C. Moulin. Développement d’une Méthode
d’Assimilation de Données in Situ dans une Version 1D du Modèle de
Biogochimie Marine PISCES. Master’s thesis, LSCE/IPSL, CEA-CNRS-
UVSQ, 2006.

[10] G. Madec. NEMO ocean engine. Note du Pôle de modélisation de l’Institut
Pierre-Simon Laplace No 27, LOCEAN, Paris, France, 2008.

[11] YAO. Trac Page, 2016. http://forge.ipsl.jussieu.fr/yao.

[12] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic paralleliza-
tion. 2000.

26

[13] K. Kennedy and K. McKinley. Typed fusion with applications to parallel
and sequential code generation. Technical report, 1993.

[14] R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of sci-
entific programs for parallel execution. In POPL ’87: Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 63–76, NY, USA, 1987. ACM.

[15] H. Jin, M. A. Frumkin, and J. Yan. Automatic Generation of OpenMP
Directives and Its Application to Computational Fluid Dynamics Codes.
In ISHPC, pages 440–456. Springer-Verlag, 2000.

[16] J. Taillard, F. Guyomarc’h, and J.-L. Dekeyser. A Graphical Framework for
High Performance Computing Using An MDE Approach. In Proceedings of
the 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, PDP, pages 165–173, USA, 2008. IEEE CS.

[17] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A prac-
tical automatic polyhedral parallelizer and locality optimizer. In PLDI,
pages 101–113, USA, 2008. ACM SIGPLAN.

[18] L. Nardi, F. Badran, P. Fortin, and S. Thiria. YAO: a generator of parallel
code for variational data assimilation applications. In IEEE 14th Interna-
tional Conference on High Performance Computing and Communications,
HPCC-2012, pages 224 –232, june 2012.

[19] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Addison Wesley, 2de edition,
August 2006.

27

