
HAL Id: hal-00783328
https://hal.sorbonne-universite.fr/hal-00783328v1

Preprint submitted on 31 Jan 2013 (v1), last revised 20 Jun 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic generation of parallel and coherent code
using the YAO variational data assimilation framework

Luigi Nardi, Fouad Badran, Pierre Fortin, Julien Brajard, Sylvie Thiria

To cite this version:
Luigi Nardi, Fouad Badran, Pierre Fortin, Julien Brajard, Sylvie Thiria. Automatic generation of par-
allel and coherent code using the YAO variational data assimilation framework. 2013. �hal-00783328v1�

https://hal.sorbonne-universite.fr/hal-00783328v1
https://hal.archives-ouvertes.fr

Computing manuscript No.
(will be inserted by the editor)

Automatic generation of parallel and coherent code using

the YAO variational data assimilation framework

Luigi Nardi · Fouad Badran · Pierre

Fortin · Julien Brajard · Sylvie Thiria

Received: date / Accepted: date

Abstract Variational data assimilation consists in estimating key control pa-
rameters of a numerical model in order to minimize the misfit between the
model values and the actual observations. The YAO framework is a code gen-
erator based on a modular graph decomposition of the model; it is dedicated
for helping data assimilation experiment achievement. YAO is particularly
suited for generating adjoint codes of numerical models, which is the basis for
variational assimilation experiments. In this paper, we first present an algo-
rithm which allows to check the consistency of the sequence of calculations
defined by the user. We then present how the YAO modular graph structure
enables the automatic and efficient parallelization of the generated code using
OpenMP on shared memory architectures. The YAO modular graph also al-
lows to completely avoid the data race conditions (write/write conflicts). The
performance tests performed on both simple and complex actual applications
chosen in the geophysical domain have shown good speedups on a multicore
CPU.

Keywords data assimilation · automatic parallelization · shared memory
architectures · OpenMP · adjoint model · dependence graph

L. Nardi (corresponding author) · J. Brajard · S. Thiria
LOCEAN, Laboratoire d’Océanographie et du Climat: Expérimentations et approches
numériques.
UMR 7159 CNRS / IRD / Université Pierre et Marie Curie / MNHN.
Institut Pierre Simon Laplace. 4, place Jussieu Paris 75005, France.
E-mail: lnalod@locean-ipsl.upmc.fr

L. Nardi · F. Badran
CEDRIC, Centre d’Etude et De Recherche en Informatique du CNAM. EA 1395,
292 rue St Martin Paris 75003, France.

P. Fortin
UPMC Univ Paris 06 and CNRS UMR 7606, LIP6,
4 place Jussieu, F-75252, Paris cedex 05, France

2 Luigi Nardi et al.

1 Introduction

Numerical models are widely used for studying physical phenomena. Most of
the time, the model is used to forecast or analyze the evolution of the phe-
nomenon. Since the model is imperfect, discrepancy between its forecast val-
ues and actual observations may be important due to model parametrization,
numerical discretization, uncertainty on the initial conditions and boundary
conditions. A class of methods called data assimilation [1], which uses both
the numerical model of the phenomenon and the inverse problem method, was
introduced to reduce this discrepancy. Data assimilation uses actual observa-
tions to constrain the control parameters (initial conditions, model parameters,
. . .) in order to force the numerical model (thereafter also referred to as the
direct model) to reproduce the desired behavior. In variational data assimi-
lation methods [2], this task is done by minimizing, with respect to control
parameters, a cost function J which measures the misfit between the direct
numerical model outputs and the observations. The minimization is done by
the use of a gradient method, which requires calculating the gradient of J
as a function of the control parameters. The gradient computation requires
the product of the transpose Jacobian matrix of the direct numerical model
with the derivative vector of J defined at the observation points. This product
is also called adjoint model. Since the direct numerical model is usually very
complex, the implementation of the programming code which represents the
adjoint model is often a real issue.

The YAO framework already presented in [3,4] is a code generator dedi-
cated to variational data assimilation. With YAO the user defines, using spe-
cific directives and C programming the specification of the numerical model.
It then generates automatically the numerical and the adjoint model codes via
C++ object-oriented programming. YAO has already been used with success
on several actual applications in oceanography: Shallow-water [3,4], Marine
acoustics [5,6], Ocean color [7], PISCES [8], GYRE configuration of NEMO
[9].

Numerical models are based on a discretization of the computational space
and apply at these points a number of basic functions. Using YAO the user
defines the computational space, the basic functions and their interdepen-
dencies. The YAO formalism is based on a dependence graph called modular
graph, which is similar to those used in automatic parallelization of nested
loops. The traversal of the modular graph allows to perform all the basic
calculations of the numerical model. The user describes, using YAO specific
directives, a traversal of the graph in the form of nested loops, which must
be consistent with the different dependencies defined by the modular graph.
This task is not trivial when it concerns a complex numerical model, thus it
is important to check the coherence of the proposed traversal. We present in
this paper an algorithm which allows to check the coherence of a traversal and
to detect inconsistencies.

In the field of automatic parallelization of nested loops several concepts and
algorithms have been introduced, which allow the analysis of nested loops,

Title Suppressed Due to Excessive Length 3

their decomposition and fusion [10–12]. The decomposition obtained is well
suited to a multi-thread parallelization on shared memory architectures where
no communications are required. In this paper, we also show how the YAO
modular graph enables us to integrate and adapt these algorithms in order
to identify the available parallelism, and to allow the automatic generation of
parallel code with YAO while completely avoiding the data race conditions
(write/write conflicts). With the OpenMP directives, it is then possible to
generate a multi-threaded parallel code that runs efficiently on shared mem-
ory architectures. This is an important improvement over the previous version
of YAO [3] which can generate only sequential code. A large community in
geophysics may thus automatically and transparently exploit decades of re-
search in automatic parallelization and benefit from important speedups in
computation times on multicore architectures without any additional effort
and without any knowledge in parallel programming.

For the automatic generation of parallel code, the development of algo-
rithms specific to YAO is necessary. Indeed, the software tools for automatic
parallelization with OpenMP directives have specific constraints related to
their design, and can therefore currently not be integrated in the YAO gen-
erator. For example, the CAPO toolkit [13] supports only Fortran and re-
lies on user interaction to improve the parallelization process. The Gaspard2
framework [14] enables automatic OpenMP code generation, but the available
parallelism must be first specified by the user in an UML model. The PLuTo
tool [15] can efficiently parallelize nested loops while taking into account, via
tiling, data locality on multicore architectures with complex hierarchical mem-
ory. However PLuTo does not currently support object-oriented programming
for input source codes and it has specific limitations (only SCoP programs with
pure function calls, no dynamic branch conditions) that also prevents a direct
integration in YAO. Finally and most importantly, as detailed further there
are data race conditions (write/write conflicts) in the generated code. These
data race conditions prevent any automatic parallelization from such tools
according to their own data-dependency analysis. To our knowledge, none of
these tools can automatically insert (for example) OpenMP atomic directives
to avoid these race conditions and thus enable the parallelization. We here
show how to efficiently accomplish this in YAO thanks to its modular graph.

Adapting state-of-the-art algorithms to YAO while relying on its modular
graph has also several advantages. First, there is no additional constraint on
the application code written by the user. Second, a high-level dependency
graph is directly provided by the modular graph which enables to avoid the
data-dependency analysis, to naturally obtain a coarse grain parallelism, and
to possibly scale on real-life applications with thousands of statements.

This paper is based on a previous work [16]. Two additional contributions
are here presented. First, we introduce an algorithm, thereafter referred to as
the coherence algorithm, allowing to detect inconsistencies in the user-defined
YAO modular graph traversal. Second, the coherence and the parallelization
algorithms are tested on the European reference model for global oceanography
forecasting NEMO (Nucleus for European Modelling of the Ocean), which

4 Luigi Nardi et al.

proves that the proposed algorithms are already operational. In the following,
we will first give a brief overview of the YAO framework in section 2. Section
3 introduces the coherence algorithm. Then, in section 4, we will show how
the modular graph can be used to automatically and efficiently parallelize
the generated code on shared memory architectures. Performance results for
three actual YAO applications on a multicore CPU are detailed in section 5,
including the NEMO application. Finally, in section 6 concluding remarks are
presented and future work discussed.

2 YAO presentation

2.1 The modular graph

We present here the concept of modular graph, which is fundamental in YAO,
as well as the forward and backward procedures: more details can be found in
[3,4]. We first define the following terms.

– A module is an entity of computation; it receives inputs from other modules
or from an external context1 and it transmits outputs to other modules or
to an external context.

– A connection is a transmission of data from a module to another or between
a module and an external context.

– A modular graph is a data flow graph composed by a set of several intercon-
nected modules; it summarizes the sequential order of the computations.

In order to perform data assimilation, at each time step a modular graph is
traversed by the forward procedure and then by the backward procedure.

2.1.1 The forward procedure

The input data set of a module Fp is a vector denoted xp and its output data
set is a vector denoted yp (yp = Fp(xp)). As a consequence, a module Fp

can be executed only if its input vector xp has already been processed, which
implies that all its predecessor modules have been executed beforehand. Thus
there are only flow dependencies [10] between modules. Since we suppose that
the modular graph is acyclic, it is then possible to find a module ordering,
i.e. a topological order, which allows us to correctly propagate the calculation
through the graph. If we denote by x the vector corresponding to all the
graph input data, provided by the external context, the forward procedure
enables to calculate the vector y corresponding to all the graph output values.
The modular graph defines an overall function Γ and makes it possible to
compute y = Γ (x). The function Γ has a physical meaning: it represents a
direct numerical model M , with respect to the YAO formalism. The forward
procedure allows us to compute the outputs of the numerical model according

1 An external context is an entity which initializes and retrieves the computation of certain
modules.

Title Suppressed Due to Excessive Length 5

to its inputs. The incoming connections from the external context of Γ could
be, for example, initializations or boundary conditions. Outgoing connections
transmit their values to compute, as an example, a cost function.

2.1.2 The backward procedure

This procedure enables the computation of the adjoint of the cost function J
with respect to the control parameters. We suppose that for each module Fp,
with an input vector xp and receiving in its output data points a “perturbation”

vector dyp, we can compute the matrix product dxp = FT
p dyp, F

T
p being

the transposed Jacobian matrix of the module Fp calculated at point xp. It is
possible [4] to compute the gradient of J with respect to the control parameters
by traversing the modular graph in a reverse topological order and executing
local computations on each module in order to compute dxp. Given that an
output of a module may transmit its data to multiple entries for other modules,
it has been shown [3,4] that this reversed traversal leads to a back propagation
on the modular graph characterised by additions (accumulations) of several
local computations. Each of these additions is computed in an intermediate
step and then back propagated. Thus there are flow and output dependencies
[10].

2.1.3 YAO formalism

Running simulations or data assimilations using an operational numerical
model M requires the definition of a modular graph representing the sequence
of the computations. A numerical model operates on a discrete grid, where
the physical process is computed at each grid point I and at each time step
t. As the phenomenon under study is quite the same at each grid point, only
the modular subgraph representing a grid point is needed. YAO obtains Γ by
duplicating this subgraph for each I and t.

In the YAO formalism, the user must define a set of basic functions
{F1, F2, . . . Fk} which has to be applied to each grid point I and at each time
step t. The user has to define also the dependencies between these functions.
From this information, YAO generates the overall modular graph Γ . The mod-
ules of the modular subgraph ΓI,t are denoted by Fp(I, t), where I represents
a grid point (1D, 2D or 3D), t is a time step and Fp a basic function. Thus,
a module is the computation of the function Fp at grid point I and at time t.
We denote by i (respectively j and k) the indices of the first axis (respectively
the second and third axis). An edge from a source module Fs(I’, t

′) to a des-
tination module Fd(I, t) corresponds to a data transmission from Fs(I’, t

′) to
Fd(I, t) (s may be equal to d).

The modular graph is similar to the Expanded Dependence Graph (EDG)
used for the parallelism detection in nested loops [10]. The main difference
with the modular graph being that in the EDG the nodes represent one oper-
ation (the instance of a statement) while the nodes of the modular graph are a
set of operations (the instance of a function composed by a set of statements)

6 Luigi Nardi et al.

represented by the module Fp(I, t). Thus, the granularity of the nodes differs.
In practice the dimension of a YAO basic function depends on the applica-
tion and on the user design. In general a YAO module has some dozens of
statements but in particular cases it may be very much larger.

2.2 User specifications and code generation

This section presents two YAO directives, ctin and order, on which relies the
YAO automatic code generation. These directives generate nested loops, which
allow us to traverse the modules Fp(I, t).

2.2.1 order and ctin directives

The ctin directive has the following syntax “ctin from Fs to Fd list of coor-
dinates”. Such a directive represents one edge (or connection) of the modular
graph which is then automatically replicated by YAO on space and time. list of
coordinates represents, for a generic point I and time step t of the destination
module Fd, the point I’ and the time t′ of the source module Fs (with t ≥ t′).
If S′ and S are the spaces associated respectively to Fs and Fd, we denote with
L′ and L the set of axes of S′ and S 2; YAO allows only that S′ is a subspace
of S, meaning that L′ ⊂ L. We denote with (I, t) the current position of Fd,
with (I’, t′) the relative position corresponding to Fs and with d the distance

vector defined by d = I’− Î, where Î is the projection of I on the axes of L′.
Thus, d has the same dimension of I’. We denote with dl ∈ Z its component
on the l axis and with dt = t′ − t (≤ 0) the delay between the time steps t′

and t. The user has to specify in the list of coordinates the distance vector
and dt as a function of the generic point I of the destination module, which is
the same in all connections. Fig. 1a gives an example of ctin directives.

Every ctin directive generates an edge from Fs to Fd labeled by the distance
vector d and t′− t. The resulting graph is a directed multigraph3 which repre-
sents all dependencies between basic functions. This multigraph corresponds
to the Reduced Dependence Graph (RDG) [10] used for the automatic gener-
ation of parallelism in nested loops4. Fig. 2 presents the RDG of the former
example. Since the space dimension is two, the edges are labeled by (di, dj , dt)
which indicates that the destination module, at time t and at point (i, j), takes
its inputs from the source module at time t+ dt and point (i+ di, j+ dj) with
di, dj ∈ Z and dt ∈ Z≤0.

2 The iteration vector I can be defined on one (I = (i)), two (I = (i, j)) or three dimensions
(I = (i, j, k)) as function of the space. Likewise for the vector I’ which is I’ = (i + di),
I’ = (i+ di, j + dj) or I’ = (i+ di, j + dj , k + dk) as function of the space S′. The distance
vector d has a dimension which corresponds to the number of common components between
S and S′. As an example, if S′ is 2D and S is 3D the distance vector is 2D and equal to
(di, dj).

3 A directed multigraph is a graph with multiple parallel edges.
4 As for the analogy between the EDG and the modular graph, the RDG has one statement

per node while the YAO RDG has a basic function (a set of statements) per node.

Title Suppressed Due to Excessive Length 7

(a)

ctin F1 from F1 i j-1 t-1

ctin F2 from F1 i j+1 t

ctin F2 from F3 i-1 j+1 t

ctin F2 from F3 i j t-1

ctin F2 from F4 i+1 j t

ctin F3 from F1 i-1 j t-1

ctin F4 from F3 i j t

ctin F4 from F2 i j+1 t

(b)

order YA1

order YA2

F1 F3

order YB1

order YB2

F2 F4

Fig. 1 (a) Part of the specification language used by the user with 2D space modules. The
second ctin directive specifies the connection from F1 at point (i,j+1,t) to F2 at point (i,j,t).
(b) The order directives indicate the ordering in which we compute the functions Fp and
the ordering in which we traverse the grid.

F2F1

F3

0,−1,−1

F4

0,+1,0

0
,
+

1
,
0

+
1

,
0

,
0

0,0,0

−
1

,
0

,
−

1

−

1,
+
1,
0

0
,
0
,
−

1

Fig. 2 RDG issued by the ctin directives of Fig. 1a.

The YAO order directive allows the user to define a traversal of the mod-
ular graph following a topological order. This directive allows to visit all the
grid points of the space, and permits the generation of nested loops. The
user specifies one order directive for each dimension of the space. Thus, a
program generated by YAO, contains an outermost loop, that represents the
time, within which the user defines, thanks to the order directives, the differ-
ent loops that allows the traversal of the space for each time step. In general,
we have several ways to traverse a space. In the order directive, YA1 (YAO
Afterward axis 1) means that we are managing the i loop and we go along this
axis in an ascendant way. YA2 means the same but for the j axis, whereas YB1
(YAO Backward axis 1) means that we go along the i axis in a descendant
way. Fig. 1b gives an example of such order directives.

2.2.2 Generation of the forward and backward procedures

In Fig. 3 we give the translation, performed by the YAO code generator, of
the ctin and order directives given in Figs. 1a and 1b. This represents the
translation, in a pseudo code language, of the forward procedure. Each order
directive generates one loop, one for each dimension of the space. The way we
traverse the axes, ascendant or descendant, and the scheduling of the modules
are the ones specified in the order directives. For each object of each module

8 Luigi Nardi et al.

loop i ascendant

loop j ascendant

F1(i,j,t).forward(F1(i,j-1,t-1))

F3(i,j,t).forward(F1(i-1,j,t-1))

loop i descendant

loop j ascendant

F2(i,j,t).forward(F1(i,j+1,t), F3(i-1,j+1,t),

F3(i,j,t-1), F4(i+1,j,t))

F4(i,j,t).forward(F3(i,j,t), F2(i,j+1,t))

Fig. 3 YAO generator translation of the directives of Figs. 1a and 1b.

class Fp the local forward function (a C++ method) is called with the output
of its predecessor modules as inputs. The local forward functions are defined,
for each basic function, by the user. It has to be noticed that all forward
functions are thread-safe because they compute the result with respect to the
generic grid point I, as shown in Fig. 3. The nested loops allow us to compute
the output of the modules for all the grid points and for one time step. An
overall loop, not shown in the figure, which allows us to traverse the time steps
in an incremental order t, t+ 1, t+ 2, etc., encompasses all the local forward
functions. The time loop may be considered as a computation barrier where
at current time t, all the computations for time t′ < t are done.

As presented in section 2.1.2, the backward procedure traverses the modular
graph in a reverse topological order. For ease of presentation we do not detail
the pseudo code of the backward procedure as we did for the forward procedure.
These are very similar. However it is important to point out the addition
(accumulation) in the back propagation, explained in [3,4] and specific to the
backward procedure. This accumulation results in output dependencies which
may arise between two time steps. This computation is briefly explained in Fig.
4. The yp variables (p ∈ 1, 2, 3) are the outputs of the local forward functions.
The propagation allows us to provide the predecessor module computations
to the successor modules. On the other side, the back propagation allows us
to back propagate the gradient of J by using the Jacobian matrix (Jp in the
figure) for computing dxp. The back propagation of several dxp (dx3 and dx2
in Fig. 4) which have the same predecessor enforces the addition of the dxp
(the symbol

∑
in the figure).

3 Coherence in the computational ordering

The ctin and the order directives are the basis of the YAO specification lan-
guage. Sometimes the traversal defined using order directives can be quite
tricky and in real-world YAO applications the user can make some mistakes
in the definition of such an ordering. Defining a wrong traversal implies that
when YAO schedules a module for computation its inputs are not ready be-
cause its predecessors have not been computed yet. These mistakes directly
affect the numerical results of the data assimilation process.

Title Suppressed Due to Excessive Length 9

� ���

�
� ���

������	
� ��

��
A
�

�
�

��

������	
� ��

��
A
�

�
�

��
A
� �A�

������	
� ��

��
A
�

�
�

��

A
� �A

�

BCDEBF� B

A
� �A��

A

A

A

�

�

�

�

�

�

���

�

Fig. 4 Addition, represented by the symbol
∑

, in the back propagation of the backward

procedure. These two connections represent a data transfer between two time steps. The
two modules F3 and F1 perform the transfer towards F1 at time step t − 1. This partial
graph example case is given by the YAO directives shown in Fig. 1.

The coherence of a ctin directive is defined as follows.

Definition 1 Assume that Fs(I’, t
′) → Fd(I, t) represents a ctin directive.

This ctin is said coherent if, for each (I, t), the order directives ensures that
the function basic Fs has already been computed at (I’, t′). The connection is
said incoherent otherwise.

We present in this section the rules which allow testing the coherence of a
ctin directive. The case where two basic functions Fs and Fd are computed at
the same time step (t = t′) from two different outermost loops (i.e. from two
different nests of order directives), with respect to the L′ axes, represents the
most simple case:

Rule 1 Assume that Fs(I’, t
′) → Fd(I, t), with t

′ = t, is a connection between
the basic functions Fs and Fd. We suppose that Fs and Fd belong to two
different outermost loops. If the outermost loop containing Fs is written before
the outermost loop containing Fd, then the ctin directive is coherent otherwise
the ctin directive is incoherent.

The coherence verification is more delicate as soon as the two basic func-
tions Fs and Fd are in the same outermost loop. Given a set of order directives,
we introduce in section 3.1 two rules which allow to determine the coherence
of a ctin directive. Then, in section 3.2 we present a general verification algo-
rithm.

3.1 Verification rules

Rule 2 Assume that Fs(I’, t
′) → Fd(I, t) is a connection between two basic

functions contained in an outermost loop l ∈ L′ ∪ {t}, with distance dl 6=

10 Luigi Nardi et al.

0.5 If dl < 0 (respectively dl > 0) and the loop l is ascendant (respectively
descendant), then this connection is coherent. In the same way, if dl < 0
(respectively dl > 0) and the loop l is descendant (respectively ascendant),
then this connection is incoherent.

Justification Suppose the loop l is ascendant. Consider a point P = (I, t)
with I ∈ S and suppose lP its component relative to the l loop. Suppose
also lP ′ the component relative to the l loop for the point P ′ = (I’, t′) with
I ′ ∈ S′. If l is the outermost loop then, at the moment of the computation of
P, all the points with lP ′ < lP have already been computed. This is because
of the ascendant sense of the loop. In fact, when the nested loops compute the
iteration lP , all the instructions which correspond to an iteration vector P’

with a component lP ′ lower than lP , have already been computed by the loop
l. If the distance dl is dl < 0, then the iteration vector P’ has lP ′ = lP + dl <

lP which demonstrates the coherence of the connection. As a consequence if
dl > 0, then module Fs(P’) has not been computed yet and the connection
is incoherent. It is self-evident that the same result is valid for a descendant
loop.

Remark 1 Given that the outermost loop concerns the temporal trajectory,
rule 2 point out that if dt = t′ − t < 0 then the ctin directive is coherent for
any set of order directives. The verification process must start by testing the
coherence with respect to this outermost loop (time). As in YAO the time loop
is always ascendant and the delays dt always verify dt ≤ 0, if a ctin directive
verifies dt 6= 0, then it is coherent. For ease of presentation if we refer to Fs(I)
we assume that the time step is t.

Fig. 5a illustrates a traversal on a 2D space, where basic functions A and
B are defined. The point (i, j), circled in the figure, refers to the current
computation point. The grid points computed in the previous iterations are
colored in grey. The arrows are all coherent connections with respect to this
specific nested order directives. These are the connections Fs(i − 1, j + 1) →
Fd(I), Fs(i − 1, j) → Fd(I), Fs(i − 1, j − 1) → Fd(I). The three elements,
which ensure the computation are the outermost loop (the i axis), the sense
YA1 (ascendant) and the sign (-) of di, as shown by rule 2. Note that Fs and
Fd may be indistinctly A or B 6. Fig. 5b illustrates another example of 2D
traversal with a descendant outermost loop j; the arrows are all incoherent
connections.

Rule 3 Assume that Fs(I’, t
′) → Fd(I, t) is a connection between two basic

functions contained in an outermost loop l ∈ L′ ∪{t}, with distance dl = 0. In
order to test the coherence we have to remove the outermost loop and keep the
rest of its instructions (loops and basic functions). We may have two cases for
the remaining instructions:

5 L′ is the set of axes of the space S′.
6 A(i− 1, j + 1)→ A(I), B(i− 1, j)→ A(I) and B(i− 1, j − 1)→ B(I) are also coherent

connections.

Title Suppressed Due to Excessive Length 11

a)

order YA1

order YA2

A B

1, 1 2, 1 3, 1 4, 1 5, 1

1, 2 2, 2 3, 2 4, 2 5, 2

1, 3 2, 3 3, 3 4, 3 5, 3

1, 4 2, 4 4, 43, 4 5, 4

1, 5 2, 5 3, 5 4, 5 5, 5

i1 i2 i3 i4 i5

j1

j
2

j
3

j
4

j
5

b)

order YB2

order YB1

A B

1, 1 2, 1 3, 1 4, 1 5, 1

1, 2 2, 2 3, 2 4, 2 5, 2

1, 3 2, 3 3, 3 4, 3 5, 3

1, 4 2, 4 4, 43, 4 5, 4

1, 5 2, 5 3, 5 4, 5 5, 5

i1 i2 i3 i4 i5

j
1

j
2

j
3

j
4

j
5

Fig. 5 Traversal given by two nested order directives on a 5 × 5 space. Grid point I =
(i, j) = (3, 3) is the current iteration point. The grey and white squares represent respectively
computed and not yet computed grid points. The arrows represent coherent connections (a)
and incoherent connections (b).

– Fs and Fd are in the same embedded loop. We apply rules 2 or 3 recursively.
– Fs and Fd are in two different instructions. We apply rule 1.

Justification In the case dl = 0, the basic functions Fs and Fd are computed
in the same iteration of the loop computing the l axis. This loop computes
one or several instructions which represents the computation of either a basic
function or a loop (nested in the former l loop). Thus, if the basic functions
Fs and Fd are computed with the same loop nested in l, then we must verify
the coherence with respect to this inner loop, for this reason we must apply
either rule 2 or 3. However, if the basic functions Fs and Fd are computed by
two different instructions in the l loop, rule 1 is applied, i.e. the instruction
containing Fs must be computed before the one containing Fd.

Example 1 Test the coherence of connection A(i, j + dj , t) → B(I, t), with
dj ∈ {−1, 0,+1}, given the order directives on the left side:

order YA1

order YB2

A

order YB2

B

order YB2

A

order YB2

B

We apply rule 3. After removing the outermost loop t and then i we obtain
the directives on the right side. Since A and B are contained in two different
outermost loops and A precedes B, the connection is coherent (rule 1).

12 Luigi Nardi et al.

order YA1

A

order YA2

B C

order YA2

order YA1

D

order YB3

E

Fig. 6 Example of order directives defined
by the user. The basic function E is at-
tached to three dimension spaces, B,C,D

and A respectively to two and one dimen-
sion spaces.

t

YA1 YA2

YA2A

B C

YA1

YB3

E

D

level 1

level 2

level 3

level 4

1

1 1

2

1 1

1

2

2 2

Fig. 7 Tree representation of the order di-
rectives of Fig. 6. Leafs and internal nodes
represent respectively basic functions and
loops. They are characterised by Y Xl (X ∈
{A,B}, l ∈ {1, 2, 3}) and child number.

3.2 Coherence algorithm

The overall verification process is given by testing the coherence of each ctin
directive. The algorithm parses each connection independently. Taking into
account remark 1, we know that every ctin directive which verifies dt 6= 0 is
coherent. Thus we limit the coherence process to the verification of the ctin
directives which verify dt = 0. In order to introduce the coherence algorithm
we present in Fig. 6 an example of order directives. In this example the user
specifies two nested order directives. The forward procedure starts with the
computation of the nested orders containing A, B and C; then the second
nested orders which contain the basic functions D and E are computed. Each
nest of order directives is composed by an outermost loop, described by the
parameter Y Xl, with X ∈ {A,B} and l ∈ {1, 2, 3} standing for {i, j, k}. The
body of the outermost loop is composed by three types of instruction lists:

– a list of loops;
– a list of basic functions;
– a list composed by a mixture of loops and basic functions.

As in the compiling theory [17], it is possible to organize the order direc-
tives by an Abstract Syntax Tree (AST). The root children are the outermost
order directives (two in the example); these nodes correspond to level 1 (the
root being at level 0). In general, each node of the tree corresponds to one
instruction. This instruction may be either a loop, corresponding to an order
directive, or the computation of a basic function. A node which computes a
basic function has no children and it is represented by a leaf of the tree. A
node which corresponds to a loop has as much children as the number of in-

Title Suppressed Due to Excessive Length 13

structions contained in its loop. These children are placed in the successive
level with respect to the level of the parent (parent level plus one).

Every internal node (which is not a leaf or the root) represents a loop
defined by its axis and its sense. The children of a node are numbered in the
ordering of the user declaration. We denote this number as child number. An
internal node of the tree contains also the parameter Y Xl, which specifies the
loop axis and the sense. A leaf contains the basic function name. Fig. 7 shows
the tree corresponding to the example of Fig. 6.

With this representation if we want to characterize the nested loops which
enclose the calculation of a basic function, we just have to determine the path
from the root to the leaf which represents the basic function. The internal
nodes of this path represent the nested loops which allow the computation of
the basic function. If we do not consider the root, the first node of the path
corresponds to the outermost loop and the last node corresponds to the basic
function. Thus, for each basic function, we can create a list which represents
the path with at most three intermediate internal nodes. Each internal node
contains the following fields:

– child number, ordering from left to right of the children of a parent node;
– axis, loop index (axis ∈ {i, j, k});
– sense, ascendant or descendant of the loop.

The axis and the sense are represented in Fig. 7 by the parameter Y Xl.
Thanks to the rules introduced in the previous sections and the tree structure,
we can verify the coherence of a particular ctin directive using Algorithm 1.
We explain the general idea of the algorithm through some examples.

Example 2 On the tree of Fig. 7, we consider a connection B(i − 1, j) →
C(i, j), where di = −1 and dj = 0, and we check its coherence. Fig. 8a shows
the paths Pb and Pc for the basic functions B and C, they have three levels,
n = 3. At the first iteration m = 1, the child number, the axis and the sense
of nodes Ns and Nd are 1 and YA1. The conditions of lines 8 and 11 are false,

t

YA1

YA2

B C

level 1

level 2

level 3

1

1

2

2

t

YA1

YA2A

B

1

1

1

2

(a) (b)

Fig. 8 Two examples of path Ps and Pd for the tree of Fig. 7 and the basic functions: (a)
B and C; (b) A and B.

14 Luigi Nardi et al.

Algorithm 1 Coherence verification of a given ctin directive with respect to
the order directives.
Require: Denote by Fs(I’, t′)→ Fd(I, t) the connection which represents the ctin directive.

dl is the distance of the vector d = I’− Î with respect to the l axis.
Ensure: true if the ctin is coherent, false otherwise.
1: if dt < 0 then

2: return true

3: end if

4: Find two paths Ps and Pd from the root to the leafs Fs and Fd.
5: Let n be the minimum length of Ps and Pd.
6: for m = 1 to n do

7: Determine at the level m two nodes Ns and Nd of the tree which are located respec-
tively on the two paths Ps and Pd. {Ns and Nd are either the same or two siblings.}

8: if child number of Ns < child number of Nd then

9: return true

10: end if

11: if child number of Ns > child number of Nd then

12: return false

13: end if{At this point the two nodes are identical.}
14: Assume that l is the axis corresponding to the common loop.
15: if dl 6= 0 then

16: return the result of rule 2.
17: end if

18: m← m+ 1 {Continue to the successive level, i.e. apply rule 3.}
19: end for

20: return false

we are in the same loop. Since sense = ascendant and di < 0, rule 2 of line
16 gives that the ctin is coherent, the algorithm ends returning true.

Example 3 We now consider a connection A(i) → B(i, j), and we test its co-
herence. This is the case of data transfer between spaces which have a relation
of projection: A and B are basic functions respectively attached to spaces of
1D and 2D. Ps and Pd have respectively 2 and 3 levels (Fig. 8b). At iteration
m = 1, the basic functions are in the same loop (conditions of lines 8 and 11
are false) and, since di = 0, m is incremented. At iteration m = 2, condition
at line 8 is true, because we have, on one hand, the node of the basic function
A and, on the other hand, the j loop containing B. We test rule 1, i.e. the
precedence of A with respect to B which is given by child number of Ns and
Nd. The algorithm returns true.

3.3 Results of the coherence algorithm

The coherence algorithm solves the problem of verifying that one ctin directive
is correctly computed using the user-defined graph traversal. This algorithm
is applied to each user-defined connection. If all values returned are true we
can ensure that ctin and order directives are written coherently. The coher-
ence algorithm has been implemented and tested on both fictitious and actual
YAO applications. It plays an important role during the development of a
YAO application enforcing the robustness of the variational data assimilation

Title Suppressed Due to Excessive Length 15

process. The test on actual applications has led to the detection of a couple of
real incoherences which had never been detected by human observation. The
detection of these incoherences has led to an improvement in the precision of
the numerical results of such YAO applications. The next section deals with
the automatic parallelization of the forward and backward procedures based
on coherent directives.

4 Algorithm for automatic parallelization

4.1 Parallelization of the forward procedure

In section 2 we have noted an interesting similarity between the YAO for-
malism and the theories of compilation and of automatic parallelization of
nested loops [10]. Thanks to this similarity we can adapt these techniques and
algorithms to the YAO automatic code generator. We thus propose here to
integrate and adapt such algorithms in order to automatically parallelize the
forward procedure generated by YAO on shared memory architectures with
multi-thread programming. No communication is required and we just have to
maximize the number of parallel loops. Because of the strong time dependen-
cies in all data assimilation applications the temporal loop is not parallelized
and we focus on data parallelism at each time step. The domain decomposition
between threads is performed as a 1D block distribution on the space and we
rely on a static load balancing since in all the current YAO applications the
computation load of each module is constant for each grid point. Our goal is
thus to label, as “parallel” or “not parallel”, each outermost order directive
so that the corresponding loop can be generated as parallel or sequential in
the final code (with OpenMP directives). In order to maintain the coherence
hypothesis of one given nest of order directives we opted not to change or
invert the order defined by the user. However we can still use techniques such
as a loop distributions possibly followed by loop fusions in order to detect the
maximum available parallelism and to reduce the synchronization points.

Since the temporal loop is not considered in the parallelization algorithm,
the edges whose t′ − t are negative can be removed from the RDG. The re-
maining graph is shown in Fig. 9, we denote it RDG. This is obtained by
removing all dt = −1 connections and writing only the signs of the distance
vector components. Thus (0,+) means a distance vector equal to (0,+1).

Considering some nested order directives which have as outermost axis
l and a connection from Fs to Fd we consider a connection as critical with
respect to these nested order directives if:

– Fs and Fd are contained by the nested directives,
– dt = 0 and dl 6= 0.

The analysis of the RDG highlights the critical connections which prevents
parallelization because of flow dependencies between threads, as presented in
Fig. 10. The connection from F4 to F2 and from F3 to F2 (edges #2 and #4

16 Luigi Nardi et al.

F2F1

F3 F4

2 40,+1
−

,
+

0,03 5 +,00,+

Fig. 9 RDG obtained by simplification of
the RDG of Fig. 2. The edges are numbered
from 1 to 5.

�

�� � � � �

� � �� � �

�
�

�

�

�

	

Fig. 10 Flow dependencies between 3
threads T1, T2 and T3. Same edge num-
bers as in Fig. 9.

in Figs. 9 and 10) results in a flow dependency between the couples of threads
(T1, T2) and (T2, T3) because dl 6= 0 (in this example l is the i axis). This is
not the case for the connections #1, 3 and 5 because the two corresponding
grid points belong to the domain computed by one thread, as shown in Fig. 10.
The connection #2 is not critical, since F3 and F2 are not in the same nested
loops (see Figs. 1b and 3). In this example only connection #4 is critical.

For the analysis of one outermost loop l composed by functions F1, F2, . . . ,
Fr we consider the subgraph Gl of the RDG limited to the r basic functions
and the edges between them. On the edges of this subgraph we retain only
information concerning the distance dl

7. As far as the dl value is concerned
we retain only the sign of dl, (−,+) if dl 6= 0 and 0 if dl = 0. The analysis
of Gl allows to decompose the loop in several loops preserving the computa-
tion coherence hypothesis. Taking into account that the forward functions are
thread-safe, we can apply the Allen-Kennedy algorithm [12] to decompose the
loop in parallel loops as follows.

– Calculate the Strongly Connected Components (SCCs) of Gl.
– Consider the reduced Directed Acyclic Graph (DAG), denoted by Gl/SCC ,

by shrinking each SCC down to a single vertex and by drawing one, and
only one, edge between two SCCs if there is at least one edge from the
first to the second in the graph Gl. If at least one of the edge in Gl which
connects these two SCCs is labeled by non 0 (that is to say either − or +),
then label the corresponding edge in Gl/SCC by this value. Else, if all the
labels are 0, then label the corresponding edge in Gl/SCC by 0.

– Sort in a topological order the Gl/SCC graph and enumerate all the SCCs
following this order. For each SCC generate an l loop which computes its
basic functions.

This decomposition is a maximum loop distribution of the initial loop, in
other words we can not further decompose without breaking the coherence
hypothesis.

7 All the distances dl in Gl are either ≤ 0 or ≥ 0 if the l loop is respectively ascendant or
descendant, as they correspond to the same outermost loop.

Title Suppressed Due to Excessive Length 17

We can analyze each SCC loop in order to see if we can perform a domain
decomposition on the l axis. For a particular SCC we consider all the edges of
the graph Gl between two basic functions being part of this SCC. If at least
one of these connections is labeled by + or −, namely if dl 6= 0, the SCC is
considered to be not parallelizable. The loop is parallelizable if all these edges
are labeled by 0. In other words it is parallelizable if it does not contain any
flow dependency between threads. We label by p and p̄ the loops which are
respectively parallelizable and not parallelizable. Such maximum loop distri-
bution gives the largest number of parallel loops. The critical connections of
the RDG have been minimized.

4.2 Reducing synchronization points

The previous section applies the Allen-Kennedy algorithm to YAO thanks to
the analogies between the EDG and the modular graph. This algorithm allows
us to automatically label as parallel or not the SCCs resulting in maximum
loop distribution. As far as performance is concerned, this loop distribution
is not the best solution because it increases the number of synchronization
points. Following Kennedy-McKinley [11] it is possible to propose a loop fu-
sion algorithm that will reduce the number of synchronization points. As the
Gl/SCC is a DAG, we can reorganize the SCCs in levels. The levels are num-
bered from k = 1 to k = Mlevel where Mlevel is the maximum number of
levels. The first level, k = 1, contains the SCCs without predecessors; the pre-
decessors of a SCC at level k, with k > 1, are located in the preceding levels
k′, k′ ≤ k − 1, with at least one predecessor located at level k − 1. Thanks to
the level reorganization there are no edges between two vertices at the same
level. For each level it is then possible to merge all vertices labeled as p and
separately all vertices labeled as p̄. We obtain a reduced graph with the same
number of levels but with one or two vertices per level. If a level contains two
vertices they are mandatory labeled as p and p̄.

The fusion process can be extended to the vertices located at two consec-
utive levels as follows: for all levels k and k + 1

– merge two vertices labeled as p̄, this gives a new p̄ vertex;
– merge two vertices labeled as p which are not connected by a critical edge

(dl = 0), this gives a new p vertex.

The fusion process between different levels may modify the vertex level repar-
tition. However the modification can affect only some levels: it does not impact
the levels which precede k. Algorithm 2 allows to manage the fusion of the
vertices with the level technique which maintains the highest degree of par-
allelization. The final reduced graph is treated by YAO which generates code
according to the following steps.

– Sort in a topological order the final reduced graph and enumerate all its
vertices following this topological order.

18 Luigi Nardi et al.

Algorithm 2 Fusion with levels approach.
1: Organize the graph Gl/SCC in Mlevel levels. The vertices are labeled either p or p̄.
2: Traverse the graph and for each level merge the vertices of the same label. Update edges

and their labels (0, − or +).
3: k := 1
4: while k < Mlevel do

5: Consider two consecutive levels k and k + 1:
6: if there are two vertices labeled by p and there is no critical edge between them then

7: Fusion the two in one vertex labeled by p

8: else

9: if there are two vertices labeled by p̄ then

10: Fusion the two in one vertex labeled by p̄

11: end if

12: end if

13: if a fusion has been performed then

14: Reorganize the new reduced graph in levels and update Mlevel

15: else

16: k := k + 1
17: end if

18: end while

�����������

���	ABC��

�
A
�	
�
�

�
A
�	
�
�

�� �� ��

d
l m

a
x

d
l m

a
x

Fig. 11 Subdomain decomposition with dlmax
= 1 for threads T1, T2 and T3. Each thread

domain is decomposed into two border subdomains with dlmax
grid points in the parallel

dimension, and one inner subdomain.

– Write one nest order directives for each vertex. These order directives
have the same axes as the one provided by the user and contain the basic
functions merged in the vertex.

4.3 Parallelization of the backward procedure

The same algorithm can also be applied to the backward procedure, which
results in a complete parallelization of all computations at each time step. The
total elapsed time in a YAO application is mainly composed by the forward
and the backward elapsed times. Making parallel these two procedures means

Title Suppressed Due to Excessive Length 19

that most of the application has been optimized. Profiling measurement on
some YAO applications showed that roughly 99 percent of the total elapsed
time is, in general, in these procedures.

The RDG used for the backward procedure is the same as for the for-
ward procedure but the arrows are reversed with respect to the original RDG.
These two RDGs have the same SCCs. As the outermost loops also have the
same axis, the same method used to parallelize the forward procedure is also
valid to parallelize the backward procedure. Likewise, it is easy to see that
the rules used to merge loop blocks previously introduced remain valid for
the backward procedure. Thus, parallel order directives obtained by the de-
composition/merging methods defined for the forward procedure can be fully
retained for the backward procedure.

However the parallelization of the backward procedure has a further dif-
ficulty in terms of synchronization. This synchronization is enforced by the
addition (accumulation) presented in 2.2.2. As shown in Fig. 4, in a parallel
context this addition may result in a data race condition (write/write conflicts)
if the back propagations of dxp are performed concurrently by several threads.
This kind of synchronization may arise between two time steps. Hence, the
analysis of the RDG is not sufficient to point out all the data race conditions
of the backward procedure.

This can be solved with OpenMP atomic directives which ensure that
each addition is performed atomically. However these atomic instructions are
costly, as well as numerous in the backward parallel code, which prevents us
from obtaining good parallel performances in practice. In order to avoid these
OpenMP atomic directives, we rely on the distance vectors of the RDG to
determine the maximum |dl|, denoted dlmax

. In the 1D block decomposition,
we can now further decompose each thread domain in three subdomains: two
border subdomains with dlmax

grid points in the parallel dimension, and one
inner subdomain with usually much more than dlmax

grid points in the parallel
dimension. An example with dlmax

= 1 is presented in Fig. 11. Data race
conditions are now avoided by ensuring that all threads compute the three
subdomains in the same ordering. OpenMP barrier directives are required
between each subdomain computation.

Taking all this into account, the overall parallelization algorithm ensures
the parallelization of all the computations done by a YAO generated appli-
cation. It gives a domain decomposition with respect to the outermost loop
l, which can then be automatically parallelized in the final generated code
thanks to OpenMP directives. Furthermore if a multi-level parallelization is
desired, it is then possible to apply the same algorithm for each subloop. We
emphasize that the parallel code generated by YAO respects the order and the
ctin directives which implies that the result of the parallel code is the same as
the sequential code.

20 Luigi Nardi et al.1 F2
0,0

F3

23 F4

45
F7

0,−1

F8

0,+1

6
−1,+1
−1,−1
−1,0

0,−

0,0

0,0

0,0

0,0
0
,0

0,
0

0,
+
1

0
,+

1
F1

F9F5

F6

Fig. 12 RDG: the dashed lines are the Strongly Connected Components.

order YA1
order YA2

F1 F3 F2 F5 F4 F6 F7

order YB2
F8 F9

Fig. 13 order directives defined by
the user for the Marine acoustics ex-
ample.

order YA1 (parallel)
order YA2

F1 F3 F2 F5 F4

order YA1 (non parallel)
order YA2

F6 F7

order YB2
F8

order YA1 (parallel)
order YA2

F9

Fig. 14 order directives recom-
puted by the algorithm for the Ma-
rine acoustics example.

4.4 Marine acoustics example

This section presents an example of the decomposition algorithm on a 2D
modular graph taken from one of the actual YAO applications. The Marine
acoustics example has a small number of functions Fi, which allows us to eas-
ily show the evolution of the RDG graph. We use the same function names as
[6,5]. This YAO application deals with marine acoustics and allows to assim-
ilate some actual observations of acoustic pressure in order to retrieve some
geoacoustic parameters like celerity, density and attenuation. In [6] the basic
functions are denoted by n(z), C, B, bet, gam, R, Xt, ψ and ψfd. To make
it simpler we denote them respectively by F1, . . . , F9. Fig. 12 shows the RDG
composed by r=9 basic functions and the edges labeled with the coefficient
signs of the ctin directives. In this figure the SCCs are outlined by the dashed
lines and numbered from 1 to 6. The order directives specified by the user
are given in Fig. 13. In this case, the outermost loop is related to the ascen-
dant i axis. After computing the Gl/SCC graph, we label each vertex and we
proceed with the level reorganization, as presented in Fig. 15, where Mlevel

equals 5; the single circle is a parallelizable vertex (p) and the double circle

Title Suppressed Due to Excessive Length 21

3

2 6

5
0

4

1

0

0

0

0

0

Fig. 15 Gl/SCC where the double circle represents a non parallelizable vertex.

1 4 652,3
0 0

0

0 0

Fig. 16 Fusion of the vertices 2 and 3 in a
new p vertex called 2,3.

5 61,2,3,4
00

0

Fig. 17 Fusion of the vertices 1,2,3 and 4
in a new p vertex called 1,2,3,4.

is a non parallelizable vertex (p̄). Fig. 16 shows the fusion of the vertices 2
and 3 labeled by p in a new vertex called 2,3 of the same label. This is done
in the initialization phase of the algorithm (step 2). Then the vertices 1 and
2,3 can be merged in a new vertex called 1,2,3 which is parallel too. The two
vertices are located on levels k = 1 and k = 2. A level reorganization reduces
Mlevel to 4. The same operation is done on the modules 1,2,3 and 4, followed
again by a level reorganization (Mlevel reduced to 3). The topological order
is then: [1,2,3,4], [5], [6] as shown in Fig. 17. The algorithm ends because it
is no longer able to fusion and the level counter has reached Mlevel equals 3.
This topological order is translated in an ordering of the modules. The final
scheduling respects the ordering given by the user and corresponds to: [F1 F3

F2 F5 F4], [F6 F7 F8], [F9] or [n(z) B C gam bet], [R Xt ψ], [ψfd]. The final
order directive decomposition is given in Fig. 14. With the keywords parallel
and non parallel the figure outlines the outermost loops (order directives) that
the algorithm has recognised as parallel or not.

5 Performance results

We now present the performance results of the parallel code generated by
YAO for both simple and complex actual applications of data assimilation.
These tests have been performed on a server, located at Polytech Paris-UPMC
(Paris, France), composed of one AMD Magny-Cours Opteron 6168 processor
and 16 GB of memory. This processor has 12 cores running at 1.9 GHz which
have private L1/L2 (64KB/512KB) caches and share two 6MB L3 caches. All
computations are performed in double precision.

22 Luigi Nardi et al.

1 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

Cores

T
im

e
(s

ec
on

ds
, l

og
 1

0
sc

al
e)

512x512 subdomain
1024x1024 subdomain
2048x2048 subdomain
512x512 atomic
1024x1024 atomic
2048x2048 atomic

1 2 4 6 8 10 12
0

2

4

6

8

10

12

Cores

S
pe

ed
up

512x512 subdomain
1024x1024 subdomain
2048x2048 subdomain
512x512 atomic
1024x1024 atomic
2048x2048 atomic
ideal speedup

Fig. 18 Shallow-water performance measurements for three 2D computational space sizes
over one time step (time averaged over 30 time steps). Both performances with OpenMP
atomic directives and subdomain optimization are shown. The time encompasses both the
forward and the backward procedures.

1 2 4 6 8 10 12
0

2

4

6

8

10

12

Cores

T
im

e
(s

ec
on

ds
)

256x4096
512x8192
768x16384

1 2 4 6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

1.6

Cores

S
pe

ed
up

256x4096 real
256x4096 Amdahl
512x8192 real
512x8192 Amdahl
768x16384 real
768x16384 Amdahl

Fig. 19 Marine acoustics performance measurements for three 2D computational space
sizes over one time step (time averaged over 30 time steps). The time encompasses both the
forward and the backward procedures.

5.1 Simple data assimilation applications

We focus here on two simple, but actual, data assimilation applications: the
Shallow-water and the Marine acoustics applications mentioned before.

The RDG of the Shallow-water application is composed by 6 SCC (each
SCC contains one basic function), see [3] for more details. The parallelization
algorithm returns that all SCCs are parallelizable. Fig. 18 shows the elapsed
time and the parallel speedup for an increasing number of cores used (with
one OpenMP thread per core) and for different computational space sizes, with
both OpenMP atomic directives and our subdomain decomposition. The data
race conditions in the backward procedure are more efficiently avoided with
our subdomain decomposition which clearly offers better performance than
the atomic directives. We emphasize that such OpenMP code automatically

Title Suppressed Due to Excessive Length 23

1 2 4 8
0

0.05

0.1

0.15

0.2

0.25

Cores

T
im

e
(s

ec
on

ds
)

1 2 4 8
0

1

2

3

4

5

6

7

8

Cores

S
pe

ed
up

real speedup
Amdahl speedup

Fig. 20 NEMO performance measurements over one time step (time averaged over 30 time
steps). The time encompasses both the forward and the backward procedures.

generated by YAO is equivalent to a (non-trivial) manual parallelization, and
offers good speedups (up to 9.4 on 12 cores). Moreover for a fixed number
of cores the speedup increases with the computational space size since this
increases the computational granularity of each thread.

The performance results on the Marine acoustics are very different. In sec-
tion 4.4 we have shown that the parallelization algorithm does not parallelize
the whole RDG. Three modules, which unfortunately contain most of the com-
putation, are excluded from the parallel region. Fig. 19 shows the elapsed time
and the parallel speedup, as well as the theoretical maximum speedup accord-
ing to Amdahl’s law for this application. The parallel speedup is very limited,
but the code generated by YAO offers most of the speedup available for this
application. Again, the performance gain increases with the computational
space size.

5.2 A complex data assimilation application

We now focus on the much more complex NEMO application, which requires
a greater number of modules. NEMO [9] is a state-of-art complete three-
dimensional ocean modeling framework based on the finite difference approxi-
mation of Navier-Stokes equations. NEMO is used by a large community: 240
projects in 27 countries (14 in Europe, 13 elsewhere) and its evolution and
reliability is controlled by an european consortium8. The GYRE configuration
of NEMO is considered in this work. In this configuration, the dimension of the
space is 32× 22× 31 for each time step. The YAO implementation of this nu-
merical model involves 82 modules that are computed within 11 nested loops.
Among these 11 loops, 2 loops (containing 1 module each) are excluded from
the parallel region and represent 2.1% of the serial execution time. 80 out of
the 82 modules are thus parallelized by YAO. Due to the limited dimensions

8 http://www.nemo-ocean.eu/

24 Luigi Nardi et al.

of the space, parallel performance tests were performed only up to 8 cores.
We use here our subdomain decomposition in order to obtain the best parallel
speedups.

Fig. 20 shows the elapsed time and the parallel speedup, as well as the the-
oretical maximum speedup according to Amdahl’s law for this NEMO applica-
tion, as generated by YAO with OpenMP. Thanks to YAO, we automatically
obtain good parallel speedups: up to 5.71 on 8 cores. According to Amdahl’s
law, this represents 81.8% of the maximum theoretical speedup (namely 6.98)
available on 8 cores for this complex and actual data assimilation application.

6 Conclusion and perspectives

In this paper we have shown how the modular graph formalism of YAO allows
addressing some important automatic generation tasks. During the develop-
ment of a new YAO application the writing of the order directives is a costly
phase. The coherence algorithm allows to speed up this development. We have
highlighted some rules which may in the future open the way to a completely
automatic generation of such directives. Moreover, as we have seen earlier, the
user-defined order directives are important in a performance point of view.
The automatic generation may allow nested loops which minimize the compu-
tation time by exploiting at best the CPU memory hierarchy. This is a subject
under study.

We have also shown how the modular graph allows addressing the issue
of automatic parallelization of the code generated by YAO. Indeed, the YAO
modular graph is generated by a reduced graph, which is similar to the Re-
duced Dependence Graph (RDG) used in automatic parallelization of nested
loops. This similarity allows the adaptation to YAO of the algorithms that
were developed in this research field. We have thus presented here how the
Allen-Kennedy [12] and Kennedy-McKinley [11] algorithms can be integrated
and adapted in order to enable the automatic parallelization, via multiple
threads on shared memory architectures, of the application code generated
by YAO. In the backward procedure the modular graph is furthermore used
to decompose each thread domain into three subdomains, whose appropriate
sizes enable us to completely avoid the race conditions of this backward proce-
dure. We have also presented the performance results of the parallel generated
code with OpenMP on a multicore CPU for both simple (Shallow-water, Ma-
rine acoustics) and complex (NEMO) actual applications. We automatically
obtain good speedups for these applications with up to around 80% of parallel
efficiency on 8 or 12 CPU cores, within the limits of the parallelism available
in each application.

More advanced transformations (unimodular transformation, loop inver-
sion, SIMD vectorization, tiling, . . .) have already been developed in automatic
loop parallelization, especially via the polyhedral model [10,15]. We are cur-
rently studying if and how this polyhedral model can be integrated in the YAO
framework. In the future, we also plan to investigate the automatic generation

Title Suppressed Due to Excessive Length 25

of MPI code from OpenMP code in the YAO context in order to automati-
cally scale data assimilation applications on distributed memory architectures.
It can be noticed that the subdomain decomposition between border and inner
subdomains, presented here to avoid race conditions, may help overlap MPI
communications with computation in order to obtain the best speedups in this
distributed memory context: here again, the modular graph of YAO may be
very useful to automatically determine this subdomain decomposition for any
variational data assimilation application. Finally, these automatically inserted
OpenMP directives could also be rewritten as OpenACC9 directives in order
to automatically generate parallel code for GPUs (Graphics Processing Units).

Acknowledgements The authors acknowledge funding from Emergence-UPMC-2010 re-
search program.

References

1. E. Kalnay. Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge
University Press, 2003.

2. O. Talagrand. Assimilation of Observations, an Introduction. J. Meteor. Soc. Japan,
75:191–209, 1997.

3. L. Nardi, C. Sorror, F. Badran, and S. Thiria. YAO: A Software for Variational Data
Assimilation Using Numerical Models. In LNCS 5593, Computational Science and Its

Applications - ICCSA 2009, pages 621–636.
4. L. Nardi. Formalisation et automatisation de YAO, générateur de code pour

l’assimilation variationnelle de donnèes. Ph.D. thesis, CNAM, 2011.
5. F. Badran, M. Berrada, J. Brajard, M. Crépon, C. Sorror, S. Thiria, J.-P. Hermand,

M. Meyer, L. Perichon, and M. Asch. Inversion of Satellite Ocean Colour Imagery and
Geoacoustic Characterization of Seabed Properties: Variational Data Inversion Using a
Semi-automatic Adjoint Approach. J. of Marine Systems, 69:126–136, 2008.

6. M. Berrada. Une approche variationnelle de l’inversion, de la recherche locale à la

recherche globale par carte topologique: application en inversion géoacoustique. Ph.D.
thesis, UPMC, France, 2008.

7. J. Brajard, C. Jamet, C. Moulin, and S. Thiria. Use of a Neuro-variational Inversion for
Retrieving Oceanic and Atmospheric Constituents from Satellite Ocean Colour Sensor:
Application to Absorbing Aerosols. Neural Networks, 19(2):178–185, 2006.

8. A. Kane, S. Thiria, and C. Moulin. Développement d’une Méthode d’Assimilation
de Données in Situ dans une Version 1D du Modèle de Biogochimie Marine PISCES.
Master’s thesis, LSCE/IPSL, CEA-CNRS-UVSQ, 2006.

9. G. Madec. NEMO ocean engine. Note du Pôle de modélisation de l’Institut Pierre-
Simon Laplace No 27, LOCEAN, Paris, France, 2008.

10. A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic parallelization. 2000.
11. K. Kennedy and K. McKinley. Typed fusion with applications to parallel and sequential

code generation. Technical report, 1993.
12. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific programs

for parallel execution. In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, pages 63–76, NY, USA, 1987.
ACM.

13. H. Jin, M. A. Frumkin, and J. Yan. Automatic Generation of OpenMP Directives
and Its Application to Computational Fluid Dynamics Codes. In ISHPC 2000, pages
440–456. Springer-Verlag.

9 Open industry standard for compiler directives for accelerators, see: http://www.

openacc-standard.org/

26 Luigi Nardi et al.

14. J. Taillard, F. Guyomarc’h, and J.-L. Dekeyser. A Graphical Framework for High Per-
formance Computing Using An MDE Approach. In Proceedings of the 16th Euromicro

Conference on Parallel, Distributed and Network-Based Processing, PDP 2008, pages
165–173, USA. IEEE CS.

15. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer. In PLDI 2008, pages 101–113, USA.
ACM SIGPLAN.

16. L. Nardi, F. Badran, P. Fortin, and S. Thiria. YAO: a generator of parallel code for
variational data assimilation applications. In IEEE 14th International Conference on

High Performance Computing and Communications, HPCC-2012, pages 224 –232, june
2012.

17. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-

ples, Techniques, and Tools. Addison Wesley, 2de edition, August 2006.

