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We study the interaction of a liquid drop with an elastic beam in the case where bending effects dominate.
We use a variational approach to derive equilibrium equations for the system in the presence of gravity
and in the presence or absence of contact line pinning. We show that the derived equilibrium equations
for the beam subsystem reveal the external forces applied on the beam by the liquid and vapor phases.
Among these, the force applied at the triple line (the curve where the three phases meet) is found to lie
along the liquid-vapor interface.
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1. Introduction

The present trend toward miniaturization of engineering systems and machines is giving surface
effects the leading role: in a system of size L the respective scalings of volume (L3) and surface
(L2) forces are such that the latter outrange the former as soon as L is small enough. Among
other surface effects, surface tension is now widely used at small scales, for example to self-
assemble microsystems (Syms et al., 2003). The concept of force is not easy to explain to
recalcitrant students: Has anyone already seen a force? How to be sure of the direction of an
applied force? Capillary forces are no exception and conceptual questions about it recurrently
emerge (Marchand et al., 2011). As these capillary forces are now used to bend small elastic
structures (Roman and Bico, 2010) and as it has been recently proposed that these forces might
not act as previously thought (Marchand et al., 2012), we here study the interaction of a liquid
drop with a flexible beam from an energy point of view: we derive equilibrium equations of
the system from a variational approach that is merely built on the classical hypothesis of the
presence of surface energies arising at interfaces between the three phases: solid, liquid, and
vapor.

In section 2 we recall that the Young-Dupré relation for the contact angle of a drop lying on
a substrate can be derived from a variational approach where the concept of force is not invoked,
as first realized by Gauss (1830, 1877). In section 3 we consider the case where the substrate is a
flexible beam and we add gravity (for the beam and the liquid) in Section 4. We recall in Section
5 that contact line pinning can also be considered from an energy point of view, and we finally
illustrate our model by computing the behavior of a drop-beam system as the drop evaporates.
Conclusion follows in Section 6.
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2. Liquid drop on rigid substrate, no gravity

We consider the equilibrium of a liquid drop of given volume sitting on a rigid substrate of length
L, see Fig. 1. If the drop is small enough, gravity and the hydrostatic part of the pressure can
be neglected and consequently the liquid-air interface is circular. For simplicity we adopt the
two dimensional framework introduced in Rivetti and Neukirch (2012) where the liquid-vapor
interface is a cylindrical arc; We call r its radius, w its height, and 2β its opening angle. The
liquid vapor interface then comprises (i) a cylindrical surface of area 2βrw and (ii) two planar
caps, each of areaA= r2(β − sinβ cosβ). The wetting angle is equal to β and the wetted length
of the beam is noted 2D. To each of the three different interfaces, liquid-solid, liquid-vapor, and
solid-vapor we associate an energy per area: γ`s , γ`v, and γsv respectively. The energy of the
system is then given by the sum:

E(β, r,D) = 2(wβr +A)γ`v + 2wDγ`s + 2w(2L−D)γsv (2.1)

To minimize E under the constraints of (i) fixed volume V =Aw=wr2(β − sinβ cosβ) and

Figure 1. A two-dimensional model of a liquid drop at rest on a rigid substrate. In the absence of gravity the liquid-
vapor interface is a circular arc of radius r. The contact angle β is set by the balance of the interfaces energies, see
Eq. 2.5, and the wetted length 2D depends on the drop volume V .

(ii) geometric relation D= r sinβ, we then introduce the Lagrangian:

L=E − ηw(2D − 2r sinβ)− µw
[
r2(β − sinβ cosβ)

]
(2.2)

where η and µ are Lagrange multipliers. We note γ = γ`v and ∆γ = γ`s − γsv. Equilibrium
equations are found by imposing that derivatives of L with regard to the three variables β, r,D
vanish:

∂L
∂β

=0 = 2wrγ + 2ηwr cosβ − µwr2(1− cos 2β) (2.3a)

∂L
∂r

=0 = 2wβγ + 2ηw sinβ − 2µwr(β − sinβ cosβ) (2.3b)

∂L
∂D

=0 = 2w∆γ − 2ηw (2.3c)
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Combining (2.3a) cosβ + (2.3b) r sinβ and (2.3a) sinβ - (2.3b) r cosβ yields γ = µr and
γ cosβ + η= 0, and using (2.3c) gives η= ∆γ. We finally arrive at:

∆γ + γ cosβ =0 (2.4)

µ=
γ

r
(2.5)

The first equation is the well-known Young-Dupré relation giving the contact angle and can be
interpreted as a force balance of the triple point in the horizontal direction. The second equation
gives the Laplace pressure inside the liquid drop. In the vertical direction force balance is also
achieved: the vertical forces acting on the rigid substrate are the distributed Laplace pressure µ
and the surface tension γ`v, with the total downward force being 2Dwµ and the total upward
force being 2γ`v sinβ. Using (2.5) and D= r sinβ, we see that these two forces equilibrate. We
shall see in the next section that when the substrate is a thin elastic strip, these forces induce
flexural deformations.

3. Liquid drop on a flexible beam, no gravity

We now consider the case of a liquid drop sitting on an elastic strip, see Fig. 2, and we look
for equilibrium equations governing the bending of the elastic strip by capillary forces. We
still work under the hypothesis where gravity and the hydrostatic part of the pressure can be
neglected, yielding a circular liquid-air interface. In addition to the sum of the three interface
energies:

Eγ = 2(wβr +A)γ`v + 2wDγ`s + 2w(2L−D)γsv (3.1)

we consider the bending energy of the elastic strip. We use the arc-length s along the strip
to parametrize its current position r(s) = (x(s), y(s)). The unit tangent, t(s) = dr/ds, makes
an angle θ(s) with the horizontal axis: t= (cos θ(s), sin θ(s)). The bending energy density is
proportional to the square of the curvature θ′(s):

Figure 2. An elastic strip bent by capillary forces. In the absence of gravity the liquid-vapor interface is a circular arc
and the strip outside the interaction region is straight. The system is invariant is the z direction, with width w.
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Eκ =
1

2
Y I

∫L
−L

[
θ′(s)

]2
ds (3.2)

where Y I is the bending rigidity of the strip (Y is Young’s modulus of the beam material,
and I = h3w/12 is the second moment of area of the section of the beam). We minimize E =
Eκ + Eγ under the following four constraints. First, the liquid volume V is fixed. It is given by
V =wA, where A is the area in between the liquid-air interface and the liquid-solid interface:

A= r2

(
β − 1

2
sin 2β

)
+ 2x(D) y(D)−

∫x(D)

x(−D)
y dx (3.3)

Second, we have the geometric constraint:

x(D) = r sinβ (3.4)

that is due to the intersection of the circular liquid-vapor interface and the beam at s=D. As
the variables x(s), y(s), and θ(s) all appear in the present formulation, we have to consider the
continuous constraints relating them. These are our third and fourth constraints:

x′(s) = cos θ(s) , y′(s) = sin θ(s) (3.5)

These continuous constraints necessitate the use of varying Lagrange multipliers ν(s) and λ(s).
We therefore introduce the Lagrangian:

L=Eκ + Eγ − µw
[
r2

(
β − 1

2
sin 2β

)
+ 2x(D) y(D)−

∫D
−D

y x′ ds

]

− ηw [x(D)− r sinβ] +

∫L
−L

ν(s)
[
x′ − cos θ

]
ds+

∫L
−L

λ(s)
[
y′ − sin θ

]
ds (3.6)

As we will only treat symmetric solutions, we focus on the positive s interval: s∈ [0;L] with the
following boundary conditions:

x(0) = 0 , y(0) = 0 , θ(0) = 0 (3.7)

We also remark that in this elastica model, the varying Lagrange multiplier ν(s) and λ(s) will
be found to be the internal force components, see Appendix 1. As the external force coming for
the meniscus will make the internal force discontinuous as s passes through s=D, we split the
two last integrals in the Lagrangian (3.6) and write:

s∈ [0;D) : ν(s) = νi(s) , λ(s) = λi(s) (3.8)

s∈ (D;L] : ν(s) = νe(s) , λ(s) = λe(s) (3.9)
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Dropping out constant terms, we arrive at:

L(x, y, θ, β, r,D) =
1

2
Y I

∫L
0

[
θ′(s)

]2
ds+ wβrγ + wD∆γ − ηw

[∫D
0
x′ds− r sinβ

]
− µw

[
r2

2

(
β − 1

2
sin 2β

)
+

∫D
0
x′ds ×

∫D
0
y′ds−

∫D
0
y x′ ds

]
+

∫D
0
νi(s)

[
x′ − cos θ

]
ds+

∫L
D
νe(s)

[
x′ − cos θ

]
ds

+

∫D
0
λi(s)

[
y′ − sin θ

]
ds+

∫L
D
λe(s)

[
y′ − sin θ

]
ds (3.10)

where γ = γ`v and ∆γ = γ`s − γsv.

First variation

The energy E and the Lagrangian L are functions of the variables x, y, θ, β, r,D. We note
X = (x, y, θ, β, r,D) and we consider the conditions for the state Xe to minimize the energy E.
Calculus of variation shows that a necessary condition is:

L′(Xe)(X̄) =
d

dε
L(Xe + εX̄)

∣∣∣∣
ε=0

= 0 (3.11)

where X̄ = (x̄, ȳ, θ̄, β̄, r̄, D̄). Moreover boundary conditions (3.7) implies that x̄(0) = 0, ȳ(0) =
0, θ̄(0) = 0. Noting that:

∫A+εĀ

0
f(x)dx=

∫A
0
f(x)dx+ εĀf(A) +O(ε2) (3.12)
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we evaluate the first variation (3.11) to be:

L′(Xe)(X̄) = Y I

∫L
0
θ′ θ̄′ds+ wβr̄γ + wβ̄rγ + wD̄∆γ

− µw
[
rr̄

(
β − 1

2
sin 2β

)
+
β̄r2

2
(1− cos 2β)

]
− µw

[∫D
0
x̄′ds ×

∫D
0
y′ds+

∫D
0
x′ds ×

∫D
0
ȳ′ds+ D̄x′(D)y(D) + D̄x(D)y′(D)

]
+ µw

[∫D
0
ȳ x′ ds+

∫D
0
y x̄′ ds+ D̄y(D)x′(D)

]
− ηw

[∫D
0
x̄′ds+ D̄x′(D)− r̄ sinβ − rβ̄ cosβ

]
+

∫D
0
νi(s)

[
x̄′ + θ̄ sin θ

]
ds+

∫L
D
νe(s)

[
x̄′ + θ̄ sin θ

]
ds

+

∫D
0
λi(s)

[
ȳ′ − θ̄ cos θ

]
ds+

∫L
D
λe(s)

[
ȳ′ − θ̄ cos θ

]
ds (3.13)

where we have used (3.5) at s=D to eliminate some terms related to the last four integrals. We
require this expression to vanish for all x̄(s), ȳ(s), θ̄(s), β̄, r̄, and D̄. For (3.13) to vanish for all
β̄, we must have, as before:

rwγ − µwr
2

2
(1− cos 2β) + ηwr cosβ = 0 (3.14)

For (3.13) to vanish for all r̄, we must have, as before:

βwγ − µwr (β − sinβ cosβ) + ηw sinβ = 0 (3.15)

Combining these last two equations we obtain:

µr= γ and γ cosβ + η= 0 (3.16)

where µ is identified to the Laplace pressure. For (3.13) to vanish for all D̄, we must have:

w∆γ − µwx(D)y′(D)− ηwx′(D) = 0 (3.17)

Using (3.4), (3.5), and (3.16) we obtain:

∆γ + γ cos [β + θ(D)] = 0 (3.18)

This is the Young-Dupré relation for the wetting angle β + θ(D) between the beam and the
liquid-air meniscus. Requiring (3.13) to vanish for all θ̄ yields, after integration by parts:

Y I
[
θ′ θ̄

]D
0

+

∫D
0

[
−Y Iθ′′ + νi sin θ − λi cos θ

]
θ̄ds

+Y I
[
θ′ θ̄

]L
D

+

∫L
D

[
−Y Iθ′′ + νe sin θ − λe cos θ

]
θ̄ds= 0 (3.19)
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which implies that the curvature θ′(s) is continuous as s goes through D and that it vanishes at
the s=L extremity. Moreover we obtain the moment equilibrium equations:

Y Iθ′′ =νi sin θ − λi cos θ for s∈ [0;D) (3.20)

Y Iθ′′ =νe sin θ − λe cos θ for s∈ (D;L] (3.21)

where we see that the continuous Lagrange multipliers ν(s), and λ(s) can be identified as the x
and y components of the internal force: nx ≡ ν and ny ≡ λ. Requiring (3.13) to vanish for all x̄
yields, after integration by parts:[(
−µw (y(D)− y)− ηw + νi

)
x̄
]D

0
−
∫D

0

(
µwy′ + ν ′i

)
x̄ ds+

[
νe x̄

]L
D
−
∫L
D
ν ′e x̄ ds= 0

(3.22)

The fact that we have x̄(0) = 0, but arbitrary x̄(D) and x̄(L) implies:

νe(L) = 0 , νe(D)− νi(D) =−ηw , ν ′e = 0 , ν′i =−µwy′ (3.23)

Requiring (3.13) to vanish for all ȳ similarly implies:

λe(L) = 0 , λe(D)− λi(D) =−µwx(D) , λ′e = 0 , λ′i = µwx′ (3.24)

where we see that Laplace pressure generates an outward normal force µw(y′,−x′) that causes
the internal force (νi, λi) to vary. In addition we see that the internal force vanishes at the s=L
extremity and that it experiences a discontinuity at s=D. Using (3.4) and (3.16) we find that:(

νe(D)

λe(D)

)
−
(
νi(D)

λi(D)

)
= γw

(
cosβ

− sinβ

)
(3.25)

that is the external force applied on the beam at s=D is along the meniscus, as used in Neukirch
et al. (2007); Antkowiak et al. (2011).

Once γ, ∆γ, Y I , and the volume V are set, the equilibrium configuration is found by
solving the nonlinear boundary value problem for s∈ (0;D), given by Eqs. (3.5), (3.20), (3.21),
(3.23), and (3.24), with left boundary conditions (3.7) and right boundary conditions θ′(D) = 0,
νi(D) =−γw cosβ, and λi(D) = γw sinβ. The presence of unknown parameters β, r, and D
is balanced by additional conditions (3.3), (3.4), and (3.18).

We remark that, as in the case of a rigid substrate (Section 2), the sum of the distributed
Laplace pressure f1 =

∫D
0 −µwx

′ds applied along the y axis on the beam (Eq. (3.24)) is balanced
by the y component of the meniscus force at s=D: f2 = γw sinβ, that is f1 + f2 = 0.

Equilibrium solutions

We now solve the boundary value problem for different values of the parameters, e.g. A, γ,
∆γ. We note θY the wetting angle, defined by ∆γ + γ cos θY = 0, and we use θY instead of ∆γ
as parameter. We start with non-dimensionalizing the equilibrium equations. The configuration
of the beam in the region s∈ (D;L] is trivial: the beam is straight and there is no stress θ′(s)≡
M(s)≡ 0 and νe(s)≡ λe(s)≡ 0. The value of the length L is therefore of no importance, it can
be anything as long as L>D. Consequently we use

√
A as unit length, and Y I/A as unit force.
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The equilibrium equations for the dimensionless quantities (with over-tildes) read:

x̃′(s̃) = cos θ , ỹ′(s̃) = sin θ (3.26a)

θ′′(s̃) = ñx sin θ − ñy cos θ (3.26b)

ñ′x(s̃) =−(γ̃/r̃) sin θ , ñ′y(s̃) = (γ̃/r̃) cos θ (3.26c)

where γ̃ =Aγw/(Y I) is a dimensionless quantity measuring the strength of surface tension.
Volume conservation (3.3) now reads:

1 = r̃2

(
β − 1

2
sin 2β

)
+ 2 x̃D ỹD − 2

∫ D̃
0
ỹ cos θ ds̃ (3.27)

The boundary conditions at s= 0 are x̃(0) = 0, ỹ(0) = 0, and θ(0) = 0. The boundary conditions
at s̃= D̃ are:

x̃(D̃) = r̃ sinβ , θ′(D̃) = 0 , ñx(D̃) =−γ̃ cosβ , ñy(D̃) = γ̃ sinβ , θ(D̃) + β = θY (3.28)

For each value of the fixed parameters γ̃ and θY , we numerically solve this boundary value
problem with a shooting method where the six unknowns θ′(0), ñx(0), ñy(0), β, D̃, and r̃
are balanced by the five boundary conditions (3.28) and the constraint (3.27). Results for the
inclination of the beam at s̃= D̃ are plotted in Fig. 3-left. We remark that Eqs. (3.26b) and
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Figure 3. Inclination θ(D̃) of a beam deformed by a liquid drop, in the absence of gravity. Left: θ(D̃) as a function
of the non-dimensionalized surface tension γ̃, for several value of the wetting angle θY . Right: θ(D̃) scaled with
f(θY ), see formula (3.30). Near the origin, curves for different θY collapse on a straight line of slope unity.

(3.26c) can be simplified to:

θ′(s) =− γ̃

2r
y2 + nx(0) y − γ̃

2r
x2 − ny(0)x+ θ′(0) (3.29)

and boundary conditions (3.28) imply ñy(0) = 0.
We also look for analytical solutions when the surface tension is small γ̃� 1, that is when

the elasto-capillary length is large: Lec =
√
Y I/(γw)�

√
A. We develop unknowns in power

of γ̃: x̃(s̃) = x̃0(s̃) + γ̃x̃1(s̃) + . . . , ỹ(s̃) = 0 + γ̃ỹ1(s̃) + . . . , θ(s̃) = 0 + γ̃θ1(s̃) + . . . , D̃=

D̃0 + γ̃D̃1 + . . ., etc. We find x̃0(s̃) = s̃, θ1(s̃) = s̃(3D2 − s̃2)/(6r) and ỹ1(s̃) = s̃2(6D2 −
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s̃2)/(24r̃), β0 = θY , D̃0 = r̃0 sin θY , and 1/r̃0 =
√
θY − sin θY cos θY . This yields:

θ(D̃) =
γ̃

3

sin3 θY
θY − sin θY cos θY

+O(γ̃2) = γ̃ f(θY ) +O(γ̃2) (3.30)

ỹ(D̃) =
5γ̃

24

sin4 θY

(θY − sin θY cos θY )3/2
+O(γ̃2) (3.31)

4. Liquid drop on a flexible beam, in the presence of gravity

Figure 4. A flexible beam bent by a liquid drop, in the presence of gravity. Due to symmetry, we only consider
positive x’s.

We now consider the situation where gravity is no longer neglected. The beam has mass per
length τ and the weight of the beam introduces the term:∫L

0
τgy(s)ds (4.1)

in the potential energy (3.10). Yet the main difference is that the liquid-air interface is no longer
a circular-arc, and its shape ylv(x) has to be solved for. The liquid-air interface energy is now:

γw

∫x(D)

0

√
1 + y′lv(x)2 dx+ 2γA (4.2)

In addition the weight of the liquid (of density ρ) has to be accounted for, yielding the term:

ρgw

∫x(D)

0

∫ylv
y

y dy dx (4.3)

Finally, the constraint of constant volume now reads:

A=

∫x(D)

0

∫ylv
y

dy dx (4.4)
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As done previously, the beam geometry is parametrized with the arc-length s: x(s), y(s),
θ(s). As for the liquid-air interface, we introduce the relative height h= ylv − y(D) and we
parametrize it with the same variable s: h(s) = h(x(s)), see Fig. 4. The arc-length s along the
beam is thus the unique independent variable. Dropping out constant terms in the energy, the
Lagrangian of the system reads:

L(x, y, θ, h,D) =
1

2
Y I

∫L
0

[
θ′(s)

]2
ds+

∫L
0
τgyds+ wD∆γ + γw

∫D
0

√
x′2 + h′2 ds

+ ρgw

∫D
0

1

2

[
(h+ y(D))2 − y2

]
x′ds− µw

∫D
0

(h+ y(D)− y)x′ds

+

∫D
0
νi(s)

[
x′ − cos θ

]
ds+

∫L
D
νe(s)

[
x′ − cos θ

]
ds

+

∫D
0
λi(s)

[
y′ − sin θ

]
ds+

∫L
D
λe(s)

[
y′ − sin θ

]
ds (4.5)

Boundary conditions are x(0) = y(0) = θ(0) = 0, h′(0) = 0, and h(D) = 0. As in Section 3, we
note X = (x, y, θ, h,D) and we look for Xe such that the first variation L′(Xe)(X̄) vanishes
when X is changed from Xe to Xe + εX̄ . We compute the first variation of L with regard to the
variable X = (x, y, θ, h,D):

L′(Xe)(X̄) = Y I

∫L
0
θ′ θ̄′ds+

∫L
0
τgȳds+ wD̄∆γ

+ γw

∫D
0

x′x̄′ + h′h̄′√
x′2 + h′2

ds+ D̄γw
√
x′(D)2 + h′(D)2

+ ρgw

∫D
0

{
hh̄x′ + hȳ(D)x′ + hy′(D)D̄x′ + h̄y(D)x′ + y(D)ȳ(D)x′+

D̄y(D)y′(D)x′ − yȳx′ + 1

2

[
(h+ y(D))2 − y2

]
x̄′

}
ds

− µw
∫D

0

[(
h̄+ ȳ(D) + D̄y′(D)− ȳ

)
x′ + (h+ y(D)− y) x̄′

]
ds

+

∫D
0
νi(s)

[
x̄′ + θ̄ sin θ

]
ds+

∫L
D
νe(s)

[
x̄′ + θ̄ sin θ

]
ds

+

∫D
0
λi(s)

[
ȳ′ − θ̄ cos θ

]
ds+

∫L
D
λe(s)

[
ȳ′ − θ̄ cos θ

]
ds (4.6)

We now require the first variation to vanish for all x̄, ȳ, θ̄, h̄, and D̄. Collecting terms involving
h̄ and h̄′ yields, after integration by parts:

γw

[
h′h̄√

x′2 + h′2

]D
0

+

∫D
0

(
−γw

(
h′√

x′2 + h′2

)′
+ ρgw(h+ y(D))x′ − µwx′

)
h̄ds (4.7)
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The first term is γwh′(D)h̄(D)/
√
x′(D)2 + h′(D)2. Boundary conditions require that h+ εh̄

vanishes at s=D + εD̄; this yields h̄(D) =−D̄h′(D). Consequently this first term effectively
goes into the equation for D̄, see (4.10). The second term of (4.7) has hence to vanish for all
h̄(s), which implies that the liquid-air interface h(s) obeys the equation:

[ρgw(h+ y(D))− µw]x′ = γw

(
h′√

x′2 + h′2

)′
(4.8)

Integrating this equation from s= 0 to s=D yields:

ρgwÂ− µwx(D) = γw sinϕ(D) (4.9)

where Â=
∫D

0 (h+ y(D))x′ds is the area between the liquid-air interface and the horizontal
axis, and where ϕ is the angle the interface makes with the horizontal. Evaluating (4.8) at s= 0
reveals that the Lagrange multiplier µ is the hydrostatic pressure at the origin.

Requiring (4.6) to vanish for all D̄ yields:

w∆γ + wγ
√
x′(D)2 + h′(D)2 − wγ h′(D)2√

x′(D)2 + h′(D)2
+ y′(D)

(
ρgwÂ− µwx(D)

)
= 0

(4.10)
Using x′(D)/

√
x′(D)2 + h′(D)2 = cosϕ(D), x′(D) = cos θ(D), y′(D) = sin θ(D), and (4.9)

we arrive at:
∆γ + γ cos [θ(D) + β] = 0 (4.11)

where β =−ϕ(D). This is Young-Dupré relation for the wetting angle θ(D) + β. We collect
terms involving x̄ and x̄′ in (4.6) and we integrate by parts to obtain:[{

wγx′√
x′2 + h′2

+
1

2
ρgw (h+ y(D))2 − 1

2
ρgwy2 + νi − µw(h+ y(D)− y)

}
x̄

]D
0

−
∫D

0

{(
wγx′√
x′2 + h′2

)′
+ ρgw(h+ y(D))h′ − ρgwyy′ − µw(h′ − y′) + ν ′i

}
x̄ ds

+
[
νe x̄

]L
D
−
∫L
D
ν ′e x̄ ds= 0 (4.12)

The fact that we have x̄(0) = 0, but arbitrary x̄(D) and x̄(L) implies:

νe(L) = 0 (4.13)

ν ′e(s) = 0 (4.14)

νe(D)− νi(D) =wγx′(D)/
√
x′(D)2 + h′(D)2 =wγ cosϕ(D) =wγ cosβ (4.15)

ν ′i =− (µw − ρgwy) y′ − [ρgw(h+ y(D))− µw]h′ − γw
(

x′√
x′2 + h′2

)′
(4.16)

Considering the identity x′
(
x′/
√
x′2 + h′2

)′
+ h′

(
h′/
√
x′2 + h′2

)′
= 0 and (4.8), equation

(4.16) reduces to:
ν ′i =− (µw − ρgwy) y′ (4.17)
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Requiring (4.6) to vanish for all ȳ similarly yields, after the use of (4.9):

λe(L) = 0 , λe(D)− λi(D) =−wγ sinβ (4.18)

λ′e = τg , λ′i = τg + (µw − ρwgy)x′ (4.19)

Finally, requiring (4.6) to vanish for all θ̄ yields the same equation as before, see Eqs. (3.20) and
(3.21).

From (4.15) and (4.18), we see that the internal force experience the same discontinuity as
in the case without gravity (3.25): here also the external force applied on the beam at s=D is
along the meniscus.

Equilibrium solutions

We now solve the boundary value problem for different values of the parameters, e.g. A, γ,
∆γ, τ . We note θY the wetting angle, defined by ∆γ + γ cos θY = 0, and we use θY instead
of ∆γ as parameter. We start with non-dimensionalizing the equilibrium equations. As the
configuration of the beam in the region s∈ (D;L] is no longer trivial, we use L as unit length,
EI/L2 as unit force, and EI/L as unit moment. For the beam, the equilibrium equations for the
dimensionless quantities (with over-tildes) read:

x̃′(s̃) = cos θ , ỹ′(s̃) = sin θ (4.20a)

θ′′(s̃) = ñx sin θ − ñy cos θ (4.20b)

ñ′x(s̃) =−P sin θ, ñ′y(s̃) = τ̃ + P cos θ (4.20c)

where P is the dimensionless hydrostatic pressure P = (L/Lec)
2 [µ̃− (L/Lc)

2 ỹ] for the region
s̃∈ [0; D̃) and P = 0 for s̃ > D̃. We have introduced the dimensionless pressure µ̃= µL/γ, the
capillary length Lc =

√
γ/(ρg), and the elasto-capillary length Lec =

√
Y I/(γw) (Bico et al.,

2004).
The equations for the liquid-air interface (4.8) can be rewritten using (i) the angle ϕ the

interface does with the horizontal, and (ii) the arc-length σ along this interface:

ϕ′(σ̃) = (L/Lc)
2
[
h̃+ ỹ(D̃)

]
− µ̃ (4.21a)

h̃′(σ̃) = sinϕ , ξ̃′(σ̃) = cosϕ (4.21b)

where σ̃= σ/L. The liquid-air interface has total contour length `.
As soon as values for the fixed parameter Lec/L, Lc/L, τ̃ , Ã, and θY are given, the boundary

value problem can be solved with a shooting procedure where θ′(0), ñx(0), ñy(0), µ̃, h̃(0), D̃,
˜̀are seven unknowns. Integration of (4.20) is performed for s̃∈ [0; D̃) and integration of (4.21)
is performed for σ̃ ∈ [0; ˜̀]. At s̃= D̃ a jump in the force vector is introduced according to (4.15)
and (4.18) with β =−ϕ(˜̀) and nx = ν, ny = λ. Then integration of (4.20) is performed for
s̃∈ (D̃; 1). Seven boundary equations have then to be fulfilled:

θ′(1) = 0 , ñx(1) = 0 , ñy(1) = 0 , h̃(˜̀) = 0 , ξ̃(˜̀) = x̃(D̃) , θ(D̃) + β = θY (4.22)

together with the volume condition:

Ã=

∫ ˜̀

0
h̃ cosϕdσ̃ −

∫ D̃
0

[
ỹ − ỹ(D̃)

]
cos θ ds̃ (4.23)
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A solution forLec/L= 0.175,Lc/L= 0.982, τ̃ = 2, Ã= 0.039, and θY = 110 deg. is shown
in Fig. 5. The seven unknowns of the shooting procedure are found to be θ′(0) = 1.887, ñx(0) =

0.0 0.2 0.4 0.6 0.8 1.0 x
!0.1

0.0

0.1

0.2

0.3
y

Figure 5. A flexible beam bent by a liquid drop, in the presence of gravity.

9.15, ñy(0) =−3.32, µ̃= 5.24, h̃(0) = 0.219, D̃= 0.201, and ˜̀= 0.333.

5. Pinning, receding, and advancing of the contact line

We now turn to the case of contact line pinning and we show, following Alberti and DeSimone
(2011), that pinning, receding, and advancing of the contact line can be treated in a variational
approach where irreversibility conditions are introduced. We consider the drop of Fig. 1, lying
at equilibrium on a rigid substrate with its contact angle β equal to the Young-Dupré angle θY ,
defined by ∆γ + γ cos θY = 0, β(t= 0) = θY . At time t= 0 evaporation starts to take place
and we study the subsequent behavior of the drop. In the absence of contact line pinning, the
contact angle β will stay at β(t) = θY , and the wetted length D will decrease in order to keep on
fulfilling the volume constraint. In the presence of contact line pinning, the length D will first
stay fixed and the contact angle β will decrease: β(t > 0)< θY to fulfill the volume constraint.
Eventually, as β(t) reaches a receding threshold, the contact line will start to move: D=D(t).

As in section 2 we start with the interfaces energies, Eq. 2.1, and we utilize the constraint
D= r sinβ to eliminate the variable r: per unit w the energy is 2γDβ/ sinβ + 2D∆γ. As D
decreases from D(t= 0) receding of the contact line is associated with an energy dissipation
k > 0 per unit area (Joanny and de Gennes, 1984; Alberti and DeSimone, 2005), which we
introduce in the energy:

E(D,β) = 2γD
β

sinβ
+ 2D∆γ + k(D(0)−D) (5.1)

We minimize this energy under (i) the constraint of fixed volume V/w= r2(β − sinβ cosβ) =
(D/ sinβ)2(β − sinβ cosβ), and (ii) the irreversibility condition D(t+)≤D(t−), which we
note D≤D−. We therefore introduce the Lagrangian:

L=E(D,β)− λ(D− −D)− µD2

(
β

sin2 β
− cosβ

sinβ

)
(5.2)

where µ is the Lagrange multiplier associated with the volume equality constraint and where
λ is the Lagrange multiplier associated with the inequality constraint D≤D−. The necessary
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conditions for having a minimum are:

∂L
∂β

= 0 ⇒ µD= γ sinβ (5.3)

∂L
∂D

= 0 ⇒ 2γ cosβ + 2∆γ − k + λ= 0 (5.4)

K.T. ⇒ λ≥ 0 , (D− −D)≥ 0 , and λ(D− −D) = 0 (5.5)

where the last line lists the classical Kuhn-Tucker conditions (Luenberger, 1973) arising in
case of inequality constraints. These three conditions express the fact that either the pinning
force λ is zero and sliding occurs D<D−, or the pinning force is strictly positive λ> 0
preventing the contact line to move: D=D−. We now introduce an angle θ? such that
2(∆γ + γ cos θ?) = k. Positivity of the dissipation k implies that θ? < θY . Equation (5.4)
becomes 2γ(cosβ − cos θ?) + λ= 0 and eliminating λ in (5.5), we finally obtain:

cos θ? − cosβ ≥ 0 (5.6a)

D− −D≥ 0 (5.6b)

(cos θ? − cosβ)(D− −D) = 0 (5.6c)

which means that either D is fixed to D− and β > θ? (contact line pinning) or β = θ? and D
decreases D<D− (contact line sliding, here receding), as was used in Rivetti and Neukirch
(2012).

Note that for simplicity we have only presented equations for receding of the contact line,
but the present treatment can be done for the general case where advancing and receding can
both occur, see Fedeli et al. (2011).

Illustration

We here illustrate the present theory on an imaginary experiment where one deposits a drop
on an elastic strip (see Fig. 4) and wait for evaporation to take place (Py et al., 2007). After
deposition the drop contact angle θ(D) + β takes some intermediate value between receding
(θ?) and advancing values. We fix parameters Lec = 0.2L, Lc = 0.8L, and τ̃ = 1.4 and we first
solve equations (4.20), (4.21), (4.22), and (4.23) for several values of the receding angle θ? in
the sliding hypothesis θ(D) + β = θ?. We then solve the equations for several values of D(0) in
the pinning hypothesis D=D(0). Results are shown in Fig. 6.

In a typical experiment, starting at Ã=A/L2 = 0.14 with D(0)/L= 0.32, evaporation first
results in the decrease of the contact angle, following the curve CD1 in Fig. 7. As the contact
angle θ(D) + β reaches θ? (with say θ? = 2) the system switches branch at point P1 and follows
the constant contact angle curveCθ down to Ã= 0. If now one starts at Ã= 0.14 withD(0)/L=
0.4, during evaporation the system follows curve CD2 down to point P2. The constant contact
angle curve at P2 being unstable the system jumps to a configuration with same volume, not
discussed here.

6. Conclusion

In conclusion we have recalled that the classical Young-Dupré relation for the contact angle of
a drop lying on a rigid substrate can be derived from a variational approach where the concept
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Figure 6. Bifurcation diagram for the system of Fig. 4 with Lec = 0.2L, Lc = 0.8L, and τ̃ = 1.4. The first set of
eleven (red) curves correspond to equilibrium in the sliding hypothesis θ(D) + β = θ?, with θ? = 1.2, 1.3, . . ., 2.2.
These curves all have a limit point for the variable Ã=A/L2. Dashed parts of the curves correspond to unstable
equilibria. The second set of ten (black) curves correspond to equilibrium in the pinning hypothesis D=D(0), with
D(0)/L= 0.2, 0.3, 0.32, 0.34, 0.35, 0.36, 0.37, 0.38, 0.4, 0.45.

of force is not invoked. The variational approach has then been extended to the case where the
substrate is a flexible beam and we have shown that (i) Young-Dupré relation still holds, and that
(ii) the external force applied on the elastic beam at the triple point is tangential to the liquid-
vapor interface. We then extended the approach to the case where gravity is included and found
that these two results continue to hold. Finally we have illustrated our model with the study of
the evaporation of a drop deposited on a flexible beam and we have shown that, depending on
the initial spreading of the drop on the beam, evaporation leads to a flat or a folded system.

The present result showing that in the case a flexural deformations the external force on the
elastic beam is along the meniscus is in contradiction to what is found in Marchand et al. (2012)
in the case of extensional deformation. We are now working on the extension of the present
variational approach to the case of extensional deformations and hope to resolve this apparent
disagreement.
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Appendix 1: Planar elastica

The equilibrium equations for the system in Fig. A.8 are (Love, 1944; Antman, 2004):

x′(s) = cos θ , y′(s) = sin θ (A.1a)

Y Iθ′(s) =M , M ′(s) =Nx sin θ −Ny cos θ (A.1b)

N ′x(s) =−pext
x , N ′y(s) =−pext

y (A.1c)

where s is the arc-length of the beam, M the internal bending moment, N = (Nx, Ny) the
internal force, (x, y) the current position of the central line, and θ the angle between the tangent
of the centre line and the horizontal axis. The bending moment is linearly related to the curvature
θ′(s) through the bending rigidity Y I , where Y is Young’s modulus and I is the second moment
of area of the beam cross section. In the case of a rectangular cross section of thickness h and
width w, I = h3w/12 when bending occurs in the plane of the thickness h. The beam is clamped
at s= 0 and a vertical force (0,−F ) is applied at the s=L extremity. We also consider the self-
weight of the beam pext = (0,−τg), where τ is the mass per unit arc-length of the beam. The
left boundary conditions are x(0) = 0, y(0) = 0, θ(0) = 0, and the right boundary conditions are
Nx(L) = 0, Ny(L) =−F , and M(L) = 0.

The equilibrium equations can be recovered by considering the energy:

E =
1

2
Y I

∫L
0

[
θ′
]2

ds+ τg

∫L
0
y ds+ Fy(L) (A.2)

and the Lagrangian:

L(x, y, θ) =E +

∫L
0
νi(s)

[
x′ − cos θ

]
ds+

∫L
0
λi(s)

[
y′ − sin θ

]
ds (A.3)

subjected to the left boundary conditions. The conditions for the vanishing of the first variation
of the Lagrangian will yield the equilibrium equations (A.1) together with the right boundary
conditions (Audoly and Pomeau, 2010).
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Figure 7. Evaporation experiment with Lec = 0.2L, Lc = 0.8L, and τ̃ = 1.4. The curve Cθ corresponds to
equilibrium in the sliding hypothesis θ(D) + β = θ? with θ? = 2; the region θ(D) + β < 2 is shown shaded. The
curves CD1 and CD2 correspond to equilibrium in the pinning hypothesis D=D(0), with D(0)/L= 0.32, and 0.4
respectively. If evaporation starts on CD1 at A/L2 = 0.14 the system reaches point P1 and then follows the upper
part of curve Cθ down to A= 0. If evaporation starts on CD2 at A/L2 = 0.14 the system reaches point P2. As
configurations on Cθ are unstable in this region, the system jumps to a configuration with the same value of A, to be
discussed elsewhere.
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Figure A.8. Cantilever beam sagging under the combined actions of its own weight τ g and of a localized shear force
F at its left end.


