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Abstract

In this paper, we present four numerical schemes for a 1D viscoelastic
blood flow model. In the case with a small nonlinearity (small amplitude
of wave), asymptotic analysis predicts several behaviours of the wave:
propagation in a uniform tube, attenuation of the amplitude due to the
skin friction, diffusion due to the viscosity of the wall, and reflection and
transmission at a branching point. These predictions are compared very
favorably with all of the numerical solutions. The schemes are also tested
in case with a larger nonlinearity. Finally, we apply all of the schemes on a
relatively realistic arterial system with 55 arteries. The schemes are com-
pared in four aspects: the spatial and temporal convergence speed, the
ability to capture shock phenomena, the computation speed and the com-
plexity of the implementation. The suitable conditions for the application
of the various schemes are discussed.

Keywords: blood flow; 1D flow modelling; vascular network; numerical simu-
lation

1 Introduction

Despite there are several computations of blood flow in realistic arteries ([4, 15]),
those computations are restricted to a given segment of artery and are time and
memory consuming. Hence, direct computing of the blood flow in the complete
human arterial system is up to now an impossible task. One has to do very
severe modeling to obtain a tractable system of equations. A common model
is the 1D model obtained by taking averaged equations of the full complicated
system. It has been validated by in vitro experimental [38, 45, 1] and in vivo
clinical [37, 36] data. This 1D modeling of arterial blood flow is a very important
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approach for investigating the hemodynamics of the cardiovascular system for
the several following reasons. The wave solutions are well computed and the
pulse wave carries many informations about the cardiovascular system, or even
the functioning of other organs. For example, the Pulse Wave Velocity (PWV)
has been recognized by European Society of Hypertension as integral to the
diagnosis and treatment of hypertension [26, 5]. It allows fast enough numerical
computations. So, it is attractive to implement it on real-time applications
for medical planning. It may also provide pertinent boundary conditions in
multi-scale models by coupling 3D simulations and 1D networks [10].

The 1D governing equations can be obtained by integrating Navier-Stokes
equations across the cross-section of a circular vessel with the assumption of a
long wave length and axisymmetric velocity profile [21, 40, 12]. It results in a
system of two partial differential equations of mass conservation and momentum
conservation for the fluid. This system is in flow rate Q, cross-section A and
average pressure P . It is closed by a model of arterial wall which relates the
pressure and the cross-section. All the three above equations lead a final system
which is nonlinear and dominated by hyperbolicity properties. Depending on
the details of the model of the arterial wall, there may be a diffusive term by
the viscosity of the wall or/and a dispersion term by the axial tension.

In the case with weak nonlinearity (small perturbations around the equilib-
rium state [23, 33]), one way to solve the 1D governing equations is to linearize
them and find solutions in frequency domain [44, 31]. Although the linearized
model is simplified, it still can provide relevant insights of the arterial sys-
tem [44, 31]. Nevertheless, a solution for a more realistic case with a moderate
nonlinearity is still needed.

Recently, several numerical schemes have been proposed and used to solve
these kind of nonlinear 1D equations in time domain, roughly we classify them
as :

• Finite Difference (FD) [48, 42, 37, 38, 32, 34]

• Finite Volume (FV) [46, 7, 6]

• Finite Element (FE), [39, 11, 1, 25]

• Discontinuous Galerkin (DG) (It can be seen as a kind of FE, but we list
it separately for its important unique properties) [39, 1, 29, 30, 28]

All of these schemes have been successfully applied in other communities
where people have to solve similar hyperbolic problems : 1D compressible Euler
equations and shallow water equations. For instance, the MacComack scheme
was designed for gas dynamics and it was then successfully used to compute
blood flow in veins in reference [13]. Also inspired by the success of applications
of FV schemes in gas dynamics and shallow water equations, Cavallini et al. [6]
proposed high order non-oscillating FV schemes for blood flow and Delestre et
al. [7] obtained “well balanced” schemes which properly treat the source term
induced by a tapered artery.
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It is clear that FD schemes are not flexible to treat complex computational
geometries in high dimensions (2D or 3D). But, in 1D and low order accuracy
schemes, FD, FE and FV schemes are in fact completely equivalent for linear
problems. For nonlinear problems, sharp gradient solutions may appear. The
performance of FD need tests in the arterial case (where non linearities are
moderate). Within the framework of FE and FV, the approaches to achieve
high resolution schemes are different. The solutions given by these schemes
need also to be investigated in our problem. The accuracy of DG may be
tuned by the order of the degree of the polynomial or by the mesh size and
this is suitable for convection dominated problem. It has been used by many
researchers on 1D blood flow simulation. Thus it is also included in this paper
for comparisons with other schemes. Moreover, in the literature, there are few
references on the numerical treatment of the viscosity of the arterial wall ([36]).
We propose an operator splitting (in the FD, FV and FE frameworks) to treat
the parabolic behaviour of the wall viscosity. In the DG setting, we apply a
local discontinuous Galerkin method for diffusive flux.

In this paper, we present in Section (2) the governing equations and in
Section (3) the numerical details. In Section (3) we first discuss the treatment of
the boundary conditions and then the discretization. We apply four schemes in
various frameworks: MacCormack, second order finite volume, Taylor-Galerkin,
and discontinuous Galerkin. We deliberately give many details, because those
methods are scattered in different literatures. In Section (4), we consider the
main behaviours of pulse wave: the attenuation due to the skin friction, the
diffusion due to the viscosity of the wall, the transmissions and reflections at a
branching point and the wavefront steepening phenomena due to convections.
The numerical solutions are verified with the analytical predictions. Finally
we compute a full network of 55 arteries. In these settings, we compare the
performances of the various methods.

2 The 1D model of arterial blood flow

2.1 1D mathematical model

Under the assumption of an axisymmetric velocity profile, the 1D arterial blood
flow model can be written as:

∂A

∂t
+
∂Q

∂x
= 0, (1)

∂Q

∂t
+

∂

∂x
(α
Q2

A
) +

A

ρ

∂P

∂x
= −Cf

Q

A
, (2)

where as stated above, A is the cross-sectional area of the artery, Q the flow rate
or flux, and ρ the density of blood. The factor α is the momentum correction
factor, and Cf is the skin friction coefficient. They depend on the shape of
the velocity profile. Usually, the profile can be estimated from the Womersley
number which is defined as R

√
ω/ν, with R the radius of the vessel, ω the
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frequency of the pulse wave and ν the kinematic viscosity of the fluid. With a
small Womersley number, we can take a Poiseuille (parabolic) profile. In that
case α = 4

3 and Cf = 8πν. This choice is only valid for very viscous flows
(see [21, 20]). In practice, viscosity is not so large, and the profile is more flat.
For a completely flat profile α equals 1. This value is often used since it leads to
a considerable simplification in analysis and the loss of relevance of the model is
very small in most cases [11]. Thus we assume its value is 1 in this paper. The
value of Cf also depends on the velocity profile and it has significant influence
on the pulse wave. In practical applications, its value has to be determined
according to the particular problem at hand (both in vitro and in vivo). We
assume its value is 8πν according to the Poiseuille profile (but we know that it
is a crude approximation). As our purpose is numerical comparisons, we do not
discuss more the influence of α and Cf .

To close the system, several viscoelastic constitutive relations for arteries
have been presented in some papers, like [2, 1, 35]. Among them, we use the
Kelvin-Voigt model which is the most simple. We assume that the arterial wall
is thin, isotropic, homogeneous, incompressible, and moreover that it deforms
axisymmetrically with each circular cross-section independently of the others.
We denote the undeformed section by A0 and the exterior pressure of the vessel
by Pext. Then, the final relation linking A and P is the Kelvin-Voigt model:

P = Pext + β(
√
A−

√
A0) + νs

∂A

∂t
, (3)

with the stiffness coefficient β,

β =

√
πEh

(1− η2)A0
,

and the viscosity coefficient νs,

νs =

√
πφh

2(1− η2)A0

√
A
, (4)

where η is the Poisson ration, which is 0.5 for an incompressible material, E is
the Young’s modulus, h is the thickness of the wall and φ the wall viscosity. For
convenience, we will define Cv = A0νs

ρ thereafter. We note that in absence of
wall viscosity we retrieve the classical Hooke’s law.

2.2 Characteristic structure of the system

After having defined the system of equations, we remind its hyperbolic nature in
writing it in characteristic form. This discussion is classical, and may be found
in text books ( [12, 22]) The notations we introduce here will be useful for the
discussion of the numerical solvers. We may assume Pext is constant along the
axial variable x, and substitute the constitutive relation 3 into Eq. 2. We note
that ∂A

∂t can be replaced by −∂Q∂x thanks to Eq. 1. The equation for the balance
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of momentum turns out

∂Q

∂t
+

∂

∂x

(Q2

A
+
β

3ρ
A

3
2

)
− A

ρ

∂

∂x

(
ν
∂Q

∂x

)
= −Cf

Q

A
+
A

ρ

(
∂x(β

√
A0)− 2

3

√
A∂xβ

)
.

(5)
Under the assumption of a small perturbation of A, we approximate the term
A
ρ
∂
∂x (ν ∂Q∂x ) by Cv

∂2Q
∂x2 with the already presented coefficient Cv = A0νs

ρ . The
governing equations may be written as:

∂U

∂t
+
∂F

∂x
= S, (6)

where

U =

(
A

Q

)
F = Fc + Fv =

(
Q

Q2

A + β
3ρA

3
2

)
+

(
0

−Cv ∂Q∂x

)
and

S =

(
0

−Cf QA + A
ρ

(
∂x(β

√
A0)− 2

3

√
A∂xβ

)).
U is the conservative variable, F the corresponding fluxes and S the source
term. Note that the flux (scaled by constant density) consists in two parts, the

convective Fc and the diffusive Fv. We recognize Q2

A due to the fluid flow, β
3ρA

3
2

due to the elasticity, and Cv
∂Q
∂x due to the viscosity of the wall. In general, the

suitable numerical techniques for the convective and diffusive flux are different.
Thus it is common to separate the diffusive term and put it on the right side.
Thus we may write the problem in convection-diffusion form:

∂U

∂t
+
∂F

∂x
= S +D (7)

with

F = Fc, D =

(
0

Cv
∂2Q
∂x2

)
.

Temporarily, we consider the homogeneous part and consider non-homogeneous
part later. Expanding the derivative of the flux, the homogeneous part can be
written in a quasi-linear form

∂U

∂t
+ Jc

∂U

∂x
= 0 (8)

where Jc is the Jacobian matrix

Jc =

(
0 1

Q2

A2 + c2 2QA

)
with the Moens-Korteweg celerity

c =

√
β

2ρ
A

1
2 . (9)
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In reality, A is always positive, therefore c is real. It is the speed of the pressure
wave with respect to the fluid flow. The matrix Jc has two different eigenvalues

λ1,2 =
Q

A
± c. (10)

Linear algebra shows Jc must be diagonalizable in the form Jc = RΛR−1. The
columns of R are the right eigenvectors of Jc. Left multiplying Eq. 8 by R−1,
one obtains

R−1 ∂U

∂t
+R−1RΛR−1 ∂U

∂x
= 0.

By introducing a new unknown variable vector which satisfies ∂UW = R−1, the
previous equation can be transformed into

∂W

∂t
+ Λ

∂W

∂x
= 0. (11)

W1,2 can be readily obtained by integrating ∂UW = R−1 componentwise

W1,2 =
Q

A
± 4c. (12)

W = [W1,W2]T is called Riemann invariant vector or characteristics. In time-
space, W1,2 are constants along the lines DtX1,2(t) = λ1,2. In physiological
conditions, λ1 > 0 > λ2. The two families of characterisic propagate in opposite
directions. The homogeneous part is a subcritical hyperbolic system. For further
use, we get the expression for A and Q by inverting the relation 12,

A =
(W1 −W2)4

1024

(
ρ

β

)2

, Q = A
W1 +W2

2
. (13)

In the non-homogeneous part, the skin friction term dissipates the momen-
tum and the second order derivative of Q is diffusive. In physiological condi-
tions, the Womersley number is not too big and the artery is almost uniform,
the source term will be very small. These phenomena are dominated by the con-
vection terms. If the properties of the artery have sharp variations, we will deal
with this problem by treating the artery as two different connected segments.

3 Numerical solvers

Having defined the problem and notations, in this section we present the nu-
merical solvers. The original problem is split into two subproblems, hyperbolic
and parabolic. Three numerical schemes are presented to treat the hyperbolic
subproblem. For the parabolic subproblem, Crank-Nicolson method is suit-
able. Because of the duplication of values at the interface of elements in the
DG scheme setting, there are difficulties to apply Crank-Nicolson scheme. A
local discontinuous Galerkin method is adopted to treat the original advection-
diffussion problem.
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3.1 Operator splitting

There are explicit high resolution schemes for hyperbolic problems. But for
parabolic problem, implicit schemes are necessary in general for a reasonable
time step for time integration. Thus we applied a fractional step or operator
splitting method for the problem. The original problem Eq. (7) is split into to
a hyperbolic subproblem,

∂U

∂t
+
∂F

∂x
= S (14)

and a parabolic one,
∂U

∂t
= D. (15)

Let’s consider the time intervals (tn, tn+1), for n = 0, 1, ..., with tn = n∆t.
In every time interval, the hyperbolic problem is solved to get a predictor U∗,
which is used as the initial condition (I.C.) of the second problem. The second
step can be viewed as a corrector. The original problem is approximated by a
sequential application of the two subproblems in a certain order.

From data Un, we may make a prediction U∗ by evolving time ∆t of the
hyperbolic subproblem, and correct it with the evolution over ∆t of the parabolic
subproblem,

Un
e∆tH

−−−→ U∗
e∆tP

−−−→ Un+1. (16)

e∆tH means to solve the hyperbolic subproblem over ∆t. e∆tP has the same
meaning for the parabolic subproblem. This method is called Godunov splitting.
If the two subproblems are not commutable, the splitting error is O(∆t), see
Chapter 17 of reference [22].

There is a 3 stage splitting called Strang splitting, which has a leading error
term O(∆t2),

Un
e

1
2

∆tP

−−−−→ U∗
e∆tH

−−−→ U∗∗
e

1
2

∆tP

−−−−→ Un+1. (17)

We will see in the section about diffusion that in reality the errors induced by
the two splittings are very close. That is because the coefficient of the term
O(∆t) is much smaller then the coefficient of O(∆t2). Thus, usually Godunov
splitting is sufficient.

Because the original problem is dominated by the hyperbolic part, the sys-
tem must be driven mainly by the Boundary Conditions (B.C.) through the
first subproblem. Thus we discuss the B.C. of the hyperbolic part in the next
subsection and present the treatment of B.C. for the parabolic part in section
(3.6) together with the numerical solvers.

3.2 Initial and boundary conditions

3.2.1 Initial conditions

Assume we are interested in the blood flow in an arterial segment (0, L) within
a time interval (0, T ). For a convection-diffusion problem, the PDE should be
complemented by an I.C. and two B.C. In reality, the blood flow should achieve
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a steady periodic pattern after a certain interval of time, which is not influenced
by the I.C. Thus, the I.C. can be set arbitrarily, say, U(t = 0, x) = (A0, 0), for
convenience.

3.2.2 Inlet and outlet of the hyperbolic part

Let’s look back to the vector Eq. (11) again. The two components of this system
are

∂W1

∂t
+ λ1

∂W1

∂x
(U) = 0, (18)

∂W2

∂t
+ λ2

∂W2

∂x
(U) = 0, (19)

where l1 is the first column vector of matrix R−1, which is the left eigenvector
of Jc corresponding to λ1 (the same holds for l2). Since the two eigenvalues
have opposite signs, there is exactly one incoming characteristic at each end
of the computational domain. The incoming characteristic carries information
from outside the domain and thus is essential to guarantee the problem to be
well-posed. That is to say, the B.C. must have the form

W1(0, t) = g1(t), W2(L, t) = g2(t), t > 0.

The outgoing characteristic carries information from inside the domain,
which can be given by the differential equations. Since W1,2 are constants
along the lines DtX1,2(t) = λ1,2 in time-space plane, we can get Wn+1

2 (0) and
Wn+1

1 (L) by interpolation in the data of the current time step:

Wn+1
2 (0) = Wn

1

(
−λn1 (0)∆t

)
, Wn+1

1 (L) = Wn
2

(
L− λn2 (L)∆t

)
. (20)

The characteristics are transformed to physical variables by the relation 13.
In reality, we rarely have the explicit expression of incoming characteristics.

Usually, we want to impose physical boundary conditions, A or Q. At the inlet,
if A(t) is given, one can use the relation (12) to deduce:

Wn+1
1 = Wn+1

2 + 8

√
β

2ρ
A(t)1/2.

If Q(t) is given, similarly we obtain an approximation

Wn+1
1 = −Wn+1

2 + 2
Qn+1

A(0)
.

If P (t) is given, from the wall relation (3) simplified with no viscous effect
(Cv = 0), we in fact impose:

Wn+1
1 = Wn+1

2 + 8

√
1

2ρ
(P (t) + βA

1/2
0 ).
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At the outlet, some partition of the perturbation of outgoing characteristic W1

may be reflected,
Wn+1

2 = W 0
2 −Rt(Wn+1

1 −W 0
1 )

where Rt is the coefficient of reflection. If Rt = 0, the B.C. is nonreflecting.
That means that the outgoing characteristic goes out without leaving any effect
and that the incoming characteristic is a constant in time. If Rt 6= 0, that
means some part of the outgoing characteristic is reflected by the resistance in
the downstream arteries.

3.2.3 Conjunction points

There are many cases when conjunction points need to be considered: when
there are changes of topology, sharp changes in geometry or properties. Topo-
logical change correspond to the large amount of bifurcations and some trifurca-
tions in the arterial network. Sharp changes correspond to the sharp variation
of the properties of the vessel wall, e.g. sharp increase of stiffness K due to
stenting or A0 due to aneurysm. As such derivative in the source term cause a
singularity, the vessel can be treated as two segments conjuncted together.

Since all of the conjunctions can be treated with the same method, we con-
sider a branching point as a sample problem : a main vessel with two daughter
arteries. At the branching point, there are then six boundary conditions, An+1

p

and Qn+1
p for the outlet of the parent artery and An+1

d1
, Qn+1

d1
,An+1
d2

and Qn+1
d2

for the inlets of the two daughter arteries. From the physical point of view, the
scheme has to preserve the conservation of mass flux

Qn+1
p −Qn+1

d1
−Qn+1

d2
= 0 (21)

and conservation of momentum flux

1

2
ρ(
Qn+1
p

An+1
p

)2 + Pn+1
p − 1

2
ρ(
Qn+1
di

An+1
di

)2 − Pn+1
di

= 0 i = 1, 2. (22)

Pn+1
p and Pn+1

di
are given by the constitutive relation for pressure (3). Moreover,

the outgoing characteristics in each artery can be determined by the interpola-
tion formula (20). (W1)n+1

p , given by the interpolation on the n− th step data
of the parent vessel, must be equal to W1(Un+1

p ), which is given by relation
(12)

(W1)n+1
p −W1(Un+1

p ) = 0. (23)

The same holds for W2 on the two daughter arteries.

(W2)n+1
di
−W2(Un+1

di
) = 0 i = 1, 2. (24)

Combining Eq.s (21), (22), (23) and (24), there are 6 Eq.s with 6 unknowns.
This nonlinear algebraic system can be readily solved by Newton iterative
method or some other nonlinear algebraic solvers with Un as the initial guess.
We now focus on the schemes themselves, all what we presented up to now being
almost common to all the schemes.
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3.3 MacCormack scheme

The classical MacCormack method [24] has been developed for hyperbolic sys-
tems of conservation laws. It is a two-step predictor-corrector technique, with
the following characteristics: three-point spatial stencil and two time levels (the
predictor and the corrector), second-order accurate in time and space.

For the conservative system of Eq. (14) an approximate solution U∗ is ob-
tained in the first step and then corrected in the second to give the solution
at time t + ∆t, Un+1. The numerical solution is performed in a fixed grid of
N+1 points along the vessel axis of length L which defines the spatial resolution
∆x = L

N , see Figure (1). The finite difference equations (at the interior grid
points) are then :

1. predictor step

U∗i = Uni −
∆t

∆x
(Fni+1 − Fni ) + ∆tSni , i = 2, ...N

2. corrector step

Un+1
i =

1

2
(Uni + U∗i )− ∆t

2∆x
(F ∗i − F ∗i−1) +

∆t

2
S∗i , i = 2, ...N

F ∗ and S∗ are evaluated with the predicted solution U∗, F (U∗) and S(U∗).
The grid points i = 1 and i = N + 1 represent the boundary conditions.

The MacCormack scheme of integration for hyperbolic equations was in oc-
currence used on unsteady flow on a model of pulmonary airways [17] and com-
pared with a classical Lax-Wendroff scheme in reference [8]. One conclusion was
that both schemes show an excellent convergence for analytical steady-state so-
lution but they are hardly applied to flows with undamped oscillations as flow
near to singularities.

Figure 1: mesh for FD and FE

3.4 Taylor-Galerkin scheme

In this section we followed Formaggia and Sherwin’s presentation for the Taylor-
Galerkin scheme [39, 11, 12]. Other forms are also possible, see, for example [43].
The Taylor series for Un+1 up to second order is

Un+1 = Un + ∆t
∂Un

∂t
+

∆t2

2

∂2Un

∂t2
+O(∆t3). (25)
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From Eq. (14), one obtains,

∂Un

∂t
= Sn − ∂Fn

∂x
. (26)

Differentiation both sides with respect to t and change the order of spatial and
temporal differentiation in the second term gives,

∂2Un

∂t2
=
(
SU

∂U

∂t

)n
− ∂

∂x

(
H
∂U

∂t

)n
(27)

where SU = ∂S
∂U and H = ∂F

∂U . Substituting Eq. (26) into Eq. (27) and then
both of them into Eq. (25), one gets,

Un+1 = Un −∆t
∂

∂x

[
Fn +

∆t

2
HnSn

]
−∆t2

2

[
SnU

∂Fn

∂x
− ∂

∂x

(
Hn ∂F

n

∂x

)]
+∆t

(
Sn +

∆t

2
SnUS

n
)
.

(28)

For convenience, we adopt the notation

FLW (U) = F (U) +
∆t

2
H(U)S(U),

SLW (U) = S(U) +
∆t

2
SU (U)S(U).

The piecewise linear function space is given as,

V 0
h = {[vh]2|vh ∈ C0, vh|[xi,xi+1] ∈ C1, vh(0) = vh(L) = 0, i = 1...N}.

The shape function in this space has the property ψi(xj) = δij , where δij is
Kronecker delta. This is both the trial function space and test function space
in the Galerkin scheme. U was approximated by Uh ∈ V 0

h . We further define
the inner product

(u, v) =

∫ L

0

uvdx.

Replace U by Uh in Eq.28, multiply both sides by basis test functions, and
integrate over the domain[0, L], finally we get

(Un+1
h , ψi) = (Unh , ψi) + ∆t

(
FLW (Unh ),

dψi
dx

)
−∆t2

2

(
SU (Unh )

∂F

∂x
(Unh ), ψi

)
−∆t2

2

(
H(Unh )

∂F

∂x
(Unh ),

dψi
dx

)
+∆t(SLW (Unh ), ψi) i = 2, ...N.

(29)

Un+1 and Un are expanded as Uh =
∑j=N
j=2 Ujψj . F ,FLW ,SLW and H are

expanded by a group finite element method instead of evaluating them directly
as nonlinear functions of Unh . That is, for example,

F (Unh ) =

j=N∑
j=2

Fnj ψi,
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where Fni = F (Uni ). Finally, the matrix form of the FE scheme writes

MUn+1 =MUn + ∆tKTFnLW + ∆tMSnLW −
∆t2

2
M̃Fn − ∆t2

2
K̃Fn, (30)

where

Mij = (ψi, ψj), Kij = (ψi,
∂ψj
∂x

)

and

M̃ij(Su) =

(∑
k

(Su)kψk
∂ψi
∂x

, ψj

)
, K̃ij(H) =

(∑
k

Hkψk
∂ψi
∂x

,
ψj
∂x

)
.

Note that M̃ and K̃ are functions of Su and H, therefore they must be updated
in every time step. Also note that if the Taylor series were truncated up to
the first order, and P1 element were adopted for the spatial discretization, the
scheme will be equivalent to a forward Euler combined with central difference
scheme, which is unconditionally unstable for a convection problem.

3.5 Second order finite volume scheme

Figure 2: mesh for FV

For finite volume method, the domain is decomposed into finite volumes or
cells with vertex xi as the center of cell [xi−1/2, xi+1/2], see Figure (2). For
every cell, the conservation law must holds,∫ xi+1/2

xi−1/2

∂U

∂t
dx+

∫ xi+1/2

xi−1/2

∂F

∂x
dx =

∫ xi+1/2

xi−1/2

Sdx. (31)

Application of Gauss’s law on the second term gives∫ xi+1/2

xi−1/2

∂U

∂t
dx+ F |xi+1/2

− F |xi−1/2
=

∫ xi+1/2

xi−1/2

Sdx. (32)

In the cells, average values are considered,

Ui =
1

∆x

∫ xi+1/2

xi−1/2

U(x)dx, Si =
1

∆x

∫ xi+1/2

xi−1/2

S(x)dx.

Thus Eq. 32 turns into an ordinary differential equation

dUi
dt

= −
(F |xi+1/2

− F |xi−1/2
)

∆x
+ Si. (33)
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The flux at the interface of the cells have to be determined. But in general,
the values of U at the two sides of the interface, UL to the left and UR to
the right, are not equal. A unique value, called numerical flux F ∗, has to be
designed as a function of these two values. It is clear that a central numerical
flux, (F (UL) + F (UR))/2, will lead to instabilities for a convection problem. A
numerical diffusive term has to be added to stabilize the method. Many such
kind of numerical flux have been proposed, for example Rusanov (or called local
Lax-Friedrichs)flux. It writes

F(UL, UR) =
F (UL) + F (UR)

2
− cUR − UL

2
,

with
c = sup

U=UL,UR

( sup
j∈1,2

|λj(U)|)

where λ1(U) and λ2(U) are the eigenvalues of Jc. Other methods with less
numerical diffusions, such as HLL flux, are available. Since Rusanov’s method
is very simple and efficient, it was adopted in this paper. If UL and UR equal
the average values at the cell, the numerical flux will be of first order accuracy.
Linear reconstructions of U within the cells are necessary for a second order
numerical flux. The slope of a scalar s within the i-th cell Dsi can be approxi-
mated as (si− si−1)/∆x, (si+1− si)/∆x or (si+1− si−1)/2∆x. Then the values
of s at the interfaces associated with this cell can be recovered as

si−1/2+ = si −
∆x

2
Dsi and si+1/2− = si +

∆x

2
Dsi.

The discretization of derivative in space can achieve a second order accuracy
by this method. But the solution will have nonphysical oscillations. Some
examples of oscillations induced by these methods can be found in Chapter 6
of reference [22]. Slope or flux limiter and non-oscillatory solution are integral
characteristics of FV schemes. One simple slope limiter is defined as

minmod(x,y) =


min(x,y) if x, y ≥ 0,

max(x,y) if x, y ≤ 0,

0 else

Then the slope Dsi is modified as

Dsi = minmod(
si − si−1

∆x
,
si+1 − si

∆x
).

The values of A and Q at the interfaces can be obtained as

Ai−1/2+ = Ai −
∆x

2
DAi, Ai+1/2− = Ai +

∆x

2
DAi

and

Qi−1/2+ = Qi −
∆x

2
DQi, Qi+1/2− = Qi +

∆x

2
DQi.

13



It is easy to verify that the variables are conserved by this reconstruction

Ri−1/2+ +Ri+1/2−

2
= Ri,

Qi−1/2+ +Qi+1/2−

2
= Qi.

The adopted numerical integration in time was also of second order accuracy.
Let’s rewrite Eq. 33 as

dU

dt
= Φ(U)

where

Φ(U) = −
(Fi+1/2L −Fi−1/2R)

∆x
+ S.

The flux have been replaced by numerical flux. A 2-step second order Adams-
Bashforth (A-B) scheme can be applied,

Un+1 = Un + ∆t
(3

2
Φ(Un)− 1

2
Φ(Un−1)

)
.

This scheme can be initiated by a forward Euler method. A second order Runge-
Kutta (R-K) method is also possible. But the R-K method requires one more
time resolution of Φ(U) at every step. This may be offset by a larger time step
allowed by the R-K method. But note also the boundary conditions are deter-
mined dynamically. The A-B method allows less resolutions of the nonlinear
algebraic equations at conjunctions points. Thus we choose the A-B method for
the time integration.

3.6 Treatment of the parabolic subproblem

For the previous 3 schemes, only the hyperbolic subproblem resulted from split-
ting was solved. Crank-Nicolson method is very suitable for the parabolic sub-
problem. The temporal and spatial discretization has the form,

Un+1
i − U∗i

∆t
=
Cv
2

(Un+1
i+1 − 2Un+1

i + Un+1
i−1

∆x2
+
U∗i+1 − 2U∗i + U∗i−1

∆x2

)
.

U∗ is the solution of the first hyperbolic subproblem. The matrix of the resulting
algebraic system is tridiagonal, which is quite cheap to invert. This scheme is
second order accurate both on time and space. Moreover, it is unconditionally
stable. It is natural to set a homogeneous Neumann B.C. for the parabolic
subproblem, ∂xUp(0, t) = ∂xUp(L, t) = 0. The subscript p stands for the step of
the parabolic subproblem.

3.7 Local Discontinuous Galerkin scheme

In FV schemes, the recovery of UL and UR of higher accuracy requires bigger
stencil. In higher dimensions, this kind of reconstruction leads to big difficulties.
On the other hand, it is quite straightforward to increase the order of approxi-
mation polynomials in one finite element. Unlike the global FE, the neighboring

14



Figure 3: mesh for DG

elements do not share the same values at the interface. Numerical flux are ob-
tained from these values, where the dynamics of the system can be considered.
In DG setting, the scheme can achieve high p-accuracy for convection dominated
problems. Following Hesthaven and Warburton’s book [16], we present a nodal
DG scheme here. The domain is decomposed into K non-overlapping elements,
see Figure (3). At each element, the local approximation to the solution is a
polynomial of order N = Np − 1. The global approximation to U is direct
summation of these local solutions:

Uh =

k=K⊕
k=1

Ukh . (34)

Similarly, the flux F and the source S can also be approximated by direct sum-
mation of piecewise N-th-order polynomials. The local form of the conservation
law on the k-th element has the form,

∂Ukh
∂t

+
∂F kh
∂x

= Skh. (35)

Multiplication by a test function φk at both sides of Eq. (35), and integration
over one element gives(

∂Ukh
∂t

, φk
)
Dk

+

(
∂F kh
∂x

, φk
)
Dk

=

(
Skh, φ

k

)
Dk

. (36)

Applying integration by part on the second term, we have:(
∂Ukh
∂t

, φk
)
Dk

−
(
F kh ,

∂φk

∂x

)
Dk

+ F khφ
k

∣∣∣∣xk+1

xk

=

(
Skh, φ

k

)
Dk

. (37)

Again, since the value of Uh at the two sides of the interface, Ukh (xk) and
Uk+1
h (xk), are not equal, a numerical flux F ∗ is introduced here. Through the

numerical flux, information is communicated between elements. In practice, the
second term is integrated by part again for convenience of computation. Thus
we have(

∂Ukh
∂t

, φk
)
Dk

+

(
∂F kh
∂x

, φk
)
Dk

+ (−F khφk + Fφk)

∣∣∣∣xk+1

xk

=

(
Skh, φ

k

)
Dk

. (38)
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We introduce Np nodes within the element Dk. The local solution is expanded
as

Ukh (x, t) =

Np∑
i=1

Ukh (xki , t)lki (x), (39)

where lki (x) is the Lagrange interpolant associated with the i − th point. For
the Galerkin scheme, Eq. (38)must holds for every test function lki (x). Thus we
have Np equations for Np unknowns. In matrix form, the system can be written
as,

Mk dUk
dt

+KkF k + (−F klk + F ∗lk)

∣∣∣∣xk+1

xk

=MkSk, (40)

where

Mk =
(
lki , l

k
j

)
Dk
, Kk =

(dlki
dx

, lkj
)
Dk
.

The system of equations can be turned into a semi-discrete form,

dUk
dt

= −DkF k − (Mk)−1(−F klk + F ∗lk)

∣∣∣∣xk+1

xk

+ Sk. (41)

where

Dk(i,j) = (Mk)−1Kk(i,j) =
dlkj
dr

∣∣∣∣
ri

is the local differentiation operator [16]. The computation of Mk and Dk is
crucial. We define an affine mapping from a reference element (−1, 1) to Dk,

x(r) = xk +
1 + r

2
(xk+1 − xk).

The local operators can be readily computed as,

Mk = Jk
∫ 1

−1

liljdr, Dk = Jk
dlj
dr

∣∣∣∣
ri

,

where Jk = (xk+1 − xk)/2 and li is the Lagrange interpolation at the reference

element.
∫ 1

−1
liljdr and

dlj
dr

∣∣
ri

can be precomputed and stored. Legendre-Gauss-
Lobatto points has to be chosen as the interpolation points to minimize the
computation error. For more details, we refer to Chapter 3 of reference [16]. For
the time integration, a second order A-B scheme was also applied as discussed
in Section (3.5).

The scheme previously presented can treat a hyperbolic problem. But in
this setting Crank-Nicolson method is hard to apply, because the values at the
interfaces are duplicated. We chose the problem formulation of Eq. (6), where
the flux contains convective part Fc and viscous part Fv. For the convective
part, Godunov flux is applicable. For the viscous flux, a straight idea is to use
the central flux, (Fv(UL) + Fv(UR))/2. But as pointed out by Shu el al. [41],
this choice is inconsistent.

16



To solve this problem, we rewrite the original equations as

∂U

∂t
+
∂Fc
∂x
− Cv

∂q

∂x
= S

q − ∂Q

∂x
= 0

The semidiscrete form of the equation is

dUk
dt

= −DkF k − (Mk)−1(−F klk + F ∗lk)

∣∣∣∣xk+1

xk

+ Sk.

qk = DkQk − (Mk)−1(−Qklk +Q∗lk)

∣∣∣∣xk+1

xk

The flux in these equations have to be modified accordingly: F k = F kc − Cvqk,
F ∗ = F ∗c − (Cvq)

∗. F ∗c is defined by Godunov flux. The numerical flux (Cvq)
∗

and Q∗ are defined by the central flux. The introduction of an auxiliary variable
q stabilizes the scheme. Note that qk can be eliminated in every time step, thus
the addition of storage or computational cost is very limited. This method is
called local Discontinuous Galerkin scheme.

4 Results and discussion

In this part, we first impose a small perturbation of the system and analyze
several important behaviours of the wave: propagation, attenuation, diffusion,
wavefront steepening, reflection and transmission at a branching point. Then
we assume a larger perturbation and observe the forming of a shock. All of the
schemes are tested on capturing these behaviours. Finally all of the schemes
are applied on a relatively realistic network. In this setting, the performance of
the schemes are compared.

4.1 Propagation in an uniform tube

In this subsection we compare the numerical results with analytical results on
a single vessel for a pulse. The tube is long enough to avoid reflections. Adding
a small perturbation ((εÃ, εQ̃)) to the equilibrium solution (U = (A0, 0)) of the
governing equations, substituting and dropping the terms with quadratics of ε,
assuming constant properties for artery (∂(β

√
A0)/∂x = ∂β/∂x = 0), gives the

equations for the perturbations in a linear form:

∂Ã

∂t
+
∂Q̃

∂x
= 0,

∂Q̃

∂t
+ c20

∂Ã

∂x
= −Cf

A0
Q̃+ Cv

∂2Q̃

∂x2
(42)

with c0 =
√

β
2ρ

√
A0, the Moens-Korteweg celerity. We investigate the convec-

tion phenomena at first, so we drop the non-homogeneous part (no viscosities
Cf = 0 and Cv = 0), Eq. (42) is the d’Alembert equation and admits the wave
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solution. If we assume that the initial condition is A = A0, Q = 0, and the
inflow is prescribed as Q(0, t) = Qin(t) with

Qin(t) = Qcsin(
2π

Tc
t)H(−t+

Tc
2

), t > 0,

with H(t) the Heaviside function, then the solution is c0Ã = Q̃ = Qin(x− c0t),
which means that the waveform propagates to the right with a speed of c0.

We propose a numerical test with parameters of the tube inspired by [39]:

L = 250cm, A0 = 3.2168cm2, β = 1.8734×106Pa/m and ρ = 1.050×103kg/m
3
,

and accordingly, c0 = 400cm/s. To impose a small perturbation, we choose Qc =
1ml/s and Tc = 0.4s. The change ratio of the radius is ∆R/R0 = Q0/(2A0c0) =
0.04%. We take the linearized analytical solution at time t = 0.4s as reference
to compute the errors of the numerical schemes. We see on figure 4(a) that all
the scheme give the same result. To analyze more closely the solution, we define
the 1-norm of the errors as

||E||1 =
1

N

N∑
i=1

|Qnumerical −Qanalytical
Qc

|,

and we will test the spatial (∆x = L
N ) and temporal (∆t = Ct

L
Nc0

) convergence.
For the DG scheme, the time step formula is modified accordingly as ∆t =
Ct

P
L
Nc0

, with P the order of the polynomial.
From our numerical test, we have the following observations. All the pro-

posed scheme converge (Figures 4(a) and 4(b)) but with different speeds of
convergence.

Fixing Ct = 0.1, ||E||1 are computed for several schemes with different N .
The log-log plot of ||E||1 against ∆x can be seen in Figure (4(b)). One can
see that all of the schemes converge with an order between 1 and 2 and the
DG schemes converges faster. If we fix the mesh (NTG = NFV = NFD =
800, NDG−P1

= NDG−P2
= 100) and increase (or decrease) the time steps, the

error varies slightly for all of the schemes except FV (see Figure 4(c)). If Ct > 0.6
for Taylor-Galerkin, FV or MacCormack, the scheme becomes unstable. For the
DG scheme, Ct can not be greater than 0.1. So, for the convergence of the time
integration we have to choose a smaller time step than the value prescribed by
the CFL condition for stabilization reasons. To compare the actual speed and
accuracy of the four schemes, we set N and Ct such that the errors achieve the
same order of magnitude (see Table (1) and Figure 4(d)).

Except the Taylor-Galerkin scheme, all of the schemes have the similar ac-
curacy with very close running time. At this point of the paper, the Taylor-
Galerkin scheme shows the worst accuracy and needs to run the longest time, we
will see that in fact as the time integration of Taylor-Galerkin is more efficient
than the others, this conclusion will change in the network case (Section 4.6).
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Figure 4: Test on a uniform tube. Upper left, the pulse at time 0.4s, all the
results are overlapped. Upper right, error of the schemes with different size of
elements (cells). Lower left, at fixed mesh (NTG = NFV = NFD = 800), error
as a function of Ct coefficient. Lower right, a focus on the error for Table 1
values.
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N Ct
Taylor-Gakerkin 800 0.5

FV 800 0.3
MacComack 1600 0.5
DG− P1 200 0.1
DG− P2 100 0.1

Table 1: Number of elements and coefficient of time step

4.2 Attenuation due to the viscosity of blood

We now consider the same linearized system (Eq. 42) with its small non-
homogeneous viscous part (Cf 6= 0 and Cv = 0). The main dynamics of the
system will be grossly the same traveling wave but attenuated by viscosity.
This behaviour can be predicted by asymptotic analysis. We have a small non-
dimensional parameter εf = TcCf/A0, which is the ratio of the characteristic
time of pulse Tc to the characteristic time of attenuation A0/Cf . In order to see
how the waveform slowly evolves when it propagates to, say right, we make a
change of variables to τ = εf t and ξ = x− c0t (slow time, moving frame). The
two differential operators ∂t and ∂x expand as

∂

∂t
=
∂τ

∂t

∂

∂τ
+
∂ξ

∂t

∂

∂ξ
= εf

∂

∂τ
− c0

∂

∂ξ

∂

∂x
=
∂ξ

∂x

∂

∂ξ
=

∂

∂ξ

The solution has the asymptotic expansion

Ã = Ã0 + εf Ã1 + ... Q̃ = Q̃0 + εf Q̃1 + ...

Substituting these into the governing equations expressed in new variables and
collecting the terms with the same order of εf , one has

(−c0
∂Ã0

∂ξ
+
∂Q̃0

∂ξ
) + εf (

∂Ã0

∂τ
− c0

∂Ã1

∂ξ
+
∂Q̃1

∂ξ
) + .. = 0

(−c0
∂Q̃0

∂ξ
+ c20

∂Ã0

∂ξ
) + εf (

∂Q̃0

∂τ
− c0

∂Q̃1

∂ξ
+ c20

∂Ã1

∂ξ
+
Q̃0

Tc
) + .. = 0

We take the first order term in εf in the first equation, we substitute it in the
first order term in εf in the second equation, hence we obtain:

(
∂Q̃0

∂τ
+ c0

∂Ã0

∂τ
+
Q̃0

Tc
) = 0.

From terms of the zeroth order in εf , which involve derivative in ξ only, the

solution must have the form Q̃0 = c0Ã0(τ, ξ)+φ(τ). The previous equation will
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imply terms ∂φ
∂τ and φ(τ) which are secular terms and so which are null. So

c0Ã0 = Q̃0, thus we have ∂Q̃0

∂τ = − 1
2Tc

Q̃0 , or

Q̃0 = Q̃0(0, ξ)e−τ/(2Tc) = Q̃0(0, x− c0t)e−εf t/(2Tc).

For more on asymptotic analysis of blood flow in large blood vessels, we refer
to reference ([47]).

In Figure (5), we plot the snapshots of the waveform at time 0.2s, 0.4s, 0.6s
and 0.8s. In the computation, the initial and boundary conditions are the same
as in the previous subsection. The mesh and the time steps in Table (1) are
adopted. The damping rate of the amplitude of the waveform agrees very well
with the analytical prediction, exp(− Cfx

2A0c0
), which is indicated by the dashed

line. Also note that the errors of different schemes are not the same. The FV
scheme causes the peak of the wave to slightly flatten, while all of the other
schemes are dispersive: we have small oscillations at the foot of the signal.
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Figure 5: Attenuation due to the skin friction. The snapshots are at time 0.2s,
0.4s, 0.6s and 0.8s. The dashed line is exp(− Cfx

2A0c0
) with 2A0c0/Cf ' 2000cm

The flux is normalized with respect to Qc

4.3 Diffusion due to the viscosity of the arterial wall

We now consider the same linearized system (Eq. 42) but with now the Kelvin-
Voigt effect and no viscous fluid effect (Cf = 0 and Cv 6= 0). The small param-
eter is now εv = Cv/(c

2
0Tc). If we apply the same technique as described in the

previous subsection, we can readily obtain the diffusive behaviour of the pulse
in the moving frame:

∂Q̃0

∂τ
=
c20Tc

2

∂2Q̃0

∂2ξ
(43)

The solution of this equation can be given by the convolution

Q̃0(τ, ξ) =

∫ +∞

−∞
Q̃0(0, ξ)G(τ, ξ − ζ)dζ
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where G is the fundamental solution of the heat equation (43)

G(τ, ξ) =
1√

2πτc20Tc
e−ξ

2/(2τc20Tc)

In the test vessel, the parameters are kept the same as in the case of attenuation.
The coefficient Cv is 0.6275 m2/s and εv ' 0.1. This corresponds to φ =
5000Pa · s, which is in the range of observed values on animals [2]. To facilitate
the calculation of the analytical solution, non-reflecting B.C. are imposed at the
two ends of the vessel and I.C. is a half sinusoidal waveform for flux Q and a
constant cross section A0, see Figure (6). It is clear that half of the initial wave
propagates to right and at the same time the waveform is spread out due to
the diffusive effect. The analytical solution at time 0.4s (indicated by crossing
signs) agrees very well with all of the numerical solutions.

Another point worthy noticing is the operator splitting errors. In the DG
scheme, no operator splitting error is induced. All of the other numerical
schemes where operator splitting method. It produces very accurate solutions
as well as DG. Thus, it verifies the a priori judgement that Godunov splitting
is sufficient.
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Figure 6: Diffusion due to the viscosity of the wall. The dashed line is the initial
condition. One half of the original waveform propagates to right. The snap
shots are at time 0.2s, 0.4s, 0.6s and 0.8s. The analytical prediction from the
convolution at time 0.4s is indicated by crossing signs. The difference between
the different numerical solutions is not discernible. The flux is normalized with
respect to Qc.

4.4 Wavefront steepening due to the nonlinearity

We now consider the full nonlinear system , but without Kelvin-Voigt effect
and no viscous fluid effect (Cf = 0 and Cv = 0). The small parameter is now
ε2 = Qc/(c0A0). If we apply the same technique as described in the previous
subsection, we can readily obtain the non linear behaviour of the pulse in the
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moving frame (inviscid Burgers equation):

∂Q̃0

∂τ
=

1

2A0
Q̃0

∂Q̃0

∂ξ
(44)

One important consequence of nonlinear hyperbolic system that shocks may
arise even if the initial condition is very smooth. In normal physiological con-
ditions, shocks are not observed in arterial systems. But in venous system,
shock-like phenomena may occur on muscular veins during walking and run-
ning. The intramuscular pressure (equivalent to Pext in our model) can rise
to 20 − 40kPa in few ms [3]. In such situation, experiment and numerical
simulations [9, 27] have shown this critical behaviour. For another example,
the traumatic rupture of the aorta is responsible for a significant percentage
of traffic death and the rupture may be well accounted by the the shock-like
transition resulted from the blunt impact to the thorax [18]. Thus we test all of
the schemes in such case. To observe a shock, only two parameters are modified:
L = 800cm and Qc = 200ml/s. The change ratio of the radius is about 7.78
%. The number of elements for Taylor-Galerkin, FV and MacComack schemes
is 800. The DG scheme uses 200 elements and the order of polynomial is 2.
Figure (7) shows that a shock starts to form around the point 300cm. Strong
oscillations are generated at the front foot of the waveform by Taylor-Galerkin
scheme. On the other hand, strong oscillations are induced at the back of the
great gradients. For the DG scheme, there are some smaller oscillations both
in front and back. That is because the characteristic structures are taken into
account in the numerical flux. Limiters may be introduced to eliminate the
oscillations. This remedy will be necessary for DG to be applicable on problems
with shocks. For the FV scheme, the shock is well captured without nonphysical
oscillations. That verifies the total-variation-diminishing (TVD) property of the
FV scheme.

On Figure (7(b)) we plot a case with some viscosity in the wall. The small
added diffusion smoothes the oscillations and all of the schemes give almost the
same result with moderate diffusion.

4.5 Reflection and transmission at a branching point

Up to now, we focus on the various physical terms in the equations, propagation,
attenuation, non linearities... Now, we look at the boundaries or each artery.
Indeed, pressure waves are reflected and transmitted at the conjunction points
of the arteries. For linearized models, the reflection and transmission coefficients
at a branching are given by the formula [14, 33] in terms of Z defined as Z = ρc0

A0

the impedance:

R =
Z−1
p − (Z−1

d1
+ Z−1

d2
)

Z−1
p + (Z−1

d1
+ Z−1

d2
)
, T =

2Z−1
p

Z−1
p + (Z−1

d1
+ Z−1

d2
)
,

where Zp and Zd are the characteristic impedance of the parent and daughter
vessels. In Figure (8), for sake of illustration, the configuration of the branching
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Figure 7: Shock due to the convective term. The left figure (a) shows that sharp
gradient forms in a nonlinear hyperbolic system. Numerical schemes may cause
spurious oscillations. FV scheme with a flux limiter captures the shock without
non-physical oscillations. The right figure (b) shows that all of the schemes give
almost the same result for a system with a moderate diffusion term.

and the time profile of pressure at two locations are shown. The amplitude
is normalized with respect to Qc = 1 × 10−6m3/s = 1ml/s. For the parent
vessels: β = 2.3633×106Pa/m, A0 = 4cm2 and for each of the daughter vessels:
β = 6.3021 × 106Pa/m, A0 = 1.5cm2. According to the formula, R = 0.2603
and T = 1.2603. The pressure waveform at the points A and B agrees very well
with analytical prediction. All of the numerical schemes are compatible with
this treatment of conjunction.

4.6 Application on a full systematic arterial system

As already mentioned in the introduction, a relatively realistic description of
arterial system has been done by 1D simulations, with different numerical solvers
in different teams. For example, in [30, 39], Galerkin approach was used. In
these papers, wall viscosity is not included. We include the diffusive term and
present the numerical treatment of this term. In other literatures [42, 37], finite
difference schemes are adopted. Note that [37] gives a survey of the literature
on the subject. But, the numerical errors and the running time are not known
compared with other numerical schemes in all those paper. In this paper, we
will compare the running time and the results of all the methods. To do this,
the structure and stiffness of the arterial network are adapted from [39]. The
viscosity coefficient of the Kelvin-Voigt model on human body is not known.
To propose some realistic values, we follow reference [2] where the viscosity of
aortic wall of dogs was modeled by a Kelvin-Voigt model and the value of φ was
in the range 3.8 ± 1.3 × 103Pa · s to 7.8 ± 1.1 × 103Pa · s. Hence, we assume
φ = 5 × 103Pa · s and calculate νs by formula 4 and further calculate Cv by
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Figure 8: Reflection and transmission of pressure wave at a branching point.
The time profiles of the pressure at points A and B are plotted. The analytical
reflection and transmission coefficients are 0.2603 and 1.2603 (indicated by the
dashed line).

Cv = A0νs
ρ . The final parameters of the network we use are shown in Table 3. We

note that there may be differences between arteries in human and dog and the
arteries in different locations may cause a considerable variation. Nevertheless
the inclusion of viscosity term make it possible to test the numerical schemes in
a more realistic condition.

The peak value of the input flux Qc is 500 ml/s. This value is very close to
the peak flow rate at the root of aortic artery [37]. We choose mini=55

i=1 (Li/ci0)
as a reference element length, with Li the length of the i-th artery and ci0 the
wave speed of the linearized system. For a coarsest possible mesh, the number

of elements (cells) of each artery is N i
base = b Li

mini=55
i=1 (Li/ci0)

c, where b·c is floor

function. We computed the relative change of solutions when the number of
the elements (cells) are doubled. Figure (9) shows the relative change of the
solutions when the number of the elements (cells) is changed from 2Nbase to
4Nbase. The relative change of a quantity (for example flux Q) with two meshes
N1 and N2 is defined as ||QN1

− QN2
||1/(Qmax − Qmin), where || · ||1 stands

for 1-norm, Qmax and Qmin are the maximum and minimum values within one
heart beat. Figure (9) shows that the change of flux and pressure are less than
1.5% for all of of the schemes except DG. Thus we plotted in Figure (10) the
results computed with mesh 2Nbase.

The DG scheme is not tested in this manner because it is already converged:
result in Figure (10) shows that the error for DG is already very small with the
coarsest possible mesh.

Time step is ∆t = Ct mini=55
i=1 ( Li

Nic0
). The coefficient of Ct and the corre-

sponding real time step is shown in Table (2)
In Figure (10) we plot the history profile of flux and pressure at the middle

of four representative arteries. All of the numerical solutions agree very well.
The main following qualitative behaviours reported in literature [39, 37] are ob-
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Figure 9: Relative change of the solutions when the mesh is doubled from 2Nbase
to 4Nbase. The left figure shows that the relative error of all of the flux is less
than 1.3 %. The right figure shows that the relative change of all of the pressure
is less then 0.6% .

Ct ∆t(10−6s) running time for one heart beat (minutes)
Taylor-Gakerkin 0.4 222 22.0

FV 0.25 139 31.9
MacComack 0.1 55.5 91.2

DG 0.006 6.66 576

Table 2: Time steps and running time in minutes on a standard Linux Work
Station for all of the schemes

served. The peak value of pressure waveform increases as we travel down the
system. We can also see the dicrotic notch at artery 1. At artery 37, a reverse
flow is observed, see 10(f). This phenomena is also observed in clinical measure-
ment [37]. The result in this paper is smoother than the corresponding arteries
in [39]. The result with viscosities is closer to the clinical observations [37]. We
realize that it is very important to consider the wall viscosities to give more
realistic result. This agrees with the conclusion drawn by the comparison of
numerical results with data from in vitro experiments [1, 38].

5 Conclusions

In this paper, we presented four numerical schemes for a 1D viscoelastic blood
flow model. Under the assumptions of small nonlinearities, analytical solutions
predict several behaviours of the wave: propagation in a uniform tube, attenua-
tion of the amplitude due to the skin friction, and diffusion due to the viscosity of
the wall (note that the effect of dispersion will be examined in the future). These
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Figure 10: The history profiles of pressure and flux at four locations. Ten heart
beats are computed to secure steady state is achieved and the tenth heart beat
is plotted. The differences between the four numerical schemes are very small.
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predictions were compared with all of the numerical solutions. After that, we
applied all of the schemes on a relatively realistic arterial system. The schemes
can be compared in three aspects: the accuracy, the ability to capture shock
phenomena, the computation speed and the complexity of the implementation.

1. MacCormack and Taylor-Galerkin schemes generate small oscillations. FV
scheme has slight arbitrary steepening effect. Both diffusion and disper-
sion errors are very small for DG. Nevertheless all of the schemes converge
with a moderate fine mesh and precisely capture the various phenomena
of this hyperbolicity dominating hyperbolic-parabolic system.

2. MacCormack and Taylor-Galerkin perform very poorly when there is a
steep gradient. Both of them present strong oscillations at one side of the
jumping location. DG scheme has smaller oscillations at both sides of the
jump. Numerical flux limiters are possible to filter out the oscillations.
That will further complicate the schemes and the theory and technique
is still under research [19, 27]. On the other hand, there are very mature
techniques to impose a slope limiter in the FV scheme. Shock capturing
property is unique for FV among the four schemes presented in this paper.

3. For a network of human size, the speed of computation can be ordered
from fast to slow as: Taylor-Galerkin, second order FV, MacCormack and
DG. The time integration in the Taylor-Galerkin scheme is more efficient
than Adams-Bashforth 2-step method. Thus it allows a larger time step
with a comparable accuracy. But if the number of elements for one artery
is too large (larger than 500), the speed of Taylor-Galerkin becomes slower
because the size of the global matrix increases quadratically and thus the
storing and inverting of matrix becomes very expansive. The DG scheme
prevents the application of Crank-Nicolson method on the diffusion term.
An explicit method called local DG scheme was adopted in this paper.
Even with a moderate diffusion coefficient (within the range observed in
physiological condition), a very small time step is necessary for stability.
That makes the computation of 1 heart beat cost about 9 hours while
all of the other schemes cost only 20 to 90 minutes (on a standard Linux
Work Station).

4. From easiest to hardest, the implementation of the schemes can be ordered:
MacCormack, second order FV, Taylor-Galerkin and local DG.

As a final conclusion from the point of view of practical application, we
recommend MacCormack in case of very small nonlinearities; second order FV
will be a very good option if there maybe shock-like phenomena in the systems;
Taylor-Galerkin has quite balanced properties between speed and accuracy if
no shock-like phenomena may present in the system; DG is suitable for systems
with very small physical diffusion term since both the numerical diffusion and
dispersion are very small in this scheme.
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donck, K.H. Parker, and J. Peiró. Pulse wave propagation in a model hu-
man arterial network: Assessment of 1-d visco-elastic simulations against
in vitro measurements. Journal of Biomechanics, 2011.

[2] R.L. Armentano, J.G. Barra, J. Levenson, A. Simon, and R.H. Pichel. Ar-
terial wall mechanics in conscious dogs: assessment of viscous, inertial, and
elastic moduli to characterize aortic wall behavior. Circulation Research,
76(3):468–478, 1995.

[3] R.E. Ballard, D.E. Watenpaugh, G.A. Breit, G. Murthy, D.C. Holley, and
A.R. Hargens. Leg intramuscular pressures during locomotion in humans.
Journal of Applied Physiology, 84(6):1976–1981, 1998.

[4] Cristobal Bertoglio, Philippe Moireau, and Jean-Frederic Gerbeau. Se-
quential parameter estimation for fluid–structure problems: Application to
hemodynamics. International Journal for Numerical Methods in Biomedi-
cal Engineering, 2012.

[5] J. Blacher, R. Asmar, S. Djane, G.M. London, and M.E. Safar. Aortic pulse
wave velocity as a marker of cardiovascular risk in hypertensive patients.
Hypertension, 33(5):1111–1117, 1999.

[6] N. Cavallini, V. Caleffi, and V. Coscia. Finite volume and weno scheme in
one-dimensional vascular system modelling. Computers and Mathematics
with Applications, 56(9):2382–2397, 2008.

[7] O. Delestre, P.Y. Lagrée, et al. A well balanced finite volume scheme for
blood flow simulation. International Journal for Numerical Methods in
Fluids, page doi: 10.1002/fld.3736, 2012.

[8] D. Elad, D. Katz, E. Kimmel, and S. Einav. Numerical schemes for un-
steady fluid flow through collapsible tubes. Journal of Biomechanical En-
gineering, 13(1):10–18, 1991.

[9] P. Flaud, P. Guesdon, and J.M. Fullana. Experiments of draining and filling
processes in a collapsible tube at high external pressure. The European
Physical Journal Applied Physics, 57(03), 2012.

29



[10] L. Formaggia, J.F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling
of 3d and 1d navier–stokes equations for flow problems in compliant vessels.
Computer Methods in Applied Mechanics and Engineering, 191(6):561–582,
2001.

[11] L. Formaggia, D. Lamponi, and A. Quarteroni. One-dimensional models for
blood flow in arteries. Journal of Engineering Mathematics, 47(3):251–276,
2003.

[12] L. Formaggia, A. Quarteroni, and A. Veneziani. Cardiovascular Mathemat-
ics: Modeling and simulation of the circulatory system, volume 1. Springer,
2009.

[13] J.M. Fullana and S. Zaleski. A branched one-dimensional model of vessel
networks. Journal of Fluid Mechanics, 621(1):183–204, 2009.

[14] Y. Fung. Biomechanics: circulation. Springer Verlag, 1997.

[15] Jean-Frédéric Gerbeau, Marina Vidrascu, and Pascal Frey. Fluid–structure
interaction in blood flows on geometries based on medical imaging. Com-
puters and Structures, 83(2):155–165, 2005.

[16] J.S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications, volume 54. Springer-Verlag New
York Inc, 2008.

[17] E. Kimmel, RD Kamm, AH Shapiro, et al. Numerical solutions for steady
and unsteady flow in a model of the pulmonary airways. Journal of Biome-
chanical Engineering, 110(4):292, 1988.

[18] Y. Kivity and R. Collins. Nonlinear wave propagation in viscoelastic tubes:
application to aortic rupture. Journal of Biomechanics, 7(1):67–76, 1974.

[19] Dmitri Kuzmin. Slope limiting for discontinuous galerkin approximations
with a possibly non-orthogonal taylor basis. International Journal for Nu-
merical Methods in Fluids, 2012.

[20] Pierre-Yves Lagrée and Maurice Rossi. Etude de l’écoulement du sang
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Table 3: Arterial network

l A0 β Cv

ID Name (cm) (cm2) (106Pa/cm) (104cm2/s) Rt

1 Ascending aorta 4.0 6.789 0.023 0.352 –
2 Aortic arch I 2.0 5.011 0.024 0.317 –
3 Brachiocephalic 3.4 1.535 0.049 0.363 –
4 R.subclavian I 3.4 0.919 0.069 0.393 –
5 R.carotid 17.7 0.703 0.085 0.423 –
6 R.vertebral 14.8 0.181 0.470 0.595 0.906
7 R. subclavian II 42.2 0.833 0.076 0.413 –
8 R.radius 23.5 0.423 0.192 0.372 0.82
9 R.ulnar I 6.7 0.648 0.134 0.322 –
10 R.interosseous 7.9 0.118 0.895 0.458 0.956
11 R.ulnar II 17.1 0.589 0.148 0.337 0.893
12 R.int.carotid 17.6 0.458 0.186 0.374 0.784
13 R. ext. carotid 17.7 0.458 0.173 0.349 0.79
14 Aortic arch II 3.9 4.486 0.024 0.306 –
15 L. carotid 20.8 0.536 0.111 0.484 –
16 L. int. carotid 17.6 0.350 0.243 0.428 0.784
17 L. ext. carotid 17.7 0.350 0.227 0.399 0.791
18 Thoracic aorta I 5.2 3.941 0.026 0.312 –
19 L. subclavian I 3.4 0.706 0.088 0.442 –
20 L. vertebral 14.8 0.129 0.657 0.704 0.906
21 L. subclavian II 42.2 0.650 0.097 0.467 –
22 L. radius 23.5 0.330 0.247 0.421 0.821
23 L. ulnar I 6.7 0.505 0.172 0.364 –
24 L. interosseous 7.9 0.093 1.139 0.517 0.956
25 L. ulnar II 17.1 0.461 0.189 0.381 0.893
26 intercoastals 8.0 0.316 0.147 0.491 0.627
27 Thoracic aorta II 10.4 3.604 0.026 0.296 –
28 Abdominal aorta I 5.3 2.659 0.032 0.311 –
29 Celiac I 2.0 1.086 0.056 0.346 –
30 Celiac II 1.0 0.126 0.481 1.016 –
31 Hepatic 6.6 0.659 0.070 0.340 0.925
32 Gastric 7.1 0.442 0.096 0.381 0.921
33 Splenic 6.3 0.468 0.109 0.444 0.93
34 Sup. mensenteric 5.9 0.782 0.083 0.439 0.934
35 Abdominal aorta II 1.0 2.233 0.034 0.301 –
36 L. renal 3.2 0.385 0.130 0.481 0.861
37 Abdominal aorta III 1.0 1.981 0.038 0.320 –
38 R. renal 3.2 0.385 0.130 0.481 0.861
39 Abdominal aorta IV 10.6 1.389 0.051 0.358 –
40 Inf. mesenteric 5.0 0.118 0.344 0.704 0.918
41 Abdominal aorta V 1.0 1.251 0.049 0.327 –
42 R. com. iliac 5.9 0.694 0.082 0.405 –
43 L. com. iliac 5.8 0.694 0.082 0.405 –
44 L. ext. iliac 14.4 0.730 0.137 0.349 –
45 L. int. iliac 5.0 0.285 0.531 0.422 0.925
46 L. femoral 44.3 0.409 0.231 0.440 –
47 L. deep femoral 12.6 0.398 0.223 0.419 0.885
48 L. post. tibial 32.1 0.444 0.383 0.380 0.724
49 L. ant. tibial 34.3 0.123 1.197 0.625 0.716
50 L. ext. iliac 14.5 0.730 0.137 0.349 –
51 R. int. iliac 5.0 0.285 0.531 0.422 0.925
52 R. femoral 44.4 0.409 0.231 0.440 –
53 R. deep femoral 12.7 0.398 0.223 0.419 0.888
54 R. post. tibial 32.2 0.442 0.385 0.381 0.724
55 R. ant. tibial 34.4 0.122 1.210 0.628 0.716

Data adapted from [39] and [2].
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