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Abstract 28 

 29 

The recent increase in sea surface temperature and ocean acidification raises major concerns 30 

about the evolution of the coral calcification rate. Digitized x-radiographs have been used for 31 

coral skeleton density measurements since the 1980s. The main limitation of coral 32 

densitometry from digitized x-radiographs is the x-ray intensity heterogeneity due to spherical 33 

spreading (inverse square law) and heel effect. Until now, extra x-ray images or aluminum 34 

standards have been used to correct x-radiographs. However, such corrective methods may be 35 

constraining when working with a high number of coral samples. Here, we present an 36 

inexpensive, straightforward, and accurate Digital Detrending (DD) method to correct the 37 

heterogeneities of the x-ray irradiation that affect x-ray images. The x-radiograph is corrected 38 

against the irradiation imprint recorded by its own background using a Kriging interpolation 39 

method, thus allowing reliable optical density measurements directly on the corrected x-ray 40 

image. This Digital Detrending (DD) method was validated using skeletal bulk density 41 

measurements and Computerized Tomography (CT). Coral densitometry using DD corrected 42 

x-radiographs does not require the destruction of the coral sample and provides high-43 

resolution measurements. Since DD does not require extra aluminum standards to correct x-44 

radiographs, this method optimizes the working space available on the x-ray image. 45 

Moreover, it corrects the entire x-radiograph, thus larger samples or numerous samples can be 46 

x-rayed at the same time.  47 

 48 
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 57 

Introduction 58 

 59 

Recent changes evidenced in global Sea Surface Temperature (SST) and oceans’ pH, raise 60 

major concerns about the future of coral reefs (Kleypas, 1999; IPCC, 2007, 2007; Pandolfi et 61 

al., 2011). A major consequence of ocean pH decrease is the diminution of the aragonite 62 

saturation state (ȍarag). A compilation of data documenting calcification response to the ȍarag 63 

decrease among individual coral species, coral mesocosms and in situ reef communities, 64 

showed that this response was consistently negative (Pandolfi et al., 2011). Since the early 65 

1990's an unprecedented declining trend of the coral calcification rate (product of the annual 66 

extension rate and the coral skeleton density) has been observed in Great Barrier Reef records, 67 

most probably due to the recent increase in SST and to ocean acidification (Cooper et al., 68 

β008; De’ath et al., β009). Conversely, coral response to combined ocean warming and pH 69 

decrease appears highly variable and often non-linear. Moreover, coral response is also 70 

greatly influenced by other factors such as nutrients, pollutants or salinity so that projecting 71 

the future of coral reefs in a global warming and ocean acidification context is still uncertain 72 

(Pandolfi et al., 2011). As stated by the IPCC report (β007) “acidification is an emerging 73 

issue with potential for major impacts in coastal areas, but there is little understanding of the 74 

details. It is an urgent topic for further research, especially programmes of observation and 75 

measurement”. Documenting the long term trends in coral calcification is crucial in 76 

understanding the mechanisms and implications of ocean acidification on coral reefs, in order 77 

to predict coral reef future. 78 

Coral calcification rate (CR) is calculated by CR = ER x d, where (ER) is the annual 79 

extension rate and (d) is the coral skeleton density. Whereas extension rate can be directly 80 

measured from the banding pattern revealed by x-radiography, many methods have been 81 



developed since the 1970s to measure skeletal density. Direct measurements have been 82 

performed based on mercury displacement (Dustan, 1975), water displacement (Hughes, 83 

1987) and coral pore volume calculation (Carricart-Ganivet et al., 2000). Although these 84 

methods provide reliable measurements, they are time consuming, imply the destruction of 85 

the sample and provide low measurement resolution (generally performed by sampling annual 86 

growth increments). Methods that do not require the destruction of the coral sample, such as 87 

gamma densitometry (Chalker and Barnes, 1990) or medical x-ray Computerized 88 

Tomography (CT) (Bosscher, 1993) are quick and provide higher resolutions (less than one 89 

millimeter, i.e., monthly resolution or higher). However, these methods rely on specialized 90 

and expensive equipment, not always easily accessible. Alternative methods for coral skeleton 91 

density measurement are based on digitized x-radiographs (Chalker et al., 1985; Helmle et al., 92 

2000; Carricart-Ganivet and Barnes, 2007). Optical densities (OD)1 of x-radiographs are 93 

measured on film or on digital images and converted into density values using OD reference 94 

standards (e.g., Tridacna maxima shells and/or aluminum wedges).  95 

An important drawback is that x-radiographic instruments do not provide uniform irradiation 96 

of the entire area covered by the x-ray film and may therefore result in misleading density 97 

measurements. Two reasons account for such irradiation heterogeneities: the heel effect which 98 

is defined by an irradiation gradient along the anode-cathode axis and the inverse square law 99 

which states that the irradiation is inversely proportional to the square of the distance from the 100 

x-ray source (Meredith and Massey, 1971; Chalker et al., 1985; Helmle et al., 2000; Carricart-101 

Ganivet and Barnes, 2007). The irradiation gradient caused by the heel effect may lead to 102 

biases in density measurements up to 26% (Chalker et al., 1985), which is similar to the 103 

seasonal density variations that are reported for massive corals Montastrea annularis (20% - 104 

Carricart-Ganivet and Barnes, 2007), Porites sp. (15% - this study) and Siderastrea siderea 105 

                                                           

1 In the following study the Optical Density (OD) refers to the grey level from 0 to 255 corresponding to the 8 bits 
coding of the digital images. 



(30% - this study). Several alternative methods have been proposed to overcome such 106 

miscalculations. For example, Helmle et al. (2002) performed paired x-radiographs (using the 107 

same settings) of a coral sample and an aluminum plate. Therefore, it was possible to correct 108 

the coral sample image from the irradiation heterogeneities recorded by the aluminum plate's 109 

x-radiograph. However, considering that each x-radiograph has to be taken twice, this 110 

technique becomes expensive and time-consuming when a high number of samples have to be 111 

analyzed. Carricart-Ganivet and Barnes (2007) proposed a simple way for correcting the heel 112 

effect. The correction is based on the measurement of OD variations on an aluminum bar 113 

located beside the coral sample along the anode-cathode axis. The heel effect-related 114 

distortions are then measured, and extrapolated over coral samples. The method provides a 115 

reliable one-dimensional correction along the anode-cathode axis. Unfortunately, the 116 

extrapolation of this correction to the whole x-radiograph image may only be applied upon 117 

particular settings (x-ray source to film distance and film dimension).  118 

In the present study, we introduce a Digital Detrending (DD) method which corrects the 119 

heterogeneously irradiated x-radiographs. This method is inexpensive, straightforward and 120 

accurate. The DD method uses the x-ray irradiation imprint, recorded by the x-radiograph's 121 

background, to reconstruct a full image of the irradiation pattern. The x-radiograph's 122 

background is defined here as the image area without any objects or graphical information 123 

such as letters or numbers. The resulting modeled image is then subtracted from the original 124 

x-ray image, therefore enabling reliable optical density measurements from the corrected x-125 

ray image. This method provides a correction of x-ray irradiation heterogeneities on the whole 126 

x-radiograph, which means a two-dimensional correction. The Digital Detrending (DD) 127 

method was used for densitometry measurements on samples of widely studied massive corals 128 

Porites sp. and S. siderea (Guzman and Tudhope, 1998; De’ath et al., β009; Lough and 129 

Cooper, 2011). 130 



Materials and Methods 131 

 132 

Computed x-radiography 133 

 134 

Experiments were performed using a medical Computed Radiography (CR) device. CR 135 

produces digitized images obtained directly from an imaging plate (IP) instead of a 136 

conventional photo sensitive film. IP is placed beneath coral slabs before being irradiated 137 

(Fig. 1a). The final result is an 8 bits digitized image (pixel values comprised between 0 and 138 

255). Such an image can be used for Optical Density (OD) measurements and be easily 139 

modified with conventional image-processing software. CR is affected by heterogeneous x-140 

ray irradiation just like conventional radiography. 141 

The CR device was a SUPER CONTACT® x-ray device (General Electric Company). X-142 

radiographs were acquired with FUJI® imaging plates made of photosensitive phosphorus. 143 

Digitized images were then obtained using an IP reader (FUJI® FCR 5000). The resolution of 144 

this device is lower than conventional x-radiography.  145 

 146 

X-ray irradiation heterogeneities 147 

 148 

Heel effect - The heel effect is responsible for the irradiation intensity gradient along the 149 

anode-cathode axis: the electrons emitted from the cathode interact with the anode resulting in 150 

a high exposure at the cathode side of the IP and a decrease toward the anode side (Fig. 1b). 151 

Inverse square law - The inverse square law models the three-dimensional spherical spreading 152 

of the x-ray beam: irradiation intensity is attenuated by a factor proportional to the inverse of 153 

the squared distance from the x-ray source to the IP surface. As IP are generally centered 154 



beneath the x-ray source, the irradiation pattern shows over-exposed area at the center of the 155 

image, decreasing toward the edges (Fig. 1b). The influence of spherical spreading on the 156 

irradiation pattern gets lower with increasing source-subject distance. 157 

 158 

The inverse square law specifies that the ratio of x-ray intensity on the IP (I1) to intensity on 159 

the subject surface (I2) is:  160 
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Where Sp = source to IP distance and s= sample thickness.  162 

 163 

Computed Tomography 164 

 165 

Computed Tomography (CT), with its high-contrast resolution, allows accurate and reliable 166 

density measurements, as this method is not influenced by the x-ray beam distortion 167 

phenomena that usually affect computed radiography. A CT-scan was used to compare 168 

density profiles measured on DD corrected images to the density profile of the CT scan. The 169 

Computerized Tomography device used was a Phillips Brilliance 40®. CT density values are 170 

expressed as Hounsfield units. 171 

 172 

Reference materials 173 

 174 

We used two massive corals slabs as reference samples. Reference slab Rs was cut off a core 175 

drilled in 2008 from a living colony of the reef-building species S. siderea at Cahuita reef 176 

(9°44’N - 82°48’W), Limón, Costa Rica. Rs size was 280 x 70 mm; slab thickness (s) was 5 177 



mm. Reference slab Rp was cut off from a living colony of the reef-building species Porites 178 

sp. at the Fausse Passe de Uitoé reef (22°17’S - 166°10’E), New-Caledonia, France, in 2010. 179 

This coral was collected alive and transferred into an aquarium in 2008. Rp size was 150 x 180 

150 mm and the slab thickness (s) was 10 mm. For coral density measurements, a reference 181 

transect for both slabs was set along the maximum growth axis, perpendicular to the growth 182 

increments. For Rs, the reference transect trS was 87 mm long and encompassed 15 couplets 183 

of high and low density bands; for Rp, the reference transect trp was 130 mm long and 184 

encompassed 13 couplets of high and low density bands. In order to avoid as much as possible 185 

intra-corallite density variations, the width of the density transects was 10 mm to include 186 

approximately three S. siderea corallites (polyps mean diameter ~ 3 mm) and ten Porites sp. 187 

corallites (polyps mean diameter ~ 1 mm).  188 

 189 

Density scaling 190 

 191 

Density scaling is based on two, two-sided wedges (dclam – Fig. 1c) cut from the internal layer 192 

of a giant clam’s shell Tridacna squamosa. One wedge is 17.4 mm high and 54.2 mm long 193 

with slopes of 26.6° and 41.2°. The second wedge is 15.9 mm high and 71.8 mm long with 194 

slopes of 43.4° and 16.0°. The bulk densities of the wedges were obtained by weighting with 195 

a hydrostatic balance.  196 

Care should be given when cutting a wedge into a giant clams’ shell as it is composed of three 197 

distinct aragonitic layers (internal layer, external layer and hinge layer) which present their 198 

distinct density and crystallographic structure (N. Duprey, unpublished data). To avoid any 199 

measurement bias, wedges must be cut into either external or internal shell layer. X-200 

radiographs revealed that the density of the whole shell’s internal layer (dshell) was 201 

homogeneous. 202 



To ensure the consistency of the density scaling, another scaling standard (dpowder) was added 203 

on some x-radiographs for comparison purposes. Standard dpowder is composed of 14 plastic 204 

cubes filled with Porites sp. coral aragonite powder (grain size < 200 µm). Each cube was 205 

filled with a carefully weighted amount of powder to obtain a density scale from 0 to 3 for an 206 

equivalent sample thickness of 12 mm.  207 

Both plastic cubes filled with coral powder and wedges have a similar range of density values. 208 

However, wedges were favored for their small sizes because this optimizes the space 209 

available on the x-radiograph, so that more coral samples can be x-rayed at the same time. 210 

 211 

X-radiographs  212 

 213 

All the x-radiographs and their characteristics are listed in table 1. For this study, we used 214 

eight x-radiographs made with the CR device previously described. The main purpose of 215 

these x-radiographs was to test the reliability of the Digital Detrending method depending on 216 

the distance Sp and samples orientation along the anode-cathode axis. Therefore, coral 217 

reference samples were placed along three directions with regard to the anode-cathode axis: 218 

perpendicular, parallel and diagonally. Selected distances (Sp) were 130cm, 100cm and 80cm. 219 

X-radiographs were acquired over a two-year period, providing the opportunity to test the DD 220 

method against a potential machine drift over time.  221 

Merely considering the inverse square law and the IP size (355 x 428 mm), the minimum 222 

exposures at image edges would be 11.8%, 8.1% and 5.0% less than the exposures at the 223 

center for Sp=80cm, Sp=100cm and Sp=130cm, respectively. 224 

X-radiograph C2 was used to test the density calibration of the two density standards (dpowder 225 

and dclam). For that purpose we used 13 Porites sp. cubes (~ 2cm3) which bulk densities were 226 



determined by weighting with a hydrostatic balance. Coral cubes density ranged from 1.21 to 227 

1.39 g.cm-3. 228 

 229 

Digital Detrending procedure 230 

 231 

The first stage of the digital detrending (DD) process is the background area selection. This 232 

area is used as a recorder of the irradiation pattern. The background area selection aims to 233 

remove all saturated margins, all pixels corresponding to samples and optical density scale or 234 

information, from the original x-radiograph (Fig. 2a). This background extraction is made 235 

using the magic stick tool of the image processing software GIMP® (or equivalent). This step 236 

leaves empty areas corresponding to objects’ locations (Fig. 2b). Missing OD values are 237 

interpolated using a Kriging interpolation from the dacefit MATLAB® toolbox (Lophaven et 238 

al., 2002). The result is a complete image of OD variations (Fig. 2c) following the overall 239 

pattern presented by the original background area. The corrected image is obtained by 240 

subtracting the modeled background to the original image (Fig. 2d).  241 

The DD method initially supposes that the x-ray intensity at the IP surface is similar to the x-242 

ray intensity at the sample surface. However, x-ray source to sample surface distance (Ss) is 243 

smaller than x-ray source to IP surface distance (Sp). Considering equation (1), it can be 244 

stated that the spherical spreading causes the x-ray intensity to be higher at the sample surface 245 

than at the IP surface. This may generate a small bias in measurement, thereafter referred as 246 

thickness bias, leading to a slightly overestimated density. This bias can be reduced by 247 

decreasing the sample thickness and corrected during the DD process by dividing 248 

corresponding background values with the ratio I1 / I2.  249 

X-ray attenuation in air may also account for the difference between x-ray intensities at 250 

sample and IP surfaces. Coral densitometry studies are usually performed on samples with 251 



thickness less than 10 mm. According to the air mass attenuation coefficient table from the 252 

National Institute of Standards and Technology, x-ray attenuation for a 10 mm air layer is 253 

negligible (Table 2). 254 

 255 

Digital Detrending evaluation 256 

 257 

In order to optimize the DD procedure we had to test first if  the x-ray irradiation imprint on 258 

the IP remains identical while maintaining the x-ray source settings and the Sp distance 259 

constant (Į). If  this last assumption is true, then a standard correction could be used within a 260 

group of x-radiographs made with the same settings. Therefore, the DD procedure would be 261 

simplified and faster. If  not, each x-radiograph should be corrected with the irradiation record 262 

of its own background. By taking pair-wise images, Į was tested using the mean relative 263 

difference of OD (ǻOD(i,j)).  264 

The relative difference of OD (įOD(i,j,k)) at point k for images i and j is defined as:  265 
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Where ODi (x(k),y(k)) is the OD value at image coordinates (x(k),y(k)) for image i and ODj (x(k),y(k)) 267 

is the OD value at image coordinates (x(k),y(k)) for image j. 268 

The mean relative difference of OD (ǻOD (i,j)) for images i and j is:  269 
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Where n is the number of pixels coordinates shared by images i and j backgrounds. 271 

Considering the causes of the x-ray irradiation heterogeneities, the reliability of the Digital 272 

Detrending process had to be tested through two other assumptions. 273 



 The DD method corrects and preserves the density information of the sample independently 274 

of:  275 

   (ȕ) - the sample orientation along the anode-cathode axis  276 

   (Ȗ) - the distance Sp 277 

The density information of the coral samples refers to the density variability (qualitative 278 

information) and to the density value (quantitative information). ȕ was tested by measuring 279 

the coral density profiles (trS and trp) on samples set perpendicularly, parallel and diagonally 280 

to the anode/cathode axis, while the other settings remained unchanged. Intra-group A density 281 

transects comparisons evaluated the ability of the DD method to correct the irradiation 282 

heterogeneities mainly caused by the heel effect (independently of the samples orientation 283 

along the anode-cathode axis). Intra-group B density transects comparisons evaluated the 284 

correction of both the heel effect and the inverse square law heterogeneities (independently of 285 

the samples orientation along the anode-cathode axis). Ȗ was tested by inter-groups (A and B) 286 

comparisons. The comparison of inter-groups (A, B and C) was used to assess the ability of 287 

the DD method to cope with a potential machine drift over time. Finally, to ensure that the 288 

DD method yields the same density variations as other density measurement techniques, the 289 

density measurements made on a DD corrected image were compared to Computed 290 

Tomography scanning measurements.  291 

To test the previous assumptions, density values were measured along trS and trp for each x-292 

radiograph. The correlation between the density profiles was tested using the regression 293 

coefficient R2. Furthermore, relative standard deviations (rsd) were calculated at each point 294 

along transects of the compared x-radiographs and averaged in order to compile the results. 295 

These mean Relative Standard Deviation (RSD) values were used to evaluate the precision 296 

(reproducibility) of density measurements. 297 



The mean Relative Standard Deviation (RSD) for compared transects is defined as:  298 

)4(
1

1


p

i
irsd

p
=RSD  299 

Where p is the number of points along the compared transects [p(trs)=439 and p(trp)=666] and 300 

rsdi represents the relative standard deviation of the density at point i. 301 

 302 

Density calibration 303 

 304 

OD values were converted into densities using the two, two-sided wedges cut from the 305 

internal layer of a giant clam’s shell Tridacna squamosa. The OD values on DD corrected x-306 

radiographs were measured along the two sides of both wedges using the ImageJ® software. 307 

As giant clam shell also contains organic matter, which influences bulk density, wedges 308 

thicknesses had to be corrected in order to obtain equivalent thicknesses, corresponding to 309 

wedges made of pure aragonite. Thereafter, a wedge's equivalent thickness was defined as 310 

TW100.  311 

The equivalent thickness scaling at each point along a wedge was calculated by: 312 

)5(100
arag

shellx
w d

dT
=T


 313 

Where Tx = measures wedge thickness, dshell = shell wedge density (g.cm-3) and darag. = density 314 

of pure aragonite (2.930 g.cm-3). 315 

 316 

 317 



OD values were then paired with corresponding equivalent thicknesses (TW100) calculated 318 

along the wedges. Paired OD and TW100 values from the two wedges were pooled and fitted 319 

by a quadratic polynomial function: 320 
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Where a, b and c constants are the coefficients determined by the polynomial fitting for the 322 

studied x-radiograph. 323 

Equation (6) obtained from the wedges’ data was then reversely used to convert OD values of 324 

coral samples into pure aragonite equivalent thicknesses (TS100). Subsequently, coral sample 325 

density values (d) were obtained from TS100:  326 
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Where d = coral sample density (g.cm-3), TS100 = pure aragonite equivalent thickness for coral 328 

sample, Ts = measured coral sample thickness; darag = density of pure aragonite (2.930 g.cm-3). 329 

 330 

Calibration's validation 331 

 332 

In order to validate our density calibration using T. squamosa wedges, OD measurements 333 

were performed on coral cubes and plastic cubes filled with coral powder on the detrended x-334 

radiograph C1. OD values were converted into densities using previous equations (5) to (7). 335 

These values were regressed against bulk density measurements performed on the same coral 336 

and plastic cubes standards.  337 

 338 

 339 



The relative error (rei) of x-radiograph density measurements was calculated for each coral 340 

cube: 341 
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Where dcalc.(i) is the density of coral cube i calculated from OD after digital detrending (g.cm-343 

3) and dbulk.(i) is the bulk density (g.cm-3) of coral cube i. 344 

The mean Relative Error (RE) of x-radiograph density measurements was evaluated by 345 

averaging the relative errors (rei) of coral cubes: 346 
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Where n=14 is the number of coral cubes (Porites sp.). 348 

 349 

RESULTS 350 

 351 

Reproducibility of the irradiation imprint (Į) 352 

 353 

The background area of the eight x-radiographs viewed in false colors show a strong OD 354 

gradient along the anode-cathode axis, with low OD at the anode side increasing toward the 355 

cathode side. This pattern is characteristic of the heel effect (Fig. 1a). A concentric OD 356 

pattern, characteristic of the spherical spreading, is noticeable on some images. As expected, 357 

x-radiographs with high distance Sp (groups A) present a less marked concentric pattern than 358 

x-radiographs with low distance Sp (group B). OD mean relative difference (ǻOD) of x-359 

radiographs backgrounds ranges from 8% up to 290% (Table 3). Intra-group and inter-group 360 

comparison lead to similar ǻOD: most x-radiographs present highly variable background OD 361 

values: assumption Į is thus not valid within our experimental settings.  362 



Influence of the sample orientation along the anode-cathode axis (ȕ) and of the Sp distance (Ȗ) 363 

 364 

Density profiles measured on corrected x-radiographs of groups A and B are well correlated 365 

(Table 4). Inter-group and intra-group correlation coefficients values (R²) are significant and 366 

have a similar range from 0.90 to 1.00 (p<0.001).  367 

Inter-group and intra-group mean relative standard deviation (RSD) of densities measured on 368 

uncorrected images range from 10.1 to 16.0% (Table 5). Density profiles measured on 369 

corrected images show a RSD reduced by a factor of 2 to 3. No differences are noticed 370 

between the inter-group RSD and intra-group RSD, which are both around 4-5%.  371 

The variations and the precision of density measurements from the corrected images show no 372 

difference regarding the sample orientation along the anode-cathode axis (ȕ) or the Sp 373 

distance (Ȗ). Assumptions ȕ and Ȗ are thus validated within our experimental settings.  374 

 375 

Density measurement precision on DD corrected images 376 

 377 

RSD calculated over all uncorrected x-radiographs (groups A, B and C, 14 transects= 7 x trs 378 

and 7 x trp) reaches 16.1% (Table 5). RSD calculated over all DD corrected x-radiographs is 379 

6.8%. These values include measurements made on x-radiographs of two coral samples of 380 

different genus, set on three different ways along the anode-cathode axis, with three different 381 

distances (Sp), made across a two-year period. 382 

 383 

Density variations 384 

 385 

The trs and trp density profiles, measured on uncorrected images, shown as examples on figure 386 

3, present seasonal density variations comprised around 30 and 15% respectively. Profile trs 387 



measured on the uncorrected image presents an increasing trend with a maximum density 388 

difference reaching 50%. The mean profile trs from DD corrected images does not present any 389 

remarkable trend. This mean profile trs shows density variations identical to the CT scan 390 

density profile variations (Fig. 3a). This correlation is a robust result as each of the seven 391 

density profiles trs, measured on corrected x-radiographs, are significantly correlated with the 392 

density profile made on the CT scan (0.89 < R² < 0.96; p<0.001; Table 6). The DD method 393 

thus eliminates the density trend caused by the x-ray heterogeneities. Conversely, the 394 

magnitude of the seasonal density variations is not affected by the DD correction.  395 

Profile trp from the uncorrected image (Fig. 3b) displays a density drop that matches with the 396 

transfer of sample Rp from the reef to the aquarium. This profile also displays a parabolic 397 

trend with a maximum density difference reaching 50%. The DD method removes the 398 

parabolic trend of the profile trp, and highlights a linear declining trend with density 399 

difference reaching 40%. The density drop (sample Rp transfer) is not affected by the DD 400 

correction.  401 

 402 

Density Calibration 403 

 404 

The four sides of the two, two-sided T. squamosa wedges (Fig. 1c) returned identical OD 405 

versus Tw100 profiles (R²=0.9998, p<0.001, Fig. 4). Density values, calculated from corrected 406 

x-radiograph C2, are regressed against the bulk density values (coral cubes and plastic cubes 407 

filled with coral powder – Fig. 5). This regression presents a significant correlation coefficient 408 

(R²=0.99; p<0.001; n=27). Comparison between bulk densities of the 14 Porites sp. coral 409 

cubes and the calculated density values show that the mean relative error (RE – equation 9) is 410 

3.32%. 411 

 412 



DISCUSSION 413 

 414 

Computed x-radiographs commonly show an uneven exposure due to both the heel effect and 415 

the spherical spreading. Such irradiation heterogeneities may lead to variations in coral 416 

density up to 50% (Fig. 3). These density variations exceed the seasonal variations commonly 417 

observed in massive coral: 30% for Siderastrea siderea, 15% for Porites sp. and about 20% 418 

for Montastrea annularis (Carricart-Ganivet and Barnes, 2007). These variations in density 419 

may lead to biased calcification rate calculation and thus to wrong environmental 420 

interpretations.  421 

The Digital Detrending method, presented here, aimed to correct the irradiation 422 

heterogeneities that affect conventional and computed x-radiography. X-radiographs were 423 

corrected against the irradiation pattern recorded by the background of the image. The first 424 

step of this study was to test if  the x-ray irradiation imprint on the Imaging Plates (IP) remains 425 

identical while maintaining the x-ray source settings and the Sp distance constant. Our results 426 

showed that the x-ray irradiation imprint recorded by the IP was highly variable, even within 427 

constant x-ray source settings and Sp distance. X-ray irradiation records must be considered 428 

as unique and thus cannot be transposed to another x-radiograph, even within constant 429 

settings. These results are in accordance with previous studies (Chalker et al., 1985; Carricart-430 

Ganivet and Barnes, 2007). The x-ray irradiation records may be affected by several factors 431 

including the x-ray device stability, the x-ray tube aging and also the recording abilities of the 432 

IP or film sensitiveness (Carricart-Ganivet and Barnes, 2007).  433 

Density profiles from DD corrected x-radiographs were highly correlated to the density 434 

profile measured on the Computed Tomography scan. These R² correlation values were not 435 

affected by the orientation of the sample along the anode-cathode axis and the distance from 436 

the x-ray source (Table 6). The DD method was thus able to correct x-radiographs of coral 437 



samples, showing strong irradiation heterogeneities; independently of the sample orientation 438 

along the anode-cathode axis and the distance from the x-ray source. Furthermore, this study 439 

revealed that the coral intrinsic density variations (e.g., seasonal density variations or punctual 440 

events) contained by the x-radiograph are preserved during the DD process (Fig. 3).  441 

The mean relative error on density measurements of 14 coral cubes of Porites sp., using giant 442 

clam Tridacna squamosa wedges as density standard (equation 9), was 3.32%. Causes of such 443 

an error may be related to the IP sensitiveness (i.e., signal to noise ratio) and to the chemical 444 

composition differences between giant clams shell and coral skeleton that could induce a bias 445 

up to two percent in density measurements (Chalker et al., 1985). Carbonate structure 446 

differences between coral slabs and shell wedges may also contribute to this error, potentially 447 

generating diffusion and/or diffraction of the incident x-ray. 448 

Enhancing the number of density measurements from 14 up to 7735 measured points (439x7 449 

trs values and 666x7 trp values), the overall precision of the coral densitometry from DD 450 

corrected x-radiographs reaches 6.8% (Table 5 and Fig. 3). It is important to notice that this 451 

value includes the error intrinsic to x-radiography device (noise of the recorded x-ray signal 452 

and potential machine drift over time), the error related to the DD correction itself and the 453 

error of the density calibration process. This value is noteworthy compared to the biases in 454 

density measurements, caused by uncorrected irradiation heterogeneities that reach up to 50%. 455 

In addition, the overall error on density measurement is below the range of the seasonal 456 

density variations reported previously for massive coral skeleton. 457 

The efficiency of our DD method relies on the x-ray irradiation pattern recorded by the 458 

background. As a result, it is necessary to optimize the background area all over the x-459 

radiograph: samples must be scattered all over the IP with spacing of a few centimeters in 460 

between and from the plate edges. We recommend to space x-rayed objects by more than one 461 

centimeter between each and to keep a two centimeter margin from the edges. Consequently, 462 



larger samples or numerous samples can be x-rayed at the same time and compared on the 463 

same image as shown on x-radiograph C1 (Fig. 2). The DD method is straightforward, as it 464 

does not rely on specific radiography device settings and does not need any prior assumption 465 

on the causes of x-ray beam heterogeneities. DD method saves time as it does not require 466 

extra x-radiographs to correct the irradiation heterogeneities. Our detrending method could 467 

also be applied onto digitized conventional x-radiographs. The DD method applied to such x-468 

radiographs would provide the opportunity to perform qualitative density measurements on x-469 

radiographs from previous studies. Quantitative density measurements would be even possible 470 

for x-radiographs acquired with a density scale. 471 

The Digital Detrending method is a powerful tool for monitoring the impact of ocean 472 

acidification and global warming on coral calcification rates. This cheap, inexpensive, quick 473 

and straightforward method is appropriate for large scale studies. This method could also be 474 

applied on paleo-environmental / climatic studies.  475 
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 494 

Figures 495 

Fig. 1: Computed Radiography (CR) a – Scheme of the settings used in this study: the anode-496 

cathode axis is along the x axis, Sp is the x-ray source to IP surface distance, Ss is the x-ray 497 

source to coral sample surface and s is the sample thickness b – Theoretical irradiation 498 

patterns that affects CR, the color scale shows the attenuation of the irradiation; blue: no 499 

attenuation, red: high attenuation c – Photograph of the two giant clam wedges (dclam) used for 500 

the density calibration, scale is given by the one Euro money coin. 501 

Fig. 2: X-radiograph C1 left: original and Digitally Detrended image in black and white 502 

right: Optical Density (OD) variations on the whole image (false colors) and along the red 503 

transect (graph). a – original image: note the heterogeneities affecting the background, 504 

resulting on both effects of inverse square law and heel effect b – original background area: 505 

saturated margin, sample objects or graphical information have been removed c – modeled 506 

background d – Detrended image: i.e., (b) minus (d).  507 

Fig. 3: Density measured along the reference transects trs (a) and trp (b). Black curve is the 508 

mean density calculated from the seven corrected images with one standard deviation interval 509 

(dark blue). The red curve is the density measured on the CT scan (values are expressed in 510 

Hounsfield units). The light blue areas correspond to standard deviation of mean densities 511 

calculated from the uncorrected images (1ı). Examples of density transects from uncorrected 512 

images are shown (dotted line).  513 



Fig. 4: OD from detrended x-radiograph C2 plotted versus wedge's equivalent thickness 514 

(Tw100). Red dots: (OD, Tw100) pooled dataset. Black line corresponds to a quadratic 515 

polynomial fitting. Dashed lines indicate 99% confidence interval. 516 

Fig. 5: Plot of bulk densities (dbulk) of cubes filled with coral powder (squares, n=14) and 517 

coral cubes (circles, n=13) versus densities (dcalc) calculated from digitally detrended C1. 518 

 519 
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Tables 

 

Table 1: Characteristics of the computed x-radiographs used in this study 

 

Group label Samples 
orientation* 

Sp 
(cm) 

reference 
samples** 

density 
standard*** kV mAs date  

A 

A1 perpendicular 

130 Rs + Rp dclam 73 8.0 04 - 2012 A2 parallel 

A3 diagonal 

B 

B1 perpendicular 

80 Rs + Rp dclam 70 6.4 04 - 2012 B2 parallel 

B3 diagonal 

C 
 

C1 perpendicular 

100 

Rs dpowder 73 8.0 07 - 2010 

C2 perpendicular 
Rp  

+ coral 
cubes 

dpowder 

+ dclam 
73 8.0 11 - 2010 

 
*Along the anode-cathode axis 

** R s: Siderastrea siderea; Rp: Porites sp. 

*** d clam: Tridacna squamosa two-sided wedges; dpowder: plastic cubes filled with coral powder 

 

 

 

 

 

Table



2 

Table 2: X-photon energy attenuation for 1 cm air layer and a 30-150 keV energy range (data from: 
National Institute of Standards and Technology [www.nist.gov]). 

 

x-photon energy (keV) Energy attenuation for 1 cm air layer (%) 

30 0.043 

40 0.030 

50 0.025 

60 0.023 

80 0.020 

100 0.019 

150 0.016 

 

Table 3: Optical Density mean relative difference ǻOD (%) of the x-radiographs background area.  

 

Groups compared ǻOD range (%)* 
intra-group A 8 - 77 
intra-group B 15 - 164 
intra-group C 59 - 290 

A vs. B 25 -147 
A vs. C 41 - 223 
B vs. C 64 - 198 

 
 * Pairs of pixels compared: 9.2 .105 < n < 2.3 .106 

 
 
 

 

 

 

 

 

http://www.nist.gov/


3 

Table 4: Correlation coefficient R2 range (p<0.001) for transects trs and trp made on the corrected x-
radiographs of groups A, B and C. 

 

Corrected x-radiographs tr s tr p 

intra-group A 0.90<R²<0.98 0.99<R²<1.00 

intra-group B 0.96<R²<0.98 0.95<R²<0.99 

inter-groups (A and B) 0.90<R²<0.99 0.97<R²<1.00 

all x-radiographs 0.85<R²<0.99 0.95<R²<1.00 
 
 
 
Table 5: RSD measured along trs and trp using the uncorrected and corrected x-radiographs. 

 

 
RSD (%) 

uncorrected 
RSD (%)  

DD corrected 
intra-group A 10.1 4.8 

intra-group B 13.1 4.3 

inter-groups (A and B) 16.0 5.5 

all x-radiographs 16.1 6.8 
 

 

 

Table 6: Correlation coefficient R2 of transects trs made on the corrected x-radiographs versus the 
measurements made on the CT-scan. 

 

Corrected x-radiographs R² (p<0.001) 

A1 0.93 

A2 0.96 

A3 0.95 

B1 0.93 

B2 0.94 

B3 0.96 

C1 0.89 
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