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A mathematical model of mast cell response to acupuncture needling

We introduce a new model of mast cell response to acupuncture needling based on the Keller-Segel model for chemotaxis. The needle manipulation induces the release of a chemoattractant by the mast cells. We show, in a simplified case, that blow-up of the solution occurs in finite time for large initial data concentrated around the acupoint. In those conditions, blow-up is the result of aggregation of cells and could indicate the efficiency of the acupuncture manipulation of the needle at one acupoint.

Introduction

During acupuncture treatment hair-thin needles are inserted in the skin via manual lifting and thrusting or rotating at specific points on the body, called acupoints [START_REF] Cheng | Chinese acupuncture and moxibustion[END_REF]. The needle interacts with the subcutaneous . This work was partially supported by Fondation Sciences Mathématiques de Paris. . Many thanks to Benoît Perthame for fruitful discussions about this work. Email address: yannick.deleuze@ljll.math.upmc.fr (Yannick Deleuze). loose connective tissue [START_REF] Langevin | Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture[END_REF]. This manipulation is shown to cause the wrapping of collagen fibers and send a mechanical signal to the extracellular matrix cells (ECM) [START_REF] Langevin | Evidence of connective tissue involvement in acupuncture[END_REF]. There is evidence that needle manipulation in acupuncture causes degranulation of mast calls directly through mechanical stress [START_REF] Yu | Role of Collagen Fibers in Acupuncture Analgesia Therapy on Rats[END_REF] [START_REF] Zhang | Role of Mast Cells in Acupuncture Effect: A Pilot Study[END_REF]. Mast cells are resident cells in connective tissues, in particular in tissues close to the external environment [START_REF] Metcalfe | Mast cells[END_REF]. They contain many granules rich in chemicals [START_REF] Thiriet | Biology and Mechanics of Blood Flows: Part I: Biology[END_REF]. Mast cells are well known for their role in inflammatory process where they accumulate at the site of inflammation in response to a chemical mediator [START_REF] Nilsson | C3a and C5a Are Chemotaxins for Human Mast Cells and Act Through Distinct Receptors Via a Pertussis Toxin-Sensitive Signal Transduction Pathway[END_REF]. However, they also appear to have a protective role [START_REF] Urb | The Role of Mast Cells in the Defence against Pathogens[END_REF].

To build our model, we make the assumption that mast cells, when mechanically stressed, release two main kinds of chemicals substances into the ECM : stimulants and chemoattractants. Some stimulants aim at triggering action potential to nearby nerve endings, that can lead for example to liberate opioids and analgesic in the brain [START_REF] Hsiao | A Neurovascular Transmission Model for Acupuncture-induced Nitric Oxide[END_REF]. Some stimulants increase the blood vessel lumen as well as its permeability and increase blood flow rate after reaching the heart [START_REF] Hsiu | Assessing the effects of acupuncture by comparing needling the hegu acupoint and needling nearby nonacupoints by spectral analysis of microcirculatory laser Doppler signals[END_REF] [START_REF] Kuo | Blood Flow Effect of Acupuncture on the Human Meridian[END_REF]. Then, to maintain a high level of the acupuncture response of mast cells, the chemoattractant participates in cell recruiting of neighbouring mast cells. Recruited mast cells, in turn, degranulate creating a positive feedback process and thus a sustained reaction to acupuncture needling.

Acupuncture as a whole is a complex system. We propose a mathematical model, related to the well known Keller-Segel system for chemotaxis [START_REF] Keller | Model for chemotaxis[END_REF], of mast cell response to acupuncture needling close to one acupoint.

Biological model

We consider the density n g (t, x) of granulated mast cells and the density n d (t, x) of degranulated mast cells around the needle insertion point. Granulated mast cells are stressed by a mechanical stimulus induced by the needle inserted at the acupoint. The function Φ(x) represents the stimulus signal. The function Φ is a smooth function of compact support from R 2 to [0, 1].

When excited, granulated mast cells release into the extracellular environment a chemoattractant, c(t, x), a neural stimulant, s n (t, x), and a endocrine stimulant, s e (t, x). Then, degranulated mast cells can regenerate their chemical mediators to become granulated mast cells again. We consider the release of chemical mediators as quasi-instantaneous and we neglect the transport by convection due to Stokes flow of the matrix fluid created by the motion of the needle.

The following system of partial differential equations in a domain Ω is a model to describe the mast cell response to acupuncture needling close to one acupoint :

                             ∂n g ∂t -D m ∇ 2 n g + ∇. (S n g ∇c) = -AΦn g + k r n d , t > 0, x ∈ Ω ∂c ∂t -D c ∇ 2 c = κ c AΦn g -δ c c, ∂n d ∂t -D m ∇ 2 n d = AΦn g -k r n d , ∂s n ∂t -D sn ∇ 2 s n = κ n AΦn g -δ sn s n , ∂s e ∂t -D se ∇ 2 s e = κ e AΦn g -δ se s e , (1) 
with initial conditions

n g | t=0 = n 0 g , n d | t=0 = n 0 d , c| t=0 = c 0 , s n | t=0 = s 0 n , s e | t=0 = s 0 e .
All the parameters are constants. S > 0 is the sensitivity of the mast cells to the chemoattractant. A is the activation rate i.e., the rate of mass cells subjected to the mechanical stress Φ that will degranulate. D m , D c , D sn and D se are the diffusion coefficients. δ c , δ sn and δ se are the degradation rate. κ c , κ n and κ e are the release quantity coefficients of chemoattractant and stimulants. k r is the regeneration coefficient of degranulated mast cells.

This model differs from another chemotaxis model since the chemoattractant is only emitted close to the needle where the cells are mechanically stressed.

Blow-up in the case of only one state for mast cells

To verify our model (1), we show that blow-up of the density of mast cells occurs when the initial density of mast cells is higher at acupoint than those at nonacupoint locations like what Yu et al. observed in [START_REF] Yu | Role of Collagen Fibers in Acupuncture Analgesia Therapy on Rats[END_REF]. Blow-up corresponds to the aggregation of the mast cells close to the treated acupoint. To analyse mathematically the behaviour of our model, we first make some simplifications. From (1), we now consider the evolution of the granulated mast cell density n and the instantaneous diffusion of the chemoattractant c. We avoid the effects of boundary conditions and consider the system (2) in the full space R 2 . We also consider the stress function Φ to be equally distributed in a region close to the needle, in other words, for |x| ≤ λ, Φ(x) = 1. Those assumptions lead to the following system:

         ∂ t n -D m ∇ 2 n + ∇. (S n∇c) = -AΦ(x)n, t > 0, x ∈ R 2 , -∇ 2 c = κ c AΦ(x)n, n| t=0 = n 0 ≥ 0. (2) 
Since the initial condition n 0 is nonnegative, the parabolic equation on n in (2) gives nonnegative solutions. Then, we quantify the spatial distribution of the cells by considering both of the total number of cells and the second moment

m 0 (t) := R 2 n(t, x)dx m 2 (t) := R 2 |x| 2 2 n(t, x)dx. ( 3 
) Theorem 3.1 In R 2 , let n 0 ∈ L 1 + (R 2 , (1 + |x| 2 )dx).
Let n be a non-negative smooth solution of (2) and let [0, T * ) be the maximal interval of existence. Then, if the initial mass m 0 (0) is large enough and the second momentum m 2 (0) is small enough (to be precised in the proof ), the solution blows-up as t → T * .

Proof. The proof follows an argument previously introduced by Nagai in [START_REF] Nagai | Global Existence and Blow-up of Radial Solutions to a Parabolic-Elliptic System of Chemotaxis[END_REF], and used in [START_REF] Perthame | Transport Equations in Biology[END_REF] and [START_REF] Blanchet | Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions[END_REF]. First step: total mass. Taking the time derivative on (3) and using (2), we get

d dt m 0 (t) = R 2 -AΦ(x)n(t, x)dx ≥ -Am 0 (t). (4) 
Then,

∀t ≤ T * , m 0 (0) ≥ m 0 (t) ≥ m 0 (0) e -AT * (5) 
Second step: second moment. Taking the time derivative on (3) and using (2), we get

d dt m 2 (t) = R 2 |x| 2 2 D m ∇ 2 n(t, x) -∇. (Sn(t, x)∇c(t, x)) -AΦ(x)n(t, x) dx.
The second equation in [START_REF] Hecht | New Development in FreeFem++[END_REF] gives us ∇c(t, x) that we substitute back in the equation. From (5), we get the inequality

d dt m 2 (t) ≤ 2D m m 0 (t) 1 - ASκ c 8π m 0 (t) + 1 2π ASκ c R 2 R 2 x x -y |x -y| 2 (1 -Φ(y)) n(t, y)n(t, x)dydx.
We can assume that Φ in a k Φ -Lipchitz function and given |x| ≤ λ 2 and |y| > λ, then |x -y| ≥ λ 2 i.e. 

d dt m 2 (t) ≤ 2D m m 0 (0) 1 - ASκ c 8π m 0 (0) e -AT * + 3 √ 2 2π ASκ c λ (m 2 (t)) 1 2 (m 0 (0)) 3 2 + 1 π ASκ c λ k Φ m 2 (t)m 0 (0).
Finally, following the arguments from [START_REF] Calvez | The Parabolic-Parabolic Keller-Segel Model in R2[END_REF], we have the following inequation

m 2 (t) ≤ m 2 (0) + t 0 f (m 2 (s))ds, (6) 
where

f (ξ) = 2D m m 0 (0) 1 -ASκc 8π m 0 (0) e -LT * + 3 √ 2 2π ASκc λ ξ 1 2 m 0 (0) 3 2 + 1 π ASκc λ k Φ m 0 (0)ξ. f is a strictly increasing function and if m 0 (0) > 8π
ASκc e LT * , it exist a unique ξ * such that f (ξ * ) = 0. So, if m 2 (0) < ξ * , then f (m 2 (0)) < 0. Therefore, t 0 f (m 2 (s))ds < 0 and m 2 (t) ≤ m 2 (0) + tf (m 2 (0)) provided that (6) holds true. The second moment becomes nonpositive for T * ≥ -m2(0) f (m2(0)) which is impossible since n is nonnegative. Therefore, a singularity appears before that time and the solution n blows-up at the singularity point. This can only be appearance of a singular measure because these manipulations hold for correctly defined L 1 solutions (see [START_REF] Perthame | Transport Equations in Biology[END_REF]).

Existence in the case of only one state for mast cells

Considering the simplified model (2), we prove the following L p a priori estimate.

Theorem 4.1 In R 2 , let p > 1 and assume that n 0 ∈ L 1 + (R 2 , (1 + |x| 2 )dx).
There exists a constant α such that when the initial data satisfies m 0 (0) < 4α p A S κc , there exists a weak solution to (2) in L p (R 2 , dx) for all times.

Proof. We derive estimates based on the Sobolev inequalities following the argument in [START_REF] Jager | On Explosions of Solutions to a System of Partial Differential Equations Modelling Chemotaxis[END_REF].

Multiplying (2) by n p-1 and integrating, we get

1 p R 2 dn p dt = - R 2 4(p -1) p 2 |∇n p/2 | 2 + p -1 p R 2 A S κ c Φ(x)n p+1 - R 2 AΦ(x)n p .
To estimate the integral with power p + 1, we use the following Gagliardo-Nirenberg-Sobolev inequality

R 2 |n| p+1 ≤ C GN S R 2 |n| R 2 |∇n p/2 | 2 . (7) 
Recalling that Φ(x) ≤ 1 and m 0 (t) ≤ m 0 (0),

1 p R 2 dn p dt ≤ p -1 p - 4 p + C GN S A S κ c m 0 (0) R 2 |∇n p/2 | 2 - R 2 AΦ(x)n p . (8) 
Then, if m 0 (0) < 4 pC GN S A S κc , R 2 n p dx decays in time. From this a priori estimate, we may conclude the existence as done in [START_REF] Blanchet | Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions[END_REF].

Numerical tests

In this section, we will consider k r = 0 and thus focus on the two first equation of the system (1). Numerical simulations are carried out using the FreeFem++ software [START_REF] Hecht | New Development in FreeFem++[END_REF]. In the present study, we use one-degree polynomial (P 1 ) Lagrangian finite element type in space with a fully implicit Euler scheme in time. Let V h be the corresponding space of piecewise linear continuous functions. The formulation of the problem is the following: Find n m+1 g ∈ V h and c m+1 ∈ V h such that for all w 1 , w

2 ∈ V h Ω 1 dt n m+1 g -n m g w 1 + Ω D m ∇n m+1 g ∇w 1 - Ω S n m+1 g ∇c m ∇w 1 = - Ω AΦ(x)n m+1 g w 1 , Ω 1 dt c m+1 -c m w 2 + Ω D c ∇c m+1 ∇w 2 = Ω κ c AΦ(x)n m+1 g w 2 - Ω δ c cw 2 ,
At each step m, we have a non linear problem to solve. We use the fixed-point technique. To gain time, mesh adaptation (a subroutine of FreeFem++) fits the initial condition, i.e., a given cell distribution within the domain of interest, as the solution evolves locally. We apply Neumann boundary conditions (no cell and chemoattractant fluxes) at the border of the computational domain. According to the initial distribution of the mast cell distribution [Fig. 1 ] on the one hand and to the needle position with respect to the location of the peak cell density on the other, i.e., whether the 

Conclusion

With the mathematical analysis of a simplified model we have shown a mechanism for blow-up in the chemotactic mechanism involved during acupuncture. A small second moment of the density of mast cells convey the idea that the cells are concentrated at the acupuncture points. Blow-up will occur when the initial number of mast cells is high enough and that they are sufficiently concentrated around the acupuncture points. Our model behaviour corresponds to the behaviour expected for the response of mast cells to acupuncture needling : a response of the mast cells exists when their density is low, for instance on a non-acupoint, but is greater when the initial density of mast cells is higher on a acupoint. In that case, the aggregation of mast cells could reveals the efficiency of the needle manipulation. We provide a numerical validation of the mathematical model of mast cell response to acupuncture needling.
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 1 Figure 1. Initial mast cell Gaussian distribution in an acupoint (concentrated distribution) and non-acupoint (dispersed distribution) with the same cell number.
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 23 Figure 2. Final distribution of mast cells at acupoint (left) and in a non-acupoint mast cell pool (right). Expected blow-up solution is only achieved at acupoint. Th0.01_case_1_n0_0.1_s_0_adapt_1_err_0.001_hmin_0.01_hmax_1_N_120.msh nnd0.01_case_1_n0_0.1_s_0_adapt_1_err_0.001_hmin_0.01_hmax_1_N_120.sol