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Abstract

We introduce a new model of mast cell response to acupuncture needling based on the Keller-Segel model for
chemotaxis. The needle manipulation induces the release of a chemoattractant by the mast cells. We show, in a
simplified case, that blow-up of the solution occurs in finite time for large initial data concentrated around the
acupoint. In those conditions, blow-up is the result of aggregation of cells and could indicate the efficiency of the
acupuncture manipulation of the needle at one acupoint. To cite this article: Y. Deleuze, C. R. Acad. Sci. Paris,
Ser. I 340 (2005).

Résumé

Un modèle mathématique de la réponse des mastocytes à la manipulation d’une aiguille d’acu-
puncture. Nous présentons un nouveau modèle de la réponse des mastocytes à la manipulation d’une aiguille
d’acupuncture basé sur le modèle de chimiotaxie de type Keller-Segel. La manipulation de l’aiguille induit la
libération du chimioattractant par les mastocytes. Nous montrons, dans un système simplifié, que la solution
devient singulière en un temps fini pour des conditions initiales suffisamment grandes et concentrées autour du
point acupuncture. Dans ces conditions, l’explosion de la solutions résulte de l’agrégation des cellules et pourrait
mesurer l’efficacité de la manipulation de l’aiguille sur le point d’acupuncture. Pour citer cet article : Y. Deleuze,
C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

During acupuncture treatment hair-thin needles are inserted in the skin via manual lifting and thrusting
or rotating at specific points on the body, called acupoints [1]. The needle interacts with the subcutaneous
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loose connective tissue [15]. This manipulation is shown to cause the wrapping of collagen fibers and send a
mechanical signal to the extracellular matrix cells (ECM) [14]. There is evidence that needle manipulation
in acupuncture causes degranulation of mast calls directly through mechanical stress [17][19]. Mast cells
are resident cells in connective tissues, in particular in tissues close to the external environment [18].
They contain many granules rich in chemicals [4]. Mast cells are well known for their role in inflammatory
process where they accumulate at the site of inflammation in response to a chemical mediator [16].
However, they also appear to have a protective role [10].

To build our model, we make the assumption that mast cells, when mechanically stressed, release two
main kinds of chemicals substances into the ECM : stimulants and chemoattractants. Some stimulants
aim at triggering action potential to nearby nerve endings, that can lead for example to liberate opioids
and analgesic in the brain [6]. Some stimulants increase the blood vessel lumen as well as its permeability
and increase blood flow rate after reaching the heart [12][13]. Then, to maintain a high level of the
acupuncture response of mast cells, the chemoattractant participates in cell recruiting of neighbouring
mast cells. Recruited mast cells, in turn, degranulate creating a positive feedback process and thus a
sustained reaction to acupuncture needling.

Acupuncture as a whole is a complex system. We propose a mathematical model, related to the well
known Keller-Segel system for chemotaxis [8], of mast cell response to acupuncture needling close to one
acupoint.

2. Biological model

We consider the density ng(t, x) of granulated mast cells and the density nd(t, x) of degranulated mast
cells around the needle insertion point. Granulated mast cells are stressed by a mechanical stimulus
induced by the needle inserted at the acupoint. The function Φ(x) represents the stimulus signal. The
function Φ is a smooth function of compact support from R2 to [0, 1].

When excited, granulated mast cells release into the extracellular environment a chemoattractant,
c(t, x), a neural stimulant, sn(t, x), and a endocrine stimulant, se(t, x). Then, degranulated mast cells can
regenerate their chemical mediators to become granulated mast cells again. We consider the release of
chemical mediators as quasi-instantaneous and we neglect the transport by convection due to Stokes flow
of the matrix fluid created by the motion of the needle.

The following system of partial differential equations in a domain Ω is a model to describe the mast
cell response to acupuncture needling close to one acupoint :

∂ng
∂t
−Dm∇2ng +∇. (Sng∇c) = −AΦng + krnd, t > 0, x ∈ Ω

∂c

∂t
−Dc∇2c = κcAΦng − δcc,

∂nd
∂t
−Dm∇2nd = AΦng − krnd,

∂sn
∂t
−Dsn∇2sn = κnAΦng − δsnsn,

∂se
∂t
−Dse∇2se = κeAΦng − δsese,

(1)

with initial conditions ng|t=0 = n0
g, nd|t=0 = n0

d, c|t=0 = c0, sn|t=0 = s0
n, se|t=0 = s0

e. All the parameters
are constants. S > 0 is the sensitivity of the mast cells to the chemoattractant. A is the activation rate
i.e., the rate of mass cells subjected to the mechanical stress Φ that will degranulate. Dm, Dc, Dsn and
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Dse are the diffusion coefficients. δc, δsn and δse are the degradation rate. κc, κn and κe are the release
quantity coefficients of chemoattractant and stimulants. kr is the regeneration coefficient of degranulated
mast cells.

This model differs from another chemotaxis model since the chemoattractant is only emitted close to
the needle where the cells are mechanically stressed.

3. Blow-up in the case of only one state for mast cells

To verify our model (1), we show that blow-up of the density of mast cells occurs when the initial density
of mast cells is higher at acupoint than those at nonacupoint locations like what Yu et al. observed in
[17]. Blow-up corresponds to the aggregation of the mast cells close to the treated acupoint. To analyse
mathematically the behaviour of our model, we first make some simplifications. From (1), we now consider
the evolution of the granulated mast cell density n and the instantaneous diffusion of the chemoattractant
c. We avoid the effects of boundary conditions and consider the system (2) in the full space R2. We also
consider the stress function Φ to be equally distributed in a region close to the needle, in other words,
for |x| ≤ λ, Φ(x) = 1. Those assumptions lead to the following system:

∂tn−Dm∇2n+∇. (Sn∇c) = −AΦ(x)n, t > 0, x ∈ R2,

−∇2c = κcAΦ(x)n,

n|t=0 = n0 ≥ 0.

(2)

Since the initial condition n0 is nonnegative, the parabolic equation on n in (2) gives nonnegative
solutions. Then, we quantify the spatial distribution of the cells by considering both of the total number
of cells and the second moment

m0(t) :=

∫
R2

n(t, x)dx m2(t) :=

∫
R2

|x|2

2
n(t, x)dx. (3)

Theorem 3.1 In R2, let n0 ∈ L1
+(R2, (1 + |x|2)dx). Let n be a non-negative smooth solution of (2) and

let [0, T ∗) be the maximal interval of existence. Then, if the initial mass m0(0) is large enough and the
second momentum m2(0) is small enough (to be precised in the proof), the solution blows-up as t→ T ∗.

Proof. The proof follows an argument previously introduced by Nagai in [9], and used in [3] and [11].
First step: total mass. Taking the time derivative on (3) and using (2), we get

d

dt
m0(t) =

∫
R2

−AΦ(x)n(t, x)dx ≥ −Am0(t). (4)

Then,

∀t ≤ T ∗,m0(0) ≥ m0(t) ≥ m0(0) e−AT
∗

(5)

Second step: second moment. Taking the time derivative on (3) and using (2), we get
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d

dt
m2(t) =

∫
R2

|x|2

2

[
Dm∇2n(t, x)−∇. (Sn(t, x)∇c(t, x))− AΦ(x)n(t, x)

]
dx.

The second equation in (2) gives us ∇c(t, x) that we substitute back in the equation. From (5), we get
the inequality

d

dt
m2(t)≤ 2Dmm0(t)

(
1− ASκc

8π
m0(t)

)
+

1

2π
ASκc

∫
R2

∫
R2

x
x− y
|x− y|2

(1− Φ(y))n(t, y)n(t, x)dydx.

We can assume that Φ in a kΦ-Lipchitz function and given |x| ≤ λ
2 and |y| > λ, then |x − y| ≥ λ

2 i.e.
1
|x−y| ≤

2
λ . Moreover, (1 − Φ(y)) is bounded from above by 1 and (1 − Φ(y)) = 0 for |y| ≤ λ. This

properties of the function Φ lead to

d

dt
m2(t)≤ 2Dmm0(0)

(
1− ASκc

8π
m0(0) e−AT

∗
)

+
3
√

2

2π

ASκc
λ

(m2(t))
1
2 (m0(0))

3
2 +

1

π

ASκc
λ

kΦm2(t)m0(0).

Finally, following the arguments from [5], we have the following inequation

m2(t) ≤ m2(0) +

t∫
0

f(m2(s))ds, (6)

where f(ξ) = 2Dmm0(0)
(
1− ASκc

8π m0(0) e−LT
∗)

+ 3
√

2
2π

ASκc

λ ξ
1
2m0(0)

3
2 + 1

π
ASκc

λ kΦm0(0)ξ. f is a strictly

increasing function and if m0(0) > 8π
ASκc

eLT
∗
, it exist a unique ξ∗ such that f(ξ∗) = 0.

So, if m2(0) < ξ∗, then f(m2(0)) < 0. Therefore,
∫ t

0
f(m2(s))ds < 0 and m2(t) ≤ m2(0) + tf(m2(0))

provided that (6) holds true. The second moment becomes nonpositive for T ∗ ≥ − m2(0)
f(m2(0)) which is

impossible since n is nonnegative. Therefore, a singularity appears before that time and the solution
n blows-up at the singularity point. This can only be appearance of a singular measure because these
manipulations hold for correctly defined L1 solutions (see [3]).

4. Existence in the case of only one state for mast cells

Considering the simplified model (2), we prove the following Lp a priori estimate.

Theorem 4.1 In R2, let p > 1 and assume that n0 ∈ L1
+(R2, (1 + |x|2)dx). There exists a constant α

such that when the initial data satisfies m0(0) < 4α
pA Sκc

, there exists a weak solution to (2) in Lp(R2, dx)
for all times.

Proof. We derive estimates based on the Sobolev inequalities following the argument in [7].
Multiplying (2) by np−1 and integrating, we get

1

p

∫
R2

dnp

dt
=−

∫
R2

4(p− 1)

p2
|∇np/2|2 +

p− 1

p

∫
R2

ASκcΦ(x)np+1 −
∫
R2

AΦ(x)np.

To estimate the integral with power p+1, we use the following Gagliardo-Nirenberg-Sobolev inequality
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∫
R2

|n|p+1 ≤ CGNS
∫
R2

|n|
∫
R2

|∇np/2|2. (7)

Recalling that Φ(x) ≤ 1 and m0(t) ≤ m0(0),

1

p

∫
R2

dnp

dt
≤ p− 1

p

(
−4

p
+ CGNS ASκcm0(0)

)∫
R2

|∇np/2|2 −
∫
R2

AΦ(x)np. (8)

Then, if m0(0) < 4
pCGNSA Sκc

,
∫
R2 n

pdx decays in time. From this a priori estimate, we may conclude the

existence as done in [11].

5. Numerical tests

In this section, we will consider kr = 0 and thus focus on the two first equation of the system (1).
Numerical simulations are carried out using the FreeFem++ software [2]. In the present study, we use
one-degree polynomial (P1) Lagrangian finite element type in space with a fully implicit Euler scheme in
time. Let Vh be the corresponding space of piecewise linear continuous functions. The formulation of the
problem is the following: Find nm+1

g ∈ Vh and cm+1 ∈ Vh such that for all w1, w2 ∈ Vh∫
Ω

1

dt

(
nm+1
g − nmg

)
w1 +

∫
Ω

Dm∇nm+1
g ∇w1 −

∫
Ω

Snm+1
g ∇cm∇w1 =−

∫
Ω

AΦ(x)nm+1
g w1,∫

Ω

1

dt

(
cm+1 − cm

)
w2 +

∫
Ω

Dc∇cm+1∇w2 =

∫
Ω

κcAΦ(x)nm+1
g w2 −

∫
Ω

δccw2,

At each step m, we have a non linear problem to solve. We use the fixed-point technique. To gain time,
mesh adaptation (a subroutine of FreeFem++) fits the initial condition, i.e., a given cell distribution
within the domain of interest, as the solution evolves locally. We apply Neumann boundary conditions
(no cell and chemoattractant fluxes) at the border of the computational domain.
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Figure 1. Initial mast cell Gaussian distribution in an acupoint (concentrated distribution) and non-acupoint (dispersed
distribution) with the same cell number.

According to the initial distribution of the mast cell distribution [Fig. 1 ] on the one hand and to
the needle position with respect to the location of the peak cell density on the other, i.e., whether the
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Figure 2. Final distribution of mast cells at acupoint (left) and in a non-acupoint mast cell pool (right). Expected blow-up

solution is only achieved at acupoint.

Th0.01_case_1_n0_0.1_s_0_adapt_1_err_0.001_hmin_0.01_hmax_1_N_120.msh nnd0.01_case_1_n0_0.1_s_0_adapt_1_err_0.001_hmin_0.01_hmax_1_N_120.sol

Figure 3. Needling outside an acupoint. Mesh with refinements in the needle region (center) and mast cell pool (left bottom
corner). Absence of significant change in cell population distribution.

practitioner is an expert or not, the expected blow up’ solution is obtained [Fig. 2 (left)] or not [Fig. 2
(right), Fig. 3]

6. Conclusion

With the mathematical analysis of a simplified model we have shown a mechanism for blow-up in the
chemotactic mechanism involved during acupuncture. A small second moment of the density of mast
cells convey the idea that the cells are concentrated at the acupuncture points. Blow-up will occur when
the initial number of mast cells is high enough and that they are sufficiently concentrated around the
acupuncture points. Our model behaviour corresponds to the behaviour expected for the response of mast
cells to acupuncture needling : a response of the mast cells exists when their density is low, for instance
on a non-acupoint, but is greater when the initial density of mast cells is higher on a acupoint. In that
case, the aggregation of mast cells could reveals the efficiency of the needle manipulation. We provide a
numerical validation of the mathematical model of mast cell response to acupuncture needling.
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