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Abstract�In an effort to extend the classical lagrangian
interpolation tools, new interpolating methods that use general
interpolating functions are explored. The Generalized Empirical
Interpolation Method (GEIM) belongs to this class of new
techniques. It generalizes the plain Empirical Interpolation
Method [1] by replacing the evaluation at interpolating points
by application of a class of interpolating linear functions. Since
its ef�ciency depends critically on the choice of the interpolating
functions (that are chosen by a Greedy selection procedure), the
purpose of this paper is therefore to provide a priori convergence
rates for the Greedy algorithm that is used to build the GEIM

interpolating spaces.

I. INTRODUCTION

The extension of the lagrangian interpolation process is an

old problem that is still currently subject to an active research

(see, e.g. [1] and also the activity concerning the kriging [2],

[3] in the stochastic community). While this classical method

approximates general functions by  nite sums of well chosen,

linearly independent interpolating functions (e.g. polynomial

functions) and the optimal location of the interpolating points

is well documented (and completely solved in one dimension),

the question remains on how to approximate general functions

by  nite expansions involving general interpolating functions

and how to optimally select the interpolation points in this

case.

One step in this direction is the Empirical Interpolation

Method (EIM, [4], [5], [1]) that has been developed in the

broad framework where the functions f to approximate belong
to a compact set F of a Banach space X . The structure

of F is supposed to make any f ∈ F be approximable

by  nite expansions of small size. In particular, this is the

case when the Kolmogorov n−width of F in X is small.

Indeed, the Kolmogorov n−width of F in X is de ned by

dn(F,X ) := inf
Xn⊂X

dim(Xn)=n

sup
x∈F

inf
y∈Xn

‖x − y‖X (see [6]) and

measures the extent to which F can be approximated by

some  nite dimensional space Xn ⊂ X of dimension n.
The Empirical Interpolation Method builds simultaneously the

set of interpolating functions and the associated interpolating

points by a greedy selection procedure (see [4]).

A recent generalization of this interpolation process consists

in replacing the evaluation at interpolating points by appli-

cation of a class of interpolating continuous linear functions

chosen in a given dictionary Σ ⊂ L(F ) and this gives rise

to the so-called Generalized Empirical Interpolation Method

(GEIM, [7]). In this newly developed method, the particular

case where the space X = L2(Ω) is considered, with Ω being

a bounded spacial domain of Rd and F being a compact set

of L2(Ω).

In the present work, we analyze the quality of the  nite

dimensional subspaces Xn ⊂ F built by the greedy se-

lection procedure of GEIM together with the properties of

the associated interpolation operator. For this purpose, the

accuracy of the approximation in Xn of the elements of F
will be compared to the best possible performance which is

the Kolmogorov n− width dn(F,L
2(Ω)).

The proceeding is organized as follows: after a brief recall

of GEIM�s Greedy algorithm (section II), we will analyze

in sections III and IV some convergence decay rates of the

generalized empirical interpolation error as the dimension n
of Xn increases and when dn(F,L

2(Ω)) has a polynomial or
an exponential decreasing behavior.

II. THE GENERALIZED EMPIRICAL INTERPOLATION

METHOD

In a similar procedure as in the Empirical Interpolation

Method (EIM) [4], [5], [1], the Generalized EIM allows

to de ne simultaneously the set of interpolating functions

recursively chosen in F together with the associated linear

functions selected from a dictionary of continuous linear forms

Σ ⊂ L(F ), with norm 1 in L2(Ω). The dictionary has the

additional property that if ϕ ∈ F is such that σ(ϕ) = 0 for any
σ ∈ Σ, then ϕ = 0. The selection of the interpolating functions
and linear forms is based on a greedy selection procedure as

outlined in [7].

The  rst interpolating function is, e.g.:

ϕ0 = arg sup
ϕ∈F

‖ϕ‖L2(Ω),



the  rst interpolating linear form is:

σ0 = arg sup
σ∈Σ

|σ(ϕ0)|.

We then de ne the  rst basis function as: q0 =
ϕ0

σ0(ϕ0)
. The

second interpolating function is:

ϕ1 = arg sup
ϕ∈F

‖ϕ− σ0(ϕ)q0‖L2(Ω).

The second interpolating linear form is:

σ1 = arg sup
σ∈Σ

|σ(ϕ1 − σ0(ϕ1)q0)|,

and the second basis function is de ned as:

q1 =
ϕ1 − σ0(ϕ1)q0

σ1(ϕ1 − σ0(ϕ1)q0)
,

we then proceed by induction : assuming that we have built the

set of interpolating functions {q0, q1, . . . , qN−1} and the set

of associated interpolating linear forms {σ0, σ1, . . . , σN−1},
for N ≥ 1, we  rst solve the interpolation problem :  nd

{αNj (ϕ)}j such that

∀i = 0, . . . , N − 1, σi(ϕ) =

N−1
∑

j=0

αNj (ϕ)σi(qj),

and then compute:

JN [ϕ] =

N−1
∑

j=0

αNj (ϕ)qj

We then evaluate

∀ϕ ∈ F, εN (ϕ) = ‖ϕ− JN [ϕ]‖L2(Ω),

and de ne:

ϕN = arg sup
ϕ∈F

εN(ϕ)

and: σN = arg sup
σ∈Σ

|σ(ϕN − JN [ϕN ])|. The next basis

function is then

qN =
ϕN − JN [ϕN ]

σN (ϕN − JN [ϕN ])
.

We  nally set XN+1 ≡ span {qj , j ∈ [0, N ]} =
span {ϕj, j ∈ [0, N ]}. It has been proven in [7]:

Lemma 1: For anyN , the set {qj , j ∈ [0, N−1]} is linearly
independent and XN is of dimension N . The generalized

empirical interpolation procedure is well-posed in L2(Ω) and
∀ϕ ∈ F , the interpolation error satis es:

‖ϕ− JN [ϕ]‖L2(Ω) ≤ (1 + ΛN ) inf
ψN∈XN

‖ϕ− ψN‖L2(Ω)

where ΛN is the Lebesgue constant in the L2 norm: ΛN :=

sup
ϕ∈F

‖JN [ϕ]‖L2(Ω)

‖ϕ‖L2(Ω)
.

III. PRELIMINARY NOTATIONS AND BASIC PROPERTIES

In what follows, we denote by (ϕ∗
n)n≥0 the orthonormal

system obtained from (ϕn)n≥0 by Gram-Schmidt orthogonal-

ization.

For any n ≥ 1, we de ne the orthogonal projector Pn from

X onto Xn which is given by Pn(f) =
n−1
∑

j=0

< f, ϕ∗
j > ϕ∗

j ,

∀f ∈ F , where < ., . > is the L2(Ω) scalar product. In

particular: ϕn = Pn+1(ϕn) =
n
∑

j=0

an,jϕ
∗
j , with an,j :=<

ϕn, ϕ
∗
j >, 0 ≤ j ≤ n.

Finally, let us denote as τ0(F )L2(Ω) := d0(F,L
2(Ω)) and,

for any n ≥ 1: τn := τn(F )L2(Ω) := max
f∈F

‖f − Pn(f)‖L2(Ω)

and by γn the constant γn = 1/(1+Λn). With these notations

Lemma 1 states

∀ϕ ∈ F, γn‖ϕ− JN [ϕ]‖L2(Ω) ≤ τn. (1)

We begin by proving the two following lemmas:

Lemma 2: For any n ≥ 1, ‖ϕn − Pn(ϕn)‖L2(Ω) ≥
γnτn(F ).

Proof: From (1) applied to ϕ = ϕn we have ‖ϕn −
Pn(ϕn)‖L2(Ω) ≥ γn‖ϕn − Jn(ϕn)‖L2(Ω). But ‖ϕn −
Jn(ϕn)‖L2(Ω) ≥ ‖ϕ−Jn(ϕ)‖L2(Ω) for any ϕ ∈ F according

to the de nition of ϕn. Thus ‖ϕn−Pn(ϕn)‖L2(Ω) ≥ γn‖ϕ−
Jn(ϕ)‖L2(Ω) ≥ γn‖ϕ− Pn(ϕ)‖L2(Ω).

Lemma 3: Let A be the lower triangular matrix de ned by

A := (ai,j)
∞
i,j=0 (ai,j := 0, j > i). A has two important

properties:

• P1: γnτn ≤ |an,n| ≤ τn.

• P2: For every m ≥ n,
m
∑

n

a2m,j ≤ τ2n.

Proof:

• P1: ∀f ∈ F : Pn(f) =
n−1
∑

j=0

< f, ϕ∗
j > ϕ∗

j . In particular:

ϕn−Pn(ϕn) = an,nϕ
∗
n ⇒ ‖ϕn−Pn(ϕn)‖2L2(Ω) = a2n,n.

The upper bound is thus obvious and Lemma 2 gives the

lower bound.

• P2: For every m ≥ n:
m
∑

j=n

|am,j |2 = ‖ϕm −

Pn(ϕm)‖2
L2(Ω) ≤ max

f∈F
‖f − Pn(f)‖2 = τ2n.

IV. A PRIORI CONVERGENCE RATES OF THE GEIM

GREEDY METHOD

In order to get convergence decay rates in the generalized

interpolation error of our method, we  rst note that lemma 2

shows that the GEIM�s Greedy algorithm is what is called in

[8] a �weak Greedy algorithm� of parameter γn = 1/(1+Λn)
that depends on the dimension of Xn.

Thanks to this observation, to get the desired result, conver-

gence decay rates in the sequence (τn)n≥0 will  rst be derived.

This task consists in extending the proofs of [8] where the

constant case γn = γ was addressed and where the following

two results were proven in Corollary 3.3:



i) If dn(F ) ≤ C0n
−α for n ≥ 1, then τn ≤

C02
5α+1γ−2n−α for n ≥ 1.

ii) If dn(F ) ≤ C0e
−c0n

α

for n ≥ 1, then τn ≤√
2C0γ

−1e−c1n
α

for n ≥ 1, where c1 := 2−1−2αc0.

In order to extend i) and ii) to the more general case where
γ depends on the dimension n, the following preliminary

theorem is required:

Theorem 4: For any N ≥ 0, let us consider the weak

Greedy algorithm with constant γN in L2(Ω) associated with

the compact set F , we have the following inequalities between
τN and dN := dN (F,L2(Ω)) : for any K ≥ 1, 1 ≤ m < K

K
∏

i=1

τ2N+i ≤
1

K
∏

i=1

γ2N+i

(

K

m

)m(

K

K −m

)K−m

τ2mN+1d
2(K−m)
m .

Proof: This result is an extension of Theorem 3.2 of [8]

to the case where the parameter of the weak Greedy algorithm

(γN ) depends on the dimension of the reduced space XN . Its

proof is a slight modi cation to the one provided in [8] using

γN and the properties P1 and P2 stated in Lemma 3.

Using theorem 4, convergence rates in the sequence (τn)n≥0

when (dn)n≥0 has a polynomial or an exponential decay can

be inferred and lead to lemmas 5 and 6:

Lemma 5 (Polynomial decay of (dn)n≥0): For any n ≥ 1,
let n = 4ℓ + k (where ℓ ∈ {0, 1, . . .} and k ∈ {0, 1, 2, 3}).
Assume that there exists a constant C0 > 0 such that ∀n ≥ 1,
dn(F,L

2(Ω)) ≤ C0n
−α, then τn ≤ C0βnn

−α, where β1 = 2

and for n ≥ 2: βn = β4ℓ+k :=
√

2βℓ1
1

ℓ2
∏

i=1

γ
1
ℓ2

ℓ1−⌈ k

4 ⌉+i

(2
√
2)α

and ℓ1 = 2ℓ+ ⌊ 2k
3 ⌋, ℓ2 = 2

(

ℓ+ ⌈k4 ⌉
)

.

Proof:

The proof is done by recurrence over n. We initialize the

reasoning by proving that τ1 ≤ 2C0 and then prove the general

statement for n ≥ 2.

Case n = 1: We recall that ϕ0 = arg sup
ϕ∈F

‖ϕ‖L2(Ω)

and that P1 is the projector operator onto span{ϕ0}. We

set: f1 = arg τ1 = arg max
f∈F

‖f − P1(f)‖L2(Ω) and let

µ ∈ F span the one dimensional subspace of F for which

d1 ≥ ‖f − Pµ(f)‖L2(Ω) for any f ∈ F (Pµ being the

projector operator onto span{µ}). We have: τ1 = ‖f1 −
P1(f1)‖L2(Ω) = ‖f1 − Pµ(f1) + Pµ(f1) − P1(f1)‖L2(Ω) =
‖f1−Pµ(f1)−P1 (f1 − Pµ(f1))+Pµ(f1)−P1Pµ(f1)‖L2(Ω) ≤
d1 + ‖Pµ(f1)− P1Pµ(f1)‖L2(Ω).

We have: ‖Pµ(f1) − P1Pµ(f1)‖L2(Ω) = ‖< f1, µ > µ

‖µ‖2
L2(Ω)

−

〈< f1, µ > µ, ϕ0〉ϕ0

‖µ‖2
L2(Ω)‖ϕ0‖2L2(Ω)

‖L2(Ω) =
| < f1, µ > |
‖µ‖L2(Ω)

‖ µ

‖µ‖L2(Ω)
−

< ϕ0, µ > ϕ0

‖µ‖L2(Ω)‖ϕ0‖2L2(Ω)

‖L2(Ω).

Since for any x, y ∈ F with norm 1 we have

‖x− < x, y > y‖L2(Ω) = ‖y− < x, y > x‖L2(Ω),

we deduce that : ‖Pµ(f1) − P1Pµ(f1)‖L2(Ω) =

| < f1, µ > |
‖µ‖L2(Ω)

‖ ϕ0

‖ϕ0‖L2(Ω)
− < ϕ0, µ > µ

‖µ‖2
L2(Ω)‖ϕ0‖L2(Ω)

‖L2(Ω).

Hence: τ1 ≤ d1 +
| < f1, µ > |

‖µ‖L2(Ω)‖ϕ0‖L2(Ω)
‖ϕ0 −

< ϕ0, µ > µ

‖µ‖2
L2(Ω)

‖L2(Ω) ≤ d1

(

1 +
| < f1, µ > |

‖µ‖L2(Ω)‖ϕ0‖L2(Ω)

)

≤ 2d1.

Remark 1: In the case where ‖ϕ0‖L2(Ω) ≥ γ0‖f‖L2(Ω) for

any f ∈ F (0 < γ0 ≤ 1), we would have obtained τ1 ≤
d1

(

1 + 1
γ0

)

.

Case n ≥ 2 : Let n = N + K for any N ≥ 0,
K ≥ 2. If i ≤ K , we have τn = τN+K ≤ τN+i

from the monotonicity of (τn)n≥0. By combining this in-

equality and theorem 4, if 1 ≤ m < K , we derive

that τn ≤ 1
K
∏

i=1

γ
1
K

N+i

√

(

K

m

)
m

K
(

K

K −m

)1−m

K

τ
m

K

N+1d
1−m

K

m ≤

1
K
∏

i=1

γ
1
K

N+i

√
2τ

m

K

N+1d
1−m

K

m , since x−x(1− x)x−1 ≤ 2 for any x,

0 < x < 1. We now use that dm ≤ C0m
−α and the recurrence

hypothesis in N +1 < n : τN+1 ≤ C0βN+1(N +1)−α which

yield: τN+K ≤ C0

√
2

1
K
∏

i=1

γ
1
K

N+i

β
m

K

N+1ξ(n)
α(N +K)−α where

ξ(n) =
n

m

(

m

N + 1

)
m

K

.

Any n ≥ 2 can be written as n = 4ℓ+ k with ℓ ∈ {0, 1, . . .}
and k ∈ {0, 1, 2, 3}. If k = 1, 2 or 3, it can easily be proven

that ξ(n) ≤ 2
√
2 by setting N = 2ℓ− 1, K = 2ℓ + 2, m =

ℓ + 1 if k = 1 and ℓ ≥ 1, N = 2ℓ, K = 2ℓ+ 2, m = ℓ + 1
if k = 2 and ℓ ≥ 0 and N = 2ℓ+1, K = 2ℓ+2, m = ℓ+1
if k = 3 and ℓ ≥ 0. These choices of N, K and m combined

with the upper bound of ξ yield the result τn ≤ C0βnn
−α in

the case k = 1, 2 or 3.
In the case n = 4ℓ (ℓ ≥ 1), using the fact that τN+1 ≤ τN ,

we can derive that τn ≤ 1
K
∏

i=1

γ
1
K

N+i

√
2τ

m

K

N d
1−m

K

m . If we choose

N = K = 2ℓ and m = ℓ, the previous inequality directly

yields τ4ℓ ≤ C0

√
2β2ℓ

1
2ℓ
∏

i=1

γ
1
2ℓ

2ℓ+i

(2
√
2)α(4ℓ)−α.

Lemma 6 (Exponential decay in (dn)n≥0): Assume

that there exists a constant C0 > 0 such that ∀n ≥ 1,
dn(F,L

2(Ω)) ≤ C0e
−c1n

α

, then τn ≤ C0βne
−c2n

α

,

where βn :=
1

⌈n

2 ⌉
∏

i=1

γ
1

⌈n

2
⌉

⌊n

2 ⌋+i

√

2β⌊n

2 ⌋ for n ≥ 2, β1 = 2 and

c2 := 2−1−3αc1.

Proof: The proof is done by recurrence over n.
The case n = 1 is addressed by following the same lines as

in lemma 5.

In the case n = 2, we have: τ2 ≤ τ1 ≤ 2C0.



For n ≥ 3, we start from τN+K ≤ 1
K
∏

i=1

γ
1
K

N+i

√
2τ

m

K

N+1d
1−m

K

m

and treat the cases n = N+K = 2ℓ and n = N+K = 2ℓ+1
separately (ℓ ≥ 1).
If n = N +K = 2ℓ, we choose N = K = ℓ and m = ⌊K2 ⌋.
The inequality yields τ2ℓ ≤

1
ℓ
∏

i=1

γ
1
ℓ

ℓ+i

√
2τℓe

−c2(2ℓ)
α

.

In a similar procedure, the desired result can be inferred for

n = N +K = 2ℓ + 1 if we choose N = ℓ, K = ℓ + 1 and

m = ⌊K2 ⌋.
Remark 2: 1) In the case where γn is constant γn = γ,

lemmas 5 and 6 yield results that are similar to the ones

obtained in [8] (see i) and ii) of this proceeding).
2) In the case where (γn)n≥1 is a monotonically decreasing

sequence, the following bounds can be derived for τn:

• If dn(F,L
2(Ω)) ≤ C0n

−α for any n ≥ 1,
then τn ≤ C0βn

−α for n ≥ 1, with β :=

23α+1

(

min
1≤j≤n

γj

)−2

= 23α+1γ−2
n .

• If dn(F,L
2(Ω)) ≤ C0e

−c1n
α

for any n ∈
{1, 2, . . .}, then τn ≤ C0βe

−c2n
−α

for n ≥ 1, with

β := 2

(

min
1≤j≤n

γj

)−2

= 2γ−2
n .

Lemmas 5 and 6 are the keys to derive the decay rates of

the interpolation error of the GEIM Greedy algorithm. This is

the purpose of the following theorem:

Theorem 7: 1) Assume that dn(F,L
2(Ω)) ≤ C0n

−α for

any n ≥ 1, then the interpolation error of the GEIM

Greedy selection process satis es for any ϕ ∈ F the

inequality ‖ϕ − Jn[ϕ]‖L2(Ω) ≤ C0(1 + Λn)βnn
−α,

where the parameter βn is de ned as in lemma 5.

2) Assume that dn(F,L
2(Ω)) ≤ C0e

−c1n
α

for any n ≥ 1,
then the interpolation error of the GEIM Greedy se-

lection process satis es for any ϕ ∈ F the inequality

‖ϕ − Jn[ϕ]‖L2(Ω) ≤ C0(1 + Λn)βne
−c2n

α

, where βn
and c2 are de ned as in lemma 6.

Proof: It can be inferred from lemma 1 that, ∀ϕ ∈
F, ‖ϕ − Jn[ϕ]‖L2(Ω) ≤ (1 + Λn)‖ϕ − Pn(ϕ)‖L2(Ω) ≤
(1 + Λn)τn according to the de nition of τn. We conclude

the proof by bounding τn thanks to lemmas 5 and 6.

Remark 3: If (Λn)n≥1 is a monotonically increasing se-

quence, then the sequence (γn)n≥1 in the GEIM procedure

is monotonically decreasing. Using remark 2, the following

decay rates in the generalized interpolation error can be

derived:

• For any ϕ ∈ F , if dn(F,L
2(Ω)) ≤ C0n

−α for any

n ≥ 1, then the interpolation error of the GEIM Greedy

selection process can be bounded as ‖ϕ−Jn[ϕ]‖L2(Ω) ≤
C02

3α+1(1 + Λn)
3n−α.

• For any ϕ ∈ F , if dn(F,L
2(Ω)) ≤ C0e

−c1n
α

for any

n ≥ 1, then the interpolation error of the GEIM Greedy

selection process can be bounded as ‖ϕ−Jn[ϕ]‖L2(Ω) ≤
C02(1 + Λn)

3e−c2n
α

.

Remark 4: The evolution of the Lebesgue constant ΛN as a

function ofN is a subject of great interest. From the theoretical

point of view, crude estimates exist and provide an exponential

upper bound that is far from being what we get in the

applications. As is shown in ( [4], [5], [1]), the growth is lower

than linear in N in the EIM situations. Our  rst experiments in

the GEIM provide cases where it is uniformly bounded when

evaluated in the L(L2) norm. We do not pretend that this is

universal, but only shows that the theoretical exponentially

increasing upper bound is far from being optimal in a class of

sets F that have a small Kolmogorov n-width.

V. CONCLUSION

In this work, it has been proven that the approximation

properties of the generalized interpolating spaces Xn lead to

an error that has the same trend of the best possible choice and

that is distant by a factor (1 + Λn)βn from it. This has been

proven in the case of a polynomial or exponential convergence

in the n−width and is a  rst step towards the explanation of

ef ciency of this method in practice (as outlined in [7]).

REFERENCES

[1] Y. Maday, N. Nguyen, A. Patera, and G. Pau, �A general multipurpose
interpolation procedure: the magic points,� Commun. Pure Appl. Anal.,
vol. 8(1), pp. 383�404, 2009.

[2] J. P. Kleijnen and W. C. van Beers, �Robustness of kriging when
interpolating in random simulation with heterogeneous variances: Some
experiments,� European Journal of Operational Research, vol. 165, no. 3,
pp. 826 � 834, 2005.

[3] H. Liu and S. Maghsoodloo, �Simulation optimization based on taylor
kriging and evolutionary algorithm,� Applied Soft Computing, vol. 11,
no. 4, pp. 3451 � 3462, 2011.

[4] M. Barrault, Y. Maday, N. Y. Nguyen, and A. Patera, �An empirical
interpolation method: Application to ef cient reduced-basis discretization
of partial differential equations.� C. R. Acad. Sci. Paris, Série I., vol. 339,
pp. 667�672, 2004.

[5] M. Grepl, Y. Maday, N. Nguyen, and A. Patera, �Ef cient reduced-basis
treatment of nonaf ne and nonlinear partial differential equations.� M2AN
(Math. Model. Numer. Anal.), vol. 41(3), pp. 575�605, 2007.
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