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Abstract—In an effort to extend the classical lagrangian A recent generalization of this interpolation process ias
interpolation tools, new interpolating methods that use geeral in replacing the evaluation at interpolating points by &ppl
mterpolatl_ng functions are explored. The Gene_rallzed Emjrical cation of a class of interpolating continuous linear fuot
Interpolation Method (GEIM) belongs to this class of new . . _ L .
techniques. It generalizes the plain Empirical Interpolaion chosen in a given dlctlonarE c ﬁ_(F) and this g_lves rnse
Method [1] by replacing the evaluation at interpolating points t0 the so-called Generalized Empirical Interpolation Meth
by application of a class of interpolating linear functions Since (GEIM, [7]). In this newly developed method, the particular
its efficiency depends critically on the choice of the interplating  case where the space = L?(9) is considered, witlf2 being

functions (that are chosen by a Greedy selection procedurglhe 5 o nded spacial domain & and F being a compact set
purpose of this paper is therefore to provide a priori convegence

2
rates for the Greedy algorithm that is used to build the GEIM of L*(92). ) o
interpolating spaces. In the present work, we analyze the quality of the finite
dimensional subspaceX,, C F built by the greedy se-
. INTRODUCTION lection procedure of GEIM together with the properties of

The extension of the lagrangian interpolation process is #re associated interpolation operator. For this purpdse, t
old problem that is still currently subject to an active @st accuracy of the approximation iX,, of the elements of”
(see, e.g. [1] and also the activity concerning the krigia [ will be compared to the best possible performance which is
[3] in the stochastic community). While this classical neth the Kolmogorovn— width d,, (F, L*(12)).
approximates general functions by finite sums of well chpsen The proceeding is organized as follows: after a brief recall
linearly independent interpolating functions (e.g. pagmial of GEIM’s Greedy algorithm (section II), we will analyze
functions) and the optimal location of the interpolatingrge in sections Il and IV some convergence decay rates of the
is well documented (and completely solved in one dimensiomjeneralized empirical interpolation error as the dimemsio
the question remains on how to approximate general furgtiosf X, increases and whey, (F, L?(€2)) has a polynomial or
by finite expansions involving general interpolating fuons an exponential decreasing behavior.
and how to optimally select the interpolation points in this
case. Il. THE GENERALIZED EMPIRICAL INTERPOLATION

One step in this direction is the Empirical Interpolation METHOD
Method (EIM, [4], [5], [1]) that has been developed in the
broad framework where the functiorigo approximate belong M
to a compact sett’ of a Banach spacet. The structure
of F' is supposed to make any € F be approximable
by finite expansions of small size. In particular, this is th
case when the Kolmogorox—width of F' in X is small.
Indeed, the Kolmogorow—width of F' in X is defined by

In a similar procedure as in the Empirical Interpolation
ethod (EIM) [4], [5], [1], the Generalized EIM allows
to define simultaneously the set of interpolating functions
recursively chosen i’ together with the associated linear
functions selected from a dictionary of continuous lineanfs

¥ C L(F), with norm 1 in L?(). The dictionary has the
additional property that ip € F' is such that () = 0 for any

dn(F, X) = xlnncfx 222 yle%gn lz = yllx (see [6]) and o € 3, theny = 0. The selection of the interpolating functions
dim(Xnp)=n

and linear forms is based on a greedy selection procedure as
outlined in [7].
The first interpolating function is, e.g.:

measures the extent to which can be approximated by
some finite dimensional spac¥, C X of dimensionn.
The Empirical Interpolation Method builds simultaneoutsig
set of interpolating functions and the associated intextjpug

points by a greedy selection procedure (see [4]). Yo = arg jggHsOHLz(sz),



the first interpolating linear form is: I1l. PRELIMINARY NOTATIONS AND BASIC PROPERTIES

o0 = arg suplo(yo). In what follows, we denote by ),>o the orthonormal

oes system obtained fronfy,, ),>0 by Gram-Schmidt orthogonal-
. . . . ©0 ization.
We then define the first basis function a45.— 0(900) . The For anyn Z 1’ we define the Orthogona| project&ﬁ from
second interpolating function is: X onto X,, which is given byP,(f) = Z < el > ol
Jj=
p1 =arg SUI;|\<P—00(<P)(10||L2(Q)~ Vf € F, where< .,. > is the L%(Q) scalar product. In
pe n
_ o _ particular: ¢, = P,11(n) = Y an @}, With a,; =<
The second interpolating linear form is: j=0
n,p; >,0<7<n.
o1 = arg suplo(e1 — oo(p1)qo)l, Finally, let us denote asy(F)2(q) := do(F, L*(2)) and,
o€ for anyn > 1: 7, := 7, (F) 12(q) = Taﬁfgllf = Pu(H)llr2e
. . . . €
and the second basis function is defined as: and by~,, the constant;,, = 1/(1+A,.). With these notations
o= 01 — 00(p1)q0 Lemma 1 states
711 = ool )ao) Vo e F, mallo— Inlelle <t @)
we then proceed by induction : assuming that we have built theW b b h foll |
set of interpolating function$qo, ¢1,...,gnv—1} and the set e begin by proving the two following lemmas:
of associated interpolating linear forrs,o1,...,0n_1}, Lemma 2:For any n > 1, [lon — Pulen)llzz@ 2
for N > 1, we first solve the interpolation problem : findnTn (£)- _
{CY;'V((P)}]‘ such that Proof: From (1) applied top = ¢, we have |y, —
Pn(‘Pn)HH(Q) > Yallon — jn(‘Pn)HH(Q)- But ||en -
N-1 Tn(en)llzz) = e — Tn(@)ll L2 Q) for any ¢ € F' according
Vi=0,...,N — a v)oi(g;), to the definition ofp,,. Thus| ¢, — Pu(en)ll2(@) = Talle —
=0 TIn(@)llL2@) = nlle = Pu(e)l|2()- =
and then compute: Lemma 3:Let A be the Iowgr tnangular matrix _deflned by
A = (ai5)55-0 (aij == 0, j > i). A has two important
N—-1 N properties:
Inle] = Z ;' (¢)g) o PLiy, 7, <lann| < o

« P2: For everym > n, Za 2 ST

We then evaluate
Proof:

VYoeF, ¢ =|e—-J ; n—1 )
4 ~(e) = lle = Inlelllca o« PLVfeF: P.(f)= ) </f,¢>¢;. Inparticular:
=0

and define: J=
_ () n—Prlpn) = ann@l, = [lon — P (‘Pn)”L2 @ = az -
PN =arg zgg Enly The upper bound is thus obvious and Lemma 2 gives the
lower bound.
and: on = arg sggh(cp]v — JInlen])|. The next basis , p2: For everym > n: Z lam 1?2 = llom —
function is then
Pu(em)l72() <maxllf P( )H2 e
N — IN[pnN] -
qN = .

on(en — Inlen])
IV. A PRIORI CONVERGENCE RATES OF THIGEIM

We finally set Xyi1 = span{q;, j € [0,N]} = GREEDY METHOD
span {¢;, j € [0,N]}. It has been proven in [7]:
Lemma 1:For anyN, the set{q;, j € [0, N—1]} is linearly In order to get convergence decay rates in the generalized

independent andX is of dimensionN. The generalized interpolation error of our method, we first note that lemma 2
empirical interpolation procedure is well-posediA(Q2) and shows that the GEIM’s Greedy algorithm is what is called in
Vo € F, the interpolation error satisfies: [8] a "weak Greedy algorithm” of parametey, = 1/(1+A,,)
_ . - that depends on the dimension &f, .

o = Inlelllze < 1+ AN)¢§Z§N|‘*O Unllzze) Thanks to this observation, to get the desired result, aenve
_ i gence decay rates in the sequefg >0 will first be derived.
where Ay is the Lebesgue constant in thé norm: Ay :=  This task consists in extending the proofs of [8] where the

M. constant case,, = v was addressed and where the following
ver  llellrz) two results were proven in Corollary 3.3:



i) If d(F) < Con=® for n > 1, then 7, < | <fun>| | 0 _ j@o,u>u I
Cp250H+1=2p= for p > 1. lellz)  lleollze ||M||L2(Q)||SDOHL2(Q)
iy If d,(F) < Coe~<n" for n > 1, thenr, < | < fip>|

LZ(Q) .

Hence: n; < di +

V2Coyte™ for n > 1, wherec; := 271729, N 1l 2o llpoll L2 (o)
In order to extend) andi:) to the more general case WhereM”N(Q) <d (1 n < f1, 00> ) < 2d,.
~ depends on the dimensiom, the following preliminary HﬂHiz(Q) - lall 2oy lloll 2y /
theorem is required: Remark 1:In the case wheréwo| r2(q) > Yol fllL2(q) for

Theorem 4:For any N > 0, let us consider the weakany f € F (0 < 7, < 1), we would have obtained; <
Greedy algorithm with constanty in L?(Q2) associated with 4, (1 + l),
the compact sef’, we have the following inequalities between ~__ :10 > 2 :letn — N+ K forany N > 0
v anddy = dn(F,L(Q)) :forany K > 1, 1<m <K 0 5 ¢, 2 K. we haver, = 7wix < ;NH'

from the monotonicity of(7,),>0. By combining this in-

K 1 K m K K—m
H L e — <_) <K—) rﬁ,’ﬁld%K*m). equality and theorem 4, it < m < K, we derive
m —m

=t I %4 1 K\* K R
N thatr, < ——— \/(E) (K_m) -

Proof: This result is an extension of Theorem 3.2 of [8] i=1

to the case where the parameter of the weak Greedy algorithm 1 ﬁTﬁHd}{%, sincez (1 —z)*~! < 2 for any z,
(v~) depends on the dimension of the reduced spége Its & L
proof is a slight modification to the one provided in [8] using:ﬂN“
~n and the properties P1 and P2 stated in Lemma 3. m 0 < z < 1. We now use thad,, < Com~* and the recurrence

Using theorem 4, convergence rates in the sequendgso  hypothesisinV +1 < n : 7y41 < Cofn+1(N + 1)~ which
when (d,,),>0 has a polynomial or an exponential decay cafjeld: TN4K < Cox/iKiﬁ]%Hﬂn)“(N—i—K)_“ where
be inferred and lead to lemmas 5 and 6: 11 7% ‘

Lemma 5 (Polynomial decay 6d,,),>0): For anyn > 1, i=1 Nt
let n = 4¢ + k (where? € {0,1,...} andk € {0,1,2,3}). n m \X
Assume that there exists a constéahyt> 0 such thatvn > 1, §(n) = m\N+1 '
dn(F, L*(Q)) < Con~, thenT,, < CoB,n"%, where; =2 Any n > 2 can be written as = 4/ + k with £ € {0,1,...}

and forn > 2: By = Barin = m - (2v2)” andk € {0,1,2,3}. If k = 1,2 or 3, it can easily be proven

A3

1—-m
+1dm <

2

i that£(n) < 2v/2 by settingN =2/ —1, K =2(+2, m =

TL iy (+lifk=landl>1, N=2, K=20+2 m=0(+1

andl; =20+ 2], b, =2 (04 [£7). if k=2and¢>0andN =20+1, K =2(+2, m=/(+1
Proof: if k=3 and/? > 0. These choices aV, K andm combined

The proof is done by recurrence over We initialize the With the upper bound of yield the resultr,, < CoS,n"“ in

reasoning by proving that < 2C;, and then prove the generalthe casek = 1,2 or 3. _
statement fom > 2. In the casen = 4¢ (¢ > 1), using the fact thaty 1 < 7,

Casen = 1. We recall thatyy = arg sup|¢llL2 We can derive that, < ﬁ\/%]?d,l{%. If we choose
cF

© L
and that P, is the projector operator ontepan{yo}. We _H TN+i

=1
set: fi = arg 1 = arg T}ngﬂf — Pi(f)|lz2) and let N = K = 2¢ andm = 1£ the previous inequality directly
1 € F span the one dimensional subspaceFofor which vyieldsy, < OO\/2[32¢%7(2\/§)°‘(4€)*°‘.
1

di > ||f — Pu(f)|12() for any f € F (P, being the T 2.
. 20+1
projector operator ontepan{u}). We have:r, = ||f1 — i=1
Pi(fi)llrz = Ifi = Pu(f1) + Pu(f1) = Pi(fi)ll2@) = _ u
| fi=Pu.(f1)=P1 (f1 = Pu(f1))+Pu(f1)=PiPu(fi)llL2(0) < Lemma 6 (Exponential decay {d,,)»>0): Assume
dy + | Pu(f1) = PrPu(f1)ll2(o)- that there exists a constadf, > 0 such thatvn > 1,
< fi,p> do(F,L*(Q)) < Coe @™, then 7, < CofBnpe "",
We haver(|Pu(fi) — PuPu(f)liay = | St U AR G o
HMHLz(Q) where 3,, := S 202 forn > 2, 84 = 2 and
(< fl,u>u,<po><ﬂoHL2(Q) _I<fip>l w0 T,
||/‘||2L2(Q)||900H%2(Q) ||M||L2(sz) HMHLz(Q) oy L3l

< o, > ¥o cg 1= 27173,
HM|\L2(Q)|\<P0||%2(Q) Proof: The proof is done by recurrence over

Since for any z,y € [F with norm 1 we have The casen = 1 is addressed by following the same lines as
le— < zy > Yl = lly— < z,y > zlr2(), inlemmas.
we deduce that :|P.(fi) — PiP.(fi)llz2cey = Inthe casen =2, we haverr, <7 < 2Cq.

L2 (0)-



1
K1
'H1 YN+
and treat the cases= N+ K = 2/ andn = N+K=2(+1
separately { > 1).

If n =N+ K =2¢, we chooseN = K = ¢ andm = | % |.
(20

m 1—m
Forn > 3, we start fromry g < V278 dm ¥

The inequality yieldsr, < 2102

4 1
H FYZ?-H'
In a similar procedure, thé:éesired result can be inferred
n=N+K =2(+1if we chooseN =/{¢, K =¢+ 1 and
m=5]. [ |

Remark 2: 1) In the case whers,, is constanty, = v,

Remark 4:The evolution of the Lebesgue constan as a
function of V is a subject of great interest. From the theoretical
point of view, crude estimates exist and provide an expaalkent
upper bound that is far from being what we get in the
applications. As is shown in ( [4], [5], [1]), the growth ister
than linear inN in the EIM situations. Our first experiments in
the GEIM provide cases where it is uniformly bounded when
evaluated in theZ(L?) norm. We do not pretend that this is
universal, but only shows that the theoretical expondmtial
fﬁ‘lcreasing upper bound is far from being optimal in a class of
setsF' that have a small Kolmogorow-width.

V. CONCLUSION

lemmas 5 and 6 yield results that are similar to the onesin this work, it has been proven that the approximation

obtained in [8] (se€) andii) of this proceeding).

properties of the generalized interpolating spa&gslead to

2) Inthe case wherey, ),>1 is @ monotonically decreasingan error that has the same trend of the best possible chaice an

sequence, the following bounds can be derivedrfor

o If d,(F,L?(Q)) < Con=@ for any n > 1,
then r,, < Coﬂn;“ for n > 1, with g =
min v;

:23a+1 72.
1<j<n > T

o If d, (F,L%(Q) < Coe ™" for any n ¢
{1,2,...}, thent, < CoBe=" " for n > 1, with
—2

o

23a+1

min vy, =2v.2

1<j<n

Lemmas 5 and 6 are the keys to derive the decay rates of

that is distant by a factofl + A,,)g, from it. This has been
proven in the case of a polynomial or exponential convergenc
in the n—width and is a first step towards the explanation of
efficiency of this method in practice (as outlined in [7]).
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