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Abstract 

The autocatalytic mechanism involved in the reduction reaction of nitrate in 8M nitric acid 

solution was investigated in order to propose a complete description of all processes taking 

place at the interface. A time and potential independent current plateau was observed for low 

scan rates and was ascribed to limitation by the desorption of NOads. Data analysis and fit of 

the experimental chronoamperogram allowed determination of the kinetic constants of the 

autocatalytic cycle.  
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1. Introduction 

Nitric acid acts as a strong oxidizing agent and is involved in several industrial processes that 

can take place in concentrated solutions, stimulating fundamental investigations over decades 

of electrochemical reactions in this medium [1, 2]. For instance, this reduction reaction is 

involved into the corrosion rate of stainless steel [3, 4], but also into applications for the 

removal of nitrite from ground water, or for the synthesis of hydroxylamine derivatives [5, 6]. 

Since the reduction of nitrate in concentrated nitric acid solutions involves several 

autocatalytic cycles, local concentrations can change rapidly in the vicinity of the interface, 

causing significant change in the total reaction rate. In the low concentration domain (<0.1 M) 

a direct reaction mechanism involving nitrate ion adsorbate that undergoes an electron 

transfer has been well described in the literature [5, 6]. For higher nitrate concentration and in 

presence of nitrite, two different indirect routes for the nitrate ion reduction have been 

proposed by Vetter [7] and Schmid [8, 9], respectively, both taking place at small 

overpotentials [10, 11]. The heterogeneous Vetter mechanism is supposed to occur at higher 

potentials and poorly depends on stirring of the solution since the rate determining step 

involves adsorbates. Conversely, the homogeneous Schmid mechanism shows a very strong 

correlation with the mass transfer of redox species. Since autocatalysis occurs in solution, 

stirring the solution involves a diminution of current density [13]. It is however difficult to 

clearly distinguish between these two mechanisms, because they are coupled through some 

identical reactions [12]. In the present study performed in concentrated acidic solution with 

millimetric-sized electrodes, the Schmid mechanism dominates when there is no stirring. It 

can be described by the following set of elementary reactions:  

 HNO2 + H+    ⇄ NO+ + H2O     (Eq.1) 

 NO+
   ⇄ NO+

(ads)      (Eq.2) 
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 NO+
(ads) +  e-    ⇄ NO(ads)     (Eq.3) 

 NO(ads)   ⇄ NO      (Eq.4) 

 HNO2 + HNO3  ⇄ N2O4 + H2O    (Eq5) 

 N2O4    ⇄ 2NO2     (Eq.6) 

 NO2+ NO + H2O   ⇄ 2HNO2     (Eq.7) 

At the electrode interface, the net balance of the overall reaction results in an excess of one 

nitrous oxide molecule per electron. The convection dependence of the system was evidenced 

by stirring the solution causing a decrease of the current due to the removal of HNO2 from the 

interface [13]. Conversely to the seminal work of Andrieux et al. on the dissociative electron 

transfer in alkyl halide compounds [14], the mechanism proposed in this work involves NO+ 

and NO as adsorbed intermediates. This seems plausible since outer sphere electron transfer 

would involve a large reorganization energy for this couple [15]. 

The purpose of this report is to get an insight into the reduction mechanism of nitrate in 

concentrated acidic solution and propose a simplified mechanism that accounts for the 

chronoamperometric and the voltametric response observed on a Pt electrode. Special 

attention is paid to the fitting of the results leading to a quantitative analysis of this complex 

autocatalytic process. 

2. Materials and Methods  

2.1. Chemicals  

Nitric acid solutions were prepared by mixing 68 wt% HNO3 (VWR International) with twice 

distilled water. Since it was crucial to perform our experiments in macroscopically still 

solutions, we choose to work at room temperature (20 ± 2°C) and without deaerating the 

solutions. All measurements were carried out in freshly prepared 8M HNO3. 

2.2. Electrodes 



4 
 

A platinum wire of 250 µm in radius (Goodfellow, 99.99% purity) was sealed into a 

borosilicate glass capillary. Electrical contact between the platinum and a copper connector 

was achieved with a conducting silver-glue. The electrode was polished with an abrasive Si-C 

paper (up to grade 4000) and prior to each experiment, the platinum surface of the electrode 

was cleaned electrochemically in 1M H2SO4 by performing cyclic voltammetry using the 

adsorption peaks of hydrogen as reference system. 

2.3. Electrochemical measurements  

All measurements were performed with a home-built potentiostat controlled by a Labview 

software. The experiments were carried out in a conventional three-electrode cell, with a 

saturated mercury/mercurous sulfate reference electrode (SSE) and a platinum gauze as 

counter electrode. 

2.4. Electrochemical simulation  

Chronoamperometry results were analyzed using DigiElch simulation software. 

3. Results and Discussions 

Fig. 1a shows a linear potential scan of a 250 µm in radius Pt electrode at 10 mVs-1 in a 8 M 

HNO3 solution. It is commonly admitted that the huge current enhancement by ca. two orders 

of magnitude observed in the 0.3 to -0.2 V/SSE region is due to the establishment of the 

Schmid autocalatytic reaction. It has been demonstrated that the current decrease at more 

negative potentials is due to adsorption of N2O (obtained from further reduction of NO) that 

blocks adsorption of the NO+/NO couple [3]. Moreover, the investigation of the scan rate 

influence on the current in the same solution (Fig. 1b) shows that a current plateau is observed 

as soon as the scan rate gets smaller than about 0.3 Vs-1 which gives a first rough estimation 

of the characteristic time for the autocatalysis to start. At higher scan rates, catalysis is 

progressively blocked. In the high scan rates regime, the current increases linearly with the 
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scan rate as expected for voltammetry of adsorbed intermediates. This plateau was not 

observed in the previously published papers at lower concentrations [5, 16]. The voltammetric 

observations are in full agreement with the chronoamperometric trace performed at 0 V/SSE 

displayed in Figure 2. The current plateau is thus almost time and potential independent, and 

corresponds to an extremely high current density of ca. 1 Acm-2.  

In the mechanism proposed above, only the desorption of NOads is independent of the reactant 

concentrations which evolves with time and can thus be invoked to explain this plateau. In 

this regime, the current is expressed as: 

 i/FS = kdes ΓMax          (Eq.8) 

where kdes is the kinetic constant of NO desorption, and ΓMax is the maximal surface coverage. 

In other words, reactions in the solution provide enough NO+ so that its adsorption is not the 

limiting step. It is noteworthy that the current allows to determine the product kdes ΓMax, and 

thus the independent measurement of the surface coverage give access to kinetic constant of 

the desorption.  

From several chemical considerations, the Schmid mechanism can be simplified as follows: 

- N2O4 is an unstable species, which is probably present in negligible amounts. The 

steady state approximation performed on this compounds allows equations (5) and (6) 

to be simplified as: 

 HNO2 + H+ + NO3
- ⇄ H2O + 2NO2  k9 = k5  (Eq. 9) 

in which Eq. 5 is the rate limiting step. 

- Because of the large excess of protons in solution, the conversion of HNO2 to NO+ 

(Eq.1) is not rate limiting.  
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- Whether HNO3 is dissociated or not little affects the simulations. We assume that [H+] 

is uniform and does not vary during the duration of the experiments. Thus, its effects 

are incorporated in the various rate constants (k1, k5, and kads).  

We therefore suggest the following simplified mechanism: 

 HNO2aq +H+ → NO+
ads + H2O  kads   (Eq.10) 

 NO+
ads + e-  ⇄  NOads    khet   (Eq.3) 

 NOads  → NO      kdes   (Eq.4) 

and the formation of HNO2 occurs through Eqs. 7 and 9. 

Figure 2a shows the chronoamperometric response of the Pt electrode initially at the open 

circuit potential to a potential step at 0 V/SSE. For the short times (inset in Fig. 2a), the 

chemical reactions are blocked so that the initial current decrease corresponds to standard 

chronoamperometric response. Its amplitude thus depends strongly on the initial concentration 

of HNO2 that can vary with the aging of the stock solution. 

If no NO is initially present in the solution, and since this species is produced only by 

desorption (Eq. 4), its presence may hinder autocatalysis at intermediate times (Eq. 7). But 

once sufficient amount of NO has been produced in the electrode vicinity, Eq. 7 is fast enough 

so that the rate becomes then limited by reaction 9. Steady state approximation can thus be 

performed on NO2. Eqs. 7 and 9 can then be rewritten as:  

  

HNO2 + H+ + NO3
- + 2NO + H2O   →   4HNO2  k11 = k5 (Eq.11) 

This demonstrates a regeneration of NIII species. The formation rate of HNO2 would then be 

expressed as: 

d[HNO2]/dt = 3k5[HNO3][ HNO2]       (Eq.12) 
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The surface not being yet saturated, the current would be directly related to the flux of HNO2 

and increase exponentially. In our experimental conditions, limitations by both Eqs. 7 or 9 

cannot be clearly separated. A fit in logarithmic coordinates gives a first order of magnitude 

of k5 but its value is underestimated. Therefore, we relied on simulations to obtain k5 and k7. 

The thermodynamic constants were taken from the literature [6]. A reasonably good fit of the 

chronoamperogram can be obtained with an initial concentration of 10-3 mol.L-1 for HNO2 for 

k5 = 1.52 L.mol-1.s-1 and k7 = 1.00x107 L.mol-1.s-1. The product kdesΓMax was 1.51 ×10-5 

mol.cm-2.s-1 to fit the plateau. Taking ΓMax = 4×10-10 mol.cm-2 as suggested by Koper [6] 

gives kdes = 37.7 x103 s-1. All the kinetic constants obtained from the fit are reported in Table 

1. Two slight discrepancies are observed. At initial times the experimental decrease is much 

longer, probably because some initial adsorbates such as NO2 need to be removed first. On the 

other hand, near the plateau region a slight bump is observed and cannot be explained by our 

analysis. It involves likely some passivation phenomena of the electrode. This is compatible 

with our observation of small changes in the plateau current even during the same experiment. 

It is noticeable that the simulated chronoamperogram is affected if initial amounts of NO or 

NO2 are introduced. The deduced rate constants are nevertheless only very poorly affected. 

Fig. 2b shows the concentration gradient of the main electroactive species involved in the 

reduction of nitric acid after 2 seconds of electrolysis. As expected, when steady state is 

reached, a large amount of nitric acid is consumed simultaneously with the generation of 

HNO2. NO is present only in a thin layer near the electrode and as expected cannot coexist 

with NO2 due to the occurrence of reaction 7. Autocatalysis being limited by NO production 

at the electrode in this time range, large amounts of NO2 are released in solution, which is 

compatible to experimental observation of NO2 liberation in the atmosphere. 

 

4. Conclusions 
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The complex nitrate reduction mechanism on a platinum electrode in highly concentrated 

nitric acid was simplified in order to take into account solely the chemical steps that play a 

kinetic role. The huge current enhancement due to autocatalysis stems from regeneration of 

HNO2 in solution. Occurrence of a plateau evidences a limitation by NOads desorption from 

the electrode surface. Further work will consider hindering of autocatalysis at 

ultramicroelectrodes because of a radial evacuation of HNO2. 
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Table 1: Kinetic constants and diffusion coefficients used for the fitting of the experimental 

results presented in Fig. 2a.  
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Figure 1: Linear potential scan of a 250 µm in radius Pt electrode in a 8 M HNO3 solution at 

10 mVs-1 (a), and evolution of the current measured on the plateau at 0 V/SSE as a function of 

the scan rate (b) 
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Figure 2: Chronoamperometric response to a potential step from the open circuit potential  

to 0 V/SSE of a 250 µm in radius Pt electrode in a 8 M HNO3 solution (a), the inset is a zoom 

on the short time domain, and variations of the concentration species (b), the inset is a zoom 

of the domain close to the interface.  

 

 


