
HAL Id: hal-00804636
https://hal.sorbonne-universite.fr/hal-00804636v1

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving

boundary problems
Charles Dapogny, Cécile Dobrzynski, Pascal Frey

To cite this version:
Charles Dapogny, Cécile Dobrzynski, Pascal Frey. Three-dimensional adaptive domain remeshing,
implicit domain meshing, and applications to free and moving boundary problems. Journal of Com-
putational Physics, 2014, �10.1016/j.jcp.2014.01.005�. �hal-00804636�

https://hal.sorbonne-universite.fr/hal-00804636v1
https://hal.archives-ouvertes.fr

THREE-DIMENSIONAL ADAPTIVE DOMAIN REMESHING, IMPLICIT DOMAIN

MESHING, AND APPLICATIONS TO FREE AND MOVING BOUNDARY

PROBLEMS

C. DAPOGNY1,2, C. DOBRZYNSKI3,4, P. FREY 1

1 UPMC Univ Paris 06, UMR 7598, Laboratoire J.-L. Lions, F-75005 Paris, France.
2 Renault DREAM-DELT’A Guyancourt, France.

3 IMB, Université de Bordeaux, 33405 Talence cedex France.
4 Team Bacchus, INRIA, 33405 Talence cedex, France.

abstract

The aim of this paper is to propose a method for dealing with the problem of mesh deformation (or mesh
evolution) in the context of free and moving boundary problems, in three space dimensions. The method
consists in combining two different numerical parameterizations of domains: on the one hand, domains are
equipped with a computational tetrahedral mesh, and on the other hand, they are represented as the negative
subdomain of a ‘level set’ function. We then consistently switch from one description to the other, depending
on their respective convenience with respect to the operations to be performed. Among other things, doing
so implies to be able to get a computational mesh from an implicitly-defined domain. This in turns relies on
an algorithm for handling three-dimensional domain remeshing (that is, remeshing at the same time both
surface and volume parts of a given tetrahedral mesh). Applications are considered in the fields of mesh
generation, shape optimization, and computational fluid dynamics.

1. Introduction

Many time-dependent physical or mechanical phenomena occur in evolving domains. Examples of these
so-called free or moving boundary problems are melting/solidification problems, multiphase fluid flows, etc...
see [10] for many other illustrations. Dealing with such problems is especially difficult - as well from the
theoretical point of view as from the numerical one - mainly because of the mutual influence of the physical
process and the evolving geometry.

When it comes to the numerical resolution of such problems, two main classes of methods can be dis-
tinguished, depending on whether an explicit discretization of the considered evolving domain (or only the
interface) is used in the computational formulation of the physical problem.

As parts of the first class, Lagrangian methods bring into play an exact mesh of the domain(s), which is
updated in the course of the iterative process [28]; front-tracking formulations [42] [24] feature a reconstruc-
tion of the evolving boundary (or interface), which is used in the resolution of the physical problem. These
methods potentially enjoy the best accuracy; however, they may turn out difficult to carry out because of
the mesh update or reconstruction steps.

On the opposite, Eulerian methods favor the use of a fixed mesh of a computational box, which is the
support for the storage of several quantities involved in the numerical resolution of the physical equations.
Such a method is the level set method (see [19] or [37] for reviews), according to which the evolving domain
is defined in the sense of implicit functions, and the domain evolution problem is traded for a PDE problem.
These methods do not involve mesh deformation, or reconstruction; yet, their implementation may demand
an approximation to the physical problem, to blend in the knowledge of the domain in the equations, from
the quantities whose evolutions are tracked.

Of course, this short presentation is by no means exhaustive; what’s more, hybrid methods have emerged,
which retain some characteristics from both classes: thus, extended finite element methods (XFEM) [29]
incorporate the imprint of a propagating discontinuity between two phases into the finite element formulation

1

of the problem. We should also mention the interesting two-dimensional work of Persson (see [34], chap. 5),
which combines the level set method with a mesh generation tool for implicit geometries.

The main purpose of this paper is to present a method for free and moving boundary problems in three
space dimensions which relies on two complementary descriptions of domains. On the one hand, they are
exactly meshed, so that no approximation of the considered mechanical problems is required. On the other
hand, they are considered as implicit geometries when it comes to compute their evolution, using the level set
method. The core of the method is an algorithm for three-dimensional meshing of implicit geometries, which
itself turns out to be an easy derivation of a more general three-dimensional domain remeshing algorithm.
Note that the problem of meshing implicitly-defined domains is not new, and has been addressed from a
rather different point of view in [35].

Consequently, a large part of this paper is devoted to three-dimensional adaptive domain remeshing, which
is a topic of interest on its own. As we intend the domain remeshing procedure to be part of a general mesh
evolution process, we do not want to assume more input information than just a tetrahedral mesh as the set of
its vertices and tetrahedra - yet retaining the possibility that additional data may be supplied (e.g. labels on
the boundary triangles, normal vectors at the boundary vertices, etc...). On that basis, a relevant continuous
geometry has to be invented to serve as a guide throughout the remeshing operation. For instance, when
a node is created on the surface part of the mesh, we expect it to belong to some kind of ‘smooth model’
associated to the surface, rather than on the triangulated surface itself, for obvious approximation reasons.

Generating a tetrahedral mesh out of a sole surface triangulation is a very difficult problem, which very few
existing algorithms manage to tackle with suitable robustness. Hence, when it comes to remeshing a supplied
tetrahedral mesh, we think it better to handle at the same time both boundary and interior parts, relying
on local remeshing operators which allow to pass from one ’valid’ mesh to another, rather than dropping the
tetrahedral part, remeshing the surface part, then generating a new tetrahedral mesh, associated to the new
surface triangulation.

The remainder of this paper is organized as follows: after presenting shortly the stakes of the remeshing
problem in section 2, a surface model for creating a continuous geometry in connection with the input mesh is
introduced in section 3, as well as the rules for appraising the quality of this mesh as an approximation of this
geometry. Then, section 4 goes into the specifics of three-dimensional remeshing: the local mesh modification
operators are described, as well as the way to drive them so as to comply with the previous geometric
controls. The global remeshing strategy is outlined, and numerical examples are discussed. From this
domain remeshing algorithm, an algorithm for meshing three-dimensional implicit domains is subsequently
derived in section 5. Two applications of the latter algorithm are then introduced: a method for generating
a tetrahedral mesh from a triangulated surface in section 6, then a generic process for free and moving
boundary problems in section 7.

2. Description of the remeshing problem and main notations

Let T be a conforming tetrahedral mesh in R3 (see [7] or [22] for the basic material as regards meshing).
We shall consistently identify T with the underlying polygonal domain. T is intended as an approximation
of a continuous ideal domain Ω.

The topological boundary ST of T is a conforming triangulated surface embedded in R3, meant to represent
∂Ω: it is referred to as the associated surface mesh to T . In the following, we will assume ST is an interpolating
triangulation of ∂Ω, meaning the vertices of ST lie on ∂Ω.

Mesh T may be inappropriate as a mesh of Ω for at least two reasons:

• The surface triangulation ST may be a poor geometric approximation of ∂Ω, or T may contain
elements which do not match a desired size feature, imposed by the user, or ill-shaped elements as
far as mesh quality is concerned.

• T may be of poor mesh quality, or may not be adapted to a desired size feature.

Our goal is to remesh T into a new mesh T̃ , which is a close geometric approximation of Ω within a specified
range, is well-shaped, and possibly adapted to a specified local size feature.

Throughout this paper, the produced meshes are expected to be the support of physical or mechanical
computations (e.g. with finite element or finite volume methods). The notion of quality of a tetrahedron (or

2

a mesh being well-shaped) is therefore oriented in this perspective. In such a context, many classical error
estimates (see [9] for instance) involve the eccentricity σK = ρK/hK of elements K ∈ T , where ρK stands
for the inradius of K, and hK for its diameter. In the sequel, we will rather rely on the following quality
function Q(K) of a tetrahedron K with edges e1, ..., e6, which retains the same theoretical meaning as σK ,
but shows a better numerical ability when it comes to discriminate ‘good’ from ‘average’, or ‘bad’ elements:

Q(K) = α
Vol(K)

(
6∑
i=1

||ei||2
) 3

2

, α = 144
√

3.

One can show that, for any tetrahedron K, Q(K) ≤ 1, and equality holds if and only if K is regular.

The proposed approach is a local, iterative remeshing procedure: starting from T , and conducting opera-

tions which affect very limited areas of the meshes at hand, a sequence of meshes T = T1, ..., Tk, ..., TN = T̃
is produced, that converges towards T̃ . It relies on four user-defined parameters ε, hmin, hmax and hgrad:

• ε is the tolerance over the geometric approximation of ∂Ω: T̃ should be such that:

dH(∂Ω,ST̃) ≤ ε,
where dH denotes the Hausdorff distance between compact subsets of R3.

• hmin (resp. hmax) is the minimal (resp. maximal) authorized size for an edge of T̃ . They should

be understood as ‘security bounds’ over the desired length scale for the resulting mesh T̃ , and it is

expected that a wise choice of parameter ε govern the size prescription for elements of T̃ on its own.

• hgrad is a control parameter for the variation of edge lengths among T̃ : for any two edges ap, bp ∈ T̃ ,
one should have:

(1)
1

hgrad
≤ ||b− p||||p− a|| ≤ hgrad.

Whereas hmin, hmax and ε depend by essence on the length scale of T , hgrad does not. Typical values for
hgrad are 1.2, 1.3, As we shall see in the sequel, the role of the last parameter is only to control the mesh
quality when mechanical computations using mesh T are considered.

Notations: If p ∈ T (resp. ST) is a vertex, B(p) (resp. BS(p)) is the ball (resp. surface ball) of p,
that is, the set of tetrahedra of T (resp. triangles of ST) sharing p as a vertex.

Similarly, if pq is an edge of T , the shell Sh(pq) of pq is the set of tetrahedra of T sharing pq as an edge.

3. From the triangulated surface to the ideal surface

Certainly, in remeshing T , the associated surface triangulation ST plays a central role. Actually, ST
governs on its own the accuracy of T as a geometric approximation of Ω.

As mentioned above, such an ideal surface ∂Ω is unknown, and so as to manage the local modifications,
we need to create it from the data at hand. Actually, one could think of mainly two ways for doing so.

The first one consists in inferring a whole underlying surface to ST as a pre-processing stage for remeshing.
This surface ∂Ω is then kept in memory, for instance under the form of a parametrization σ : U → ∂Ω (this
is the point of view in [3]). The parameter space U can be an open subdomain of R2 [16] [20], or the surface
ST itself [40]. This parametrization is stored, and at each stage of the remeshing procedure, the current
triangulation STk is compared to this guess for ∂Ω in order to appraise the geometric approximation. Such
an approach is well-posed on the theoretical side: all the produced triangulations are compared to one single
continuous surface; however the storage and numerous comparisons involved generally turn out quite costly.

On the contrary, we could limit ourselves with generating local models for ∂Ω : at each stage Tk of
the remeshing process, when an operation around a node x of STk is performed, a local parametrization
σU : U → V ⊂ ∂Ω from an open set U ⊂ R2 to a neighborhood V of x in ∂Ω is computed using local features.
This approach is obviously more efficient, from the computational point of view, but it raises a difficulty:
the triangulation STk supporting the features from which these local parametrizations are generated may
change slightly from one stage to another.

3

In what follows, we will rely on the second approach, referring with some abuse in terminology to the ideal
surface ∂Ω associated to the various surface meshes at hand during the process, neglecting the dependance on
the triangulation Tk used to this end. We will see some heuristics to guarantee that the generated geometric
support in a given area does not deviate along the steps of the process.

We are thus led to set rules to infer a piece of the underlying surface ∂Ω from the datum of a piece of the
current discrete geometry at the investigated stage.

3.1. Identification of the geometric features on the surface mesh.

The first step in associating to ST a relevant continuous geometry consists in identifying different kinds of
entities (points, edges or faces) corresponding to significant geometrical features of ST (and thus ∂Ω) which
will constrain the admissible operations carried out during remeshing. We mainly identify:

(1) geometric edges (or points), or ridges: edges delimiting two portions of surface which intersect with
a sharp angle. Ridges can be inferred from the input triangulation by relying on a threshold value
on the dihedral angle between pairs of adjacent triangles.

(2) reference edges (or points): edges at the interface between two triangles Ti 6= Tj holding differ-
ent labels, corresponding for instance to boundary conditions in a finite element, or finite volume
computation.

(3) singular points: points which arise as endpoints of at least 3 special edges, and thus cannot be
considered as ‘regular points’ on a ridge curve, reference curve. Such points should not be affected
by the process.

(4) (optionally) required entities: any user-specified entity which must stay unchanged during remeshing.
(5) ordinary entities.

Once such a classification is reached, we infer from the knowledge of ST approximations of some geometric
data attached to ∂Ω, depending on the nature of the considered point - for instance (see [22], §19.2.1):

• In the neighbourhood of a regular vertex x, the ideal surface ∂Ω is smooth (at least of class C1) and
we will rely on an approximation of n(x), the unit normal vector to ∂Ω at x, pointing outwards Ω.
This is achieved from the discrete surface ST using a formula such as:

n(x) ≈
∑
T∈B(x) αT nT∣∣∣

∣∣∣
∑
T∈B(x) αT nT

∣∣∣
∣∣∣
,

where αT are coefficients in [0, 1] such that
∑
T∈B(x) αT = 1, and nT is the unit normal (pointing

outwards surface ST) to a triangle T . Several choices are possible as for the values of αT . Some
authors are used to taking them all equal to one another, others take each αT proportional to the
area of T ,... none of these options being clearly independent from the discretization. We retained
the last one, which proves satisfactory for our purpose.

• According to the above terminology, non singular ridge vertices x of T are vertices belonging to ridge
curves of ∂Ω, that is curves delimiting two portions of surfaces which intersect with a sharp dihedral
angle. Such points enjoy two normal vectors (one for each piece of surface), say n1(x), n2(x) , which
are reconstructed in the discrete context in the same way as for regular vertices, and a tangent vector
τ(x) (the tangent vector to the ridge curve), which is uniquely determined by its belonging to two
distinct ‘tangent’ planes.

These supplementary pieces of information about the ideal surface ∂Ω, approximated from the discrete
geometry, will allow us to define a local surface model for ∂Ω.

3.2. Local reconstruction of the ideal surface from the discrete geometry.

The purpose of this section is to provide the rules for inferring the local geometry of the ideal surface
∂Ω around a triangle T of STk from the geometric features attached to T , described in section 3.1. This
proposed surface model is very reminiscent of [43].

4

In the following, we make the assumption that each triangle T = (a0 a1 a2) ∈ ST accounts for a smooth
portion of S, whose boundaries may be ridge curves, reference curves, etc... The portion of ∂Ω associated

to T is modeled as a cubic piece of surface σ(T̂), where

T̂ :=
{

(u, v) ∈ R2, | u ≥ 0, v ≥ 0, w := 1− u− v ≥ 0
}

stands for the reference triangle in the plane, and each component of σ : T̂ → R3 is a polynomial of total

degree 3 in two variables u, v ∈ T̂ . It will turn out convenient to write σ under the form of a Bézier cubic
polynomial [18]:

(2) ∀(u, v) ∈ T̂ , σ(u, v) =
∑

i,j,k∈{0,...,3}
i+j+k=3

3!

i!j!k!
wiujvk bi,j,k,

where the bi,j,k ∈ R3 are control points, yet to be specified. See figure 1 for an illustration.

�T

σ a0 = b3,0,0

b1,2,0

a1 = b0,3,0

a2 = b0,0,3

b1,0,2 b2,0,1 b2,1,0

b0,1,2

b0,2,1
b1,1,1

•
•

•• • •
•

•
• •

S
T

(0, 0)

(0, 1)

(1, 0)

Figure 1. A piece of parametric Bézier cubic surface, associated to triangle T , with control
points bi,j,k.

We also denote as γ0, γ1, γ2 the boundary curves of σ(T̂):

∀t ∈ [0, 1], γ0(t) = σ(1− t, t), γ1(t) = σ(0, t), γ2(t) = σ(t, 0).

The choice of the control points bi,j,k is dictated by the geometrical features of ∂Ω we approximated in
section 3.1, or by other requirements we may want our local geometry to meet.

3.2.1. Choice of the three ‘vertex’ control points. The natural requirement that ST should interpolate ∂Ω

prompts the choice of the three vertices of T as the three vertices of σ(T̂), that is:

b3,0,0 = a0, b0,3,0 = a1, and b0,0,3 = a2.

3.2.2. Choice of the six ‘curve’ control points. We required σ(T̂) should be a smooth piece of surface. In

particular, σ(T̂) enjoys a tangent plane TaiS at each vertex ai, whose normal vector ni should match the
reconstructed geometric information at ai.

On the other hand, it is well-known (see [18] for instance) that the whole geometry of Bézier curves and
surfaces can be expressed in terms of their control points; for instance, the tangent vector at a0 to the
boundary curve γ2 is 3(b2,1,0 − b3,0,0), and the tangent at a0 to γ1 is 3(b2,0,1 − b3,0,0).

Hence, the tangent plane to σ(T̂) at a0 is the expected tangent plane Ta0∂Ω provided b2,1,0 and b2,0,1 are
chosen in such a way that (b2,1,0− a0) and (b2,0,1− a0) are non colinear, and both orthogonal to n0. Similar
relations hold when it comes to a1, a2 and control points b0,2,1, b1,2,0, b1,0,2 and b0,1,2.

This still allows some latitude as for the choice of these coefficients. In [43], the authors propose to take,
for instance, b2,1,0 as the orthogonal projection over Ta0∂Ω of point a0 + (a1 − a0)/3. Instead of this, we

5

propose to use the fact we want our local surface reconstruction to be as independent as possible from the
support triangle T used for its computation to devise some heuristics as for the choice of these control points.

This means that we would like γ0, γ1, γ2 to be independent on the choice of the points on these curves.
Because on any Riemannian manifold two ‘close enough’ points are connected by a unique geodesic curve
[15], a way to enforce this independency would be to choose the control points so that γ0, γ1, γ2 are geodesics

of σ(T̂), that is, curves with constant speed. This property, in turn can only be enforced in some kind of
‘weak sense’: we imposed in the case of γ0 (similar conditions hold for γ1, γ2) that γ0′(0) should be colinear
to the orthogonal projection of (a2 − a1) over Ta1S, and have a fixed norm ||γ0′(0)|| = ||a2 − a1||/3, and
symmetrically for γ0′(1). Doing so uniquely determines the six coefficients attached to the boundary curves.

3.2.3. Choice of the central coefficient. We simply take:

b1,1,1 = m+
m− v

2
, v :=

a0 + a1 + a2

3
; m :=

b2,1,0 + b2,0,1 + b1,2,0 + b0,2,1 + b1,0,2 + b0,1,2
6

,

which guarantees that, if there exists a quadratic polynomial parametrization σ̃ : T̂ → R3 whose boundary

curves t 7→ σ̃(1 − t, t), σ̃(t, 0) and σ̃(0, t) coincide with γ0, γ1 and γ2 respectively, then σ = σ̃ over T̂ [18].
Note that the choice of the central coefficient b1,1,1 does not affect the geometry of γ0, γ1, γ2.

Remarks 1. • The choice of the four control points along each boundary curve γi only involves geo-
metric data attached to this curve. This fact implies that our rules for generating a piece of ∂Ω are
consistent from one triangle to its neighbor, that is, if Ti, Tj ∈ ST share a common edge ei,j, the
underlying boundary curve associated to ei,j via the local parametrization generated from Ti is the
same as from Tj.

• Actually, the proposed rules for generating portions of ∂Ω from triangles of ST apply accordingly
when it comes to generating curves drawn on ∂Ω from edges of ST .

3.3. Estimating the gap between the surface triangulation and the ideal surface.

At some point in the process, we need to measure (or at least to control) how far each triangle T of ST
lies from its corresponding part on ∂Ω. Such a knowledge is mandatory when it comes to evaluating whether
an operation performed on T (see section 4.1) improves or degrades the geometric approximation of ∂Ω.

Putting parametrization σ under the form (2) allows to derive a close and fast control over the Hausdorff

distance dH(T, σ(T̂)) between a given surface triangle T ∈ ST and the corresponding piece of ideal surface

σ(T̂) ⊂ ∂Ω, which only involves geometric quantities attached to T .

Indeed, σ(T̂) is comprised in the convex hull of the control points bi,j,k, because for all (u, v) ∈ T̂ , σ(u, v)
is a convex combination of the bi,j,k. As a consequence, one easily sees that

(3) dH(T, σ(T̂)) ≤ max
l=0,1,2,
i+j+k=3

d(al, bi,j,k),

and a similar estimate holds when it comes to controlling the Hausdorff distance between each edge a1a2, a0a2,

or a0a1 of T and the corresponding boundary curve γ0, γ1, or γ2 of σ(T̂).

4. Discrete three-dimensional domain remeshing

We now describe the salient features of the proposed method for remeshing an input tetrahedral mesh T
of a domain Ω ⊂ R3. This method relies on four parameters, ε (tolerance over geometric approximation),
hmin, hmax (resp. minimum, maximum authorized edge length), and hgrad (mesh gradation parameter),
whose precise meaning will be specified below.

4.1. Description of the local remeshing operators.

In this section, we dwell on an abridged description of the local operators used in the remeshing process of T
(see [13] for internal operators, [21] for surface operators, and [11] for full details). All these admittedly rather
classical operators [22] enjoy two forms, depending on whether they are applied to a surface configuration
- i.e. to a configuration ‘close’ to surface triangles of ST - or to a purely internal one. If no particular
attention is paid, these operators may invalidate T (e.g. invert some of its elements), degrade the geometric

6

approximation of Ω more than the prescribed tolerance, or degrade too much the mesh quality. Consequently,
adequate checks have to be performed systematically.

4.1.1. Edge split. This is the main tool when it comes to enriching an undersampled mesh. Splitting an edge
pq ∈ T consists in introducing a new point m in the mesh, then replacing pq by the two edges pm and mq,
and updating the connectivities of T accordingly. In the context of domain remeshing, two cases arise:

• if the processed edge pq is a surface edge, i.e. pq ∈ ST , let γ : [0, 1]→ ∂Ω the associated curve to pq
(see section 3.2). The new point m is taken as m = γ(1

2).
• if pq is an internal edge, m is simply inserted as the midpoint of p and q.

Retaining the formal assumption that the local parametrizations σ described in section 3.2 are pieces of
the same ideal surface ∂Ω, splitting edges on a surface triangle T ∈ ST always enhances the geometric
approximation of ∂Ω.

Now, there are several ways to split edges within a mesh T : the simplest one consists in traveling all the
edges in T , and as soon as an edge meeting the splitting criterion is met, carrying out the splitting operation.
However, we noticed that repeatedly splitting elements along only one edge tends in the long run to produce
very ill-shaped elements.

For this reason, we favored another approach, which consists in identifying in a first step all the edges of
T that should be split, then to proceed to splitting, resorting to patterns on each tetrahedron K, possibly
reiterating the process if some edges need to be split several times, or preventing those splits that may
invalidate the mesh.

4.1.2. Edge collapse. This is the key ingredient in removing a vertex from a mesh (which proves useful when
decimating an oversampled mesh). Collapsing an edge pq ∈ T consists in merging its two endpoints into
a single one : say p is collapsed onto q for simplicity. The elements of the shell Sh(pq) disappear in the
process, and all the other tetrahedra K ∈ T which had p as a vertex (i.e. K ∈ B(p)), now have q instead.

This operator ought to be driven carefully, and several checks are in order, depending on the nature of
the processed edge:

• Some collapses are strictly forbidden, e.g. a point p should not be collapsed onto another point q
if p belongs to ST and q does not, a ridge point p ∈ ST should not be collapsed onto another non
ridge point q ∈ ST , a required vertex cannot be removed. Some of these checks may be application-
dependent.

• If pq ∈ ST , one must ensure that the Hausdorff distance between each new surface triangle and the
corresponding part on ∂Ω is no greater than the prescribed tolerance ε (see section 3.2). Furthermore,
some additional checks have to be performed, to avoid invalidating or ‘folding’ ST . Eventually, checks
have to be performed on the support tetrahedra K ∈ T to the concerned surface triangles T ∈ ST ,
so that they do not result invalidated in the process.

• If pq is an internal edge, one only need check that the elements K ∈ T affected by the operation
(which are those of B(p) \ Sh(pq)) are not invalidated in the process.

4.1.3. Edge swap. Edge swap plays a key role in improving the overall mesh quality, and acts only on
the connectivities of T , leaving its vertices’ positions unchanged. This operator is significantly different
depending on whether it is applied to a surface edge or an internal one.

• If the processed edge pq lies on ST , introducing T1 = pqa, T2 = pqb ⊂ ST the two surface triangles
sharing pq, the only possibility for swapping pq consists in replacing it by ab, and updating T
accordingly (figure 3(a-b)). Such an operation can only be performed when it is consistent with
the geometry of ∂Ω, and does not entail too large a gap between the resulting triangles and their
corresponding piece of ∂Ω. Besides, the validity of the affected tetrahedra of T has to be checked.

• Swapping an internal edge pq is more combinatorial [23]. In this case, the enumeration of the
vertices of the elements K ∈ Sh(pq) which are neither p, nor q defines an oriented pseudo-polygon
a1...an. This (non planar) pseudo-polygon is then triangulated, and each resulting triangulated face
is connected to p and q to provide a new tetrahedralization of the area once occupied by Sh(pq).

7

p

q

a bT1 T2

nT2
nT1

p

q

a b

n�T1

n�T2

�T2

�T1

Figure 2. Swap of edge pq : triangles T1, T2 are updated to T̃1, T̃2, a configuration more
consistent with the geometric data.

Thus, the number of possible swapped configuration equals the number of triangulations of the
pseudo-polygon, that is the Catalan number Cn, defined as:

Cn =
1

n+ 1

(
2n

n

)
,

which grows dramatically with n.
So as to avoid a very tedious enumeration of the different configurations until a valid one is found,

we adopted a somewhat different approach, less general yet much easier to implement. Swapping
edge pq is achieved within two steps (see figure 3(c)):

•

•

p

q

•
• • •

• • • •

a1
an a2

• m

Figure 3. Swap of pq, introducing its midpoint m in the mesh, then collapsing it on one
of the vertices of the pseudo-polygon associated to Sh(pq).

step 1: pq is split at its midpoint m. All the connections mai, i = 1, ..., n are created in the process.
step 2: Point m is collapsed onto one of the ai: each one of the collapses of edges ma1, ...,man is tested

in turn, and the first valid operation is retained.

4.1.4. Node relocation. This last operator is mainly devoted to improving the quality of the mesh. A vertex
p ∈ T is moved to a new position p̃ so that the quality of the local configuration results improved. Computing
the position of p̃ follows a different heuristic depending on whether p belongs to ST or not:

• If p ∈ ST , the surface ball BS(p) is projected onto the tangent plane Tp∂Ω, and a local parametriza-
tion of ∂Ω by a part of Tp∂Ω is generated along the lines of section 3.2. A new position is then
computed on Tp∂Ω as the center of mass of the projected ball of p onto Tp∂Ω (of course, one may
think of other choices as for this new position). Finally, the corresponding point p̃ is taken on ∂Ω.

• If p is not a surface point, the ball B(p) of p is enumerated, and p̃ is taken as its center of mass.
8

In both cases, the resulting configuration of the vertex relocation procedure has to be checked, so that no
element ends up invalidated in the process and the quality of the mesh is indeed enhanced.

•p

TpS

∂Ω

�p •

Figure 4. Relocation of vertex p: BS(p) is projected onto TpS, and an optimal position is
sought on TpS, then projected onto S (right).

4.2. Local size feature.

At this point, we still lack a global vision to drive our remeshing strategy, that is to identify (and possibly
classify) those edges of T that should be split, collapsed, or swapped. Since [21] [26], a very convenient
means to encode such information has been that of a size function h : Ω→ R, so that for each x ∈ Ω, h(x)
accounts for the local desired size for edges of T lying around x. The final aim of the process is then to

produce a new mesh T̃ of Ω, whose edges pq have (as far as possible) unit length `h(pq) with respect to h,
that is:

∀ pq ∈ T̃ , `h(pq) :=

∫ 1

0

||pq||
h(p+ t(q − p)) dt ≈ 1.

In numerical practice, h is defined and stored at the vertices of T :

• If x ∈ ST , the size prescription h(x) in a neighborhood of x stems from a heuristic based on the
following theorem (see [11] for a precise statement, and a proof):

Theorem 1. Let Ω ⊂ Rd a domain, and T a mesh, whose associated surface mesh ST is ‘close’
from ∂Ω. Denote as dΩ the signed distance function to Ω, and as H(dΩ) its Hessian matrix. Then

dH(∂Ω,ST) ≤ 1

2

(
d− 1

d

)2

max
T∈ST

max
x∈T

max
y,z∈T

〈|H(dΩ)(x)|yz, yz〉.

Since, for all x ∈ ∂Ω, H(dΩ)(x) is nothing but the second fundamental form IIx : Tx∂Ω×Tx∂Ω→
R, this leads us to the choice:

∀x ∈ S, h(x) =

√
9ε

2 max(|κ1(x)|, |κ2(x)|) ,

where κ1(x), κ2(x) are the principal curvatures of ∂Ω at x. This formula may be truncated according

to the minimal and maximal authorized (Euclidean) sizes for edges of T̃ , hmin and hmax.
• If x /∈ ST , there is no particular size to impose near x, whence: h(x) = hmax.

Of course, this is to be coupled with the possible datum of a user-defined size function m : Ω → R - which
may stem from an error estimate associated to a numerical method performed on T , for instance.

Unfortunately, conforming to such a size prescription is not a sufficient criterion to guarantee the resulting

mesh T̃ will enjoy a fine mesh quality. As noticed in [5], shocks in size prescriptions between close areas on
T may impose ill-shaped elements to a unit mesh with respect to h. For this reason, it may be desirable

to drive our remeshing operators so that two adjacent edges ap, bp in T̃ have Euclidean lengths satisfying
9

(1).To achieve this, we follow the heuristic approach in [31], noticing that any two adjacent edges ap, bp in

a unit mesh T̃ with respect to h comply with (1) provided h fulfills the following property:

∀ edge pq ∈ T , |h(p)− h(q)|
||pq|| ≤ log(hgrad),

and enforce the latter condition by truncating the size function h accordingly.

4.3. The complete remeshing strategy.

First and foremost, some general comments or observations based on our experience are in order:

• We thought it better to proceed both the surface and internal parts of T at the same time. This was
motivated by the observation that a dramatically ill-shaped mesh T associated to an ideal domain
∂Ω may present a very nicely-shaped surface part ST .

• On a different note, it turned out that tetrahedra are generally much more prone to degenerating as
(surface) triangles, meaning that within very few operations, a well-shaped tetrahedron may end up
nearly flat, unless the degeneracy in quality of elements is explicitly controlled and prevented in the
course of each operation. For this reason, the operators presented in the previous section appear as
more severely constrained as in the context of sole surface remeshing.

• It appeared that the edge swap operation has a significantly different impact between the surface
and domain remeshing contexts: in the former case, edge swap helps noticeably to increase the
overall quality of the elements of the mesh, but a satisfying overall mesh quality can still be obtained
without using it; on the contrary, in the case of domain remeshing, we were never able to reach
any good-quality resulting mesh without the (massive) use of edge swap (for surface as for internal
edges). See section 4.4 for an illustration of this feature.

• The node relocation operator is not really involved in removing very ill-shaped elements from the
mesh as the edge swap operator is. However, its impact on increasing the overall quality of the
resulting mesh is substantial.

Now, starting from an initial tetrahedral mesh T , and given the four parameters ε, hmin, hmax and hgrad
introduced above, the proposed remeshing strategy rolls out as follows:

step 1: Analysis of the surface mesh ST . Additional information about ∂Ω are inferred from ST , along the
lines of section 3.1.

step 2: Rough mesh modifications for a good ‘sampling’ of the surface. This first real stage of mesh modifi-

cations aims at producing a new mesh T̃1 of Ω which is a nice geometric approximation, with respect
to the authorized tolerance: dH(ST̃1 , ∂Ω) ≤ ε. Starting from T , we proceed within several (typically,

five, six) iterations of the form:
(1): Identify all the edges of ST that should be split - i.e. either they have greater length than hmax,

or the Hausdorff distance between them and the associated curves on S is higher than ε - then
split them (using patterns).

(2): Identify all the internal edges of the mesh that should be split, then split them (using patterns).
(3): Travel all the edges of the mesh, and collapse all the ones that should, and can be collapsed.
(4): Travel all the edges of the mesh, and swap all the ones that should, and can be swapped.

Note that the splitting operation has been divided into two steps : the first one processes surface
edges, while the second one only concerns internal ones. This is actually nothing but a technicality
aimed at limiting the number of splitting patterns (thus the programming effort), and it does not
challenge the commitment to treat the surface and internal parts of the mesh at the same time.

step 3: Construction of the size function. Although it may still be of poor quality, T̃1 accounts for a suitable
geometric approximation of Ω. It is then relevant to compute the size function h : Ω → R which
relies on higher-order features of ∂Ω (see section 4.2).

step 4: Rough mesh modifications with respect to the size function. We proceed almost exactly as in step (2)

so as to get the next mesh T̃2, except on two aspects: first, we rely now on lengths measured with
respect to h. More specifically, aiming at getting a new triangulation whose edges have length 1 with
respect to h (which is, of course, impossible), we choose rough bounds `r,min, `r,max outside which

10

no edge length should lie (typically, we used `r,min = 0.3, `r,max = 2.5). Second, we take much more
caution about mesh quality as during step (2) in the control of the remeshing operators.

step 5: Fine mesh modifications with respect to the size function. Mesh T̃2 should be ‘almost good’ in terms
of geometric approximation of Ω and of mesh quality. We perform delicately driven operations so as

to get the final mesh T̃ . Lengths of edges are still evaluated with respect to h, except we now impose

T̃ have no edge with length lying outside a sharper interval as before, of the form [`f,min, `f,max](we
used `f,min = 0.7, `f,max = 1.3). We are also even stricter as in step (4) as far as the authorized
degradation in mesh quality is concerned. Another important improvement with respect to steps (2)
and (4) is that we now add the vertex relocation operator to our toolbox. The iterations performed
during steps (2) and (4) evolve into :
(1) Travel all the edges of the mesh, and split (now in a one-by-one fashion) all the ones that should,

and can be split.
(2) Travel all the edges of the mesh, and collapse all the ones that should, and can be collapsed.
(3) Travel all the edges of the mesh, and swap all the ones that should, and can be swapped.
(4) Travel all the vertices of the mesh, and relocate all the ones that should, and can be relocated.

4.4. Numerical examples.

As a support to the previous developments, let us give two numerical illustrations of discrete domain
remeshing.

4.4.1. High-quality remeshing of smooth domains or mechanical parts. Figure 5 provides a first view of the
behavior of the proposed strategy for discrete domain remeshing. In this example, a very ill-shaped three-
dimensional mesh is obtained from an initial STL surface triangulation in such a way as the resulting meshes
have almost no interior point. This initial mesh is then remeshed into a well-shaped mesh resorting to the
proposed approach. The initial mesh enjoys 1, 254 vertices; the whole computation took a few seconds, and
the final mesh enjoys 8, 424 vertices. The average quality of the initial mesh is 0.0479 (the worst quality for
an element is 1.e−6), whereas the average quality of the final mesh is 0.7737 (the worst quality of an element
being 0.19).

In order to emphasize the huge impact of the edge swap operator in our remeshing process, we performed
exactly the same test, without using edge swap. In this case, the proposed algorithm turns out unable
to produce a well-shaped mesh (mainly because the collapse operator is too much constrained by very ill-
shaped configurations): after a computation which lasts 100.65s, the final mesh has 46, 222 vertices. Its
average quality is only 0.07, and the worst quality of an element of the mesh is 2.e−6.

4.4.2. Remeshing of a domain with respect to a user-defined size map. We investigate the datum of a user-
specified size map m : Ω → R on the considered domain Ω. More specifically, once again, we dwell on the
case when m is associated to the interpolation error of a smooth function.

Let f : Ω→ R a function of class C2, which presents ‘sharp variations’. For instance,

(4) ∀p = (x, y, z) ∈ Ω, f(p) = tanh(y3) tanh((z − 2)3).

We aim at modifying the initial mesh T so that interpolating (linearly) f over the resulting mesh T̃ entails
an L∞-error controlled by a parameter εm, and rely on theorem 2 in [4] to cook an associated size function
m : Ω→ R to such a control.

Figure 6 displays the resulting mesh after 4 remeshing procedures for adaptation to the interpolation of
f - starting from a rather coarse triangulation T of the domain Ω depicted on the figure, with parameter
εm = 0.01. The parameters chosen for remeshing are (for each one of the 4 steps) : hmin = 0.2, hmax = 3,
hgrad = 1.4, and ε = 0.3. The whole computation took 2 minutes and 46s, and the final mesh enjoys 73701
vertices, for an average quality of 0.77.

11

(a) (b)

(c) (d)

Figure 5. Remeshing of the model02 model, enclosed in a box of dimensions 0.199×0.199×
0.12. The parameters used for the computation are: hmin = 0.001, hmax = 0.1, hgrad = 1.2

and ε = 0.001. (a)-(c) Initial mesh T ; (b)-(d) final result T̃ .

5. Meshing of implicitly-defined domains

Hitherto, we focused on remeshing domains Ω ⊂ R3 supplied by means of an initial tetrahedral mesh.
Here we adopt a slightly different perspective, and investigate into the case when Ω is described as the
negative subdomain of a scalar function defined over the whole space.

More specifically, let Ω ⊂ R3 a bounded smooth enough ‘ideal’ domain. Ω is known through the datum
of an associated smooth enough implicit function φ : R3 → R, i.e. the following relations hold:

(5) ∀x ∈ R3,

φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈c Ω

; ∀x ∈ ∂Ω, ∇φ(x) 6= 0.

In numerical practice, we are given a mesh T of a ‘big’ computational domain D ⊂ R3 (e.g. a box), which
is the support of a numerical approximation φT of φ. For the sake of simplicity, in this paper we assume

12

(a) (b)

(c) (d)

Figure 6. Remeshing with respect to a size map devised for the control of the interpolation
error of function f given by (4); (a) The initial mesh T , together with a color map associated

to the values of f , (c) a cut in T ; (b) the resulting adapted mesh T̃ , carrying function f ,

(d) a cut in T̃ .

that φT is a P1 Lagrange finite element function over T , i.e. for each K ∈ T , the restriction φT |K is affine.

Our problem is now to obtain from T and φT a well-shaped mesh of Ω - more accurately of D ∩ Ω. The
method proposed to do so is a rather straightforward extension of the remeshing algorithm described in
section 4, up to the addition of one - possibly two - ingredients. Indeed, it proceeds within two main steps
(see figure 7 for an illustration in two space dimensions):

(1) The 0 level set of φT - say SφT := {x ∈ D | φT (x) = 0} - is explicitly discretized in T . A new mesh

T̃1 of D is obtained, which contains a mesh T1′ of D ∩ Ω as a submesh.

(2) Mesh T̃1 is modified, so that a new, closely approximating, well-shaped mesh T̃ of D is obtained,
which contains a closely approximating, well-shaped mesh T ′ of D ∩ Ω as a submesh.

Hence, this method produces a bit more than a sole mesh of D ∩ Ω, namely a new mesh T̃ of the whole
computational domain D, a submesh T ′ of which is a mesh of D ∩Ω. This will come in handy in section 7.

13

Figure 7. (left) Level sets of a P1 function φT on a two-dimension mesh T of a box D ;

(middle) the ill-shaped mesh T̃1, obtained by the explicit discretization of the 0 level set of

φT into T ; (right) the final, well-shaped mesh T̃ , containing a mesh of Ω (in yellow) as a
submesh.

5.1. Explicit discretization of the 0 level set of φT into T .

The first step in constructing a suitable mesh of D ∩ Ω boils down to enforcing an explicit discretization
of D ∩ Ω. This is achieved through the following marching tetrahedra procedure, which is a well-known
variation of the marching cubes algorithm [32]:

(1) Identify the set K of elements K ∈ T intersecting SφT : a tetrahedron K = a0a1a2a3 belong to K if
and only if there exists i 6= j in {0, ..., 3} with φT (ai) ≥ 0, and φT (aj) ≤ 0.

(2) For an element K = a0a1a2a3 ∈ K, the intersection of SφT ∩K is a plane portion of surface. Identify
the edges aiaj of K which intersect SφT (i.e. such that φT (ai) and φT (aj) have different signs), and
compute the coordinates of the associated intersection points mai,aj .

(3) Travel all the elements K ∈ K, and split them, introducing the pre-computed points mai,aj , then
using patterns (see figure 8). Up to permutations, there are four possible configurations, depending
on the relative signs of the φT (ai).

•

•
•

•

a2

a3

a0

a1

••

•

•

ma1,a2

ma0,a2

ma0,a3

ma1,a3

K

•
•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

−→

K

Figure 8. (left) One of the possible situations when SφT (in light red) crosses an element
K ∈ T ; (right) example of a splitting pattern for a tetrahedron K ∈ T which is crossed by
SφT in such a way as three of its vertices share the same sign (the blue ones).

This procedure delivers a new mesh T̃1 of D, which is most likely very ill-shaped; yet, it is conforming
and contains a mesh T1′ of D ∩ Ω as a submesh.

14

5.2. From discrete domain remeshing to discrete domain and subdomains remeshing.

We now have a mesh T̃1 of D, a submesh T1′ of which accounts for D ∩ Ω. Let us denote as ST̃1 the

associated total surface mesh, that is,
ST̃1 = ET̃1 ∪ IT̃1 ,

where ET̃1 stands for the collection of all the (triangular) external faces to the elements of T̃1, and IT̃1
is the set of the external faces of the elements of T1′ which do not already belong to ET̃1 . In other terms,

ET̃1 is the surface mesh associated to ∂D, and IT̃1 is the surface mesh associated to ∂(D∩Ω)\∂D (see figure 9).

Our purpose is to remesh T̃1 into a new, high-quality mesh T̃ of D, a submesh T ′ of which accounts for
D∩Ω, and such that the associated total surface mesh ST̃ is a close approximation of ∂D∪∂(D∩Ω), within
a prescribed range ε in terms of Hausdorff distance.

This problem is very close to the problem of discrete domain remeshing, as presented in section 4. Suppose
for now that the two surfaces ∂D and ∂Ω at stake are disjoint (figure 9, left). Then, the faces of ET̃1 and

IT̃1 can be processed independently, in the same way as described in section 4. Admittedly, the entities

belonging to IT̃1 are a priori more severely constrained compared to those of ET̃1 , since they are connected

to more elements of T̃1, and the several checks to be performed before applying our local remeshing operators
to ensure the validity of the resulting mesh are more likely to fail. Yet, those checks read just the same in
both cases.

The only real change arises when ∂D and ∂Ω do intersect one another. Then, the intersection ET̃1 ∩IT̃1 is

a collection of curves (figure 9, right). In such a situation, both surface meshes ET̃1 , IT̃1 considered separately

are orientable ; yet, their reunion is not. To deal with this particular configuration, a new category of edges
and vertices has to be added to the classification of section 3.1, namely that of non manifold entities: a non

manifold edge (resp. vertex) of T̃1 belongs to at least one triangle of ET̃1 , and to another triangle of IT̃1 .

The description adopted for non manifold edges or vertices is very similar to that of ridge edges or vertices:
a non singular, non manifold point x is equipped with a tangent vector τ(x) to this curve, and a different
normal vector is used, depending on whether the point is processed as belonging to ET̃1 or to IT̃1 .

Apart from this minor change, such configurations raise no further difficulty, and can be tackled in the
very same way as in the case when ∂D ∩ ∂(D ∩ Ω) = ∅.

Figure 9. Two examples of (well-shaped, constant size) meshes of a box D, enclosing a
mesh of a subdomain D∩Ω as a submesh. In both case, the triangular faces of ET̃1 appear in

blue, and those of IT̃1 in red. Only the tetrahedra of D∩Ω have been displayed (in yellow).

On the left-side example, ∂D and D∩Ω are disjoint, whereas they are not on the right-side
one (the yellow edges are those edges which belong to both ET̃1 and IT̃1).

15

6. Application to mesh generation from a possibly invalid surface triangulation

In this section, we present a promising application of the previous implicit domain meshing algorithm in
combination to three-dimensional mesh generation.

Let S = (Ti)i=1,...,NS
a surface triangulation of the boundary ∂Ω of an open bounded domain Ω ⊂ R3.

The classical problem of three-dimensional mesh generation consists in constructing a tetrahedral mesh of Ω,
whose associated surface mesh is exactly S. This problem is very hard in general, and very few algorithms
exist that are sufficiently polyvalent and robust to deal with general enough triangulations S.

Here, we propose a different approach, which inherently requires to drop the constraint that the initial
boundary triangulation S should be retained through the process.

As a first stage, the initial surface triangulation S is embedded in a big computational domain D, equipped
with a simplicial mesh K. Choosing an arbitrary tolerance parameter ε > 0, the method described in [12]
for computing the signed distance function to a triangulated contour and adapting the computational mesh
to this function can be used to produce simultaneously:

• a new (anisotropic) mesh K̃1 of D,
• an approximation of the signed distance function dΩ to Ω as a P1 Lagrange finite element function

dK̃1
on K̃1, which enjoys the following property: the Hausdorff distance dH(SdK̃1

, ∂Ω) between ∂Ω

and the piecewise affine reconstructed surface SdK̃1
:=
{
x ∈ D | dK̃1

(x) = 0
}

is no larger than ε.

Note that the choice of an anisotropic mesh K̃1 as a support of an approximation of dΩ stems from the
concern to guarantee an accurate representation of ∂Ω, using a mesh whose size is moderate.

In a second stage, the negative subdomain of dK̃1
is meshed, using the method presented in section 5,

with the mesh K̃1 of D: a new mesh K̃ of D is produced, which encloses a mesh T of Ω as a submesh.
This procedure is applied to the Venus model displayed on figure 10. Note that the initial surface

triangulation is actually self-intersecting, and non orientable - thus no three-dimensional mesh can enjoy it

as surface triangulation. The total remeshing time, from the datum of the mesh K̃1 of a unit box D and
the approximation dK̃1

to dΩ is 10 min and 9 s, and the parameters of the computation are: hmin = 0.001,

hmax = 0.1, hgrad = 1.2, ε = 0.001, for a final mesh K̃ enjoying an average quality of 0.77.

Remark 1. Looking carefully at the result displayed on figure 10, the obtained mesh T of ∂Ω appears far
from being completely satisfactory in terms of the accuracy of the approximation of ∂Ω by means of the
associated surface mesh ST . Actually, such inaccuracies are concentrated in those regions of ∂Ω where ridge
edges, or singular points are present ; the main reason is that, in those areas, the signed distance function

dΩ is inaccurately computed, whatever the size of the computational mesh K̃1, because the corresponding

ridge edges (or singular points) do not explicitly appear in K̃1. A way to deal with this problem would be

to discretize those edges, or points into K̃1, before computing an approximation dK̃1
to dΩ on it. Thus, dK̃1

would amount to 0 on those edges (or points), and they would appear (up to a geometric equivalent) into T .
This latter part is an ongoing work.

7. Application to free and moving boundary problems

We now propose a combination of the level set method with the previous algorithm for meshing implicitly-
defined domains into a general framework for dealing with free and moving boundary problems, which brings
into play an exact description of the considered shapes (i.e. with a mesh), while benefiting from the versatility
of the level set method. For the sake of clarity, this approach is described in the context of a single evolving
domain Ω among a computational box D; however, its adaptation to the case of an evolving interface Γ
between two subdomains Ω0 and Ω1 := D \ Ω0 follows readily.

7.1. A general algorithm for free and moving boundary problems.

Since the seminal paper [30], the level set method has been one method of choice for interface-capturing.
Roughly speaking, it consists in trading the usual representation of a domain Ω ⊂ Rd whose evolution is at

16

(a) (b) (c)

(d) (e) (f)

Figure 10. Meshing of the Venus model: (a) the initial surface triangulation S, (b-c) the
final three-dimensional mesh T , (d) some isolines of the approximation dK̃1

of dΩ in a cut

plane of the computational mesh K̃1 (around 410000 vertices), (e) some isosurfaces of dK̃1
,

(f) a cut in the final mesh K̃ of D, which encloses T as a submesh, in yellow (around 375000
vertices).

stake for an implicit representation by means of an auxiliary scalar function φ : Rd → R defined so that (5)
holds.

17

Let Ω(t) ⊂ Rd an evolving domain, φ : [0, T]× Rd 3 (t, x) 7→ φ(t, x) ∈ R an associated level set function.
The evolution of Ω(t) is assumed to be dictated by a velocity field V : [0, T] × Rd 3 (t, x) 7→ f(t, x,Ω(t)) ∈
Rd, for a given function f . The latter function may bring into play local (e.g. its mean curvature), or
global features (e.g. as a combination of solutions of PDE posed on Ω); see [37] for examples. In a region
O ⊂ [0, T] × Rd where φ is smooth enough and V is well-defined and smooth enough, a simple use of the
chain-rule yields the so-called level set advection equation:

(6) ∀(t, x) ∈ O, ∂φ

∂t
(t, x) + V (t, x).∇φ(t, x) = 0.

In many applications, the velocity field V happens to be directed along the normal direction to the

interface (or, more accurately to the level sets of φ), that is ∀x, V (t, x) = v(t, x) ∇φ(t,x)
||∇φ(t,x)|| , for some scalar

field v(t, x). Equation (6) is then better rewritten as a Hamilton-Jacobi equation:

(7) ∀(t, x) ∈ O, ∂φ

∂t
(t, x) + v(t, x)||∇φ(t, x)||= 0.

This straightforward analysis is formal, for it can only be applied in areas where φ and V stay smooth
enough. Actually, it is well-known that even domains evolving according to very simple vector fields may
develop singularities in finite time, and the way to take into account such singularities is non-trivial and
case-dependent. Most of the time, it requires more information about the physics of the evolution process,
and equations (6,7) have to be understood in a weaker sense - see [6] [17] for illustrations in particular cases.

These considerations go far beyond the scope of this paper; towards simulating realistic models, where
the dependence of f on Ω may be very general (we have in mind the case when computing the velocity field
requires to solve one, or several PDE on Ω), we resort to the classical and heuristic ‘quasi-static’ approach.

The main idea of the proposed approach is to go back and forth between two complementary descriptions
of domains. Let D a large computational domain in which all the considered domains are included, and
Ω ⊂ D; we will either represent Ω as:

• the negative subdomain of an associated level set function φ, numerically discretized on a tetrahedral
mesh of D - this is the suitable description when it comes to accounting for domain evolution.

• a mesh TΩ of the whole domain D, a part of which is a mesh of Ω (i.e. a mesh of Ω is embedded in a
mesh of D in a conforming way); this is the suitable description when it comes to solving mechanical
problems on Ω.

More accurately, the interval [0, T] is split into subintervals [tn, tn+1], where the time step τn := tn+1 − tn
may change from one iteration to the other, and the evolution of Ω(t) through time is numerically achieved
by the sequence (Ωn)n=0,...,N of discrete domains given by the following process:

For n = 0, ..., N − 1, start with a shape Ωn, given under the form of a mesh TΩn of D, a submesh TΩn ′ of
which is a mesh of Ωn.

(1) Generate the signed distance function dΩn to Ωn on the whole mesh TΩn of D. This requires an
algorithm for computing the signed distance function on an unstructured computational mesh (see
[12] for a possible approach).

(2) Retain only the part TΩn ′ of TΩn corresponding to Ωn, and compute the velocity field V n(x) =
f(tn, x,Ωn). This step is the only one depending on the specificities of the considered domain
evolution problem. See sections 7.2, 7.3 for two examples from mechanics.

(3) Solve the level set advection equation with velocity field V n over the whole mesh TΩn , and the period
of time [tn, tn+1]:

(8)

{
∂φ
∂t (t, x) + V n(x).∇φ(t, x) = 0 for x ∈ D, t ∈ (tn, tn+1),

φ(0, x) = dΩn(x) for x ∈ D, .

This requires an algorithm for solving the advection equation on an unstructured computational
mesh - see for instance [36] or [39] for approaches based on the method of characteristics. This step
produces a level set function φn+1 := φ(τn, .) on TΩn associated to the new shape Ωn+1.

18

(4) Discretize the 0 level set of φn+1 in the mesh TΩn in the spirit of section 5 to obtain a new mesh
TΩn+1 of D, in which Ωn+1 is explicitly discretized.

An important feature of this algorithm is that, at each step tn → tn+1, the (mechanical) application-
dependent computation of the velocity field V n and the advection process (8) are carried out on the same
mesh TΩn . Hence, no projection whatsoever is involved between different computational meshes, suited for
different purposes.

7.2. An application in shape optimization.

Elaborating on the pioneering work [2] which initiated the idea of coupling shape optimization with the
level set method, we focus on the use of the above algorithm in this situation. This part echoes to our
previous two-dimensional work [1].

Let us briefly sketch the context - see [33] or [27] for exhaustive presentations. We are interested in shapes,
that is bounded domains in Rd, filled with a linear elastic material with Hooke’s law A (e.g. mechanical
structures). The considered shapes are clamped on a part ΓD ⊂ ∂Ω of their boundary, and submitted to
surface loads g ∈ H2(Rd)d on another part ΓN ⊂ ∂Ω (we omit body forces for simplicity). Both parts ΓD
and ΓN are not subject to optimization. The displacement field uΩ ∈ H1(Ω)d of a shape Ω is the unique
solution to the linear elasticity system:

−div (Ae(u)) = 0 in Ω
u = 0 on ΓD

Ae(u).n = g on ΓN
Ae(u).n = 0 on Γ

,

where e(u) := ∇u+t∇u
2 is the strain tensor, Γ := ∂Ω \ (ΓD ∪ ΓN) is the free boundary, and n is the unit

normal vector field to Ω, pointing outward.

From an initial design Ω0, our goal is to find an optimal shape, with respect to a certain function J(Ω) of
the domain. As for J(Ω), the only example we will consider is that of an aggregated sum of the compliance
and the volume of the structure, namely:

(9) J(Ω) =

∫

ΓN

g.uΩ ds+ `

∫

Ω

dx,

where ` is interpreted as a fixed Lagrange multiplier associated to a volume constraint.

When it comes to accounting for the sensitivity analysis of J with respect to the domain, we rely
on Hadamard’s boundary variation method, and consider variations of a shape Ω of the form (I + θ)(Ω),
where θ ∈ W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1. A functional F (Ω) of the domain is then said to be shape-

differentiable at Ω provided the underlying application W 1,∞(Rd,Rd) 3 θ 7→ F ((I + θ)(Ω)) ∈ R is Fréchet-
differentiable at 0.

In the above context, one can prove [2] that the functional J given by (9) is shape differentiable at any
smooth enough shape Ω, and its shape derivative reads:

(10) ∀θ ∈W 1,∞(Rd,Rd), dJ(Ω)(θ) =

∫

Γ

(`−Ae(uΩ) : e(uΩ)) (θ.n) ds.

From (10), a descent direction for J is easily revealed: displacing Ω according to the vector field

θ = τ (Ae(uΩ) : e(uΩ)− `)n

for a small enough fictitious time τ > 0 will yield a new shape with better performance with respect to J .

19

We may now put this notion of shape derivative in the general framework of section 7.1, that is, use the
above algorithm with the velocity field given by:

(11) f(t, x,Ω) = ((Ae(uΩ) : e(uΩ)) (x)− `)n(x)

to produce an algorithm for optimizing the shape of an initial domain Ω0 with respect to J . Note that
we have been a bit elusive in writing (11) as such, for the right-hand side only stands for points x ∈ ∂Ω.
This expression should actually be extended to the whole space (a tubular neighborhood of ∂Ω is actually
enough in numerical practice); the way such an extension should be performed is a topic on its own in shape
optimization, and we limit ourselves to referring to [25].

The proposed method is appraised on the so-called optimal mast test case, as depicted on figure 11: a
structure, embedded in a T-shaped box D of height 126, and width 40 at the bottom, 80 at the top, made of
an isotropic elastic material of Young modulus E = 1 and Poisson ratio ν = 0.3, is clamped on its base, and
submitted to unit vertical loads g = −ez concentrated on the left and right arms. We minimize the objective
function (9) with a Lagrange multiplier ` = 20 for the volume constraint. We run 50 iterations of the
above algorithm; each mesh TΩn (of the whole box) has about 15, 000 vertices, and the entire computation
takes roughly 40 min. on a laptop computer. The decrease in the objective function in the course of the
optimization process is displayed on figure 12. A noticeable feature of the presented computation is that
the topology of the evolving shape has dramatically changed during the process, which is an inherent (and
natural) achievement of the level set description of the shape evolution.

7.3. An application in computational fluid dynamics.

We eventually look into the numerical simulation of bifluid flows, involving interfaces characterized by
large jumps of viscosity and density between the fluids that must be properly taken into account and resolved
- e.g. relying on the level set method [41]. Elaborating on the previous work [8], we propose to account for
the evolution of the interface between the different fluids relying on the general framework of section 7.1.

As a model problem, consider two fluids which are confined to an open, bounded computational domain
D ⊂ Rd, each fluid occupying a time-dependent subdomain Ωi(t) (i = 0, 1) such that:

Ω0(t) ∪ Ω1(t) = D and Ω0(t) ∩ Ω1(t) = ∅ with Γ(t) = ∂Ω0(t) ∩ ∂Ω1(t) .

Towards an approximation of the true nonlinear moving boundary problem, we consider that, at any fixed
time t, the flow of both fluids is governed by the quasi-static incompressible Stokes equations [38], which
read, in each subdomain Ωi(t):

(12)

{
−µi∆ui +∇pi = ρif i

div(ui) = 0 ,

where ui(x, t) is the velocity field of the fluid, pi(x, t) is the pressure, ρi and µi are the density and the
dynamic viscosity of each fluid and f i is an external force exerted on the fluid. The transient character of
the solution is related to the entangled motions of the two fluids and the interface (the forces exerted on
the fluid are assumed to be in a state of dynamic equilibrium as a result of a rapid diffusion of the momentum).

System (12) is completed with several boundary conditions. The surface tension effect is taken into
account at the interface and conditions on the continuity of the velocity field u and on the balance of the
normal stress with the surface tension across the interface are imposed on Γ(t):

(13)

{
u0 − u1 = 0

(σ(u)0 − σ(u)1) · n = −γ κn
where σ(u) = µ(∇u + t∇u) − p I stands for the stress tensor, n is the unit normal vector to Γ(t), pointing
outward Ω0(t), γ > 0 is the (constant) surface tension coefficient, and κ is the signed mean curvature of Γ(t).
Moreover, some usual Dirichlet, Neumann or mixed boundary conditions are added on ∂D \ Γ(t).
Eventually, as an initial condition, the position Γ(0) = Γ0 of the interface at time t = 0 is prescribed.

20

Figure 11. From left to right : Initial, 10th and final (50th) iterations of the optimal mast
test-case. Only the boundary ∂Ω of each shape Ω is displayed on the upper range, and only
the ‘interior’ part of the associated mesh TΩ of D is displayed on the corresponding cuts of
the lower range.

We now rely on the general framework of section 7.1 to account for the numerical resolution of the above
problem, with the velocity field:

f(t, x,Γ) = u,

where u is the solution of (12-13), defined on the whole computational domain D.

The proposed approach is used to resolve the rising bubble test case. We present the result of a nu-
merical experiments with a single drop of primary alcohol of radius 1 mm inside a rectangular cavity
D = [0.12 · 10−3]2 × [0.3 · 10−3] m3 filled with water, as depicted on Figure 13. Fluid properties of
the system are given in Table 1. At rest at time t = 0, the bubble starts to rise in z-direction. The initial

21

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 10 20 30 40 50

Objective function

Figure 12. Objective function versus iteration number for the optimal mast test-case.

variable (units) n-butanol water
ρ (kg/m3) 845.4 986.5
µ (kg/ms) 3.281 1e-3 1.388 1e-3

Table 1. Fluid properties of the rising bubble test case.

coarse triangulation contains 2, 465 vertices and 13, 098 tetrahedra and is refined in the vicinity of the bubble.
The triangulation is adapted at each time step t = 0.02 s to follow the moving interface; the minimal size
has been set to hmin = 5 · 10−5m. At time t = 0.2 s (resp. t = 0.4 s), the triangulation contains 9, 874 (resp.
9400) vertices and 54, 133 (resp. 51576) tetrahedra. Figure 13 shows the droplet and a cuts through the
adapted meshes at different time steps.

Acknowledgement. This work has been supported by the RODIN project (FUI AAP 13).

8. Conclusion

In this article, we have presented an iterative algorithm for remeshing an initial tetrahedral mesh, that may
be ill-shaped or undersampled, into a well-shaped, adapted mesh, via local operations carried out both on
the surface and interior parts. This algorithm has been used as the cornerstone in the context of tetrahedral
mesh generation from a surface triangulation, and in the context of free an moving boundary problems.

The associated domain remeshing program mmg3d, version 5 is free and can be obtained by contacting the
authors.

This work stirs several perspectives as for future work. On the one hand, the proposed domain remeshing
algorithm is only able to deal with isotropic size prescriptions; we would like to extend it to the anisotropic
context, for instance in view of the previous work [14], which only concerned the interior part of a domain.
Sharp features recovering (at least when they are prescribed on the initial triangulated contour) in the context
of mesh generation presented in section 6 also seems to be of great interest. Eventually, the applications
proposed in sections 7.2 and 7.3 in the fields of shape optimization and computational fluid dynamics are
subject to ongoing work, addressing more complex mechanical models.

References

[1] G. Allaire, C. Dapogny, P. Frey, Topology and Geometry Optimization of Elastic Structures by Exact Deformation of

Simplicial Mesh, C. R. Acad. Sci. Paris, Ser. I, vol. 349, no. 17, pp. 999-1003 (2011).

[2] G. Allaire, F. Jouve, A.M. Toader, Structural optimization using shape sensitivity analysis and a level-set method, J.
Comput. Phys., 194, pp. 363-393 (2004).

[3] P. Alliez, É. Colin de Verdière, O. Devillers and M. Isenburg, Isotropic Surface Remeshing, Shape Modeling

International, (2003), pp 49–58.

[4] M. V. Anglada, N.P. Garcia and P. B. Crosa, Directional Adaptive Surface Triangulation, Computer Aided Geometric
Design, 16 (1999), pp. 107–126.

[5] H. Borouchaki and P.J. Frey, Surface meshing using a geometric error estimate, Int. j. numer. methods engng., 58
(2003), pp 227–245.

[6] G. Barles, Remarks on a flame propagation model, INRIA: Technical Report, 451 (1985).

[7] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez and Bruno Lévy, Polygon Mesh Processing, A.K. Peters, (2010).

22

Figure 13. From left to right: initial, 10th and 20th iteration for the rising bubble test
case. Top: only the boundary of the computational domain is shown. Middle: cut through
the tetrahedral meshes. Bottom: enlargement around the droplet at iterations 10 and 20.

[8] C. Bui, P. Frey and B. Maury, A coupling strategy based on anisotropic mesh adaptation for solving two-fluid flows,

Int. J. Numer. Meth. Fluids, 66(10), (2010), pp 1226–1247.

23

[9] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland Publishing Company, (1978).
[10] J. Crank, Free and moving boundary problems, Clarendon Press, Oxford, (1984).

[11] C. Dapogny, Ph. d. thesis, Thèse de l’Université Paris VI, (2013).

[12] C. Dapogny, P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation,
Calcolo, Volume 49, Issue 3, pp. 193-219 (2012).

[13] C. Dobrzynski, Adaptation de maillage anisotrope 3d et application à l’aéro-thermique des bâtiments, Thèse de l’Université

Paris VI, (2005).
[14] C. Dobrzynski and P. Frey, Anisotropic Delaunay mesh adaptation for unsteady simulations, Proc. 17th Int. Meshing

Roundtable, Pittsburgh, (2008).
[15] M. Do Carmo, Riemannian Geometry, Mathematics : Theory & Applications, 2nd Edition, Birkhäuser, (1993).

[16] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W. Stuetzle, Multiresolution analysis of arbitrary

meshes, SIGGRAPH ’95 Proceedings of the 22nd annual conference on Computer graphics and interactive techniques,
(1995), pp 173–182.

[17] L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. Volume 33, Number 3 (1991),

pp 635–681.
[18] G. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, Academic Press Inc, 4th

Edition, (1997).

[19] S. Osher and R.P. Fedkiw, Level Set Methods: An Overview and Some Recent Results, J. Comput. Phys., 169, 2,
pp. 463-502 (2001).

[20] M.S. Floater and K. Hormann, Surface parameterization: a tutorial and survey, In Advances in Multiresolution for

Geometric Modelling, (2005), pp 157–186.
[21] P.J. Frey, About Surface Remeshing, Proceedings, 9th International Meshing Roundtable, Sandia National Laboratories,

(2000), pp 123–136.
[22] P.J. Frey and P.L. George, Mesh Generation : Application to Finite Elements, Wiley, 2nd Edition, (2008).

[23] P.-L. George, Improvements on Delaunay-based three-dimensional automatic mesh generator, Finite Elements in Analysis

and Design 25 (1997) pp. 297–317.
[24] J. Glimm, J. W. Grove, X. L. Li, K.-M. Shyue, Y. Zeng, Q. Zhang, Three Dimensional Front Tracking, SIAM J. Sci.

Comp, 19, (1995), pp 703–727.

[25] F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. on
Control and Optim., 45, no. 1, 343–367 (2006).

[26] M.G. Vallet, F. Hecht and B. Mantel, Anisotropic Control of Mesh Generation Based upon a Voronoi Type Method,

Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, (1991).
[27] A. Henrot and M. Pierre, Variation et Optimisation de Formes : une Etude Géométrique, collection Mathématiques

et Applications, vol. 48, Springer (2005).

[28] D.R. Lynch, Unified approach to simulation on deforming elements with application to phase change problems, J. Comput.
Phys., 47, pp. 387-411 (1982).

[29] N. Moes, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer.
Meth. Engng. 46, (1999), pp.131–150.

[30] S.J. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed : Algorithms based on Hamilton-Jacobi

formulations, J. Comput. Phys., 79 (1988), pp. 12–49.
[31] X. Li, J.-F. Remacle, N. Chevaugeon and M.S. Shepard, Anisotropic Mesh Gradation Control, Proceedings, 13th

International Meshing Roundtable, Sandia National Laboratories, (2004), pp 401–412.

[32] W.E. Lorensen and H.E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, COMPUTER
GRAPHICS, 21,4, (1987), pp. 163–169.

[33] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Technical Report RR-76015, Laboratoire d’Analyse

Numérique (1976).
[34] P.-O. Persson, Mesh Generation for Implicit Geometries, Ph.D. thesis, Department of Mathematics, MIT, Dec 2004.

[35] P.-O. Persson and G. Strang, A Simple Mesh Generator in MATLAB, SIAM Review, 46, no. 2, (2004), pp. 329–345 .

[36] O. Pironneau, The finite element methods for fluids, Wiley (1989).
[37] J.A. Sethian, Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry,Fluid

Mechanics, Computer Vision, and Materials Science, Cambridge University Press, (1999).
[38] P.N. Shankar, Slow Viscous Flows, Imperial College Press, London, U.K., (2007).
[39] J. Strain, Semi-Lagrangian Methods for Level Set Equations, J. Comput. Phys., 151 (1999) pp. 498–533.

[40] V. Surazhsky, P. Alliez and C. Gotsman, Isotropic Remeshing of Surfaces: a Local Parameterization Approach, RR-
4967 INRIA (2003).

[41] Sussman M., Smereka P., Osher S., A level set approach for computing solutions to incompressible two-phase flows, J.

Comput. Phys., 114, (1994), pp 146–159.
[42] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, A

Front-Tracking Method for the Computations of Multiphase Flow, J. Comput. Phys., 169, pp. 708-759 (2001).

[43] A. Vlachos, J. Peters, C. Boyd and J.L. Mitchell, Curved PN Triangles, Symposium on Interactive 3d Graphics,
(2001), pp 159–166.

24

