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Abstract 

An ensemble of ten silicate clusters is examined using quantum chemical calculations 

(Density Functional Theory) as a potential model to study the effect of polymerization of the 

SiO4 units on Raman intensities of silicates (crystalline and amorphous). Quite originally, 

instead of saturating non-bridging oxygen (NBO) with hydrogen atoms as generally found in 

the literature for similar approaches, NBOs, which hold a negative charge if not saturated, 

have been substituted by isoelectronic fluorines whose mass is corrected in normal mode 

calculations to be equal to that of an oxygen. By adjusting the number of fluorines per silicon, 

the different Qn coordination types characterizing the different classes of silicates are 

modeled. The relevance of this ensemble of clusters as a model to study the effect of 

polymerization on Raman intensities is established in several steps, the most important one 

being the qualitative reproduction of evolution of the Ip polymerization index with the 

number of bridging oxygen per silicon. 
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1. Introduction 

Silicates are all built from “SiO4” tetrahedral units based on the Si-O bond, one of the 

strongest between an element A and oxygen O with its 452 kJ/mol (see Table S1 in 

Supplementary Information for comparison with other selected A-O bonds, typical of 

inorganic oxides) [1]. Due to the electronegativity difference between silicon (χSi = 1.9 in the 

Pauling scale) and oxygen (χO = 3.4 in the Pauling scale) Si-O bonds can be considered as 

half covalent - half ionic; they are typical examples of very polarized covalent bonds, also 

referred to as ionocovalent bonds. Interesting discussions can be found in the literature about 

the relevance of considering such bonds as covalent or ionic [2,3]. In many silicates, part of 

the silicon ions are substituted by aluminum ions leading to Al-O bonds, characterized by a 

lower covalent character, due to higher electropositivity of Al compared to Si (χAl = 1.6 in the 

Pauling scale). 

All applications in science, art and technology of glasses, glazes and enamels consist 

of a controlled modification of the three dimensional Si-O network by partial replacement of 

silicon atoms by other electropositive M elements leading to less- or non-covalent M-O 

bonds. The number of strong bridges between two structural units then decreases, as the 

connectivity of the Si-O network. Indeed, the introduction in silica of MxOy metallic oxides 

involving very electropositive M cations (typically alkaline or alkaline earth cations) induces 

depolymerization of the silicon-oxygen network to a certain extent, some connections 

between the corner-sharing tetrahedra needing to be broken to take charge of the positive 

charge of the metallic cation. As such, the melting temperature can be adjusted from ~ 1500 

to ~500 °C. Many other physical and chemical properties related to density and network 

connectivity (e.g. thermal expansion, chemical resistance, color, etc) are modified 

simultaneously. 
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Depending on (i) the relative amount of SiO2 and MxOy and (ii) the formal charge of 

the M cation, the number of other tetrahedra to which a given “SiO4”-tetrahedron is connected 

can be reduced from 4 to 3, 2, 1 or even 0. In other words, the number of bridging oxygen 

atoms (BO) per silicon one can be reduced from 4 to 0 while at the same time the number of 

non-bridging oxygen atoms (NBO) increases from 0 to 4. In this latter case the silicate part of 

the material consists of isolated SiO4
4- anions; the Si-O network is said to be completely 

depolymerized. A convenient Qn nomenclature where n denotes the number of BO per silicon 

has been developed in parallel to the classification of minerals into neso-, soro-, ino-, cyclo-, 

phyllo- and tektosilicates (structural features reported in Table S2) to characterize the 

coordination of silicon atoms [4]. 

In these different classes of silicates, the “SiO4” tetrahedron remains remarkably 

constant, with intra-tetrahedron O-Si-O angles close to 109.5°. On the contrary, the Si-O-Si 

angles between two tetrahedra are very flexible due to the flatness of the associated potential 

energy surface [5]. This flexibility is at the origin of the breakdown of structural order at long 

distance and to the appearance of amorphous states of silicates. Indeed, though the inter-

tetrahedra Si-O-Si angle is fixed to 144° in α-quartz -- the thermodynamically most stable 

polymorph of crystalline silica at room temperature and atmospheric pressure, it can vary 

from 120° to 180° in silicate glasses [6-8]. It also has to be noted that a silicate glass is likely 

to be characterized by several Qn coordination types for its silicon nuclei. 

If X-ray diffraction has revealed very useful to solve the structure of crystalline 

silicates [9], 29Si NMR [10] and Raman spectroscopy [11] are more appropriate to gain 

information on the short-range structure of amorphous silicates. Raman spectra of these latter 

are characterized by two main bands: one centered at 500cm-1 originating from (generally 

degenerated) intra-tetrahedral O-Si-O angle bending and one centered at 1000 cm-1, attributed 
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to (symmetric) Si-O bond stretching modes [12-18]. The band centered at 1000 cm-1 can be 

decomposed as the sum of 5 bands -- one for each Qn component -- whose center 

wavenumbers increase as n increases: 800-850 cm-1 for Q0, 950 cm-1 for Q1, 1050-1100 cm-1 

for Q2, 1100 cm-1 for Q3 and 1150-1250 cm-1 for Q4 [11,19-22]. The interest of this modeling 

is to remain valid for all silicates. It was proposed that two phenomena were indeed 

explaining the trend in the evolution of the wavenumbers: the Qn coordination type of “SiO4” 

tetrahedra from one hand but also the number and nature of rings in which they are involved 

[23]. In a similar way, the band centered at 500 cm-1 can also be decomposed into 5 bands, 

(more generally 2×5 because of the E character of the strongest bending mode), but the 

correlation between position and Qn coordination type is less obvious as wavenumbers 

characteristic of bending modes appear to be very sensitive to the value of the Si-O-Si angles 

[11, 19, 24]. 

Analysis of the stretching band envelope of a given silicate can then provide useful 

information about its microstructure. It is interesting to notice that as such it exploits the 

differences induced by different Qn coordination types on the Si-O bond strengths. But 

besides this mechanical information, Raman spectroscopy can also give electrical information 

on the bonds as soon as one becomes interested in band intensities rather than wavenumbers 

only. 

The evolution of Raman intensities with the type of the silicon-oxygen network was 

first studied by White and coworkers [25]. Later on, it was proposed by Colomban [12, 13] 

that the relative intensities of the bending and stretching bands can provide good indication of 

the degree of polymerization of a silicate because of modification of the partial charge of 

oxygen atoms involved in the Si-O bonds [26]. Based on this idea, a polymerization index (Ip) 

was defined as the ratio of the area of the bending band at 500 cm-1 and the stretching one at 

1000 cm-1: 
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The efficiency of the Ip index has been demonstrated empirically by the study of amorphous 

and crystalline silicates of known composition. Low degrees of polymerization are 

characterized by a low Ip and high degrees of polymerization by a high Ip as illustrated on 

Figure 1 where is shown on one hand the evolution of Ip in a series of glasses and enamels 

(amorphous silicates, Figure 1.a) and on the other hand the evolution of Ip in a series of 

crystalline silicates covering coordination types for Si atoms from Q0 to Q4 (Figure 1.b).  

Fig. 1.  Empirical evolution of the polymerization index Ip for series of amorphous (a, see 
details in ref [27]) and crystalline (b, see details in ref [28]) aluminosilicates; in (a) the main 
fluxing oxides and their molar ratio are given; in (b) the different mineral types are given (T: 
tektosilicates, N: nesosilicates, I: inosilicate, C: cyclosilicate, P: phyllosilicate, S: 
sorosilicates). Numbers in the X-axis indicate the label of each sample in the series of 
amorphous (a) and crystalline (b) aluminosilicates. 

Despite its practical efficiency [27-33], the Ip index is currently lacking some 

theoretical support which would comfort spectroscopists in its use by rationalizing its 

evolution. One way to better understand why the Ip index evolves as it does with 

polymerization of the “SiO4” units is to analyze the phenomenon in numerical experiments, 

i.e. using quantum chemical calculations. This needs beforehand construction of models 
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whose vibrational properties will then be studied computationally.  The objective of the 

present article is to propose and test structural models for silicates, suitable to study the 

influence of “SiO4” polymerization on Raman intensities of silicates. In the next section, the 

strategy chosen to construct the models will be presented. Then, the computational 

methodology used to study their structural and electronic properties will be specified in 

section 3, together with the tools used for the analysis of their vibrational characteristics. 

Then, in section 4, the different elements leading to validation of the models to study the 

effect of polymerization on the Ip index will be given.  

2. Construction of a structural model 

2.1. Discrete versus periodic 

Two main kinds of structural models are used in numerical experiments at the atomic 

scale to mimic solids (and surfaces): cluster models (nonperiodic) and models based of the 

infinite repetition of a unit cell (periodic) [34, 35]. 

Early on, silicate molecules or clusters have been used as models to study structural 

and electronic properties of solid silicates (either crystalline or amorphous) [36, 37], as well 

as their vibrational properties [23, 38], based on the observation that for a same close 

environment --let’s say the same first coordination polyhedron -- a given chemical bond has 

the same characteristics, either in an isolated molecule or in a crystal structure [39-42]. 

Indeed, if obviously the length of a given chemical bond -- and its associated bond strength by 

virtue of the empirical Badger’s rule [43-45] -- depends on its chemical environment, what 

governs bond length and angle variations is relatively short ranged.  Based on this same idea, 

ab initio calculations on silicate molecules / clusters have been used to construct force fields / 

interatomic potentials used then in molecular-dynamics simulations to study the structural and 



 

8 
 

vibrational characteristics of silica-based materials, either crystalline [46-48] or amorphous 

[49, 50]. 

Currently, the vibrational properties of crystalline silicates are studied in numerical 

experiments using preferentially periodic models. This approach has brought useful aid in the 

identification of silicated phases, simply by comparison of experimental and computed 

vibrational spectra [51-56]. 

But for the vibrational properties of amorphous silicates, both the cluster and the 

periodic approaches compete and complement each other [57-61]. Elaborated structural 

models for amorphous silicates have been constructed from classical and ab initio (Car-

Parinello) molecular dynamics experiments (periodic models with large unit cells) [62-65]. 

These have the advantage to show a statistical representation of the structural features of the 

materials from which it becomes possible to obtain realistic vibrational properties. Ab initio 

calculations on cluster models have also been used to study the vibrational signature of 

specific structural features, such as rings, in silicates glasses [66] and then gain information 

about their local structure. This approach, obviously valid for the study of other glassy 

materials, has also been applied, among other, to arsenic sulfides [67], boron oxides [68], and 

carbon nitrides [69]. 

As mentioned earlier, in this work, the objective is to construct a model suitable to 

study the effect of the degree of polymerization of the SiO4 units on the Raman intensities of 

silicates. As such, rather than a single elaborated model encompassing the whole structural 

complexity of a real glass, it was decided to consider an ensemble of very simple structures 

whose different individuals capture the essence of the different Qn coordination types. In a 

chemical system, the Raman intensity associated with a given normal mode comes from the 

system polarizability response to a modification of the geometry according to the normal 
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atomic displacements. According to the Bond Polarizability Model [70-72], polarizability of a 

molecular system can be seen as the sum of its bond polarizabilities. Thus Raman intensities 

result from modifications of bond lengths and valence angles according to normal atomic 

displacements, phenomena, which are short-ranged.  Thus the simple structures capturing the 

different Qn coordination types could have been either the infinite repetition of small unit cells 

or silicate clusters. Quite arbitrary, it was decided to consider the latter approach. It has the 

advantage to be very easy to implement. In compensation, it will be difficult to model simply 

Q4 coordination with this approach. We will come back to this later. 

2.2. -F versus -O- 

Except in the case of silica, the Si-O network of silicates is inherently negatively 

charged: each non-bridging oxygen atom induces one negative charge. This is problematic in 

a cluster approach since small multiply charged anions (MCA) are not stable electronically 

due to strong Coulomb repulsion [73-74]. It means that for example it is not conceivable to 

consider an isolated SiO4
4- anion as a model for nesosilicates. Surely, the stability of MCAs 

increases as their size increases too, nonetheless it is not probably more appropriate to 

consider Si2O7
6- anion as a model for sorosilicates. 

To overcome this difficulty, people who have used cluster models to mimic silicates 

have very often saturated the non-bridging oxygen atoms with hydrogen atoms, studying 

silicic acids in place of their corresponding anions [36, 75-77]. Part of the reason is that it 

provides information about the formation of silicate aggregates in water, a protic solvent. The 

disadvantage of this approach is that it introduces additional atoms in the systems, which 

render more complex on one hand the determination of the optimal geometry for these 

systems but also the analysis of their vibrational properties with introduction also of 
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additional normal modes, tough one could argue that wavenumbers characteristic of O-H 

bonds are quite different from those characteristic of Si-O bonds.    

Alternatively, in a few theoretical studies dealing with cluster silicates, the multiply 

charged anions have been stabilized by placing all around them positive charges (alkali 

cations) [23, 25]. This approach is satisfying by some aspects since it deals with silicate 

anions as in silicate glasses and introduces counter-cations which are also present in real 

silicates. Nonetheless, the question of the position of these cations can be asked, in particular 

to avoid coupling with the normal modes of the Si-O part. In addition, in a cluster model, it is 

difficult to ensure the whished high coordination for the counter-cations, what could affect in 

response the geometry of the silicate part.  

Thus, in this work, it was decided to adopt another strategy and to replace in silicate 

clusters the non-bridging oxygen atoms (Onb) -- those holding one negative charge -- by 

fluorine atoms. Indeed, a fluorine atom is isoelectronic to an oxygen mono-anion. Thus the 

same electrons, meaning coming from the same atomic orbitals, are involved in a Si-F bond 

and in a Si-O- bond. And replacing all the non-bridging oxygens by fluorines in silicate 

clusters render neutral systems where the problem of electronic instability has disappeared. 

Thus it can be expected that from the electronic point of view, small SixOyFz clusters are good 

models for extended negatively charged silicates in solids. This was noticed by Ignatyev and 

Sundius in their study of the theoretical force field of F3SiOSiF3 [78]; nevertheless, to the best 

of our knowledge, replacing NBO by fluorines in silicate clusters is a strategy which has 

never been used to mimic the behavior of solid silicates of different Qn coordination types. 

Nonetheless, the advantages of the O- / F substitution have to be differentiating; F and O- 

differ by their nuclei: the F nucleus with one proton more compared to the O nucleus attracts 

more its electrons. This is at the origin of F having a higher electronegativity and a smaller 

atomic radius than O. Therefore the Si-F bond is slightly shorter (1.60 Å) than the Si-O bond 
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(1.63 Å), and in consequence stronger (576 kJ/mol vs. 452 kJ/mol). Thus, in a Raman 

spectrum, it can be expected that the wavenumber associated with a normal mode involving 

Si-F bonds is slightly higher than the same one with Si-O- bonds. This is however counter-

balanced to some extent by the fact that a fluorine atom is heavier than an oxygen atom (19 

amu vs. 16 amu). Despite this partial compensation, it was chosen to replace the mass of 

fluorines by that of an oxygen atom in the computation of the normal modes of the clusters, in 

order to produce normal atomic displacements as close as possible to those encountered with 

oxygen atoms. This is important for the consequences of the O- / F substitution on Raman 

intensities. Indeed, if F is clearly less polarizable than O-, since the Si-F and Si-O- bond are 

very similar from the electronic point of view, as we just said, the polarizability response to a 

same modification of geometry (i.e. same normal atomic displacement) should be similar too.  

2.3. Systems considered in the study  

Ten silicate clusters have been considered to mimic the different Qn coordination types 

encountered in solid silicates. They are sketched in Figure 2. Among them, 7 are characterized 

by Si atoms having all the same environment: SiF4 which has to be considered as a model for 

nesosilicates (Q0), Si2OF6, a model for sorosilicates (Q1), Si3O3F6, Si4O4F8 and Si6O6F12, three 

cyclic models for cyclosilicates-- and to some extent for inosilicates -- (Q2) and Si4O6F4 and 

Si8O12F8, two multicyclic models for phyllosilicates (Q3). The cyclic and multicyclic clusters 

show some ring tension; nonetheless, it is not unphysical since Si3O9
6-, Si4O12

8- and Si6O18
12- 

rings are observed in cyclosilicates, and some structural similarities can be observed between 

Si8O12F8 where each Si is involved into three “Si4O4” rings, and coesite, a silica crystalline 

polymorph where each Si is involved into two “Si4O4” rings sharing one edge. 

The 3 remaining silicate clusters are characterized by silicon ions of two Qn 

coordination types: Si3O2F8 and Si4O3F10 mix Q1 and Q2 silicon ions, while Si5O6F8 mixes Q2 
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and Q4 silicon ions. Both Si3O2F8 and Si4O3F10 can be viewed as models for inosilicates, and 

Si5O6F8 is the only example among the clusters considered in the study showing a Q4 Si; it 

results from the impossibility to form a non-periodic silicate with only Q4 silicon ions.  

 

Fig 2. Sketch of the ten structural models considered in the study. Seven models over the ten 
are characterized by Si atoms having all the same coordination type in one molecule: the SiF4 
and Si2OF6 molecules are models for nesosilicates (Q0) and sorosilicates (Q1) respectively; 
the three monocyclic Si3O3F6, Si4O4F8 and Si6O6F12 molecules are models for cyclo- and 
inosilicates (Q2); the multicyclic clusters of Si4O6F4 and Si8O12F8 stoichiometry constitute 
models for phyllosilicates (Q3). The three remaining clusters -- Si3O2F8, Si4O3F10 and Si5O6F8 
-- are characterized by Si atoms having different coordination types in the same chemical 
system. Si5O6F8 is the only one over the ten having a Si atom with Q4 coordination type; as 
such, it can be useful to model tektosilicates. 

With these 10 silicate clusters, the effect of polymerization on the Raman spectra can 

be studied in different ways. The (SiF4 → Si2OF6 → Si3O2F8 → Si4O3F10) sequence can be 

viewed as a way to go progressively from 0 D to 1 D polymerization of “SiO4” tetrahedra in 
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silicates (going from nesosilicates to chain inosilicates via sorosilicates). The (SiF4 → Si2OF6 

→ Si3O3F6 → Si4O6F4) sequence allows going from Q0, to Q1 to Q2 to Q3 coordination with in 

each case the minimal amount of Si atoms, having all the same environment. The (SiF4 → 

Si2OF6 → Si3O3F6 → Si4O6F4) sequence can be viewed as the successive duplications of SiF4 

in the three spatial dimensions. 

3. Computational details 

3.1. Ab initio calculations 

The electronic structures of all the clusters sketched on Figure 2 have been computed 

by density functional theory (DFT), using the B3LYP hybrid functional, which has proven to 

constitute a good cost-effective choice for the prediction of molecular vibrational properties 

[79]. It is also worth noting that B3LYP is currently considered has one of the best methods 

for the calculation of vibrational spectra of extended silicates (assumption based on 

frequency-based criteria) [80-83]. It was employed in conjunction with the def2-TZVPD basis 

set, developed by Rappoport and Furche [84] by diffuse augmentation of the Karlsruhe 

segmented contracted basis set of triple-zeta valence quality def2-TZVP [85]. Thus the def2-

TZVPD basis set includes (2d1f) polarization functions plus (1s1d) diffuse functions for Si 

atoms and (2d1f) polarization functions plus (1s1p1d) diffuse functions for O and F atoms. It 

has the advantage to have been designed to give good computed molecular properties such as 

polarizabilities, whose responses to a modification of geometry are used to compute Raman 

activities. Its parameters for Si, O and F were found on the EMSL Basis Set Library [86, 87]. 

All the calculations have been performed using either the Gaussian 03 [88] or the Gaussian 09 

[89] program. 
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In a first step, the geometries of all the clusters were optimized in vacuum. Then, 

frequency calculations were performed using the same computational methodology.  The 

objective was double: (i) check that the geometries obtained corresponded to stable 

equilibriums on the corresponding potential energy surfaces and (ii) compute the normal 

modes. The freq=readisotopes option was used in order to convert the mass of F atoms into 

that of O ones. 

3.2. Computation of Raman intensities 

In the Placzek’s polarizability theory, the non-resonant Stokes Raman intensity of the 

kth normal vibrational mode of a given system is given by [90]: 
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where N is a constant, 0 the exciting laser wavenumber, k the wavenumber of the kth normal 

mode,  P the exciting laser irradiance, and Sk the Raman activity associated to the kth normal 

mode (given by Gaussian during a frequency calculation). 

The ratio between two band intensities Ik and Il can then be expressed as:  
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It is then independent of the constant N and the laser irradiance P.  

Two exciting laser wavenumbers, frequently used in Raman spectroscopy of silicates, will be 

considered in our computations: 532 nm and 780 nm. It will allow quantifying influence of 
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0 on the Ip index. However, it can be anticipated that the effect of 0 will be quite small since 

in the limit k 0  expression (3) simplifies into expression (4) which is independent from 

0 : 
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3.3. Analysis of the stretching character 

The Ip polymerization index defined in equation (1) is based on the separation of 

stretching and bending modes on wavenumbers criteria. In order to compute the Ip index for 

the structural models considered in this study, which are characterized by discrete modes 

rather than vibrational bands, it was necessary to evaluate the stretching character of these. In 

that purpose, we made use of the stretching character index defined by Zotov and coworkers 

in their computational study of silicate glasses [64]. As such, in a given chemical system, the 

stretching character str
kP of the kth normal mode is defined as:  
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with ijr  a unit vector along the bond between atom i and atom j, and l
ku  the displacement of 

atom l in mode k. 

By definition, str
kP takes on values between 0 (pure bending character) and 1 (pure stretching 

character). 
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4. Results  

4.1. Validity of the O- / F substitution 

As mentioned earlier, one of the elements on which is based the present study is the 

replacement, in the clusters considered, of non-bridging oxygen atoms by fluorine ones 

having the mass of an oxygen, in order to avoid dealing with negatively charged systems. To 

validate this strategy, we compared the normal modes of SiF4 with those observed for the 

isolated SiO4
4- tetrahedral anions in nesosilicates (Q0). 

In Table 1 the wavenumbers associated with the computed normal modes of SiF4 are 

reported, either with a mass of 18.99984 amu (that of an F atom) or of 15.99940 amu (that of 

an O atom) for fluorines. With the normal mass of fluorine atoms, wavenumbers are slightly 

underestimated -- by 10-20 cm-1 -- with respect to the experimental ones for SiF4, in 

agreement with what is described in the literature for similar computational methods [91]. 

After mass correction, since oxygen atoms are lighter than fluorine ones, wavenumbers are 

logically increased -- by about 25 cm-1 for bending modes and by 50-70 cm-1 for stretching 

modes. As a result, the symmetric stretching mode, which gives rise to a very intense signal in 

Raman spectra of nesosilicates, appears at 853 cm-1, in very close agreement with 

experimental observations (~850 cm-1). This supports the strategy chosen to replace non-

bridging oxygen atoms by fluorine ones in our structural models of silicates.  

Despite this good agreement, it has to be noted that since Si-F bonds are stronger than 

Si-O bonds, wavenumbers computed after mass correction are expected to be overestimated 

with respect to their corresponding values in nesosilicates. Thus it has to be specified that it is 

not expected to be able to extrapolate quantitative data for solid silicates from results obtained 

for the clusters studied in this work. But it appears reasonable to think that the qualitative 
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evolution of the Ip index with the degree of polymerization will be similar for the clusters 

considered in the study and for solid silicates, and that in addition, the origin will be the same 

in both cases. 

Table 1. Computed wavenumbers (cm-1) of the normal modes of SiF4. From the optimized 
geometry of the SiF4 molecule, the frequency calculation has been performed either with a 
mass of 18.99984 amu (before mass correction) or with a mass of 15.99940 amu (after mass 
correction) for the F atoms. For comparison, the experimentally observed wavenumbers for 
the SiF4 molecule are also given. 

Normal mode 
Wavenumber (cm-1)

Before mass correction 
Experimentally observed 

[92]
After mass correction  

Stretch. (asym.) 1014 1032 1059 
Stretch. (sym.) 783 800 853 
Bend. (asym.) 379 389 405 
Bend. (sym.) 257 268 280 

 

4.2. A model able to reproduce the variability of the Si-O-Si angle 

Interestingly, the Si-O-Si angles resulting from the optimized geometries of the 10 

clusters vary from ~120° to ~180°, just as in silicate glasses (see Figure 3). Clearly, the value 

of the angle results mainly from the geometrical constraints such as the number of rings in 

which the Si atoms are involved, and their size. Indeed, if we compare the Si-O-Si angle 

values for the three monocyclic clusters Si3O3F6, Si4O4F8 and Si6O6F12 in which each Si atom 

is bonded to 2 fluorines and 2 bridging oxygens, it appears that the Si-O-Si angles close as the 

ring size decreases, i.e. as the geometrical constraint increases. In addition, if we compare the 

Si-O-Si angle values for the Si3O3F6 and Si4O6F4 clusters which both involve 6-membered 

rings but differ by the number of rings in which each Si atom is involved (1 only for Si3O3F6 

but 3 for Si4O6F4), it appears that the Si-O-Si angles close as the number of rings per Si atom 

increases. The same trend is observed from comparison of Si4O4F8 and Si8O12F8 clusters. This 

is another element in support of the idea that geometrical constraints tend to close Si-O-Si 

angles. For a set of clusters with a given Qn coordination type, a measure of these geometrical 
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constraints can be inferred from relative total energies of the clusters divided by the number 

of Si atoms: the higher the energy per Si atom is, the higher the geometrical constraint in the 

system is too. Such normalized energies have been calculated and reported in Table S3 in the 

Supplementary Information from which it can be concluded that as expected the Si3O3F6 

cluster is more constrained than the Si4O4F8 one, itself slightly more constrained than the 

Si6O6F12 cluster. It is also worth noting how destabilized the Si4O6F4 cluster is compared to 

Si8O12F8, suggesting that Si4O6F4 is particularly constrained. This is most probably at the 

origin of its quite small Si-O-Si angles and long Si-O bonds. Without any geometrical 

constraint, the Si-O-Si angle tends to be linear (see the Si2OF6 case in Figure 3). This can be 

explained by the fact that, since Si-F bonds are quite ionic, antibonding Si-F σ* orbitals are 

mainly localized on the Si part; therefore, a stabilizing in-phase overlap can be established 

between the O lone pair hybrids and the Si-F σ* orbitals (hyperconjugation). This overlap 

tends to be better as the Si-O-Si angle opens [93, 94]. Coming back to the Onb/F substitution 

used in this work, it is interesting to note that F being more electronegative than O, the Si-F 

bond is more ionic than the Si-O bond. As such, Si-F σ* orbitals in the SixOyFz neutral 

clusters show a higher Si contribution than that of Si-O σ* orbitals in the corresponding 

SixOy+z
z- anions. Therefore, Si-O-Si angles are expected to be closer to linearity in the case of 

the neutral clusters than in the corresponding anions.  

It can be checked in Figure 3 that there is a linear correlation between the Si-O-Si 

angle value and the Si-O bond length. As the Si-O-Si angle closes, the Si-O bond lengthens. It 

goes from 1.600 Å in Si2OF6 with a Si-O-Si angle of 173° to 1.645 Å in Si4O6F4 with a Si-O-

Si angle of 116°.  This trend has been observed experimentally in silica polymorphs and in 

molecular crystal siloxanes [36].  Quite recently, it has been shown by topological analysis of 

the electron density and of the Electron Localization Function (ELF), that as the O-Si-O angle 

value goes from 180° to 109.5°, the covalent character of the Si-O bond increases, as well as 
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the basic character of the siloxane linkage [95]. Simultaneously, the Si-F bond lengths are 

almost no affected; except for Si4O6F4 where the Si-F bonds are quite short (1.563 Å), they 

vary from 1.570 Å to 1.575 Å (see Figure S1; Supporting Information). 

 

Fig. 3. Correlation between the Si-O bond lengths (in Å) and the Si-O-Si angles (in °) in the 
clusters sketched in Figure 2. For comparison, the experimental values of the Si-O bond 
length and of the corresponding Si-O-Si angle in α-quartz are indicated. 

From this geometrical information, it can be concluded that the clusters considered in 

this study constitute an ensemble able to reproduce the variability of the structural features of 

solid silicates. This is an additional element in favor of the strategy chosen to model silicates.  
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4.3. A model which reproduces qualitatively the evolution of Ip with the 

degree of polymerization 

 For each of the 10 clusters sketched in Figure 2, the corresponding normal modes have 

been computed from the optimized geometry. Figure 4 presents, for each of them, the 

stretching character of each mode (computed using equation 5) plotted versus the associated 

wavenumber (after mass correction).  

 

Fig. 4. Stretching character (see equation 5) of the normal modes of the structural models for 
silicates sketched in Figure 2, plotted against their characteristic wavenumber. The straight 
dotted line is a guide to the eyes to separate data relative to normal modes belonging to 
group G1 and those belonging to group G2. 
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As expected, the general trend is that the wavenumber characterizing a normal mode 

increases as its stretching character increases, in agreement with the fact that it is easier to 

open/close a valence angle than to stretch/compress a chemical bond.  

To the naked eye, it appears clearly that normal modes can be divided into (at least) 

two groups, as symbolized by the straight black line on Figure 4. We will call G1 the group 

gathering normal modes with the highest wavenumbers and the highest stretching characters, 

and G2 the group gathering normal modes with the lowest wavenumbers and the lowest 

stretching characters. Only two modes (among 411) do not fit perfectly this view, with a too 

low wavenumber compared to their stretching character. It was decided to affect them to G2 

anyway since experimentally calculation of the Ip index comes from decomposition into two 

groups based on wavenumbers criteria. Group G1 appears quite compact with wavenumbers 

going from 850 to 1300 cm-1 and stretching characters between 0.6 and 1.0; we think it 

gathers normal modes modeling those giving rise to the band centered around 1000 cm-1 in 

the Raman spectra of silicate glasses. Group G2 involves more dispersion, with wavenumbers 

going from 0 to 850 cm-1 and stretching character from 0 to 0.6 (if the “abnormal” normal 

modes are not taken into account). Most probably it includes normal modes modeling those at 

the origin of the band centered around 500 cm-1 in Raman spectra of silicates, but not only. 

This is coherent with the fact that graphically group G2 seems to be dividable into two 

subgroups: a first one with intermediate stretching characters and wavenumbers going from 

500 to 850 cm-1; and a second one with very small stretching characters (< 0.2) and 

wavenumbers below 500 cm-1. 

In Figure 5, the Raman activities of the normal modes of the 10 clusters are plotted 

versus the corresponding wavenumbers. It appears that the ensemble of 10 clusters gives rise 

to Raman signals in two wavenumber areas: around 500 cm-1 and around 1000 cm-1, in 

agreement with the experimental Raman spectra of solid silicates. In addition, it can be 
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checked that among normal modes belonging to group G2, those with the lowest 

wavenumbers and the lowest stretching characters do not contribute significantly to the 

Raman spectra of the species they are characteristic from. For that reason, and because the 

separation of G2 into two potential subgroups does not appear clear to define, it was decided 

to keep the natural separation of clusters normal modes into two groups -- G1 and G2 -- to 

calculate for each of them a computational Ip index using the following formula:  

1

2

G

G

I

I
Ip         (7) 

with IG2 the sum of Raman intensities of normal modes belonging to group G2 and IG1 the sum 

of Raman intensities of normal modes belonging to group G1. 

 

Fig. 5. Raman activities of the normal modes of the silicates clusters sketched in Figure 2, 
plotted against their characteristic wavenumber. The straight dotted line is a guide to the eyes 
to separate data relative to normal modes belonging to group G1 and those belonging to 
group G2. 
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Figure 6 presents the evolution of this computational Ip index with the average 

number of bridging oxygen per silicon, a way to render the degree of polymerization of the 

tetrahedral units. To plot Figure 6, Raman intensities of normal modes have been computed 

using formula (2). Temperature was chosen to be 298 K, and the exciting laser wavenumber 

either 532 nm or 780 nm. It can be checked to these two choices for the exciting wavenumber 

lead to the same ratio of the intensities, in agreement with the fact that k 0 . It validates 

the approximation k 0  in equation (4). 

 

Fig. 6. Ratio IG2 / IG1 computed for two laser exciting wavenumbers ( 0 = 532 nm and 0 = 

780 nm) and plotted against the average number of bridging oxygen per silicon for the 
structural models sketched in Figure 2. For each system, IG2 is the sum of the Raman 
intensities of its normal modes belonging to group G2 according to Figure 3 while IG1 is the 
sum of the Raman intensities of its normal modes belonging to group G1. Raman intensities 
have been calculated using equation 3, from Raman activities and wavenumbers computed by 
Gaussian 03 and Gaussian 09. 
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5. Discussion 

 As observed experimentally for crystalline and amorphous silicates, the computed Ip 

index for the silicate clusters considered increases as the number of bridging oxygen per 

silicon increases. The general trend is similar to the experimental one with an Ip index, which 

varies only slightly from Q0 to Q2 coordination types and then increases more deeply for 

higher polymerization degrees. It is interesting to note how close to each other are the Ip 

values of the three Q2 clusters while they are characterized by quite different Si-O-Si angles 

(132° for Si3O3F6, 159° for Si4O4F8 and 166° for Si6O6F12). The same is observed for the two 

Q3 clusters to a certain extent. And it is remarkable how the Ip values of the clusters showing 

two kinds of Qn coordination types -- Si3O2F8, Si4O3F10 and Si5O6F8 (average number of OBO 

per Si: 1.33, 1.5 and 2.4, respectively) -- inserts into the curve.  It confirms that the Ip index is 

really a signature of the Qn coordination types and thus a useful tool to gain information about 

the degree of polymerization of the SiO4 tetrahedra in amorphous silicates. Quantitatively, the 

values taken on by the Ip index for the SixOyFz clusters are about 4-5 times higher than those 

obtained for crystalline and amorphous silicates. Nonetheless, the fact that the general trend is 

well reproduced by the ensemble of clusters considered indicates that it constitutes a suitable 

model to analyze the origin of the evolution of the Ip index with the degree of polymerization. 

This will be the subject of another article.  

6. Conclusion 

In this work, an ensemble of ten SixOyFz clusters with various numbers of F per Si has 

been studied by DFT at the B3LYP/def2-TZVPD level of theory. SixOyFz clusters can be seen 

as models for the different classes of silicates on the basis that a fluorine atom is isoelectronic 

to an oxygen holding one negative charge, as non-bridging oxygens do in silicates. As such, 

by varying the number of F atom per Si, the different Qn coordination types existing in 
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silicates can be reproduced. Interestingly, the Si-O-Si angle values in the ensemble cover the 

same range as in amorphous silicates, indicating that the ensemble is able to take into account 

the variability of geometrical constraints found in amorphous silicates. Normal modes have 

been calculated for each individual of the ensemble, modifying the mass of fluorine atoms so 

that it equals that of an oxygen one. As such, evolution of the Ip index with the number of 

bridging oxygen per silicon behaves similarly to what it does in crystalline and amorphous 

silicates. This indicates that the ensemble of cluster constitutes a model able to reproduce the 

effect of SiO4-polymerization on the Raman intensities in silicates and aluminosilicates. The 

approach adopted in this work is obviously transferable to other oxides (borates, phosphates, 

sulfates …) and one can imagine constructing models for other glasses on the same basis: 

substitution of O- by F and then mass correction of F atoms. In future work, this model will 

be used to rationalize this evolution of Ip with the degree of polymerization, what should 

bring some theoretical support for its use. The effect of Si/Al substitution as well as that of 

presence of heavy cations will be investigated too. 

Acknowledgments 

We would like to thank Dr. Bruno Madebène for suggesting modifying the mass of fluorines 

in frequency calculations. 



 

26 
 

References 

[1] N. K. Kildahl, J. Chem. Educ. 72 (1995) 423. 

[2] R. J. Gillespie, J. Chem. Educ. 75 (1998) 923. 

[3] A. Haaland, T. U. Helgaker, K. Ruud and D. J. Shorokhov, J. Chem. Educ. 77 (2000) 
1076. 

[4] H. C. Marsmann, Z. Naturforsch. 29B (1974) 495. 

[5] K. L. Geisinger and G. V. Gibbs, Phys. Chem. Minerals 7 (1981) 204. 

[6] R. L. Mozzi and B. E. Warren, J. Appl. Cryst. 2 (1969) 164. 

[7] J. Neuefeind and K. -D. Liss,  Ber. Bunsenges. Phys. Chem. 100 (1996) 1341. 

[8] T. M. Clark, P. J. Grandinetti, P. Florian and J. F. Stebbins, Phys. Rev. B 70 (2004) 
064202. 

[9] N. V. Belov, OcherkipoStrukturnoiMineralogii (Essays on Structural Mineralogy), Nedra, 
Moscow, 1976. 

[10] H. Eckert, Prog. Nucl. Mag. Res. 24 (1992) 159. 

[11] P. McMillan, Am. Mineral. 69 (1984) 622. 

[12] Ph. Colomban, J. Non-Crys. Solids 323 (2003) 180. 

[13] Ph. Colomban and O. Paulsen, J. Am. Ceram. Soc. 88 (2005) 390. 

[14] Ph. Colomban, A. Tournié and L. Bellot-Gurlet, J. Raman Spectrosc. 37 (2006) 841. 

[15] Ph. Colomban, J. Cultural Heritage 9 (2008) e55. 

[16] Ph. Colomban and L.C. Prinsloo in, in: J. Yarwood, R. Douthwaite, S. B. Duckett( Eds), 
Spectroscopic Properties of Inorganic and Organometallic Compounds, RSC Publishing, The 
Royal Society of Chemistry, 2009 , pp.128-149. 

[17] Ph. Colomban and A. Slodczyk, Optical Materials 31 (2009) 1759. 

[18] P. Ricciardi and Ph. Colomban, in :  J. M. Chalmers, H. G. M. Edwards, M.Hargreaves 
(Eds), IR & Raman spectroscopy in forensic sciences, Wiley & Sons Ltd, 2012, pp. 469-479. 

[19] B. O. Mysen, D. Virgo and F. A. Seifert, Rev. Geophys. Space Phys. 20 (1982) 353. 

[20] S. A. Brawer, Phys. Rev. B 11 (1975) 3173. 

[21] S. A. Brawer and W. B. White, J. Chem. Phys. 63 (1975) 2421. 

[22] S. A. Brawer and W. B. White, J. Non Cryst. Solids 23 (1977) 261. 

[23] J.-L. You, G.-C.Jiang, H.-Y.Hou, H. Chen, Y.-Q.Wu and K.-D.Xu, J. Raman Spectrosc. 
36 (2005) 237. 

[24] D. W. Matson, S. K. Sharma and J. A. Philpotts, J. Non-Cryst. Solids 58 (1983) 323. 

[25] T. Furukawa, K. E. Fox and W. B. White, J. Chem. Phys. 75 (1981) 3226. 

[26] M. Henry, in B. Silvi and P. D’Arco (eds.), Modelling of Minerals and Silicated 
Materials, Kluwer Academic Publishers, 2002, pp. 273-334. 

[27] Ph. Colomban, A. Tournié M. C. Caggiani and C. Paris, J. Raman Spectrosc. 43 (2012) 
1975. 



 

27 
 

[28] A. Tournié, Analyse Raman sur site de verres et vitraux anciens : modélisation, 
procedure, lixiviation et caractérisation (PhD dissertation),  Université Pierre et Marie Curie, 
Paris, 2009. 

[29] L. De Ferri, D. Bersani, A. Lorenzi, P. Lottici, G. Vezzalini and G. Simon, J. Non-Cryst. 
Solids 358 (2012) 814. 

[30] S. Pérez-Villar, J. Rubio and J. L. Oteo J. Non-Cryst. Solids 354 (2008) 1833. 

[31] E. Malchukova, B. Boizot, D. Ghaleb and G. Petite, J. Non-Cryst. Solids 352 (2006) 297. 

[32] N. Ollier, T. Charpentier, B. Boizot, G. Wallez and D. Ghaleb, J. Non-Cryst. Solids 341 
(2004) 26. 

[33] V. Martinez, A. M. Jurdyc, D. Vouagner, C. Martinet and B. Champagnon, J. Non-Cryst. 
Solids 351 (2005) 2421. 

[34] J. Sauer, Chem. Rev. 89 (1989) 199. 

[35] K. Jug and T. Bredow, J. Comput. Chem25 . (2004) 1551. 

[36] M. D. Newton and G. V. Gibbs, Phys. Chem. Minerals 6 (1980) 221. 

[37] B. H. W. S. De Jong and G. E. Brown Jr., Geochim. Cosmochim. Acta 44 (1980) 491. 

[38] N. Uchida and M. Shinmei, J. Non-Cryst. Solids 122 (1990) 276. 

[39] G. V. Gibbs, E. P. Meagher, M. D. Newton and D. K. Swanson, in M. O’Keefe and A. 
Navrotsky (Eds), Structure and Bonding in Crystals Vol. 1, Acad. Press., New York, 1981, 
pp. 195-225. 

[40] K. L. Geisinger and G. V. Gibbs, Phys. Chem. Minerals 7 (1981) 204. 

[41] J. S. Nicoll, G. V. Gibbs, M.B. BoisenJr, R. T. Downs and K. L. Bartelmehs, Phys. 
Chem. Minerals. 20 (1994) 617. 

[42] G. V. Gibbs, Am. Mineral. 67 (1982) 421. 

[43] R. M. Badger, J. Chem. Phys. 2 (1934) 128. 

[44] D. R. Herschbach and V. W. Laurie, J. Chem. Phys. 35 (1961) 454. 

[45] A. B. Anderson and R. G. Parr, Chem. Phys. Lett. 10 (1971) 293. 

[46] P. F. McMillan and A. C. Hess, Phys. Chem. Minerals 17 (1990) 97. 

[47] A. N. Lazarev and A. P. Mirgorodsky, Phys. Chem. Minerals 18 (1991) 231. 

[48] S. Tsuneyuki, M. Tsukada and H. Aoki, Phys. Rev. Lett. 61  (1988) 869. 

[49] R. G. Della Valle and E. Venuti, Chem. Phys. 179 (1994) 411. 

[50] B. Guillot and Y. Guissani, Phys. Rev. Lett. 78 (1997) 2401. 

[51] V. Kahlenberg, D. Girtler, E. Arroyabe, R. Kaindl and D. M. Többens, Miner. Petrol. 100 
(2010) 1. 

[52] M. Prencipe, Y. Noel, M. Bruno and R. Dovesi, Am. Mineral. 94 (2009) 986. 

[53] E. Arroyabe, R. Kaindl, D. M. Többens and V. Kahlenberg, Inorg. Chem. 48 (2009) 
11929. 

[54] E. Arroyabe, F. Prechtel, D. M. Többens, R. Kaindl and V. Kahlenberg, Eur. J. Mineral. 
23 (2011) 425. 

[55] R. Kaindl, D. M. Többens and V. Kahlenberg, J. Raman. Spectrosc. 42 (2011) 78. 



 

28 
 

[56] M. Prencipe, J. Raman Spectrosc. (2012) DOI: 10.1002/jrs.4040 

[57] J. A. Tossell, Chem. Mater. 6 (1994) 239. 

[58] J. A. Tossell, Geochim. Cosmochim. Acta 69 (2005) 283. 

[59] D. Sykes and J. D. Kubicki, Geochim. Cosmochim. Acta 57 (1993) 1039. 

[60] J. D. Kubicki and E. M. Stopler, Geochim. Cosmochim. Acta 59 (1995) 683. 

[61] J. D. Kubicki and D. Sykes, Am. Mineral. 78 (1993) 253. 

[62] J. Sarnthein, A. Pasquarello and R. Car, Phys. Rev. Lett. 74 (1995) 4682. 

[63] S. N. Taraskin and S. R. Elliott, Phys. Rev. B 56 (1997) 8605. 

[64] N. Zotov, I. Ebbsjö, D. Timpel and H. Keppler, Phys. Rev. B 60 (1999) 6383. 
[65]  L. Giacomazzi, P. Umari and A. Pasquarello, Phys. Rev. B 79 (2009) 064202. 

[66] E. Monsivais-Gámez, F. Ruiz and J. R. Martinez, J. Sol-Gel Sci. Technol. 43 (2007) 65. 

[67] R. Holomb, M. Veres, V. Mitsa, J. Optoelectron. Adv. Mater. 11 (2009) 917. 

[68] D. G. Liakos, E. A. Simandiras, J. Phys. Chem. A 112 (2008) 7881. 

[69] A. N. Rosli, N. A. Zabidi, H. A. Kassim and K. N. Shrivastava, J. Clus. Sci. 21 (2010) 
197. 

[70] M. Wolkenstein, C.R. Acad. Sci. URSS 30 (1941) 791.  

[71] M. Eliashevitch and M. Wolkenstein, J. Phys. USSR 9 (1945) 326. 

[72] D. A. Long, Proc. R. Soc. London, Ser. A 217 (1953) 203. 

[73] A. I. Boldyrev and J. Simons, J. Phys. Chem. 98 (1994) 2298.  

[74] G. Roos, F. De Proft and P. Geerlings, J. Phys. Chem. A 109 (2005) 652. 

[75] G. J. McIntosh, P.J. Swedlund and T. Söhnel, Phys. Chem. Chem. Phys. 13 (2011) 2314. 

[76] B. H. W. S. De Jong and G. E. Brown Jr., Geochim. Et Cosmochim. Acta 44 (1979) 491. 

[77] G. Spiekermann, M. Steele-MacInnis, C. Schmidt and S. Jahn, J. Chem. Phys. 136 
(2012) 154501. 

[78] I.S. Ignatyev and T. R. Sundius, J. Mol. Struct. (Theochem) 343 (1995) 69. 

[79] E. E. Zvereva, A. R. Shagidullin and S. A. Katsyuba, J. Phys. Chem. A 115 (2011) 63. 

[80] D. M. Többens and V. Kahlenberg, Vibrational Spectroscopy 56 (2011) 265. 

[81] R. DeMichelis, B. Civalleri, M. Ferrabone and R. Dovesi, Int. J. Quant. Chem. 110 
(2010) 406. 

[82] C. M. Zicovich-Wilson, F. Pascale, C. Roetti, V. R. Saunders, R. Orlando and R. Dovesi, 
J. Comput. Chem. 25 (2004) 1873. 

[83] P. Mauro, L. Mantovani, M. Tribaudino, D. Bersani, P. P. Lottici, Eur. J. Mineral. 24 
(2012) 457.  

[84] D. Rappoport and F. Furche, J. Chem. Phys. 133 (2010) 134105. 

[85] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys7 . (2005) 3297. 

[86] D. Feller, J. Comput. Chem. 17 (1996) 1571. 



 

29 
 

[87] K. L. Schuchardt,B. T. Didier,T. Elsethagen,L. Sun,V. Gurumoorthi,J. Chase,J. Li andT. 
L. Windus, J. Chem. Inf. Model. 47 (2007) 1045. 

[88] Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,  
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. 
M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. 
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, 
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. 
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. 
Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. 
A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. 
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, 
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. 
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. 
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. 
Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. 

[89]Gaussian 09, Revision A.02,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, 
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. 
Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. 
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, 
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. 
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, 
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. 
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, 
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. 
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. 
Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, 
Gaussian, Inc., Wallingford CT, 2009. 

[90] D. A. Long, Raman Spectroscopy, McGraw-Hill, New York, 1977. 

[91] S. K. Ignatov, P.G. Sennikov, A. G. Razuvaev, I.V. Simdyanov and K. G. Tokhadze, 
Optics and Spectroscopy 90 (2001) 654. 

[92] T. Shimanouchi, “Tables of Molecular Vibrational Frequencies, Consolidated Volume 
1”, NSRDS NBS-39 (http://www.nist.gov/data/nsrds/NSRDS-NBS-39.pdf)   

[93] V. Murashov, J. Mol. Struct. 650 (2003) 141. 

[94] G. V. Gibbs, A. F. Wallace, D. F. Cox, R. T. Downs, N. L. Ross and K. M. Rosso, Am. 
Miner. 94 (2009) 1085. 

[95] S. Grabowsky, M. F. Hesse, C. Paulmann, P. Luger and J. Beckmann,  Inorg. Chem. 48 
(2009) 4384. 

 

 

 


