
HAL Id: hal-00816916
https://hal.sorbonne-universite.fr/hal-00816916v1

Preprint submitted on 23 Apr 2013 (v1), last revised 4 Apr 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dissection solver with kernel detection for symmetric
finite element matrices on shared memory computers

Atsushi Suzuki, François-Xavier Roux

To cite this version:
Atsushi Suzuki, François-Xavier Roux. A dissection solver with kernel detection for symmetric finite
element matrices on shared memory computers. 2013. �hal-00816916v1�

https://hal.sorbonne-universite.fr/hal-00816916v1
https://hal.archives-ouvertes.fr

A dissection solver with kernel detection for symmetric finite

element matrices on shared memory computers

A. Suzuki1∗, F.-X. Roux1,2

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75252 PARIS Cedex 05, France,
2 ONERA, Chemin de la Hunière, FR-91761, PALAISEAU Cedex, France

April 23, 2013

Abstract

A direct solver for symmetric sparse matrices from finite element problems is presented.

The solver is supposed to work as a local solver of domain decomposition methods for hybrid

parallelization on cluster systems of multi-core CPUs, then it is required to run on shared

memory computers and to have an ability of kernel detection. Symmetric pivoting with a

given threshold factorizes a matrix with a decomposition introduced by a nested bisection and

selects suspicious null pivots from the threshold. The Schur complement constructed from the

suspicious null pivots is examined by a factorization with 1×1 and 2×2 pivoting and by a robust

kernel detection algorithm based on measurements of residuals with orthogonal projections onto

supposed image spaces. A static data structure from the nested bisection and a block sub-

structure for Schur complements on all bisection-levels can well employ level 3 BLAS routines.

Asynchronous task execution for each block can reduce idling time of processors drastically,

then the solver has high parallel efficiency. Competitive performance of the developed solver to

Intel Pardiso on shared memory computers is shown by numerical experiments.

Keywords: kernel detection; finite element matrix; nested bisection; level 3 BLAS; asynchronous

task execution

1 Introduction

Solutions of large sparse matrices from discretization finite element methods on parallel computers
are very important aspects of numerical simulation of elasticity and flow problems. Modern parallel
computers consist of a cluster of shared memory systems and especially each cluster node has several
cores and the number of cores is increasing nowadays. In this parallel computing environment,
a hybrid parallelization combining two different algorithms for a shared memory system and for
a distributed memory system is mandatory. For linear equations of finite element problems, by
introducing a domain decomposition method, a hybrid algorithm is constructed where local problems
are solved by a direct solver and a global interface problem is solved by an iterative solver. There
are two major methods of domain decomposition, FETI [11, 12] and BDD [26]. Krylov subspace
methods for the whole matrix, which are classical but still leading approaches, consist of products of
sparse matrix and vector (SpMV) and inner products. Both operations could be easily parallelized
by distributions of the matrix and vector by a domain decomposition, but they are not efficient on
modern parallel computers, because performance of the first operation is limited by the memory
access and the second one consumes a lot of communication cost for small data transfer. On the
other hand, dense matrix computations can enjoy increasing computing power of multi-core systems,
by introducing block strategies and asynchronous task execution [22, 5, 10]. The hybrid algorithm
tries to import advantages of fast computation of direct solvers on multi-core systems. However, we

∗E-mail: Atsushi.Suzuki@ann.jussieu.fr

1

still need to pay attention on direct solvers for local finite element matrices in two different points.
The first point comes from the fact that matrices are sparse, therefore an appropriate data structure
is necessary to get good performance as dense matrices. The second one is, a local matrix for the
primal problem or a preconditioning problem may be singular with the kernel space corresponding
to rigid body modes and/or a pressure lifting. The kernel of the local matrix plays a key role to
construct a coarse space which can accelerate the global iterative solver. Mathematically it is not
difficult to find the kernel of each local matrix for linear problems, but in practical problems, due
to an automatic mesh decomposition and/or a nonlinear iteration solver, it is not so clear that how
many kernel vectors remain in the local matrix. Therefore it is very important to construct a direct
solver for sparse matrices which has a capability to detect the kernel of the matrix and to construct
kernel vectors.

Our sparse direct solver is supposed to run on shared memory systems, hence we do not need to
optimize cost for memory movements through the network, then implementation becomes simpler
than on distributed systems. However, for implementation aspect of the sparse direct solver on
multi-core systems, there are still two important factors. The first factor is reduction of idling time
of cores. Both MPI [27, 16] and OpenMP [28, 4] parallel libraries assume synchronized parallelizations.
Under MPI, at least two processors need to be synchronized for a message passing. Especially under
OpenMP library, which is designed for shared memory systems, the cost of synchronization of all tasks
is expensive because some processes have to wait until end of the slowest process, which results in
large idling time of cores. This could be resolved by introducing asynchronous execution of tasks
with Pthreads library [24]. The other factor is the arithmetic intensity of tasks in the solver. The
recent CPU has several cores and each core also has multiple arithmetic units, but the CPU has
relatively narrow memory path, which leads to a very high ratio of arithmetic operations to memory
access. For example, Intel Westmere Xeon 5680 has six cores running at 3.33GHz, which can achieve
3.33×4×6 = 79.92GFlop/second and has three memory interfaces with DDR3 running at 1, 333GHz
whose memory access is 4GWords/second, hence the ratio of arithmetic operation to memory access
is about 20. Up to now using level3 BLAS library is the only way to perform such a high arithmetic
intensive operation. This is exactly the reason why the fundamental SpMV operation, whose ratio
is 1, is not fit to the modern CPU.

There are several sparse direct solvers for parallel computational environments, e.g., SuperLU MT

[8, 9], Pardiso [31, 32, 33], SuperLU DIST [25], DSCPACK [18, 19, 30], and MUMPS [1, 2, 3]. The first two
codes run on shared memory systems and the others run on distributed memory systems. In general,
a direct solver for sparse matrices consists of two steps, a symbolic factorization and a numeric
factorization. For parallel computation, it is important to understand possible non-zero entries
including fill-ins during numerical computations and to construct some independent structures. For
this purpose a super-nodal approach or a multi-frontal approach is employed [7]. The first three
codes are based on the super-nodal approach and the others are based on the multi-frontal approach.
For the numerical factorization, if the matrix is supposed as symmetric positive definite, there is
no need to introduce a pivot strategy. Permutation operations to realize pivot strategies are costly
on distributed systems, then SuperLU DIST is based on a “static pivoting approach” combined
with half-precision perturbations to the diagonal entries. Pardiso also uses a similar approach as
SuperLU DIST for indefinite symmetric matrices, combining 1× 1 and 2× 2 pivot selection [6] with
pivot perturbations [34]. However, after applying pivot perturbation techniques, the factorization
procedure can not recognize the kernel of the matrix. MUMPS uses partial threshold pivoting during
the numerical factorization combined with a dynamic data structure and asynchronous execution
of tasks in the elimination tree. It is the only one implementation which can detect the dimension
of the kernel and can compute kernel basis.

Our dissection solver is targeted on a shared memory system with many cores, supposed to be
a local solver of the hybrid parallelization, and aimed to have a robust algorithm to detect the
kernel of finite element matrices. Our computational approach is very similar to MUMPS with partial
threshold pivoting, postponing computation concerning on suspicious null pivots and asynchronous
execution of tasks. However, we employ a static data structure for the elimination tree, which makes
the code simpler. The developed code shares the same methodology with the previous version [17]

2

having improved kernel detection in robustness and efficiency and a new implementation for thread
management.

The rest of the paper is organized as follows. In Section 2 we describe a global strategy for a
factorization of symmetric matrices which can include zero and negative eigenvalues with partial
threshold pivoting. Then we introduce a robust algorithm to detect the kernel of the matrix with
some numerical experiments which support the robustness. In Section 3 we deal with a nested
bisection tree which is understood as a multi-frontal approach for parallel computation and explain
a way of implementation of the factorization by using level3 BLAS. In Section 4 we present task
scheduling and asynchronous execution of tasks. In Section 5 we present and analyze the perfor-
mance of our dissection solver with comparison to IntelPardiso and MUMPS. In the last section we
conclude our results and present future work.

2 Factorization procedure with kernel detection

2.1 Target problem

We deal with large sparse symmetric matrices obtained from elasticity or fluid problems by finite
element methods, then we suppose that an N -by-N matrix A has an LDLT factorization with
symmetric partial pivoting,

A = ΠT LDLT Π Ã = ΠAΠT . (1)

Here, L is a unit lower triangle matrix, D a diagonal matrix, and Π a permutation matrix. This
assumption is natural, because we use the same finite element basis for both unknown and test
functions. Let k be the dimension of the kernel of the matrix, KerA, then we have the following
factorization.

[
Ã11 Ã12

Ã21 Ã22

]
=

[
Ã11 0

Ã21 S̃22

] [
I11 Ã−1

11 Ã12

0 I22

]

=

[
L11 0

Ã21L
−T
11 D−1

11 I22

] [
D11 0
0 0

] [
LT

11 D−1
11 L−1

11 Ã12

0 I22

]
.

The k-by-k Schur complement matrix S̃22 = Ã22 − Ã21Ã
−1
11 Ã12 vanishes.

Our objective is to construct an efficient parallel algorithm of a factorization which has a ca-
pability to detect the kernel dimension. However there are two difficulties in the factorization of
non-positive definite matrices. Due to numerical round-off errors during the factorization, matrix
will be perturbed and the Schur complement matrix S̃22 becomes non-zero matrix. The other one
is even though the original matrix has an LDLT factorization with a symmetric permutation, after
applying a block factorization, which is introduced especially for parallel efficiency, the factorization
needs so called “2× 2 pivot”. This is clear from a very simple example,



1/4 5/4 1/2
5/4 1/4 1/2
1/2 1/2 1


 =



1
5 1
2 1/3 1






1/4

−6
2/3






1 5 2

1 1/3
1


 ,




1 1/2 1/2
1/2 1/4 5/4
1/1 5/4 1/4


 =




1
1/2 1
1/2 0 1






1

0 1
1 0







1 1/2 1/2
1 0

1


 .

The second factorization is obtained by a symmetric pivot strategy which takes the maximum
diagonal entry by evaluation of absolute values. The last 2 × 2 block never accepts the LDLT

factorization with the symmetric permutation. Hence we need to employ a combination of 1 × 1
and 2× 2 pivots to factorize the matrix A,

A = ΠT LDLT Π

where a block diagonal matrix D consists of 1× 1 and 2× 2 blocks.

3

2.2 Factorization procedure

There are four stages for an LDLT factorization with a symmetric permutation combined with
partial threshold pivoting and postponing computation concerning on suspicious null pivots. Let
the matrix be decomposed into three parts,




A11 A12 A13

A21 A22 A23

A31 A32 A33


 =




A11

A21 S22 S23

A31 S32 S33







I11 A−1
11 A12 A−1

11 A13

I22

I33


 .

The first stage consists of a factorization

A11 = ΠT
1 L11D11L

T
11Π1

and computation of a Schur complement
[
S22 S23

S32 S33

]
=

[
A22 A32

A32 A33

]
−

[
A21

A31

]
A−1

11

[
A12 A13

]
.

Here D11 is a diagonal matrix without 2 × 2 block. This stage is performed in parallel based on
blocks generated by a nested bisection decomposition of the graph of the matrix, which is described
in Section 3. The index set J1 ⊂ {1, . . . , N} with size n1 is selected during the factorization with
partial threshold pivoting. Precisely, the rest of the factorization of the block is skipped when the
ratio of diagonal entries becomes less than a given threshold τ . If ai+1 i+1/ai i < τ , the block with
more than i-th entry is not factorized. If there is no suspicious null pivot, i.e., J1 = {1, . . . , N},
then the LDLT factorization terminates. For computation of the Schur complement

[
S22 S23

S32 S33

]
,

we need to solve the linear system for multiple right-hand side with N − n1 vectors,

ΠT
1 L11 D11 LT

11Π1

[
X12 X13

]
=

[
A12 A13

]
.

Remark 1
In the case suspicious null pivots only appear on the last block of A11, the procedure to solve the
linear system with size n1 is omitted, because the last Schur complement is already computed during
the factorization processes of the first stage. This is explained more precisely in Remark 4, Section
3.2.

The second stage proceeds a factorization for index {1, . . . , N} \ J1,

S̄22 = Π̄T
2 L̄22 D̄22 L̄T

22 Π̄2 .

The index set J̄22 with size n̄2 is selected again during the factorization with partial threshold
pivoting. Here we suppose that the size n̄2 is not large because of the initial assumption on the
matrix (1), then we perform the factorization without introducing a block permutation. If there is
no suspicious null pivot, i.e., J1 ∪ J̄2 = {1, . . . , N}, then the LDLT factorization terminates. Before
moving the third stage, we exclude m ≥ 4 last entries from J̄2 and set J2 = J̄2 \{Π̄T

2 (n̄2 +1− i) ; i =
1, . . . , m}. A Schur complement corresponding to the index J2, S22 is obtained by just nullifying
the last m rows of L̄22 and the last m diagonals of D̄22,

S22 = Π̄T
2 L22D22L22

T Π̄2 .

Then we compute the last Schur complement Ŝ33,

Ŝ33 = S33 − S32S
−1
22 S23

whose indices are given by J3 = {1, . . . , N} \ (J1 ∪ J2).

4

The third stage consists of an extended LDLT factorization with a mixture of 1× 1 and 2× 2
pivots and a procedure to detect the kernel dimension of the last Schur complement matrix. For
preparation of the kernel detection we modify the matrix Ŝ33 as

S̃33 =

[
Ŝ33 [

∑
j ŝi j]i↓ + ~ε

[
∑

i ŝi j]j→ + ~ε T
∑

i,j ŝi j +
∑

i[~ε]i

]
.

Here ~ε is an n3-vector whose element sums up n3 trials of addition of the machine epsilon of double
precision, ε0 with a 1/2 probability, which emulates accumulation of round-off errors. The ℓ2-
norm of ~ε is approximately 1

2n3
2ε0. By this modification, dim ImS̃33 ≥ m and dimKerS̃33 ≥ 1

within ε0-accuracy. Precisely, S̃33 without addition of ~ε has at least 1-dimensional kernel. Then we
proceed a factorization with 1 × 1 and 2 × 2 pivoting by Algorithm 1. For this extended LDLT

factorization and forward-backward substitutions in the kernel detection procedure described in the
following section, we need to use quadruple-precision arithmetic to avoid ambiguities caused by
double-precision round-off errors.

Algorithm 1 (selection of 1× 1 and 2× 2 pivots for a symmetric n-by-n matrix A)
for k = 1, . . . , 4

find the maximum entry |aii| = maxk≤j≤n |ajj |.
exchange k-th and i-th rows and columns.
multiply 1/akk to the k-th column vector.
perform rank-1 update to the lower part of (n− k)× (n− k) matrix.

for k = 5, . . . , n
find a pair of index (i, j), k ≤ i ≤ j ≤ n, which attains the maximum value of |aii · ajj − a2

ji|.
if i = j

exchange k-th and i-th rows and columns.
multiply 1/akk to the k-th column vector.
perform the rank-1 update to the lower part of (n− k)× (n− k) matrix.

if i 6= j
exchange k-th and i-th rows and columns and (k + 1)-th and j-th ones, respectively.

multiply

[
ak k ak+1 k

ak+1 k ak+1 k+1

]−1

to the k and (k + 1)-th column vectors.

perform the rank-2 update to the lower part of (n− k − 1)× (n− k − 1) matrix.

This algorithm is much costly than a well-known strategy for 1 × 1 and 2× 2 pivoting by Bunch-
Kaufman [6], which is realized as DSYTF2 and DLASYF in LAPACK [23], but it is necessary to proceed an
accurate factorization when the matrix has the kernel. Moreover, here we can assume the size of the
last Schur complement is small, hence O(n3) comparison does not cause any problem. Starting with
four 1× 1 pivots is guaranteed by m(≥ 4) dimensional regular part constructed from the previous
level of Schur complement which has an LDLT factorization with a symmetric permutation.

Remark 2
We can combine 1 × 1 and 2 × 2 pivots selection and the threshold τ > 0, which is realized
by introducing a criterion dk/dk−1 < τ2 with dk = maxk≤i≤j≤n |aii · ajj − a2

ji| to terminate the
factorization in Algorithm 1, and by starting 1× 1 or 2× 2 selection from k = 1. Such algorithm by
double-precision arithmetic could replace the stage two which computes an LDLT factorization of
S22 with the threshold τ . Then we can get a candidate of the Schur complement corresponding to
only small eigenvalues without large negative eigenvalues. This modification can save computational
time by quadruple-precision arithmetic for Algorithm 1. However there are two negative factors,
i.e., the cost to search full pivots for size n2 > n3 and complexity to find m diagonal entries with
1× 1 pivot, which is described precisely in the end of this section.

Separately from Algorithm 1, we apply a Householder QR factorization with column pivoting
where norms of the column vectors are fully computed, then the factorization continues to the

5

end. This implementation is slightly different from [14], pp 250-251. Double-precision arithmetic is
enough for this QR factorization, because our purpose is to find candidates of the kernel dimension.
The matrix S̃33 is factorized as

S̃33Π = Q R

where R is an upper triangular matrix and whose diagonal entries are in a decreasing order,

r1 ≥ r2 ≥ · · · ≥ rm ≥ rm+1 ≥ · · · ≥ rn3+1 .

From the construction of S̃33, it is clear that dimImS̃33 ≥ m hence rm ≫ 0 and also rn3+1 ≃ ε0.
There will be a gap between two entries corresponding to the kernel dimension dim KerS̃33 = k + 1,
rn3−k ≫ rn3+1−k. So we make a set of candidates of the kernel dimension with the threshold τ ,

K = {k ; rn3+1−k/rn3−k < τ} . (2)

As a preparation of our kernel detection algorithm, we exchange the order of 1× 1 and 2× 2 pivots
to be consistent with a candidate of the kernel dimension k ∈ K by applying the following algorithm
repeatedly.

Algorithm 2 (exchange of 1× 1 and 2× 2 pivots)
Suppose that 3-by-3 sub-matrix is regular and it consists of 1× 1 pivot and 2× 2 pivot as

B =




1
l2 1
l3 0 1






d1

d2 d0

d0 d3






1 l2 l3

1 0
1


 =




d1 d1l2 d1l3
d1l2 d2 + d1l

2
2 d0 + d1l2l3

d1l3 d0 + d1l2l3 d3 + d1l
2
3


 .

Find a pair of index (i, j) which attains the maximum value of determinant, |bii · bjj − b2
ji| with

(i, j, h) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} .
By applying the permutation Π({1, 2, 3}) = {i, j, h}, a factorization with 2×2 pivot and 1×1 pivot
is obtained as

ΠB ΠT =




1
0 1
l′1 l′2 1






d′1 d′0
d′0 d′2

d′3






1 0 l′1

1 l′2
1


 .

Here d′3 is calculated by a rank-2 update.

We can always find the pair of index which attains non-zero value of the 2-by-2 determinant. It is
shown by an elemental way. If d2 6= 0, then the determinant of (1, 2) entries is

∣∣∣∣
d1 d1l2

d1l2 d2 + d1l
2
2

∣∣∣∣ = d1 · (d2 + d1l
2
2)− (d1l2)

2 = d1d2 6= 0 .

If d2 = 0 and d3 = 0, then the determinate of (2, 3) entries is

∣∣∣∣
d2 + d1l

2
2 d0 + d1l2l3

d0 + d1l2l3 d3 + d1l
2
3

∣∣∣∣ = d1l
2
2 · d1l

2
3 − (d0 + d1l2l3)

2 6= 0 .

We note that it is not always possible to exchange 2× 2 pivot and 1× 1 pivot.
Let fix a candidate dimension k ∈ K. Then we exchange 1 × 1 and 2 × 2 pivots to make sub-

matrices, whose size is n3− j with j = k−2, k−1, k, k+1 to have an extended LDLT factorization,
i.e., diagonal entries of n3− k, n3− k + 1, and n3− k + 2 consist of 1× 1 pivot without 2× 2 pivot.
This is done by at most eight exchanges of four 1× 1 pivots and two 2× 2 pivots. In the following
examples, we denote 2× 2 pivot by parentheses. When k0 = n3 − k locates at the second entry of
a 2× 2 block, six exchanges are necessary,

k−4k−3k−2(k−1k0)(k1k2)→ k−4k−3(k
′
−2k

′
−1)k

′
0(k1k2)→ · · · → (k′

−4k
′′
−3)(k

′′′′
−2k

′′′′
−1)k

′′′′
0 k′′

1k′
2 .

6

When k0 locates at the first entry of a 2× 2 block, eight exchanges are necessary,

k−4k−3k−2k−1(k0k1)(k2k3)→ k−4k−3k−2(k
′
−1k

′
0)k

′
1(k2k3)→ · · · → (k′

−4k
′′
−3)(k

′′′′
−2k

′′′′′
−1)k′′′′′

0 k′′′′
1 k′′

2k′
3 .

Finally we will examine each of candidates of the kernel dimension by Algorithm 3 in Section
2.3. The factorization and solutions for the kernel detection algorithm need to be proceeded by
quadruple-precision arithmetic with an artificial perturbation, which are described in Appendix
A.1.

The last stage consists of construction of the kernel space from obtained kernel dimension k and
the indices, J1, J̄2. Let define J̃2 from J̄2 and the rest of indices corresponding to regular part of
the matrix, with ñ2 = N − n1 − k. Finally we get the factorization of the matrix with two regular
blocks A11 and S22, where indices are decomposed into J1 ∪ J̃2 ∪ J3 = {1, 2, . . . , N} with #J3 = k,



A11 A12 A13

A21 A22 A23

A31 A32 A33


 =




A11

A21 S22

A31 S32 0







I11 A−1
11 A12 A−1

11 A13

I22 S−1
22 S23

I33


 .

Then the kernel space is obtained as

Ker A = span



A−1

11 A13 −A−1
11 A12S

−1
22 S23

S−1
22 S23

−I33


 .

Here the factorization of S22 may contain 2× 2 pivots.

Remark 3
The factorization procedure and the kernel detection procedure depend on a parameter τ > 0,
which is set as a threshold to select suspicious null pivots. If τ is set to the machine epsilon ε0, no
suspicious pivot is detected and the kernel detection routine is not activated. This is useful for the
positive definite matrix whose minimum eigenvalue is definitely larger than zero.

2.3 Kernel detection procedure

Let A be an N -by-N matrix whose dimensions of the image and the kernel are (N − k) ≥ m and
k ≥ 1, respectively. We prepare two parameters l and n, which define a factorization,

[
A11 A12

A21 A22

]
=

[
A11 0
A21 S22

] [
I11 A−1

11 A12

0 I22

]

where A11 is an (N − p)-by-(N − p) matrix with p = l or n, respectively. Here we have assumed
that we can compute A−1

11 by solving linear systems by L11D11L
T
11 without breaking 2 × 2 pivot

blocks. Let P⊥
n be an orthogonal projection from the vector space of N -vectors onto

[
Ā−1

11 A12

−I22

]⊥

and Ā†
N−l

~b be a solution in the subspace whose dimension is (N − l), i.e., Ā†
N−l

~b =

[
Ā−1

11
~b1

0

]
. Here

~b is decomposed into two parts, ~b =

[
~b1

~b2

]
=

[
~bN−l

~bl

]
.

We should mention that Ā−1
11

~b1 is computed by quadruple-precision arithmetic with a perturba-
tion to simulate double-precision round-off errors, which is described in (9), Appendix A.1. Then
we define the following three values with l = n− 1, n, n + 1 for a fixed n which is a candidate of the
dimension of the kernel,

err
(n)
l := max

{
max

~x=[0 ~xl] 6=0

||P⊥
n (Ā†

N−lA~x− ~x)||∞
||~x||∞

, max
~x=[~xN−l 0] 6=0

||Ā†
N−lA~x− ~x||∞
||~x||∞

}
. (3)

We have more sharp gaps than ones appear in diagonal entries of the Householder QR factorization.

7

Lemma 1
The values calculated by (3) have the following comparison.

(i) n = k + 1 then err
(k+1)
k ≈ 0, err

(k+1)
k+1 ≈ 0 and err

(k+1)
k+2 ∼ 1 .

(ii) n = k then err
(k)
k−1 ≫ 0, err

(k)
k ≈ 0 and err

(k)
k+1 ∼ 1 .

(iii) n = k − 1 then err
(k−1)
k−2 ≫ 0, err

(k−1)
k−1 ≫ 0 and err

(k−1)
k ∼ 1 .

An explanation of large values of err
(k)
k−1, err

(k−1)
k−2 , err

(k−1)
k−1 is straightforward. These values are

obtained from ||Ā−1
N−k+1AN−k+1 − IN−k+1||∞ and ||Ā−1

N−k+2AN−k+2 − IN−k+2||∞. These norms
could be infinity with exact arithmetic for the non-perturbed matrix, because we take an inverse
of the singular matrix. However, we use emulated double-precision arithmetic for the perturbed
matrix, then we get some values. The rest of proof is shown in Appendix A.2.

We apply the following test to each of candidates of the kernel dimension (2).

Algorithm 3 (detection of the kernel dimension)
Let k be a candidate dimension of the kernel.
Calculate values, βp = ||Ā−1

p Ap− Ip||∞ for p = 1, 2, . . . , m, and N . If Ā−1
p Ap is not computable due

to a 2× 2 pivot block, then let βp = 0. Set β0 = max1≤p≤m βp.

(i) Compute three values, {err(k)
l }l=k−1,k,k+1.

Let γ0 =
√

βN · β0. If err
(k)
k−1 > γ0 and err

(k)
k < γ0 hold, then k is the kernel dimension,

otherwise try the second test when k > 1.

(ii) Compute three values, {err(k−1)
l }l=k−2,k−1,k.

Let γ1 =
√

(err
(k−1)
k−2 + err

(k−1)
k−1)/2 · β0. If err

(k)
k−1 > γ1 and err

(k)
k < γ1 hold, then k is the

kernel dimension, otherwise k is not the kernel dimension.

We have no exact estimate on the value of βN ≫ 0 but, in most cases, we can suppose that all
{βq}N−k<q≤N have similar order in comparison to the other values {βp}1≤p≤m. Then we set a
criterion γ0 be the middle value of β0 and βN with the logarithmic scale. The second test uses the

whole properties of {err(n)
l }, which are independent of the size of βN . However it is not feasible for

k = 1, so we separate the procedure into two steps.

2.4 Numerical examples of kernel detection procedure

In this section, we show the kernel detection by Algorithm 3 for matrices from real finite element
problems. Three examples come from elasticity problems and a fluid problem. The fourth one
deals with an artificially created small matrix. Tables 1-4 show eigenvalues of the inflated matrix
S̃33, which are computed by dsyevd routine of LAPACK [23], diagonal entries of R obtained by the
Householder-QR factorization with permutation, and diagonal entries of D of the LDLT factoriza-

tion. Values βp for p = 1, m, n are also shown. Errors
{

err
(k)
l

}
and criteria γ0 and γ1 are listed to

show how Algorithm 3 works. In case of existence of the kernel with k̃ = k − 1, residuals of kernel
vectors computed by supposing the kernel dimension is k̃ − 1, k̃ and k̃ + 1, respectively.

Table 1 shows result of the kernel detection of a matrix from a local problem of the FETI method
for an elasticity problem with N = 6, 867. One index is selected as a suspicious null pivot during
the first stage of the factorization process, because the ratio of 4-th and 5-th diagonal entries is
2.32228667 · 10−7/3.04453949 · 10−5 < 10−2. The smallest eigenvalue of S33 is order of 10−7. Hence
the matrix S33 needs to be understood as regular and the dimension of the kernel of S̃33 is 1. The
tests for 2-dimensional kernel of S̃33 fail by both (i) and (ii) of Algorithm 3 with γ0 and γ1. The
test for 1-dimensional kernel of S̃33 is verified with γ0.

Table 2 shows result on a matrix from a local problem of the FETI method for an elasticity
problem with N = 195, 858, which is called as elstct2 in Table 7. Six indices are selected as
suspicious null pivots. The first test verifies 7-dimensional kernel of S̃33. We can see residuals of
kernel vectors by supposing dimKerS33 = 6 are appropriate, but not for dimKerS33 = 7.

8

Table 1: Elasticity problem, N = 6, 867, m = 4, τ = 10−2

characters of the matrix
eigenvalues by diag(R) by [D]i : diagonal entry [D]−1

i : inverse of
dsyevd Householder-QR of LDLT factorization diagonal entry

2.41702524·10−4 2.08669453·10−4 1.81976651·10−4 5.49521049·103

1.33993989·10−4 9.65180240·10−4 8.14756339·10−5 1.22736081·104

7.29084874·10−4 6.98448673·10−5 5.85142123·10−5 1.70898652·104

3.91956228·10−5 3.04453949·10−5 2.29055798·10−5 4.36574848·104

2.63228376·10−7 2.32228667·10−7 2.04323135·10−7 4.89420838·106

−2.96072260·10−16 7.25226221·10−16 −1.77635261·10−15 −5.62951295·1014

obtained parameters in the kernel detection by Algorithm 3
β1 β4 β6

2.220446049 · 10−16 8.88178420 · 10−16 3.22518815 · 10−5

γ0 / γ1 k err
(k)
k−1 err

(k)
k err

(k)
k+1

1.69249594 · 10−10 2 7.49305928 · 10−14 3.05650855 · 10−16 7.52349570 · 10−1

1.31930174 · 10−10 1 3.91938610 · 10−5 7.49305928 · 10−14 8.79835976 · 10−1

Table 2: Elasticity problem (matrix elstct2), N = 195, 858, m = 4, τ = 10−2

characters of the matrix
eigenvalues by diag(R) by [D]i : diagonal entry [D]−1

i : inverse of
dsyevd Householder-QR of LDLT factorization diagonal entry

7.33839190·10−2 4.6189044·10−2 2.98444508·10−2 3.35070666·101

6.16485834·10−2 3.8470560·10−2 2.54055060·10−2 3.93615463·101

4.24538316·10−2 2.9873618·10−2 2.06412555·10−2 4.84466654·101

1.51545641·10−2 1.3554078·10−2 1.13641954·10−2 8.79956713·101

1.06601574·10−11 1.3572040·10−11 1.73525572·10−11 5.76283937·1010

8.29649117·10−13 6.7495311·10−13 5.88859102·10−13 1.69819911·1012

4.39078753·10−13 3.3662249·10−13 2.62808299·10−13 3.80505488·1012

1.96490621·10−13 1.7270814·10−13 1.62205600·10−13 6.16501526·1012

4.57534045·10−14 5.5867015·10−14 5.23167990·10−14 1.91143193·1013

−4.3457840·10−15 6.7735104·10−15 −1.34239575·10−14 −7.44936802·1013

−8.6402746·10−16 2.6197380·10−15 −6.98479708·10−15 −1.43168082·1014

obtained parameters in the kernel detection by Algorithm 3
β1 β4 β11

2.220446049 · 10−16 8.88178420 · 10−16 6.46834921 · 10−3

γ0 / γ1 k err
(k)
k−1 err

(k)
k err

(k)
k+1

2.39688301 · 10−9 7 3.63007696 · 10−7 2.43742950 · 10−16 8.38433667 · 10−1

5.74997791 · 10−11 6 7.08194824 · 10−6 3.63007696 · 10−7 1.27855212 · 100

residuals of kernel vectors
dim. of kernel = 5 dim. of kernel = 6 dim. of kernel = 7
2.00613544 · 10−13 1.59114579 · 10−11 9.28137518 · 10−4

7.42516447 · 10−13 2.05952550 · 10−13 4.69003471 · 10−5

3.91774551 · 10−13 1.14267992 · 10−12 9.36351586 · 10−3

3.94266623 · 10−13 2.32126454 · 10−11 1.39768559 · 10−2

6.37353452 · 10−13 1.31160004 · 10−11 1.82075008 · 10−3

6.59642545 · 10−13 2.74734397 · 10−3

8.64580325 · 10−4

9

Table 3: Stokes equations (matrix stokes1), N = 199, 808, m = 4, τ = 10−2

characters of the matrix
eigenvalues by diag(R) by [D]i : diagonal entry [D]−1

i : inverse of
dsyevd Householder-QR of LDLT factorization diagonal entry

6.99777789·10−1 4.98029566·10−1 3.70161579·10−1 2.70152295·100

6.27846114·10−1 4.05027660·10−1 3.06310487·10−1 3.26466132·100

4.80884945·10−1 3.69900258·10−1 2.79365437·10−1 3.57954087·100

4.28888921·10−1 3.57246555·10−1 2.47548177·10−1 4.03961772·100

−7.02489700·10−11 6.73940728·10−11 −6.48523283·10−11 −1.54196469·1010

−2.38674355·10−12 2.05913788·10−12 −1.84634192·10−12 −5.41611492·1011

−1.01390905·10−12 7.59609792·10−13 −6.04168305·10−13 −1.65516792·1012

−3.51767982·10−13 3.51718483·10−13 −4.62451857·10−13 −2.16238725·1012

−1.17581650·10−13 1.46890460·10−13 −1.31687059·10−13 −7.59376061·1012

−2.47928308·10−14 3.32364425·10−14 −4.66889871·10−14 −2.14183271·1013

−9.43431186·10−16 −2.92545721·10−15 −9.02986463·10−15 −1.10743631·1014

obtained parameters in the kernel detection by Algorithm 3
β1 β4 β11

2.220446049 · 10−16 8.88178420 · 10−16 9.45634775 · 10−2

γ0 / γ1 k err
(k)
k−1 err

(k)
k err

(k)
k+1

9.16456437 · 10−9 7 1.61887124 · 10−6 2.55270728 · 10−16 6.92933699 · 10−1

1.77645775 · 10−10 6 6.94434753 · 10−5 1.61887124 · 10−6 9.62285632 · 10−1

residuals of kernel vectors
dim. of kernel = 5 dim. of kernel = 6 dim. of kernel = 7
8.29092462 · 10−13 1.39724349 · 10−12 2.68009592 · 10−1

2.59219292 · 10−12 5.55912542 · 10−11 1.20505842 · 10−12

8.98148568 · 10−13 3.16306840 · 10−12 1.44192677 · 10−1

7.39122100 · 10−13 8.25295635 · 10−11 3.61845561 · 10−1

2.56624545 · 10−12 3.37097407 · 10−11 2.01071952 · 10−1

2.58069883 · 10−12 6.50183658 · 10−2

1.07433781 · 10−1

Table 3 shows result on a matrix from Stokes equations with stress-free boundary conditions
with N = 199, 808, which is called as stokes1 in Table 7. Six indices are selected as suspicious null
pivots. The first test verifies 7-dimensional kernel of S̃33. We note that no 2 × 2 pivot is used for
this indefinite matrix.

The last Table 4 shows how 1 × 1 and 2 × 2 pivots strategy works with our kernel detection
procedure. A 14-by-14 matrix S is artificially created to be symmetric and indefinite, to have a
small gap between the smallest eigenvalue and the largest value of perturbed zero eigenvalue, about
2·10−4, and in addition, to have a large condition number of the regular part of the matrix, about
107. Here we have one 2× 2 pivot in the regular part of the matrix, which is shown as one entry of
the bi-diagonal of the matrix D. There are two jumps in the diagonal entries by the Householder-
QR, between 2.99983514 · 10−8, 1.24222730 · 10−11 and 6.42483790 · 10−13. Here we supposed an
8-dimensioanl image space, then we want to decide the kernel dimension of S̃ to be 7 or 6. The first

test of Algorithm 3 passes but it is not so obvious because γ0 and err
(7)
6 are of the same order. This

comes form a small distance in the logarithmic scale between β8 and β15 due to the large condition
number of the regular part. The value γ1 is appropriate and the second test verifies the kernel
dimension of S̃ as k = 7.

10

Table 4: Artificial indefinite matrix, N = 14, m = 8, τ = 10−2

characters of the matrix
eigenvalues by diag(R) by diagonal bi-diagonal of

dsyevd Householder-QR [D]−1
i for 1× 1 entry 2× 2 entry

2.90710229·10−1 2.49862523·10−1 4.65650889·100

−2.90710229·10−1 1.54404630·10−1 −1.21942113·101

7.16294821·10−4 5.84516628·10−4 −2.09858300·103

−7.16294821·10−4 5.05664527·10−4 2.79846780·103

6.64345866·10−6 5.48888364·10−6 −8.75848110·103 2.96062921·105

−6.64345866·10−6 4.03413389·10−6 2.14320092·105

4.06332766·10−8 4.58129463·10−8 −1.94779519·107

−4.06332766·10−8 2.99983514·10−8 4.51214708·107

9.00549323·10−12 1.24222730·10−11 5.82150145·1010

7.46185572·10−13 6.42483790·10−13 1.69801702·1012

4.16993711·10−13 3.31393508·10−13 3.81174209·1012

1.14523144·10−13 1.36784932·10−13 6.16490403·1012

3.93507349·10−14 5.35147944·10−14 1.74182014·1013

−1.18793874·10−15 6.13977845·10−15 −7.01389416·1013

−3.44074981·10−15 3.96356955·10−15 −8.21517248·1013

obtained parameters in the kernel detection by Algorithm 3
β1 β8 β15

2.22044605 · 10−16 2.03271338 · 10−11 9.75861340 · 10−3

γ0 / γ1 k err
(k)
k−1 err

(k)
k err

(k)
k+1

4.45381455 · 10−7 7 9.08286279 · 10−7 2.82393876 · 10−11 7.38787203 · 10−1

8.29952819 · 10−9 6 5.86907532 · 10−6 9.08286279 · 10−7 1.38281631 · 100

residuals of kernel vectors
dim. of kernel = 5 dim. of kernel = 6 dim. of kernel = 7
2.00553753 · 10−13 1.59107703 · 10−11 3.19060676 · 10−8

6.37199302 · 10−13 2.05901081 · 10−13 1.37726954 · 10−8

3.91780100 · 10−13 6.59562692 · 10−13 2.04135991 · 10−13

3.94282911 · 10−13 2.32115994 · 10−11 6.62359777 · 10−13

7.42540596 · 10−13 1.31154585 · 10−11 2.72044424 · 10−8

1.14270031 · 10−12 1.32757989 · 10−8

1.11201790 · 10−12

11

3 Block factorization based on nested bisection tree

3.1 Bisection tree

A sparse matrix is decomposed into sub-matrices by a graph-decomposition with a nested bisection
algorithm. This decomposition also could be understood as a kind of domain decomposition of the
original finite element nodes or degrees of freedom (DOFs). Let a nested bisection tree consist of∑L−1

i=0 2i bisection-nodes with L-levels and all bisection-nodes be numbered from 1 to 2L−1 from
the top to bottom levels. We define l-th level bisection-nodes for 1 ≤ l ≤ L, with a set of index
Jl := {2l−1, 2l−1 + 1, . . . , 2l − 1}. Then bisection-nodes from 1st to L − 1-th levels correspond to
sub-matrices whose DOFs locate on interfaces among subdomains. These sub-matrices are dense
matrices. Bisection-nodes on the last (L-th) level correspond to sub-matrices whose DOFs locate
in subdomains. These sub-matrices are sparse matrices. This is illustrated by Figure 1 in case of a
two-dimensional problem with L = 4. In the following, we also call interface DOFs as subdomain
DOFs. We start to factorize sub-matrices from the last level by a sparse factorization routine and
proceed factorizations of l-th level by dense one from l = L− 1 to 1.

There are two major points on this strategy to get good performance in parallel computation:

• how to achieve good load-balance for non-homogeneous size of subdomain DOFs

• how to achieve parallelization on higher levels whose number of bisection-nodes is smaller than
the number of processors

We will resolve these two problems by introducing a block strategy and task-scheduling.
In practice we use a graph partitioning library, SCOTCH [29] to get a nested bisection. Figure

2 shows examples of decomposition of a sparse matrix with N = 206, 763 and 8, 075, 406 non-zero
entries into 511 =

∑
0≤i<9 2i sub-domains by METIS [21] and SCOTCH. Size of the last block is 6, 519

by METIS and 5, 109 by SCOTCH, respectively. After a symbolic factorization taking account of fill-ins,
number of non-zero entries of dense blocks on all l-th level (1 ≤ l ≤ 8) is 298, 964, 616 by METIS and
240, 644, 367 by SCOTCH, respectively.

3.2 Recursive generation of Schur complements

At the L-th level, the matrix A is factorized as

[
{Ak k}k∈JL

{Ak m}k∈JL, m∈∪1≤l<LJl

{Al k}l∈∪1≤l<LJl, k∈JL
{Al m}l,m∈∪1≤l<LJl

]
=

[
{Ak k}k
{Al k}l, k {Sl m}l, m

] [
{Ik k}k {A−1

k kAk m}k,m

{Il l}l

]
.

Here {Ak k}k∈JL
are diagonal blocks to which we can apply sparse factorizations in parallel among

index k. The Schur complements Sl m are defined as

Sl m := Al m −
∑

k

Al kA−1
k kAk m, (4)

here k takes all child bisection-nodes which are connected to bisection-nodes l and m,

k ∈ {l · 2L−α, l · 2L−α + 1, . . . , (l + 1) · 2L−α − 1}∪
{m · 2L−β, m · 2L−β + 1, . . . , (m + 1) · 2L−β − 1} ⊂ JL

with 2α−1 ≤ l < 2α and 2β−1 ≤ m < 2β.

12

8 94

c

d

6

a b5 e f7

2 3
1

8 9

4

a b

5

c d

6

e f

7

2 3

1

sparse solver

dense solver

dense solver

dense solver

Figure 1: A bisection tree corresponding to a two dimensional domain decomposition

Figure 2: Decomposition of a matrix with N = 206, 763 into 511 sub-matrices with L = 9, by METIS

(left) and SCOTCH (right). Upper blocks which include fill-ins are shown.

13

At the (L− 1)-level, the same strategy is applied to the Schur complement {Sl m}l,m∈∪1≤l<LJl
,

[
{Sk k}k∈JL−1

{Sk m}k∈JL−1, m∈∪1≤l<L−1Jl

{Sl k}l∈∪1≤l<L−1Jl, k∈JL−1
{Sl m}l,m∈∪1≤l<L−1Jl

]
=

[
{Sk k}k
{Sl k}l, k {S′

l m}l, m

] [
{Ik k}k {S−1

k kSk m}k,m

{Il l}l

]
.

Here {Sk k}k∈JL−1
are again diagonal blocks to which we can apply dense factorizations in parallel

among index k. We can repeat this procedure until the 2-nd level,



S2 2 S2 1

S3 3 S3 1

S1 2 S1 3 S1 1


 =



S2 2

S3 3

S1 2 S1 3 S′
1 1






I2 2 S−1

2 2 S2 1

I3 3 S−1
3 3 S3 1

I1 1


 .

Remark 4
The last Schur complement matrix S′

1 1 could keep all kernel vectors when other factorization on
bisection-nodes whose index is more than 1 has no suspicious null pivot. In this case the kernel
detection routine becomes simpler without the second stage. This is just the case we mentioned in
Remark 1.

3.3 Block factorization and block pivot strategy

For dense factorizations of matrices {Sk k}, we introduce a block factorization and a block pivot
strategy. Let b to be a block size, which is experimentally defined to get better performance of cache
memory access during matrix-matrix computations. We employ the following block factorization
with size b for an Nk-by-Nk matrix Sk k,

Sk k =




Π
(k)
1

T

Π
(k)
2

T

. . .

Π
(k)
nk

T







L
(k)
1 1

L
(k)
2 1 L

(k)
2 2

...
. . .

L
(k)
nk 1 L

(k)
nk 2 . . . L

(k)
nk nk



×




D
(k)
1

D
(k)
2

. . .

D
(k)
nk







L
(k)
1 1

T L
(k)
1 2

T . . . L
(k)
1 nk

T

L
(k)
2 2

T L
(k)
2 nk

T

. . .
...

L
(k)
nk nk

T







Π
(k)
1

Π
(k)
2

. . .

Π
(k)
nk




. (5)

Here D
(k)
1 , . . . , D

(k)
nk−1 are b-by-b matrices and the last one D

(k)
nk

is a rk-by-rk matrix with Nk =

(nk − 1) × b + rk and rk ≤ b. Permutations {Π(k)
i }1≤i≤nk

are defined within each block. As we
mentioned already in Section 2.2, if we have si+1 i+1/si i < τ in a block Dγ , then we do not factorize
γ-th block with more than i-th entry and reduce the block size as i. In precise, we nullify i′(> i)-th

rows of {L(k)
γ j }j and the i′(> i)-th diagonal entries of Dγ .

Remark 5
The block factorization consists of a b-by-b sized LDLT factorization and a rank-b update of Schur
complement, which is proceeded as matrix-matrix product operation. The technique of nullification
to handle suspicious null pivots does not change the data structure. Hence, we can employ DGEMM

operation of level3 BLAS easily.

Remark 6
Our block pivot strategy may loose accuracy for some matrices which have a very large condition
number. On the contrary, complete symmetric pivot in each block can keep accuracy because

14

diagonal blocks on each level are independent and taken as multi-fronts. In practice, for a matrix
with very large condition number, the kernel detection is sensitive to the accuracy of the last block.
In such case we use a routine which performs a full-symmetric permutation. For this strategy, a
rank-b update is also applied, but this factorization is less efficient in parallel computation than
the procedure which will be described in Section 4.1. In our implementation, a full-symmetric
permutation is only applied as a re-factorization when multiple candidates of the kernel dimension
are found by the Householder-QR factorization in the last block.

3.4 Implementation with BLAS library

In this section we discuss about details on a block factorization of a symmetric dense matrix, how
to use level3 BLAS library and what is difference between our procedure for dense parts and the
standard procedure for originally dense matrix. Let us think about a block factorization on the 3-rd
level and block updates of Schur complement on the 2-nd and 1-st levels. The upper part of the
matrix of the dense part still has a kind of sparse structure, which is expressed as




S44 S42 S41

S55 S52 S51

S66 S63 S61

S77 S73 S71

S22 S21

S33 S31

S11




.

Updating of the Schur complement matrix on bisection-nodes 2, 3 and 1 is done as follows.

Procedure 1
for 4 ≤ k < 8

(i)k perform a factorization Skk = ΠT
k LkkDkkLkk

T Πk.

(ii)k compute [Yk (k/2) Yk 1] := L−1
kk Πk[Sk (k/2) Sk 1] by DTRSM of level3 BLAS.

(iii)k compute [Wk (k/2) Wk 1] := D−1
kk [Yk (k/2)Yk 1].

(iv)k compute

[
Z

(k)
(k/2) (k/2) Z

(k)
(k/2) 1

Z
(k)
1 1

]
:=

[
Y T

k (k/2)

Y T
k 1

] [
Wk (k/2) Wk 1

]
by DGEMM with

block-size b.
(v) compute




S′
22 S′

21

S′
33 S′

31

S′
11


 :=



S22 S21

S33 S31

S11


−



Z

(4)
22 Z

(4)
21

Z
(4)
11


−




Z
(5)
22 Z

(5)
21

Z
(5)
11




−


 Z

(6)
33 Z

(6)
31

Z
(6)
11


−


 Z

(7)
33 Z

(7)
31

Z
(7)
11


 .

The last part on updating the Schur complement matrix is most elaborate part of our imple-

mentation, because matrices {Z(k)
i j } inherit the sparseness of the original matrix and subtractions

of matrix entries are essentially serial operations. We see off-diagonal matrices consist of strips. For
“local computation” on [{Y }], [{W}] and [{Z}] we can use continuous memory blocks to store these
working arrays, but we have to introduce segmented accesses for accumulation during updating the

Schur complement. Figure 3 illustrates a way of implementation to perform update of

[
S′

2 1 S′
2 1

S′
1 1

]
.

Here we assume off-diagonals S42 and S41 consists of five strips, {I(4)
l }5l=1, and S52 and S51 of four

15

4

5

42 41

2

1

parallelization among

sequential with 41 and 51

B
11

(i,j)

B
11
(0,0)

B
11
(0,1)

B
11
(0,2)

B
11
(1,2)

B
11
(2,2)

Figure 3: Parallelization of (v) of Procedure 1 with strips and computing blocks

strips, {I(5)
l }4l=1, respectively. Contribution to the Schur complement needs to be evaluated with di-

rect products of strips, {I(4)
l }5l=1×{I

(4)
m }5m=1 and {I(5)

l }4l=1×{I
(5)
m }4m=1, respectively. We introduce

blocks {B(i,j)
11 }i≤j for parallel computation, then an update of S′

11 ∩ B
(i,j)
11 is done by considering

overlap of strips {I(4)
l }l, {I

(5)
l }l and the block B

(i,j)
11 . For example, the Schur complement in the

block B
(0,0)
11 is updated as

S′
11 ∩B

(0,0)
11 ← (I

(4)
3 × I

(4)
3 ∪ I

(4)
3 × I

(4)
4 ∪ I

(4)
4 × I

(4)
3 ∪ I

(4)
4 × I

(4)
4) ∩B

(0,0)
11

← (I
(5)
2 × I

(5)
2 ∪ I

(5)
2 × I

(5)
3 ∪ I

(5)
3 × I

(5)
2 ∪ I

(5)
3 × I

(5)
3) ∩B

(0,0)
11 .

The updating procedure inside of a block is done in serial but all updates of blocks {B(i,j)
11 }i≤j in

parallel.

Remark 7
For a full dense matrix, factorizations of diagonal blocks could not be done in parallel. However,
off-diagonal blocks are also dense, then there is no need to introduce working matrices [{Z}] nor to
separate procedures (iv)k from (v). This situation is also included in our factorization tree, which
is explained in Section 4.1.

3.5 Sparse factorization and computation of Schur complement

In this section, we briefly mention a sparse matrix factorization, which employs a similar method-
ology for the dense factorization, i.e., a block strategy. The sparse matrix Akk with k ∈ JL is
renumbered into a block tri-diagonal structure by using reverse Cuthill-McKee ordering [13]. For
the numerical factorization, a block pivot strategy is applied for each diagonal block of the tri-
diagonal block structure. Then solving the sparse matrix with multiple right-hand side L−1

kk Akm

and a matrix-matrix product (AlkL−T
kk)(D−1

kk L−1
kk Akm) are performed. These computations are al-

most same as Procedure 1 except for right-hand side vectors Ak m are sparse. Unfortunately, due to
this sparsity, performance of these operations are poor, which is shown in Section 5.2 by a numerical
example. For updating the Schur complement (4), contributions from child-bisection nodes to the
father node are performed by the same way as (v) in Procedure 1.

16

Table 5: Tasks for LDLt factorization with block-size b
α(k) factorization of S

(k)
k k = ΠT

k Lk kDkLT
k kΠk

{β(k)
j }k<j≤n forward substitution Yk j = L−1

k kΠkS
(k)
k j

and scaling Wk j = D−1
k Yk j

{γ(k)
i,j }k<i≤j≤n rank-b update S

(k+1)
i j = S

(k)
i j − Yk iWk i

4 Task scheduling on shared memory parallel computer

At the top of the bisection tree, the factorization of a dense matrix needs to be parallelized. This is
a popular topic in parallel implementations of dense linear algebra [5, 10, 15]. We employ common
techniques for parallelization, e.g., construction of a task-dependency tree, and analysis of the critical
path. Here our task-dependency tree is rather simple, and the critical path is easily found by a
heuristic way. Then we schedule tasks in a static way with some remained dynamic parts to absorb
noises on complexity, i.e., under- or over-estimates of complexity on actual implementation of BLAS
libraries and some environmental noise from processes of the operating system.

4.1 Dependency tree of tasks and the critical path

Let think again about a factorization of an N -by-N symmetric matrix decomposed into n×n blocks

with block-size b as (5). We suppose each S
(k)
kk with 1 ≤ k ≤ n is factorized with a permutation Πk,

and the last block S
(n)
nn is r-by-r with N = (n − 1)× b + r. We define tasks {α(k)} for 1 ≤ k ≤ n,

{β(k)
j }k<j≤n and {γ(k)

i,j }k<i≤j≤n for 1 ≤ k < n by Table 5. A task-dependency tree is obtained as

α(1) ← {β(1)
2 , β

(1)
3 , β

(1)
4 , . . . , β(1)

n } ← {γ
(1)
2,2 , γ

(1)
2,3 , γ

(1)
3,3 , . . . ,γ(1)

n,n}
←α(2) ← {β(2)

3 , β
(2)
4 , . . . , β(2)

n } ← {γ
(2)
3,3 , γ

(2)
3,4 , . . . , γ(2)

n,n} ← · · ·
←α(n) .

Here the symbol ← shows a dependency between tasks. On the other hand, tasks in braces { and
} do not depend each other. The critical path of the dependency tree is easily found as

α(1) ← β
(1)
2 ← γ

(1)
2,2 ← α(2) ← β

(2)
3 ← γ

(2)
3,3 ← · · · ← α(n) .

Therefore we make a task queue as

QLDLt := α(1) ← {β(1)
2 -γ

(1)
2,2-α(2), β

(1)
3 , β

(1)
4 , . . . , β(1)

n } ← {γ
(1)
2,3 , γ

(1)
3,3 , . . . , γ(1)

n,n}
← {β(2)

3 -γ
(2)
3,3-α(3), β

(2)
4 , . . . , β(2)

n } ← {γ
(2)
3,4 , . . . , γ(2)

n,n} ← · · ·
← β(n−1)

n -γ(n−1)
n,n -α(n) . (6)

Here β
(1)
2 -γ

(1)
2,2-α

(2) shows sequentially executed tasks in a single processor, which is called as atomic

operation. The first task α(1) could be computed in parallel with other tasks in the lower layer of the
bisection tree. The second group has n− 1 tasks, which have no dependency each other, the third

group has n(n−1)/2−1 tasks, and the last task β
(n−1)
n -γ

(n−1)
n,n -α(n) is executed in a single processor.

This task queue needs to be defined for the factorization (i) of Procedure 1 for all bisection level
1 ≤ l < L where the dense factorization is necessary. For lower levels, task queue may only consist
of single α(1) due to small size of the matrix with N ≤ b.

For Procedure 1 we define tasks {δj}, {ǫi,j} and {ζi,j} decomposed with the block-size b, corre-
sponding to (ii)k, (iii)k and (iv)k, and (v), which are shown in Table 6. We make groups of tasks
as

QDTRSM := {δj}j , QDGEMM := {ǫi,j}i,j , QSUBTR := {ζi,j}i,j .

17

Table 6: Tasks for block factorization of Procedure 1
δj forward substitution of b-multiple right hand side and scaling

[Yj] := L−1
kk Πk[Sj] and [Wj] := D−1

kk [Yj], corresponding to (ii)k

ǫi,j matrix-matrix multiplication
[Zi,j] := [Y T

i][Wj], corresponding to (iii)k and (iv)k

ζi,j updating of Schur complement by strips segmented by
b× b-sized block, corresponding to (v)

We get a task-dependency tree for Procedure 1 with the third bisection level, 4 ≤ k < 8, the second
one 2 ≤ k < 4 and the first one k = 1,

{
Q

(44)

LDLt ← {Q
(42)

DTRSM, Q
(41)

DTRSM} ← {Q
(22−4)

DGEMM, Q
(21−4)

DGEMM, Q
(11−4)

DGEMM

}
,

Q
(55)

LDLt ← {Q
(52)

DTRSM, Q
(51)

DTRSM} ← {Q
(22−5)

DGEMM, Q
(21−5)

DGEMM, Q
(11−5)

DGEMM},
Q

(66)

LDLt ← {Q
(63)

DTRSM, Q
(61)

DTRSM} ← {Q
(33−6)

DGEMM, Q
(31−6)

DGEMM, Q
(11−6)

DGEMM},
Q

(77)

LDLt ← {Q
(73)

DTRSM, Q
(71)

DTRSM} ← {Q
(33−7)

DGEMM, Q
(31−7)

DGEMM, Q
(11−7)

DGEMM}}

← {Q(22−4,5)

SUBTR , Q
(21−4,5)

SUBTR , Q
(33−6,7)

SUBTR , Q
(31−6,7)

SUBTR , Q
(11−4,5,6,7)

SUBTR }
←{Q(22)

LDLt ← Q
(21)

DTRSM ← Q
(11−2)

DGEMM, Q
(33)

LDLt ← Q
(31)

DTRSM← Q
(11−3)

DGEMM} ← Q
(11−2,3)

SUBTR

←Q
(11)

LDLt

and a rearranged tree where the critical path is separated from other tasks,

{
{Q(44)

LDLt, Q
(55)

LDLt, Q
(66)

LDLt, Q
(77)

LDLt} ← {Q
(42)

DTRSM, Q
(52)

DTRSM, Q
(63)

DTRSM, Q
(73)

DTRSM}
← {Q(22−4)

DGEMM, Q
(22−5)

DGEMM, Q
(33−6)

DGEMM, Q
(33−7)

DGEMM} ← {Q
(22−4,5)

SUBTR , Q
(33−6,7)

SUBTR }
}

←{Q(22)

LDLt, Q
(33)

LDLt}
←

{
{Q(41)

DTRSM, Q
(51)

DTRSM, Q
(61)

DTRSM, Q
(71)

DTRSM}
← {Q(21−4)

DGEMM, Q
(11−4)

DGEMM, Q
(21−5)

DGEMM, Q
(11−5)

DGEMM, Q
(31−6)

DGEMM, Q
(11−6)

DGEMM, Q
(31−7)

DGEMM, Q
(11−7)

DGEMM}

← {Q(21−4,5)

SUBTR , Q
(31−6,7)

SUBTR , Q
(11−4,5,6,7)

SUBTR }
}

←
{
{Q(21)

DTRSM, Q
(31)

DTRSM} ← {Q
(11−2)

DGEMM, Q
(11−3)

DGEMM} ← Q
(11−2,3)

SUBTR

}
← Q

(11)

LDLt . (7)

Here we start with {Q(44)

LDLt, Q
(55)

LDLt, Q
(66)

LDLt, Q
(77)

LDLt}. However in practice, these tasks are located
inside of the 4-th level. In the lowest bisection level of dense solver, i.e., (L − 1)-th level, we can
assume the number of nodes of the level is much grater than the number of processors, then starting

with {Q(kk)

LDLt}2L−2≤k<2L−1 does not cause idling of processors.

4.2 Task execution

In this section, we briefly show a way of task execution for statistically assigned task queues. All tasks
have dependencies and they can be executed after all their parent tasks are finished. Verification of
the status of parent tasks in parallel environment takes some costs even on shared memory systems.
We use Pthreads library [24] for management of parallel processes, hence mutual exclusion lock,
mutex is necessary for safe access to the memory by several processes. However, mutex introduces
some idling time of processes. Our objective is to construct an algorithm with less idling time by
reducing usage of mutex.

Let s[i] with 1 ≤ i ≤ N be tasks in the critical path, which need to be executed in parallel and
d[j] with 1 ≤ j ≤M be other tasks which can be executed in parallel with tasks s[i].

18

Algorithm 4 (task execution by mixture of static and dynamic scheduling)
process index p is given as 1 ≤ p ≤ P .
Let n = θ ·N .
Set i = 1 and j = 1 before arrival of processes.
while (all processes arrive and i ≤ N) {

while (parents of s[i] are not finished) {
verify parents of d[j] are finished.
if finished then increase index j and execute d[j − 1],
otherwise sleep until receive a wake-up signal.
}
increase index i and execute s[i− 1]
}
if (p is the last arrived process) {

divide tasks s[i], . . . ,s[n] into P groups {b1, . . . bP } with i = b1 < b2 < . . . < bP < n,
where

∑
bq≤k<bq+1

[complexity of s[k]] are homogeneous for all 1 ≤ q ≤ P .
set i = n.
}
execute s[k] for bp ≤ k < bp+1 without checking status of parents.
while (i ≤ N) {

increase index i and execute s[i− 1].
}

Here mutex is necessary to increase index i and to set i = n, because index i might be accessed
from other processes at the same time. A parameter 0 ≤ θ ≤ 1 sets the ratio of static and dynamic
execution of tasks, and the last part with θ · N ≤ i < N employs greedy execution of tasks. In
practice we set θ = 0.8.

For applying Algorithm 4 to the task-dependency tree (7), we first divide P processes into two

groups and let each process group take each task group in Q
(22)

LDLt or Q
(33)

LDLt, which are described in

(6), as s[]. All processes take the common list of tasks, d[]=
{
{Q(41)

DTRSM, Q
(51)

DTRSM, Q
(61)

DTRSM, Q
(71)

DTRSM} ←
· · · ← Q

(11−4,5,6,7)

SUBTR }
}
. Figure 4 shows timelines of task execution for a symmetric sparse matrix

with N = 206, 763 by two Intel Westmere Xeon 5680 with 6 cores running at 3.33GHz. We can
see computation of the Schur complement in the 3rd level and the factorization in the 2nd level are
scheduled together.

5 Performance comparison and efficiency

5.1 Performance comparison

We measured parallel performance on shared memory parallel computers with multi-core CPUs by
using two systems, one with two Intel Westmere Xeon 5680 with 6 cores running at 3.33GHz and the
other with two Intel Nehalem-EX Xeon 7550 with 8 cores running at 2.0GHz. We prepared five finite
element matrices summarized in Table 7 . Matrices elstct1, elstct2, and elstct3 are obtained
from a Q1- or quadratic serendipity-finite element discretization of elasticity problems. elstct1 was
used in [17]. Matrices stokes1 and stokes2 are obtained from a P1-P1 stabilized finite element dis-
cretization of the Stoke equations in a three-dimensional domain [35]. The matrix stokes1 is set with
stress free boundary conditions, then it has the 6 dimensional kernel corresponding to all rigid body
modes of velocity and stokes2 with Dirichlet boundary conditions, the 1 dimensional kernel to a
pressure lifting. We compared the performance of the numerical factorization and computed solution
of our developed code called as Dissection with IntelPardisover. 11.0.2 and MUMPSver. 4.10.0.
Two codes, Dissection and MUMPS are compiled by IntelC++/FortranCompilerXE ver. 13.1.0
and linked with sequential BLAS library in IntelMKL ver. 11.0.2 [20], and with scotch ver. 5.1.12b.
IntelPardiso belongs to the same version of IntelMKL. Dissection and IntelPardiso are de-

19

β γ

DTRSM DGEMM SUBTR

α
DTRSM DGEMM

factorization
11factorization

22,33

SUBTR
11 1121,312?,3?,1?2?,3?,1?4?,5?,6?,7?

α βγα βγ

β γα

Figure 4: Task execution for a symmetric sparse matrix with N = 206, 763

Table 7: Finite element matrices used in performance evaluation
name size N non-zeros nnz dim. of the kernel

elstct1 206, 763 8, 075, 406 0
elstct2 195, 858 7, 603, 245 6
stokes1 199, 808 5, 877, 536 6
stokes2 181, 076 5, 240, 972 1
elstct3 1, 004, 784 85, 401, 102 6

20

Table 8: Parameters for linear solvers
solver parameter description in the manual of the code
Dissection τ = 10−2 a threshold for detection of suspicious null pivots

m = 4 an additional dimension for kernel detection
b = 240/480 a block-size of parallel task
L = 9/11 the number of layers of a nested bisection

Intel mtype=−2 real and symmetric indefinite, LDLT -factorization
Pardiso iparam(10)=8 a pivoting perturbation is set as 10−8

MUMPS SYM=2 the matrix is general symmetric
ICNTL(13)=1 sequential computation for the root frontal matrix
ICNTL(24)=1 null pivot row detection
CNTL(1)=10−2 a relative threshold for numerical pivoting
CNTL(3)=−10−4 a threshold for null pivot detection is set as 10−4

signed for shared memory systems by using Pthreads or OpenMP, respectively, whereas MUMPS is
designed for distributed memory systems by using MPI library. Comparison of a code designed for
multi-core systems with a code using MPI on a shared memory system is not straightforward. How-
ever, MUMPS also has capability of detection of the kernel dimension and of construction of kernel
vectors, hence we only compare results by sequential-MUMPS without MPI on a single system.

Table 8 summarizes parameters which are set for linear solvers. For IntelPardiso and MUMPS,
matrix is assumed to be a general symmetric one, which may include negative eigenvalues, as the
same way for Dissection. For the large problem elstct3, two parameters of Dissection which
affect parallel performance, are set as block size b = 480 and bisection level L = 11. Each test
problem is constructed with a solution vector given by ~x0 = A~z with [~z]i ≡ i (mod11), which

satisfies ~x0 ⊥ Ker A. The right hand side vector is given by ~b = A~x0. A relative error and a residual
of the computed solution x∗ are calculated by ||~x∗ − ~x0||/||~x||0 and ||~b−A~x∗||/||~b||, respectively.

For detection of the kernel dimension in MUMPS, there are two user defined parameters shown
in Table 8. One is to set a relative threshold for numerical pivoting, which is same as the default
value. The other is a threshold to detect null pivots. The kernel detection strongly depends on this
threshold, which is shown in Table 9. By setting the threshold as 10−4, MUMPS detects the kernel
dimension correctly in all cases, but the appropriate value also depends on each problem and it is
far larger than the automatically selected value.

Table 10 shows elapsed time and CPU time in seconds with single or several cores, 12 or 16,
and the relative errors and the residuals with detected dimension of the kernel. CPU time contains
all overheads of parallel tasks, e.g., thread creation, thread synchronization, thread communication,
and thread join, then it is supposed to increase with larger number of cores. Dissection returns
a solution in the image space after applying an orthogonal projection. Whereas MUMPS returns one
possible solution when the matrix is singular, hence it is necessary to apply an orthogonal projection
to such a solution. This orthogonal projection is constructed from complete basis of the kernel space.
MUMPS also can return these complete basis of the kernel, then we include the time of computation
of kernel basis to the time for the factorization. Time for construction of the orthogonal projection
from kernel basis is negligible because the kernel dimension is at most 6.

First, we can see Dissection detects the dimension of the kernel correctly in all cases where the
matrix has the kernel. Second, Dissection has almost comparable performance to IntelPardiso

and MUMPS on a single core and also to IntelPardiso on multi-cores. Precisely, with twelve cores,
Dissection is little faster than IntelPardiso, whereas with sixteen cores, IntelPardiso is little
faster.

Table 11 compares parallel efficiency of three solvers on two Intel Nehalem-EX Xeon 7550 with
8 cores. Here sequential MUMPS is linked with parallelized BLAS of IntelMKL by OpenMP. Parallel
BLAS suffers rapid increasing of CPU time because of overheads of OpenMP, then parallel efficiency
is saturated with 12 cores.

21

Table 9: Dependency of kernel detection on a parameter in MUMPS

threshold for null pivots by CNTL(3) automatic
elstct2 10−4 10−5 10−6 10−7 10−8 1.3095·10−14

kernel 6 3 3 3 0 0
error 4.3817·10−11 1.3878·100 ← ← 4.4009·100 ←
residual 7.1626·10−14 1.0608·10−15 ← ← 1.2845·10−15 ←
stokes1 10−4 10−5 10−6 10−7 10−8 5.0793·10−21

kernel 6 6 6 5 5 0
error 5.1755·10−8 ← ← 2.6086·10−1 6.9426·10−3 2.7784·101

residual 6.6675·10−10 ← ← 4.5757·10−12 5.6831·10−12 6.1865·10−12

stokes2 10−4 10−5 10−6 10−7 10−8 5.0793·10−21

kernel 1 1 1 1 1 0
error 8.3521·10−11 ← ← ← ← 1.4276·103

residual 3.6036·10−14 ← ← ← ← 5.0512·10−12

elstct3 10−4 10−5 10−6 10−7 10−8 2.8685·10−16

kernel 6 3 3 1 0 0
error 1.4278·10−10 2.4022·100 ← 3.1384·100 3.4278·100 ←
residual 1.8237·10−12 2.2366·10−14 ← 1.6868·10−15 1.3948·10−15 ←

Dissection has better property than IntelPardiso on the point that the increasing ratio of
total CPU time is smaller. This is a result of implementation by Pthreads library with sequential
BLAS library excluding OpenMP parallelization, which realizes the coarse-grain parallelization with
less overheads of parallel tasks.

We will analyze factors which deteriorate the performances of Dissection on a single core and
on large numbers of cores in the next section.

5.2 Efficiency of tasks

Table 12 shows precise parallel efficiency of elstct1, with GFlop/s and idling time summed up
among cores. Two Intel Westmere Xeon 5680 with 6 cores running at 3.33GHz are used and
theoretical performance of one core is 13.324 GFlop/s and of 12 cores, 159.84 GFlop/s. Here
elapsed time for execution of parallel tasks includes the idling time. The numerical factorization
contains serial execution which consumes about 1 second. With 12 cores, idling time per core is 0.4
second which is about 20 times large as idling time with 2 cores. Further optimization of the thread
management routine could improve parallel efficiency.

As described in Section 3.4, factorization procedures can employ level3 BLAS library which
consists of arithmetic intensive operations and is also well optimized to the target CPU by the
vendor. Figure 5 shows timelines of task execution by eight cores and performance of each task
measured by GFlop/s. From this figure, the following performance comparison of tasks is obtained,

SUBTR < sparse-Schur≪ Sparse-factorization< LDLt≪ DTRSM < DGEMM .

The LDLt factorization for the dense part consists of a permutation and a rank-1 update which
is performed by DSYR of level2 BLAS. The size of this factorization is restricted by the block-
size b, hence other level3 BLAS operations DTRSM and DGEMM become dominant. However, SUBTR
task is slow with almost idling of arithmetic units of CPU. There are two reasons, one is that
SUBTR is same as DAXPY of level1 BLAS, hence its performance is limited by the speed of memory
access, and moreover the speed is reduced drastically because multi-cores shares the same memory.
sparse-Schur consists of a sparse matrix solution with multiple right-hand sides and a matrix-
matrix product. Obtained performance is very low due to the sparseness, which is explained as
Section 3.5. This part needs to be optimized further to utilize arithmetic units intensively inside of
a single core.

22

Table 10: Performance comparison, elapsed and CPU times in seconds
Dissection IntelPardiso MUMPS

elstct1 1 core 12 cores ratio 1 core 12 cores ratio 1 core
elapsed 82.189 10.526 /7.81 81.678 13.313 /6.14 79.850
CPU 81.781 107.426 ×1.31 81.365 158.914 ×1.95 79.541
error 4.6291 · 10−17 5.2390 · 10−17 1.1874 · 10−16

residual 5.2863 · 10−18 1.1593 · 10−17 1.1593 · 10−17

kernel — — —

elstct1 1 core 16 cores ratio 1 core 16 cores ratio 1 core
elapsed 144.476 13.494 /10.71 147.344 11.927 /12.35 141.696
CPU 144.461 167.190 ×1.16 147.325 189.324 ×1.29 141.677
error 4.4156 · 10−17 5.1883 · 10−17 1.1753 · 10−16

residual 5.2863 · 10−18 1.1593 · 10−17 1.1593 · 10−16

kernel — — —

elstct2 1 core 12 cores ratio 1 core 12 cores ratio 1 core
elapsed 56.985 8.566 /6.65 54.946 8.531 /6.44 53.549
CPU 56.756 75.745 ×1.33 54.743 101.794 ×1.86 53.335
error 5.9754 · 10−10 2.3438 · 100 4.3817 · 10−11

residual 3.7667 · 10−14 6.6503 · 10−16 7.1626 · 10−14

kernel 6 — 6

stokes1 1 core 12 cores ratio 1 core 12 cores ratio 1 core
elapsed 82.292 11.552 /7.12 84.257 13.732 /6.14 82.890
CPU 81.989 107.247 ×1.31 83.941 163.938 ×1.95 82.565
error 9.1192 · 10−11 1.6362 · 100 5.1755 · 10−8

residual 7.5479 · 10−14 2.22183 · 10−14 6.6675 · 10−10

kernel 6 — 6
stokes2 1 core 12 cores ratio 1 core 12 cores ratio 1 core
elapsed 62.077 8.194 /7.58 64.317 10.680 /6.02 63.203
CPU 61.856 81.745 ×1.32 64.068 127.508 ×1.99 62.956
error 2.2463 · 10−11 1.4652 · 10−3 8.3521 · 10−11

residual 1.9300 · 10−15 2.2069 · 10−15 3.6036 · 10−14

kernel 1 — 1

elstct3 1 core 16 cores ratio 1 core 16 cores ratio 1 core
elapsed 6, 167.0 516.48 /11.94 5, 431.1 460.74 /11.79 5, 894.9
CPU 6, 167.0 6, 871.1 ×1.11 5, 430.6 7, 364.2 ×1.36 5, 894.4
error 8.5534 · 10−11 2.0967 · 102 1.4278 · 10−10

residual 5.1758 · 10−13 6.2332 · 10−14 1.8237 · 10−12

kernel 6 — 6

Table 11: Parallel efficiency of elstct3, elapsed and CPU times in seconds
core Dissection Pardiso MUMPS + parallel BLAS

CPU elapsed speedup CPU elapsed speedup CPU elapsed speedup
1 6, 167.0 6, 167.0 — 5, 430.6 5, 431.1 — 5, 894.4 5, 894.9 —
2 6, 226.5 3, 155.5 1.95 5, 676.6 2, 838.7 1.92 6, 547.5 3, 369.3 1.75
4 6, 310.0 1, 640.9 3.76 6, 403.9 1, 601.1 3.39 7, 457.8 2, 003.4 2.94
8 6, 568.2 894.5 6.89 6, 817.3 852.4 6.37 10, 925.2 1, 533.5 3.84
12 6, 702.6 644.7 9.57 7, 049.4 587.9 9.24 14, 108.5 1, 351.5 4.36
16 6, 871.1 516.5 11.94 7, 364.2 460.7 11.79 18, 388.7 1, 375.4 4.28

23

Table 12: Parallel efficiency by elstct1 with GFlop/s and idling time of tasks among cores in
seconds

core GFlop/s time for parallel tasks time for the numerical factorization
elapsed time idling of cores elapsed time CPU

1 10.617 81.255 0.000 82.189 81.871
2 20.896 41.283 0.042 42.151 82.937
4 39.824 21.596 1.120 22.510 85.389
6 55.611 15.465 1.573 16.381 90.626
8 70.580 12.162 1.840 13.095 94.259
10 82.246 10.436 3.246 11.401 99.626
12 90.025 9.535 4.870 10.526 107.427

LDLt LinvU fdhlfS DTRSM fDGEMM sDGEMM DSUB2d DSUB2o

DSUBmd DSUBmo Dfilld Dfillo SpLDLt SpSchr dealloc

0.0 10.0 13.320
GFlops

Figure 5: Timelines of task execution by 8 processors (above) and GFlop/s of each task (below)

24

6 Conclusions

This paper presents a factorization procedure for symmetric finite element matrices with a robust
kernel detection. Symmetric block pivoting with threshold based on a decomposition by a nested
bisection can factorize almost all part of the matrix, and symmetric pivoting with threshold again
factorizes the rest of the matrix from collection of suspicious null pivots. Finally the last Schur
complement is examined by a factorization with 1 × 1 and 2 × 2 pivoting and a kernel detection
algorithm based on measurements of residuals with orthogonal projections onto supposed image
spaces. Implementation of the solver well employs level3 BLAS routines and asynchronous execution
of tasks reduces idling time of processors. The robustness of kernel detection is verified by numerical
experiments and capability of a factorization of indefinite system is verified by finite element matrices
of the Stoke equations. We also demonstrate our solver has good parallel efficiency on multi-core
computers, about 75% with 16 cores. Hence this solver has a potential to open a door of hybrid
computation on cluster systems of many-core CPUs.

In a forthcoming paper, we will show efficiency of our solver as a local solver of the FETI
method and overall parallel efficiency of hybrid parallel computation with some practical elasticity
problems. For flow problems, it is important to handle unsymmetric matrices with symmetric non-
zero structure. Extensions of factorization procedure is straightforward with replacing the LDLT

factorization by an LDU and the kernel detection procedure is valid when the image space of the
matrix has no intersection with the kernel space.

A Tools for kernel detection

A.1 Computation of matrix with quadruple precision to emulate double

precision round-off errors

Let A be a symmetric N -by-N matrix which is supposed to have at least m dimensional image space
and k dimensional kernel space is perturbed by numerical round-off errors of double precision. The
(N−k+1)-by-(N−k+1) sub-matrix of A may have an LDLT factorization due to perturbations to
the zero eigenvalues, hence we need to exclude this case. Here we propose a procedure to compute
an LDLT factorization and a solution of A~x = ~b in quadruple precision with a perturbation to
simulate double-precision round-off errors. By this artificial perturbation in quadruple precision, we
can discriminate perturbations by numerical round-off errors which are contained in A itself from
one induced by a factorization of A. Let decompose A into an m-by-m regular part A1 1 and others,

A21, A12 and A21. We denote a perturbed solution of the linear equation A11x1 = b1 by Â−1
11 b1,

which is calculated as
Â−1

11
~b1 = L−T

11 D−1
11 L−1

11
~b1 + ~emε0, (8)

where ~em is the m-th canonical vector and ε0, the double-precision machine epsilon. By using this
perturbed solution, we can compute a Schur complement matrix

Ŝ22 := A22 −A21Â
−1
11 A12 .

This Schur complement has an LDLT factorization by quadruple-precision arithmetic. We use

notation A−1
11 as an operation L−T D−1L−1 using the LDLT factorization of A11, and Ŝ22

−1
for Ŝ22,

respectively. We now define an inverse operation of the matrix A with the ε0-perturbation (8) by

[
A11 A12

A21 A22

]−1

:=

[
I11 −Â−1

11 A12

0 I22

][
A−1

11 0

0 Ŝ22

−1

] [
I11 0

−A21Â
−1
11 I22

]
.

25

For all dimensions 1 ≤ N − l ≤ N , where l takes 0 ≤ l < N − 1, we define Ā−1
N−l

~bN−l as

Ā−1
N−l

~bN−l :=





L̃−T
11 D̃−1

11 L̃−1
11

~bN−l + ~eN−lε0 for N − l ≤ m
[
I11 −Â−1

11 Ã12

0 Ĩ22

][
A−1

11 0

0 ̂̃S22

−1

][
I11 0

−Ã21Â
−1
11 Ĩ22

][
~b1

~̃
b2

]
for N − l > m

. (9)

Here ̂̃S22 := Ã22 − Ã21Â
−1
11 Ã12, whose size is (N − l−m)× (N − l −m) and

~̃
b2 ∈ R

N−l−m.

Lemma 2
Let A be a symmetric N -by-N matrix with dim ImA ≥ m, and compute Ā−1

N−lAN−l by (9). We
have the following estimation,

||Ā−1
N−lAN−l − IN−l||∞

{
∼ ε0 for N − l ≤ dim ImA

≫ 0 for N − l > dim ImA
.

Proof of Lemma 2. For N − l ≤ m the first estimation is clear from the first part of (9). When
m < N − l ≤ dim ImA, the matrix AN−l is regular. The ε0-perturbation in (8) and the second part
of (9) leads to the first estimate again. For N − l > dim ImA ≥ m, we can directly compute

[
A11 Ã12

Ã21 Ã22

]−1 [
A11 Ã12

Ã21 Ã22

]
−

[
I11 0

0 Ĩ22

]

=


(A−1

11 A11 − I11)− Â−1
11 Ã12

̂̃S22

−1

Ã21(I11 − Â−1
11 A11) A−1

11 Ã12 − Â−1
11 Ã12

̂̃S22

−1̂̃S22

̂̃S22

−1

Ã21(I11 − Â−1
11 A11)

̂̃S22

−1̂̃S22 − Ĩ22


 .

Here we have ||̂̃S22||∞ ∼ ε0 due to the ε0-perturbation (8) applied to computation of Â−1
11 A12. Since

all computations are done by quadruple-precision arithmetic, we have ||A−1
11 A11 − I11||∞ ∼ 0 and

||̂̃S22

−1̂̃S22 − I22||∞ ∼ 0 in quadruple-precision accuracy. On the contrary, ||Â−1
11 A11 − I11||∞ ∼ ε0

due to the ε0-perturbation. Therefore, we get ||̂̃S22

−1

Ã21(I11 − Â−1
11 A11)||∞ ∼ ||Ã21||∞, which leads

to the second estimate. �

A.2 Properties of projection onto image space

Let A be a symmetric N -by-N matrix which has a factorization with symmetric partial pivoting,
A = ΠT LDLT Π and the kernel dimension k = dimKerA. We suppose a subspace V ⊂ R

N , whose
dimension is N − l, and denote A† ~f as the solution in the subspace V ,

find ~x ∈ V satisfying (A~x − ~f,~v) = 0 for all ~v ∈ V .

We use the notation A−f as the solution in the image of A

find ~x ∈ Im satisfying (A~x − ~f,~v) = 0 for all ~v ∈ ImA .

Let PImA be the orthogonal projection from R
N onto ImA. We have the following properties.

Lemma 3
(i) l > k then ImA ∩ V ⊥ 6= {0} and

there exists ~x ∈ R
N satisfying 0 6= PImA(A†A~x− ~x) ∈ A−(V ⊥) .

(ii) l = k then ImA ∩ V ⊥ = {0} and

PImA(A†A~x− ~x) = 0 for all ~x ∈ R
N .

(iii) l < k then A†f does not exist.

26

Remark 8
This lemma also holds for a non-symmetric matrix which has an LDU factorization with a symmetric

partial pivoting, because ImA ∩ V ⊥ 6= {0} is also valid for that matrix.

Next we take the other orthogonal projection P⊥
n onto a pseudo image of A,

P⊥
n : R

N → span

[
A−1

11 A12

−I22

]⊥
,

here A11 ∈ R
(N−n)×(N−n) and A12 ∈ R

(N−n)×n. We have the following property.

Lemma 4
Consider a fixed l (≥ k) and a subspace V spanned by N−l canonical basis, V = span[~e1, . . . , ~eN−l].

Let A†A~x be the solution of A~y = A~x in the subspace V ,

find ~y ∈ V satisfying (A~y −A~x,~v) = 0 for all ~v ∈ V .

Then, for all n with l ≤ n < N we have

0 = P⊥
n (A†A~x− ~x) for all ~x ∈ V .

Proof of Lemma 4. For n = l the result is followed from definitions of P⊥
n and A†A~x. For n > l, it

is easily shown that {A†A~x− ~x ; ~x ∈ V } is spanned by vectors

{[
A−1

11 A12

−I22

]

j

}

1≤j≤n

. �

Proof of Lemma 1. Three estimates err
(k+1)
k ≈ 0, err

(k+1)
k+1 ≈ 0, and err

(k)
k ≈ 0 are directly

obtained Lemma 4 by replacing A† with Ā−1
11 which contains the ε0-perturbation. The last three

estimates err
(k+1)
k+2 ∼ 1, err

(k)
k+1 ∼ 1, and err

(k−1)
k ∼ 1 are supported by (i) of Lemma 3. �

ACKNOWLEDGMENT

The authors thank Xavier Juvigny for writing routines to call graph partitioning libraries.

References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Execellent. Multifrontal parallel distributed symmetric and
unsymmetirc solvers, Computer Methods in Applied Mechanics and Engineering, 184 (2000)
501-520.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Execellent, J. Koster. A fully asynchronous multifrontal solver
using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications, 23
(2001) 15–41.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Execellent, S. Pralet. Hybrid scheduling for the parallel
solution of linear systems, Parallel Computing 32 (2006) 136–156.

[4] B. Chapman, G. Jost, R. van der Pas, Using OpeMP The MIT Press, Massachusetts, 2008.

[5] A. Buttari, J. Langou, J. Kurzak, J. Dongarra, A class of parallel tiled linear algebra algorithms
for multicore architectures, Parallel Computing, 35 (2009) 38–53.

[6] J. R. Bunch, L. Kaufman. Some stable methods for calculating inertia and solving symmetric
linear systems, Mathematics of Computation, 31 (1977) 163–179.

[7] T. A. Davis. Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.

27

[8] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu. A supernodal approach to
sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, 20 (1999), 720–755.

[9] J. W. Demmel, J. R. Gilbert, X. S. Li. An asynchronous parallel supernodal algorithm for
sparse Gaussian elimination, SIAM Journal on Matrix Analysis and Applications, 20 (1999),
915–952.

[10] S. Donfack, L. Grigori, W. D. Gropp, V. Kale. Hybrid static/dynamic scheduling for already
optimized dense matrix factorization, Parallel & Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International, 496–507.

[11] Farhat C, Roux F-X. A method of finite element tearing and interconnecting and its parallel
solution algorithm. International Journal for Numerical Methods in Engineering, 32 (1991)
1205–1227.

[12] C. Farhat, F.-X. Roux Implicit parallel processing in structural mechanics, Computational
Mechanics Advances, 2 (1994) 1–124.

[13] A. George, J. W. H. Liu. Algorithms for matrix partitioning and the numerical solution of finite
element systems, SIAM Journal on Numerical Analysis, 15 (1978) 297–327.

[14] G. H. Golub, C. F. Van Loan. Matrix Computations (3rd edn), The Johns Hopkins University
Press, Baltimore, 1996.

[15] L. Grigori, J. W. Demmel, H. Xiang. CALU: a communication optimal LU factorization algo-
rithm SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1317–1350.

[16] W. Gropp, E. Lusk, A. Skjellum. Using MPI: Portable parallel programming with the message-
passing interface 2nd ed. The MIT Press, Massachusetts, 1999.

[17] I. Guèye, S. El Arem, F. Feyel, F.-X. Roux, G. Cailletaud. A new parallel sparse direct solver:
Presentation and numerical experiments in large-scale structural mechanics parallel computing.
International Journal for Numerical Methods in Engineering 88 (2011) 370–384.

[18] M. T. Heath, P. Raghavan. A Cartesian parallel nested dissection algorithm SIAM Journal on
Matrix Analysis and Applications, 16 (1995) 235–253.

[19] M. T. Heath, P. Raghavan. Performance of a fully parallel sparse solver, International Journal
of Supercomputer Applications and High Performance Computing Applications, 11 (1997) 49–
64.

[20] Web site of Intel Kernel Library, http://software.intel.com/en-us/intel-mkl

[21] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs SIAM Journal on Scientific Computing, 20 (1998) 359–392.

[22] J. Kurzak, J. Dongarra, Implementation linear algebra routines on multi-core processors with
pipelining and a look ahead, LAPACK Working Notes, 178, (2006), 11 pages.

[23] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, D. Sorensen. LAPACK User’s Guide, 3rd ed. SIAM,
Philadelphia, 1999.

[24] B. Lewis, D. L. Berg. Multithreaded Programming with Pthreads, Sun Microsystems Press,
California, 1998.

[25] X. S. Li, J. W. Demmel. SuperLU DIST : A scalable distributed-memory sparse direct solver for
unsymmetric linear systems, ACM Transactions on Mathematical Software, 29 (2003), 110–140.

28

http://software.intel.com/en-us/intel-mkl

[26] J. Mandel. Balancing domain decomposition, Communications in Applied Numerical Methods,
9 (1993), 233–241.

[27] Message Passing Interface Forum. MPI: A message passing interface standard. International
Journal of Supercomputer Applications, 8 (1994), 167–414.

[28] OpenMP Architecture Review Board. OpenMP Application Program Interface, ver.3.1.
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

[29] F. Pellegrini, J. Roman, P. Amestoy, Hybridizing nested dissection and halo approximate min-
imum degree for efficient sparse matrix ordering Concurrency: Practice and Experience, 12
(2000) 69–84.

[30] P. Raghavan. User’s guide DSCPACK: Domain-separator codes for the parallel solution of
sparse linear systems. Technical Report CSE-02-004, Department of Computer Science and
Engineering, The Pennsylvania State University 2002.

[31] O. Schenk, K. Gärtner, W. Fichtner. Efficient sparse LU factorization with left-right looking
strategy on shared memory multiprocessors, BIT, 40 (1999), 158–176.

[32] O. Schenk, K. Gärtner. Solving unsymmetric sparse systems of liner equations with PARDISO,
Future Generation of Computer Systems, 20 (2004), 475–487.

[33] O. Schenk, K. Gärtner, Two-level dynamic scheduling in PARDISO: Improved scalability on
shared memory multiprocessing systems Mathematics of Computation parallel Computing, 28
(2002) 187–197.

[34] O. Schenk, K. Gärtner. On fast factorization pivoting methods for sparse symmetric indefinite
systems, Electronic Transactions on Numerical Analysis, 23 (2006), 158–179.

[35] A. Suzuki, M. Tabata. Finite element matrices in congruent subdomains and their effective use
for large-scale computations. International Journal for Numerical Methods in Engineering, 62
(2005), 1807–1831.

29

http://www.openmp.org/mp-documents/OpenMP3.1.pdf

	1 Introduction
	2 Factorization procedure with kernel detection
	2.1 Target problem
	2.2 Factorization procedure
	2.3 Kernel detection procedure
	2.4 Numerical examples of kernel detection procedure

	3 Block factorization based on nested bisection tree
	3.1 Bisection tree
	3.2 Recursive generation of Schur complements
	3.3 Block factorization and block pivot strategy
	3.4 Implementation with BLAS library
	3.5 Sparse factorization and computation of Schur complement

	4 Task scheduling on shared memory parallel computer
	4.1 Dependency tree of tasks and the critical path
	4.2 Task execution

	5 Performance comparison and efficiency
	5.1 Performance comparison
	5.2 Efficiency of tasks

	6 Conclusions
	A Tools for kernel detection
	A.1 Computation of matrix with quadruple precision to emulate double precision round-off errors
	A.2 Properties of projection onto image space

