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1Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, 75252 Paris, France

2Laboratoire de Chimie et Physique Quantiques, IRSAMC,
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We assess a variant of linear-response range-separated time-dependent density-functional theory
(TDDFT), combining a long-range Hartree-Fock (HF) exchange kernel with a short-range adiabatic
exchange-correlation kernel in the local-density approximation (LDA) for calculating isotropic C6

dispersion coefficients of homodimers of a number of closed-shell atoms and small molecules. This
range-separated TDDFT tends to give underestimated C6 coefficients of small molecules with a
mean absolute percentage error of about 5%, a slight improvement over standard TDDFT in the
adiabatic LDA which tends to overestimate them with a mean absolute percentage error of 8%,
but close to time-dependent Hartree-Fock which has a mean absolute percentage error of about 6%.
These results thus show that introduction of long-range HF exchange in TDDFT has a small but
beneficial impact on the values of C6 coefficients. It also confirms that the present variant of range-
separated TDDFT is a reasonably accurate method even using only a LDA-type density functional
and without adding an explicit treatment of long-range correlation.

I. INTRODUCTION

It is well known that the leading term in the expansion
of the London dispersion attractive interaction energy
between a pair of atoms or molecules at long distance
R takes the form −C6/R

6 [1]. The C6 dispersion coeffi-
cients are conveniently expressed by the Casimir-Polder
formula [2, 3] involving imaginary-frequency dynamic
dipole polarizabilities, and can be efficiently calculated
from linear-response time-dependent density-functional
theory (TDDFT) [4]. In such TDDFT calculations of
C6 coefficients, a number of approximations have been
used for the Kohn-Sham exchange-correlation poten-
tial vxc and the corresponding response kernel fxc, in-
cluding the local-density approximation (LDA) [4–7],
generalized-gradient approximations (GGA) [8, 9], hy-
brid approximations [10–14] and optimized effective po-
tential (OEP) approaches [15–20]. Using the general-
ized Casimir-Polder formula [3], non-expanded dispersion
energies can also be calculated from TDDFT [21, 22].
The best results are obtained with LDA or GGA density
functionals with asymptotically corrected potentials, hy-
brid approximations, and OEP approaches, with a typ-
ical accuracy on the C6 coefficients of atoms and small
molecules of the order of 5%.

In the last decade, hybrid TDDFT approaches based
on a range separation of electron-electron interactions
have been increasingly used. The range-separated
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TDDFT approach that was first developed is based
on the long-range correction (LC) scheme [23], which
combines long-range Hartree-Fock (HF) exchange with
a short-range exchange density functional and a stan-
dard full-range correlation density functional. It
has been demonstrated that the LC scheme corrects
the underestimation of Rydberg excitation energies of
small molecules [23] and the overestimation of (hy-
per)polarizabilities of long conjugated molecules [24–
31] usually obtained with standard (semi)local density-
functional approximations. A variety of other similar
range-separated TDDFT schemes have also been em-
ployed, which for example use an empirically modified
correlation density functional depending on the range-
separation parameter [32], or introduce a fraction of HF
exchange at shorter range as well [33–45], such as in the
CAM-B3LYP approximation [33].

Recently, some of us have studied a new variant
of range-separated TDDFT [46] based on the range-
separated hybrid (RSH) scheme [47], which differs from
the LC scheme in that it uses a short-range correlation
density functional instead of a full-range one. This range-
separated TDDFT approach, referred to as TDRSH, is
motivated by the fact that, as for exchange, the long-
range part of standard correlation density-functional ap-
proximations such as the LDA is usually inaccurate [48–
50], so one may as well remove it. The TDRSH
method can then be viewed as a first-level approxima-
tion before adding more accurate long-range correlation,
e.g., by linear-response density-matrix functional theory
(DMFT) [51] or linear-response multiconfiguration self-
consistent field (MCSCF) theory [52]. Applied with a
short-range adiabatic LDA exchange-correlation kernel,
it was found that this TDRSH method gives in fact elec-
tronic excitation energies and oscillator strengths of small
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molecules very similar to the ones obtained by the range-
separated TDDFT method based on the LC scheme, sug-
gesting that the TDRSH method is already a reasonably
accurate method even before adding explicit long-range
correlations [46].
In this work, we further assess the TDRSH method by

calculating isotropic C6 dispersion coefficients of a set of
closed-shell atoms and molecules. In particular, we inves-
tigate the impact of long-range HF exchange on these C6

coefficients. To the best of our knowledge, the only range-
separated TDDFT method that had been applied so far
to the calculation of van der Waals dispersion coeffi-
cients was the one based on CAM-B3LYP [13, 14, 53, 54],
but the different results were inconclusive on whether
or not long-range HF exchange brings any improvement.
Hartree atomic units (a.u.) are used throughout the pa-
per.

II. THEORY

The isotropic C6 dispersion coefficient between two
subsystems A and B is given by the Casimir-Polder for-
mula [2, 3] (see Appendix A)

C6 =
3

π

∫ ∞

0

du ᾱA(iu)ᾱB(iu), (1)

where ᾱS(iu) = (αS,xx(iu) + αS,yy(iu) + αS,zz(iu))/3 is
the average imaginary-frequency dynamic dipole polariz-
ability of subsytem S, which has the general expression

ᾱ(iu) =
∑

n

fn
ω2
n + u2

, (2)

where the sum is over all excited states n, and fn and
ωn are the dipole oscillator strength and the excitation
energy for the transition to the excited state n.
In spin-restricted closed-shell TDDFT calculations,

only singlet → singlet excitations contribute to Eq. (2),
since the singlet → triplet excitations have zero oscillator
strength. In the TDRSH method [46], the singlet excita-
tion energies 1ωn are calculated in the basis of real-valued
spatial RSH orbitals {φk(r)} from the familiar symmetric
eigenvalue equation [55]

1
M

1
Zn = 1ω2

n
1
Zn, (3)

where 1
Zn are normalized eigenvectors and 1

M =
(

1
A− 1

B
)1/2 (1

A+ 1
B
) (

1
A− 1

B
)1/2

. The elements of

the symmetric matrices 1
A and 1

B are

1Aia,jb = (εa − εi)δijδab + 2〈aj|ŵee|ib〉 − 〈aj|ŵlr

ee|bi〉

+2〈aj| 1f̂ sr

xc|ib〉, (4)

1Bia,jb = 2〈ab|ŵee|ij〉 − 〈ab|ŵlr

ee|ji〉+ 2〈ab| 1f̂ sr

xc|ij〉, (5)

where i, j and a, b refer to occupied and virtual RSH spa-
tial orbitals, respectively, εk is the orbital eigenvalue of

orbital k, 〈aj|ŵee|ib〉 and 〈aj|ŵlr
ee|bi〉 are two-electron in-

tegrals associated with the Coulomb interaction wee(r) =
1/r and the long-range interaction wlr

ee(r) = erf(µr)/r,

respectively, and 〈aj|1f̂ sr
xc|ib〉 are the matrix elements

of the singlet short-range adiabatic exchange-correlation
kernel

〈aj|1f̂ sr

xc|ib〉 =

∫

φa(r1)φj(r2)
1f sr

xc(r1, r2)

×φi(r1)φb(r2)dr1dr2. (6)

where 1f sr
xc(r1, r2) = δ2Esr

xc[n]/δn(r1)δn(r2) is the
second-order functional derivative of the short-range
exchange-correlation density functional. The singlet
dipole length oscillator strengths 1fn are obtained from
the eigenvectors 1

Zn with the following formula [55]

1fn =
4

3

∑

α=x,y,z

(

d
T

α ·
(

1
A− 1

B
)1/2

· 1Zn

)2

, (7)

where the components of the vector dα are dα,ia =
∫

φi(r)rαφa(r)dr, i.e. the α Cartesian component of the
transition dipole moment between the orbitals i and a.
The range-separation parameter µ acts as the inverse of

a smooth “cut-off radius” delimiting the long-range and
short-range parts of the electron-electron interaction. For
µ = 0, the method reduces to standard TDDFT (with
a pure density functional and in the adiabatic approxi-
mation). For µ → ∞, the method reduces to standard
time-dependent Hartree-Fock (TDHF).
To investigate the effect of range separation due to

modification of the ground-state exchange-correlation
potential vxc alone, without involving the exchange-
correlation kernel fxc, we also compute C6 coefficients
using bare (uncoupled) polarizabilities

ᾱ0(iu) =
∑

ia

f0
ia

(ω0
ia)

2 + u2
, (8)

where the bare excitation energies are simply given by
orbital energy differences, ω0

ia = εa − εi, and the bare
dipole length oscillator strengths by

f0

ia =
4

3
ω0

ia

∑

α=x,y,z

d2α,ia. (9)

The exact (non-relativistic) oscillator strengths obey
the well-known Thomas-Reiche-Kuhn (TRK) sum rule
(or f -sum rule) [57–59]

∑

n

fn = N, (10)

where the sum is over all transitions and N is the number
of electrons. Physically, the TRK sum rule is related to
the equivalence of the dipole length and dipole velocity
forms of oscillator strengths, which stems from electro-
magnetic gauge invariance (see Ref. 60). The TRK sum
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FIG. 1: Dynamic dipole polarizability ᾱ(iu) as a function of the imaginary frequency u for the Ne atom obtained by bare LDA,
RSHLDA, and HF (left plot) and TDLDA, TDRSHLDA, and TDHF (right plot), with an uncontracted d-aug-cc-pCV5Z basis
set. The accurate reference is taken from Ref. 56.

rule determines the asymptotic behavior of the dynamic
polarizability at large imaginary frequency, u → ∞,

ᾱ(iu) ∼
N

u2
. (11)

It has been shown that, in the limit of a complete one-
electron basis set, the TRK sum rule is satisfied in
TDHF [61–63] and in TDDFT with pure density func-
tionals (without nonlocal HF exchange) [55, 64] or with
the OEP exact-exchange approach [18]. In the Ap-
pendix B, we show that the TRK sum rule is also satisfied
in TDRSH, and in fact with any usual hybrid approx-
imation, as long as the same amount of non-local HF
exchange is consistently used in the ground-state poten-
tial generating the orbitals and in the response kernel.
By contrast, the bare oscillator strengths in the dipole
length form satisfy the TRK sum rule only if the orbitals
have been generated with a local potential [63]. As the
HF and RSH orbitals are generated with a non-local HF
exchange potential, the bare HF and RSH dipole length
oscillator strengths do not sum to the number of elec-
trons.

III. COMPUTATIONAL DETAILS

The TDRSH method has been implemented for closed-
shell systems in a development version of the quantum
chemistry program MOLPRO [65]. In both the RSH
ground-state potential and the response kernel, we use
the short-range spin-independent (i.e., at zero spin mag-
netization) LDA exchange-correlation density functional

Esr

xc,LDA[n] =

∫

n(r)ǫsrxc,unif(n(r))dr, (12)

where ǫsrxc,unif(n) = ǫxc,unif(n)− ǫlrxc,unif(n) is the comple-
ment short-range exchange-correlation energy per par-
ticle obtained from the exchange-correlation energy per
particle of the standard uniform electron gas (UEG),

ǫxc,unif(n), [66, 67] and the exchange-correlation energy
per particle of a UEG with the long-range electron-
electron interaction, ǫlrxc,unif(n), as parametrized from

quantum Monte Carlo calculations by Paziani et al. [68]
(see Ref. 46 for a discussion about the corresponding ker-
nel). For closed-shell systems, dependence on the spin
magnetization needs only to be considered for triplet ex-
citations but they do not contribute to the polarizabil-
ity. The bare and response calculations are referred to
as RSHLDA and TDRSHLDA, respectively. We use the
value of µ = 0.5 bohr−1, which was previously used in
ground-state range-separated hybrid methods for appli-
cations to weak intermolecular interactions [47, 69, 70],
without trying to reoptimized it.

For the rare-gas and alkaline-earth-metal atoms, we
use large Dunning-type uncontracted doubly-augmented
core-valence quintuple-zeta quality basis sets, ensuring
that the results are well converged with respect to the
basis size. For He, we use the uncontracted d-aug-cc-
pV5Z basis set [71]. For all the other atoms, we have
constructed uncontracted d-aug-cc-pCV5Z basis sets by
augmenting available basis sets with diffuse functions us-
ing the standard even-tempered procedure. For Ne, Ar,
Kr, Be, and Mg, the basis sets are obtained from the
aug-cc-pCV5Z basis sets [72–75] by adding one diffuse
function for each angular momentum of the original ba-
sis. For Ca, the basis set is obtained from the cc-pCV5Z
basis set [76] by adding two diffuse functions for each
angular momentum of the original basis. For all atoms
(except, of course, He), we include all excitations from
the core orbitals in the response calculation. With this
setup, the TRK sum rule is very nearly satisfied, the sum
of the TDLDA, TDHF, or TDRSH oscillator strengths
only slightly deviating from the number of electrons by
the order of 10−4 for Be, 10−3 for He, Ne, Ar, Mg, Ca,
and 10−2 for Kr. While the fulfillment of the TRK sum
rule to a good accuracy requires including core excita-
tions and using very large basis sets, reasonably con-
verged values of C6 coefficients can be obtained without
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including core excitations and with much smaller basis
sets. For example for Kr, excluding the core excitations
and using the contracted d-aug-cc-pVTZ basis set gives a
TDRSHLDA C6 coefficient that is smaller by only about
1.5% than the one obtained with inclusion of core excita-
tions and with the uncontracted d-aug-cc-pV5Z basis set.
The reference values for the polarizabilities and C6 coef-
ficients of the rare-gas and alkaline-earth-metal atoms
considered here are taken from Derevianko et al. [56]
and were obtained from accurate many-body calculations
and/or experimental data. The contributions from rela-
tivistic effects on the value of the C6 coefficients can be
neglected for the atoms considered here, being at most
2% for Ca [13].
For the molecules, we use a subset of 27 organic and

inorganic molecules (going from the less polarizable H2 to
the most polarizable CCl4) extracted from the database
compiled by Tkatchenko and Scheffler [77]. The reference
C6 coefficients have been obtained from the experimen-
tal dipole oscillator strength distribution data of Meath
and coworkers (see, e.g., Refs. 78, 79), which are believed
to be accurate within 1% - 2%. Our C6 coefficients are
calculated with the d-aug-cc-pVTZ basis set [80–83] (ob-
tained by even-tempered augmenting the aug-cc-pVTZ
basis set for Si, S, Cl, and Br) without including core exci-
tations. The geometries were optimized with the B3LYP
functional [84–86] and the aug-cc-pVDZ basis set using
the quantum chemistry program GAUSSIAN [87].
Since we consider relatively small systems, we can solve

Eq. (3) for the full spectrum and we perform the integra-
tion over the imaginary frequency in Eq. (1) analytically,
giving

C6 =
3

2

∑

n,m

fA,n fB,m

ωA,nωB,m(ωA,n + ωB,m)
, (13)

where fS,n and ωS,n are the oscillator strengths and ex-
citation energies of subsystem S. For large systems,
the imaginary-frequency integration can done more ef-
ficiently with a numerical quadrature.

IV. RESULTS AND DISCUSSION

A. Rare-gas and alkaline-earth-metal atoms

As an illustrative example, we show in Fig. 1 the dy-
namic dipole polarizability ᾱ(iu) as a function of the
imaginary frequency u for the Ne atom obtained by
bare LDA, RSHLDA, and HF calculations and TDLDA,
TDRSHLDA, and TDHF response calculations. The
different methods mostly differ at small imaginary fre-
quency. Compared to the accurate reference, for u . 1,
the bare LDA polarizability is too large, while the bare
HF polarizability is too small. The bare RSHLDA po-
larizability is in between the bare LDA and HF ones and
closer to the reference for u . 1. At large imaginary fre-
quency, all the bare polarizabilities are close to the refer-
ence curve, but it can be seen that the bare RSH and HF

polarizabilities are slightly too large. This behavior can
be understood from the fact that the bare RSH or HF os-
cillator strengths sum to a larger value than the number
of electrons (11.8 and 12.9, respectively, instead of 10),
contrary to the bare LDA oscillator strengths which sat-
isfy the TRK sum rule. The TDLDA, TDRSHLDA, and
TDHF polarizabilities are more accurate than their bare
counterparts. At small imaginary frequency, TDLDA
slightly overestimates the polarizability, TDHF slightly
underestimates it, and TDRSHLDA is very close to the
reference for this system. At larger imaginary frequency,
u & 1, TDLDA, TDHF, and TDRSHLDA all give almost
exact polarizabilities, which can be understood from the
fact that they all satisfy the TRK sum rule.

Table I reports static dipole polarizabilities ᾱ(0) for
rare-gas and alkaline-earth-metal atoms obtained by bare
and response calculations. Bare LDA always largely over-
estimates the static polarizabilities, while bare RSHLDA
and HF underestimate them.TDLDA, TDRSHLDA, and
TDHF give overall more accurate static polarizabilities
than the bare calculations. While TDLDA decreases
static polarizabilities in comparison to bare LDA, an
effect that is often understood as the screening of the
perturbed potential due to the response of the Hartree-
exchange-correlation potential, we note that TDHF in-
creases static polarizabilities in comparison to bare HF.
Different trends are observed for the effect of HF ex-
change in the rare-gas atoms and in the alkaline-earth-
metal atoms. For He, Ne, Ar, and Kr, starting from
TDLDA which systematically overestimates the static
polarizabilities, the increase of the amount of HF ex-
change with TDRSHLDA decreases the polarizabilities,
eventually leading to a systematic underestimation in
TDHF. This is consistent with the well-known tendency
of TDLDA to underestimate Rydberg excitation ener-
gies and that of TDHF to overestimate them. For Be,
Mg, and Ca, increasing the amount of HF exchange leads
to the increase of the static polarizabilities, with TDHF
systematically overestimating them. For these systems,
TDHF can indeed be expected to underestimate the low-
lying singlet valence excitation energy due to the fact that
HF misses the important s-p near-degeneracy ground-
state correlation effects.

Table II reports C6 coefficients for homodimers of rare-
gas and alkaline-earth-metal atoms. As for static polar-
izabilities, bare LDA largely overestimates the C6 coeffi-
cients for all atoms, often by more than a factor of 2, as
already known [88]. Bare RSHLDA and bare HF overesti-
mate on average the C6 coefficients, whereas they under-
estimate static polarizabilities, meaning that they must
overestimate dynamic polarizabilities at larger imaginary
frequencies (as shown in Fig. 1). TDLDA, TDRSHLDA,
and TDHF give on average more accurate C6 coefficients
than the bare calculations. For He, Ne, Ar, and Kr,
TDLDA systematically overestimates the C6 coefficients,
and TDRSHLDA and TDHF perform better. For Be,
Mg, and Ca, TDHF largely overestimates the C6 coeffi-
cients, and TDLDA and TDRSHLDA are more accurate.
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TABLE I: Static dipole polarizability ᾱ(0) (in a.u.) for rare-gas and alkaline-earth-metal atoms obtained by bare LDA,
RSHLDA, and HF, and TDLDA, TDRSHLDA, and TDHF, with uncontracted d-aug-cc-pCV5Z basis sets.

bare LDA bare RSHLDA bare HF TDLDA TDRSHLDA TDHF Referencea

He 1.81 1.24 1.00 1.66 1.57 1.32 1.383
Ne 3.48 2.42 1.98 3.05 2.80 2.38 2.669
Ar 18.0 10.8 10.1 12.0 11.0 10.8 11.08
Kr 27.8 16.3 15.9 18.0 16.4 16.5 16.79

Be 80.6 29.1 30.6 43.8 43.5 45.6 37.76
Mg 122 49.5 55.2 71.4 73.6 81.6 71.26
Ca 277 111 125 149 167 185 157.1
a From Ref. 56.

TABLE II: C6 coefficients (in a.u.) for homodimers of rare-gas and alkaline-earth-metal atoms obtained by bare LDA, RSHLDA,
and HF, and TDLDA, TDRSHLDA, and TDHF, with uncontracted d-aug-cc-pCV5Z basis sets.

bare LDA bare RSHLDA bare HF TDLDA TDRSHLDA TDHF Referencea

He 2.17 1.50 1.12 1.86 1.74 1.37 1.461
Ne 9.53 6.79 5.32 7.40 6.72 5.52 6.38(6)
Ar 137 80.8 76.6 70.5 63.3 62.0 64.3(6)
Kr 289 166 165 141 125 127 130(1)

Be 642 232 255 264 258 283 214(3)
Mg 1417 579 692 623 654 767 627(12)
Ca 5274 2247 2693 1990 2374 2769 2121(35)
a From Ref. 56, including estimated uncertainties in parentheses.

B. Molecules

Table III reports isotropic C6 coefficients for homod-
imers of 27 organic and inorganic small molecules. Mean
percentage errors (M%E) and mean absolute percentage
errors (MA%E) over all molecules with respect to the
reference values are given. Overall, the same trends than
those found for the rare-gas atoms are observed for these
molecules. Bare LDA largely overestimates the C6 co-
efficients, by as much as 137%. Bare RSHLDA and HF
overestimate them on average with a MA%E of about
20%. TDLDA, TDRSHLDA, and TDHF give C6 coef-
ficients with overall comparable accuracy, TDRSHLDA
having a slightly smaller MA%E of 5.2% in comparison
to the MA%Es of TDLDA and TDHF, 8.0% and 6.3%,
respectively. As for the rare-gas atoms, TDLDA over-
estimates the C6 coefficients (with the only exception of
H2CO), and TDRSHLDA and TDHF give smaller C6 co-
efficients which tend to be underestimated.

It is interesting to discuss the present results in re-
lation with supermolecular methods which aim at de-
scribing dispersion interactions at all intermolecular dis-
tances R in a seamless manner. It is well-known that
the long-distance expansion of the second-order Møller-
Plesset (MP2) correlation energy (using HF orbitals)
gives a leading term −C6/R

6 with a bare HF C6 coef-
ficient [89]. Similarly, the long-distance expansion of the
range-separated MP2 method of Ref. 47 gives a lead-
ing term −C6/R

6 with a bare RSH C6 coefficient. Thus
Table III shows that both standard MP2 and range-

separated MP2 (with the short-range LDA density func-
tional) overestimate dispersion interactions by about 20%
at long distances for the molecules considered here, which
stresses the need to go beyond second-order perturba-
tion theory. We note in passing that our results confirm
that a supermolecular MP2 calculation using LDA or-
bitals (which corresponds to bare LDA C6 coefficients)
largely overestimates dispersion interactions at long dis-
tances [90, 91]. Szabo and Ostlund [89] have found
a correlation energy expression based on a variant of
the random-phase approximation (RPA) (with exchange
terms) which exactly gives TDHF C6 coefficients in the
long-distance expansion. A range-separated version of
this RPA variant was found to give quite accurate dis-
persion interaction energies of molecular dimers around
equilibrium distances [70] but the corresponding C6 co-
efficients tend to be less accurate than in TDHF. Since
we have seen that TDRSHLDA gives relatively good C6

coefficients, one could try to develop a range-separated
RPA-type method that still performs well at equilibrium
distances and gives TDRSHLDA C6 coefficients in the
long-distance limit.

V. CONCLUSION

We have tested a variant of linear-response range-
separated TDDFT, referred to as TDRSHLDA, combin-
ing a long-range HF exchange kernel with a short-range
adiabatic LDA exchange-correlation kernel for calculat-
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TABLE III: Isotropic C6 coefficients (in a.u.) for homodimers of a subset of 27 organic and inorganic molecules extracted from
the database compiled by Tkatchenko and Scheffler [77] obtained by bare LDA, RSHLDA, and HF, and TDLDA, TDRSHLDA,
and TDHF, with d-aug-cc-VTZ basis sets. The geometry were optimized at the B3LYP/aug-cc-pVDZ level. Mean percentage
errors (M%E) and mean absolute percentage errors (MA%E) over all molecules with respect to the reference values are given.

bare LDA bare RSHLDA bare HF TDLDA TDRSHLDA TDHF Referencea

H2 19.9 11.1 10.1 14.2 12.7 12.1 12.1
HF 32.7 20.4 16.8 22.2 19.2 16.7 19.0
H2O 83.3 47.4 41.7 51.3 43.4 40.2 45.3
N2 178.9 104.9 98.5 77.8 72.7 73.7 73.3
CO 182.1 101.8 91.6 84.7 77.1 75.2 81.4
NH3 164.8 89.2 82.5 95.9 80.8 78.8 89.0
CH4 239.6 132.2 122.6 136.0 121.2 120.4 129.7
HCl 294.2 158.6 154.0 139.1 122.9 123.7 130.4
CO2 391.7 211.4 179.6 163.1 150.9 143.4 158.7
H2CO 312.6 167.8 150.6 155.7 138.4 136.3 165.2
N2O 580.5 295.7 255.3 189.9 179.8 177.0 184.9
C2H2 494.8 260.8 263.1 217.9 198.9 214.8 204.1
HBr 517.2 269.7 270.3 232.9 205.5 212.1 216.6
H2S 540.3 269.3 263.1 237.8 209.0 214.1 216.8
CH3OH 422.9 231.6 207.9 234.0 205.0 199.9 222.0
SO2 958.8 461.8 399.1 325.6 295.3 288.4 294.0
C2H4 645.9 342.3 333.5 313.8 287.3 303.8 300.2
CH3NH2 595.1 319.1 294.2 321.6 279.6 277.9 303.8
SiH4 767.1 344.5 310.3 382.4 329.6 319.3 343.9
C2H6 742.6 401.3 372.2 395.9 352.7 353.5 381.9
Cl2 1092.4 551.4 527.1 420.8 385.4 395.7 389.2
CH3CHO 916.6 470.0 423.3 444.5 386.6 381.3 401.7
COS 1410.9 671.6 617.5 453.6 425.4 429.7 402.2
CH3OCH3 1079.7 570.0 512.2 571.9 496.1 488.3 534.1
C3H6 1447.4 746.5 710.6 693.6 622.0 643.8 662.1
CS2 3745.6 1604.3 1538.1 967.0 923.0 962.7 871.1
CCl4 5893.6 2792.4 2642.9 2186.7 1924.9 1956.5 2024.1

M%E 137% 22.9% 13.5% 7.6% -3.8% -4.4%
MA%E 137% 23.6% 19.6% 8.0% 5.2% 6.3%
a From Ref. 77, obtained from experimental dipole oscillator strength distribution data.

ing isotropic C6 dispersion coefficients of homodimers
of a number of closed-shell atoms and small molecules.
TDRSHLDA gives C6 coefficients of small molecules with
a mean absolute percentage error of 5.2%, a slight im-
provement over TDLDA which has a mean absolute per-
centage error of 8.0%, but close to TDHF which has a
mean absolute percentage error of 6.3%. In comparison
to standard TDLDA which almost always overestimates
the C6 coefficients, introduction of long-range HF ex-
change gives smaller C6 coefficients (with the exceptions
of the Mg and Ca atoms) which tend to be underesti-
mated.

Our results thus show that introduction of long-range
HF exchange in TDDFT has a small but beneficial im-
pact on the values of C6 coefficients of closed-shell atoms
and small molecules. According to previous studies on
(hyper)polarizabilities [24–31], a bigger impact can be
expected for larger molecules. More importantly, this
work confirms the conclusion of a previous study on ex-
citation energies and oscillator strengths of a few small
molecules [46] in that the TDRSH method is a reason-
ably accurate method even using only a LDA-type den-

sity functional and without adding an explicit treatment
of long-range correlation.
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Appendix A: Casimir-Polder formula

The dispersion energy between two subsystems A and
B in their ground states is defined by the following
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second-order energy correction in Rayleigh-Schrödinger
intermolecular perturbation theory

EAB
disp = −

∑

a 6=0

∑

b6=0

|〈ΨA
0 Ψ

B
0 |ŴAB|Ψ

A
a Ψ

B
b 〉|

2

EA
a + EB

b − EA
0
− EB

0

, (A1)

where ΨA
0 and ΨA

a are the ground and excited states
of A with associated energies EA

0 and EA
a , and simi-

larly for B, ŴAB =
∫∫

n̂A(r1)wee(r1, r2)n̂B(r2)dr1dr2
is the intermolecular electron-electron interaction opera-
tor written in terms of the density operators of A and
B. In Eq. (A1), it has been assumed that the two
subsystems A and B are sufficiently far apart (non-
overlapping) so that exchange contributions between
them can be neglected. Using the integral transform,
1/(x+ y) = (2/π)

∫∞

0

[

x/(x2 + u2)
] [

y/(y2 + u2)
]

du for
x, y > 0, which permits to recast the energy denomi-
nator in Eq. (A1) into a multiplicative separable form,
and using the definition of the imaginary-frequency lin-
ear density-density response function of a subsystem in
terms of its eigenstates Ψk and excitation energies ωk =
Ek − E0, for real-valued matrix elements 〈Ψ0|n̂(r)|Ψk〉,

χ(r, r′; iu) = −
∑

k 6=0

2ωk〈Ψ0|n̂(r)|Ψk〉〈Ψk|n̂(r
′)|Ψ0〉

ω2
k + u2

,

(A2)
one easily arrives to the generalized Casimir-Polder for-
mula [3, 92–97]

EAB
disp = −

1

2π

∫ ∞

0

du

∫

dr1dr
′
1dr2dr

′
2 χA(r1, r

′
1; iu)

wee(|r2 − r1|)χB(r2, r
′
2; iu)wee(|r

′
2 − r

′
1|),

(A3)

where χS(r, r
′; iu) is the linear response function of the

subsystem S = A or B. Assuming that the subsystems
A and B are separated by a large vector R, one can per-
form a multipolar expansion of the Coulomb interaction
wee(|r2 − r1|) = 1/|r2 − r1|, redefining the origins of r1
and r2 at either ends of R,

wee(|r2 − r1|) =
1

R
+
∑

α

Tα(R)(r2 − r1)α

+
1

2

∑

α,β

Tαβ(R)(r2 − r1)α(r2 − r1)β

+ · · · , (A4)

with the Cartesian interaction tensors Tα(R) = −RαR
−3

and Tαβ(R) = (3RαRβ − R2δαβ)R
−5, the Greek indices

referring to x, y or z components. Because the integra-
tion of χ(r, r′; iu) over r and r

′ is zero (normalization
of the perturbed density and zero-response to a uniform
perturbative potential), only the terms containing prod-
ucts of components of the four coordinates r1, r

′
1, r2, r

′
2

survive in the leading term of the dispersion energy,

EAB
disp = −

1

2π

∑

α,β,γ,δ

Tαβ(R)Tγδ(R)

×

∫ ∞

0

duαA,δα(iu)αB,βγ(iu) + · · · , (A5)

where αS,αβ(iu) = −
∫

drdr′χS(r, r
′; iu)rαr

′
β is the α, β

Cartesian component of the imaginary-frequency dy-
namic dipole polarizability tensor of the subsystem S. If
we consider the spherically averaged dipole polarizabil-
ity, αS,αβ(iu) = ᾱS(iu)δαβ where ᾱS(iu) = (αS,xx(iu) +
αS,yy(iu)+αS,zz(iu))/3, then it is easy to do the sum over
α, β, γ, δ in Eq. (A5) to get the familiar Casimir-Polder
formula for the leading term of the dispersion energy

EAB
disp = −

3

πR6

∫ ∞

0

du ᾱA(iu)ᾱB(iu) + · · · , (A6)

where we have used that
∑

αβ Tαβ(R)Tβα(R) = 6/R6.

Appendix B: Thomas-Reiche-Kuhn sum rule in

TDRSH

In this Appendix, we show that, in the limit of a com-
plete one-electron basis set, the TRK sum rule of oscil-
lator strengths,

∑

n fn = N where N is the number of
electrons, holds in TDRSH and in fact more generally in
TDDFT with any hybrid approximation including non-
local HF exchange. It is well known that the TRK sum
rule holds in TDHF [61–63, 98, 99], and in TDDFT with
pure density functionals [55, 64] or with the OEP exact-
exchange approach [18], but we have not found the ex-
plicit proof in the literature for TDDFT with hybrid ap-
proximations. The TRK sum rule must hold in this case
as well, as it more generally holds for linear response on
variational ground-state many-body theories [100, 101].
Nevertheless, an explicit proof is interesting since it re-
veals that the key to the fulfillment of the TRK sum
rule is to use the same amount of HF exchange in the
ground-state potential and in the response kernel.
Throughout this Appendix, we work with a real-valued

spin-orbital basis without spin adaptation. The oscillator
strengths are [55]

fn =
2

3

∑

α=x,y,z

(

d
T

α · (A−B)
1/2

· Zn

)2

, (B1)

where dα is the α-component transition moment vec-
tor, Zn are the normalized eigenvectors of M =

(A−B)
1/2

(A+B) (A−B)
1/2

, and in TDRSH the ma-
trices A and B have elements

Aia,jb = (εa − εi)δijδab + 〈aj|ŵlr

ee|ib〉 − 〈aj|ŵlr

ee|bi〉

+〈aj|f̂ sr

Hxc|ib〉, (B2)

and

Bia,jb = 〈ab|ŵlr

ee|ij〉 − 〈ab|ŵlr

ee|ji〉+ 〈ab|f̂ sr

Hxc|ij〉, (B3)
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where i, j and a, b refer to occupied and virtual RSH
spin-orbitals, respectively, εk is the orbital eigenvalue of
spin-orbital k, 〈aj|ŵlr

ee|ib〉 are two-electron integrals asso-

ciated with the long-range interaction, and 〈aj|f̂ sr
Hxc|ib〉

are the integrals associated with the short-range Hartree-
exchange-correlation (Hxc) kernel. Since in the adiabatic
approximation the eigenvectors Zn form a complete or-
thonormal basis (for any selection of single excitations
and one-electron basis set), one can use the complete-
ness relation,

∑

n ZnZ
T
n = 1, to obtain [55, 64]

∑

n

fn =
2

3

∑

α=x,y,z

d
T

α · (A−B) · dα,

=
2

3

∑

α=x,y,z

∑

ia,jb

dα,ia (Aia,jb −Bia,jb) dα,jb.

(B4)

In TDDFT with pure density functionals, the matrix
A−B is diagonal and contains the orbital energy differ-
ences, and one recovers the sum of the bare KS oscillator
strengths,

∑

n fn =
∑

ia f
0
ia, which trivially satisfies the

TRK sum rule in a complete one-electron basis (and con-
sidering in the sum over ia all single excitations including
those from the core orbitals) due to the locality of the KS
potential. When including nonlocal HF exchange, how-
ever, the matrix A−B is no longer diagonal.
Using a second-quantized equations-of-motion formal-

ism (see Ref. 102), the elements of the TDRSH matrices
A and B can be conveniently written with expectation
values of double commutators over the RSH ground-state
single-determinant wave function Φ0

Aia,jb = 〈Φ0|[[â
†
i âa, Ĥ

lr], â†bâj ]|Φ0〉+ 〈aj|f̂ sr

Hxc|ib〉,

(B5)

and

Bia,jb = −〈Φ0|[[â
†
i âa, Ĥ

lr], â†jâb]|Φ0〉+ 〈ab|f̂ sr

Hxc|ij〉,

(B6)

where the long-range effective Hamiltonian Ĥ lr = Ĥ0 +
Ŵ lr involves the RSH reference Hamiltonian Ĥ0 = T̂ +
V̂ne+ V̂ lr

Hx,HF
+ V̂ sr

Hxc [generating the orbital energy differ-

ences in Eq. (B2)] and the long-range fluctuation poten-

tial operator Ŵ lr = Ŵ lr
ee − V̂ lr

Hx,HF
[generating the long-

range two-electron integrals in Eqs. (B2) and (B3)]. In

these expressions, T̂ is the kinetic energy operator, V̂ne

is the nuclei-electron interaction operator, V̂ lr
Hx,HF

is the

long-range HF potential operator, V̂ sr
Hxc is the short-range

Hxc potential operator, and Ŵ lr
ee is the long-range two-

electron interaction operator. The contributions from the

short-range Hxc kernel f̂ sr
Hxc cancel out in A − B, and

using the (second-quantized) dipole moment operator,

d̂α =
∑

kl dα,kl â
†
kâl, where each sum is over all (occupied

and virtual) spin-orbitals, it can be shown that Eq. (B4)
simplifies to (considering in the sums over ia and jb all
single excitations including those from the core orbitals)

∑

n

fn =
2

3

∑

α=x,y,z

∑

ia

dα,ia〈Φ0|[[â
†
i âa, Ĥ

lr], d̂α]|Φ0〉

=
1

3

∑

α=x,y,z

〈Φ0|[[d̂α, Ĥ
lr], d̂α]|Φ0〉, (B7)

where the last equality is found by taking the adjoint of
the double commutator, and noticing that the diagonal

terms â†kâk in d̂α do not contribute.

In the limit of a complete one-electron basis set, d̂α
and all the potentials in the effective Hamiltonian Ĥ lr =
T̂ + V̂ne + Ŵ lr

ee + V̂ sr
Hxc are multiplicative local operators

in the position representation and thus commute with
each other, and the double commutator with the kinetic
energy operator can be evaluated using the position-
momentum canonical commutation relation, leading to

(see, e.g., Ref. 103): [[d̂α, Ĥ
lr], d̂α] = [[d̂α, T̂ ], d̂α] =

i[p̂α, d̂α] = N̂ where p̂α is the (second-quantized) momen-

tum operator and N̂ is the particle-number operator. It
follows that the TDRSH oscillator strengths satisfy the
TRK sum rule

∑

n

fn = N. (B8)

The proof relies on the cancellation of the nonlocal HF
potential V̂ lr

Hx,HF
in the effective Hamiltonian Ĥ lr, which

requires that that the same amount of HF exchange is
used in the ground-state potential generating the or-
bitals and in the response kernel. The proof can be triv-
ially adapted to TDDFT with hybrid approximations, re-
placing the long-range interaction by the full-range one:
Ŵ lr → λŴ = λ(Ŵee − V̂Hx,HF) where λ is the fraction of
HF exchange.
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