
HAL Id: hal-00820473
https://hal.sorbonne-universite.fr/hal-00820473

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sub-sample swapping for sequential Monte Carlo
approximation of high-dimensional densities in the

context of complex object tracking
Severine Dubuisson, Christophe Gonzales, Xuan Son Nguyen

To cite this version:
Severine Dubuisson, Christophe Gonzales, Xuan Son Nguyen. Sub-sample swapping for sequential
Monte Carlo approximation of high-dimensional densities in the context of complex object track-
ing. International Journal of Approximate Reasoning, 2013, Special issue: Uncertainty in Artificial
Intelligence and Databases, 54 (7), pp.934-953. �10.1016/j.ijar.2013.03.002�. �hal-00820473�

https://hal.sorbonne-universite.fr/hal-00820473
https://hal.archives-ouvertes.fr

Sub-sample swapping for Sequential Monte Carlo

approximation of high-dimensional densities in the

context of complex object tracking

Séverine Dubuisson, Christophe Gonzales, Xuan Son Nguyen

Laboratoire d’Informatique de Paris 6 (LIP6/UPMC)
4 place Jussieu, 75005 Paris, FRANCE

Abstract

In this paper, we address the problem of complex object tracking using the par-
ticle filter framework, which essentially amounts to estimate high-dimensional
distributions by a sequential Monte Carlo algorithm. For this purpose, we first
exploit Dynamic Bayesian Networks to determine conditionally independent
subspaces of the object’s state space, which allows us to independently perform
the particle filter’s propagations and corrections over small spaces. Second, we
propose a swapping process to transform the weighted particle set provided by
the update step of the particle filter into a “new particle set” better focus-
ing on high peaks of the posterior distribution. This new methodology, called
Swapping-Based Partitioned Sampling, is proved to be mathematically sound
and is successfully tested and validated on synthetic video sequences for single
or multiple articulated object tracking.

Keywords: Density approximation, Object tracking, Particle Filter, Dynamic
Bayesian Networks, d-separation

1. Introduction

Object tracking is an important computer vision task for a wide variety of
applications including gesture recognition [?], human tracking [?] and event
detection [?]. However, tracking articulated structures with accuracy and
within a reasonable time is challenging due to the high complexity of the problem
to solve. Indeed, assessing the state of such objects requires the estimation of
numerous parameters of their state vector (depending on the application, these
correspond to models of the object’s shape, appearance, etc.). This inevitably
induces a representation of the tracking problem into a high-dimensional space.
Nowadays, dealing with high-dimensional spaces has become a major concern
for many research communities and is not only restricted to computer vision. In
this paper, to solve single or multiple articulated object tracking problems, we
focus on the particle filter methodology. It consists of estimating the probability
distribution over the states of the tracked object(s) using weighted samples

Preprint submitted to International Journal of Approximate Reasoning April 16, 2013

whose elements are possible realizations of the object state. We propose to
improve this method by exploiting conditional independences naturally present
in the state space in order to transform by swapping processes these weighted
samples into “new samples” better focusing on high peaks of the distribution
to estimate. This enables to deal with high-dimensional spaces by reducing the
number of elements in the samples required for accurate density estimations.
In addition, for fixed sample size, swapping increases the accuracy of these
estimations.

The paper is organized as follows. Section ?? recalls the particle filter’s
methodology and its main features. Section ?? then presents a short overview
of the existing approaches that try to solve the high-dimensionality problem.
Section ?? recalls the partitioned sampling approach and justifies its correctness
using d-separation, the independence property at the core of dynamic Bayesian
networks (DBN). Then, in Section ??, we present our approach, which fully ex-
ploits d-separation both to parallelize some computations and to focus particles
on the modes of the posterior distribution. Section ?? gives some experimental
results on challenging synthetic video sequences. Finally, concluding remarks
and perspectives are given in Section ??. All the proofs are given in an appendix
in Section ??.

2. Theoretical framework: Particle Filter (PF)

Particle filters are an effective solution to the optimal filtering problem, in
which the goal of tracking is to estimate a state sequence {xt}t=1,...,T whose
evolution is specified by a dynamic equation xt = ft(xt−1,n

x
t) given a set of

observations {yt}t=1,...,T . Those are related to xt by yt = ht(xt,n
y
t). Usually,

ft and ht are vector-valued and time-varying functions and nx
t and ny

t are in-
dependent and identically distributed noise sequences. The evolution of such
system can be modeled in a probabilistic way by a Markov chain as in Fig. ??.

....x1

y1 y2

x2

yt

xt

Figure 1: Evolution of a dynamic system by a Markov chain.

All these equations are usually considered in a probabilistic way although
they have been extended to other uncertainty models such as Belief Functions
[? ?] or Fuzzy Logic [?]. The optimal filtering problem is then solved in two
main steps. First, in a so-called prediction step, the density function p(xt|y1:t−1)
is computed, where y1:t−1 denotes tuple (y1, . . . ,yt−1):

p(xt|y1:t−1) =

∫

xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (1)

with p(xt|xt−1) the prior density related to transition function ft. Then, a

2

correction step is applied, which computes p(xt|y1:t):

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1), (2)

with p(yt|xt) the likelihood density related to the measurement function ht.
Note that this precisely corresponds to the computations one would do in the
Markov chain of Fig. ?? to compute efficiently p(xt|y1:t).

When functions ft and ht are linear, or linearizable, and when distributions
are Gaussian or mixtures of Gaussians, sequence {xt}t=1,...,T can be computed
analytically by Kalman, Extended Kalman or Unscented Kalman Filters [?].
Unfortunately, most vision tracking problems involve nonlinear functions and
non-Gaussian distributions. In such cases, tracking methods based on Particle
Filters (PF) [? ?], also called Sequential Monte Carlo (SMC) methods, can be
applied under very weak hypotheses: their principle is to approximate the above

non-parametric distributions by weighted samples {x
(i)
t , w

(i)
t }, i = 1, . . . , N ,

where each x
(i)
t corresponds to a hypothetical state realization and is called a

particle. As optimal filtering approaches do, PF consists of two main steps.
First, a prediction of the object state in the scene (using previous observations)

is computed. It consists of propagating the set of particles {x
(i)
t , w

(i)
t } according

to a proposal function q:

x
(i)
t ∼ q(xt|x

(i)
1:t−1,yt).

A common practice is to set q(xt|x
(i)
1:t−1,yt) equal to p(xt|x

(i)
t−1) and we do it as

well in the rest of the paper. The propagation step is followed by a correction
of this prediction (using a new available observation), that consists of weighting
the particles w.r.t. a likelihood function, so that:

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t)

p(x
(i)
t |x

(i)
t−1)

q(xt|x
(i)
1:t−1,yt)

,

with
∑N

i=1 w
(i)
t = 1. Particles can then be resampled, so that those with the

highest weights are duplicated, and those with the lowest weights are discarded.
The estimation of the posterior distribution is then given by:

N
∑

i=1

w
(i)
t δ

x
(i)
t

(xt),

where δ
x
(i)
t

are Dirac masses centered on particles x
(i)
t . There exist many models

of PF, each one having its own advantages. Unfortunately, the computational
cost of PF highly depends on the size of the state and observations spaces.
Indeed, as particle sets are nothing but samples of densities over state and
observation spaces, the larger the latter, the higher the number of particles
needed to estimate them. When dealing with articulated objects, things get
even worse as the state and observation spaces are then roughly equal to the

3

Cartesian product of the spaces representing each part of the objects, hence
leading to state and observation spaces of an exponential size. In this case,
a naive PF requires an unrealistically large number of particles, thus inducing
too large computation times to be usable in practice. More precisely, it has
been shown in [?] that the number of particles needed to track an object
grows exponentially with the dimension of the state space of this object. Being
able to deal with high-dimensional state and observation spaces is thus a major
concern for the vision tracking research community, especially when using the
PF framework for articulated object tracking. This has led the researchers of
the domain to propose several sophisticated methods aiming at reducing the
number of necessary particles or the number of computations. The next section
discusses some of them.

3. Dealing with high-dimensional state spaces

The algorithms dealing with high-dimensional state spaces can be roughly
divided into three main classes: those that reduce the space’s size by adding
constraints to the model, those that perform local search and those that exploit
some decomposition of the state space. Here, we briefly review the first two
and, as our article belongs to the last class, we describe this one in more details.

The first class of approaches adds some constraints to the mathematical
models in order to reduce the exploration of the state space. In many papers,
this is achieved by introducing into the tracking model the physical constraints
of the articulated objects [? ?]. This approach is popular and very effective for
human tracking problems. Thus, in [?], the constraints are introduced during
the simulation step, while in [? ?] they are included in a proposal density
dedicated to human body tracking. Other approaches that add constraints
include the addition of object priors [? ? ?], the exploitation of knowledge
about the object’s behaviors [?], about how the objects should look [? ? ?]
and about their interactions with the environment [?].

The second class of approaches, often referred to as the optimization-based
approaches, is the set of algorithms that combine PF with local search tech-
niques [?]. Due to PF’s stochastic nature and to the combinatorial size of
the articulated object state spaces, PF is never guaranteed to produce particle
sets nearby the modes of the densities. Consequently, combining it with local
search techniques can significantly improve it by better focusing the particles on
those modes. This explains why optimization approaches are popular among the
community working on object tracking. Among them, gradient descent-based
methods have received some attention. For instance, stochastic gradient-based
descents have been successfully combined with PF [?] and new stochastic
meta-descent (SMD) approaches have been proposed to work into a constrained
space [?], leading to an efficient Smart Particle Filter [?]. Particle Swarm
Optimization has also been used in conjunction with PF [? ? ? ?]. Here, the
idea is to apply evolutionary algorithms inspired from social behaviors observed
in wildlife (birds, fishes, bees, ants, etc.) to make the particles evolve following
their own experience and the one of their neighborhood (for a complete review on

4

this topic, see [?]). Similarly, the inclusion of population-based metaheuristics
and genetic algorithms into PF has been investigated [?]. Simulated Anneal-
ing has also been introduced into PF. This has resulted in the very popular
Annealed Particle Filter (APF) [?]. APF consists of adding annealing itera-
tions (or layers) to PF’s resampling step in order to better diffuse particles in
the state space. Of course, there exist many other optimization-based methods
(like scatter-search [?], etc.) that we will not cite here because this is not the
purpose of this article. However, all those methods have in common that they
rely on a subtle compromise between the quality of the approximation of the
density they try to estimate and their speed of convergence. Actually, by their
local nature, they converge quickly in the neighborhoods of their starting point
but they require much more time to escape these neighborhoods and converge
with some guarantee toward the modes of the densities. To avoid such prob-
lems, some of these approaches include hierarchical search strategies, in which
the search spaces are refined progressively, starting from a coarse description of
the state space and ending up into the complete description of state space X .
The Progressive Particle Filter [?] is an example of such a strategy. Finally,
note that all these methods often suppose that all the needed observations are
available at each time slice, which may not necessarily be the case in practice.

The third class of approaches, to which belongs our article, exploits natural
decompositions of the state and observation spaces into a set of subspaces of
reasonable sizes where PF can be applied. Partitioned Sampling (PS) [?] is
most popular among these methods. It exploits the fact that, in many problems,
both the system dynamics and the likelihood function are decomposable over
small subspaces. The key idea, that will be detailed in Section ??, is then to
substitute the application of one PF over the whole state space by a sequence of
applications of PF over these small subspaces, thus significantly speeding-up the
process. Despite recent improvements [? ? ?], PS still suffers from numerous
resampling steps that increase noise and decrease the tracking accuracy over
time. The same kind of decomposition is exploited in [?] in the context of a
general PF for Dynamic Bayesian Networks (DBN). Here, the proposal distri-
butions of the prediction step are decomposed as the product of the conditional
distributions of all the nodes of the current time slice in the DBN. The predic-
tion step is then performed iteratively on each node of the network (following a
topological order of the DBN) using as the proposal distribution the probability
of the node conditionally to its parents in the DBN. In [?], the sampling idea
of [?] is combined with the resampling scheme proposed in [?] in order to
create a PF algorithm well-suited for DBNs. This algorithm can be seen as a
generalization of PS. By following a DBN topological order for sampling and
by resampling the particles each time an observed node is processed, particles
with low likelihood for one subspace are discarded just after the instantiation
of this subspace, whereas particles with high likelihood are multiplied. This has
the same effect as weighted resampling in PS. Another approach inspired from
the Bayesian network community is the nonparametric Belief Propagation algo-
rithm [? ?]. It combines the PF framework with the well-known Loopy Belief
Propagation algorithm [? ?] for speeding-up computations (but at the expense

5

of approximations). It has been successfully applied on many problems of high
dimensions [? ? ? ? ?]. Another popular approach is the Rao-Blackwellized
Particle Filter for DBN (RBPF) [?]. By using a natural decomposition of the
joint probability, RBPF decomposes the state space into two parts that fulfill
the following condition: the distribution of the second part conditionally to the
first part can be estimated using classical techniques such as Kalman filter. The
distribution of the first part is then estimated using PF and the conditional
distribution of the second part given the first one is estimated using Kalman
filter. As the dimension of the first part is smaller than that of the whole state
space, the sampling step of particle filter for the first part needs fewer particles
and the variance of the estimation can be reduced. Though RBPF is very ef-
ficient at reducing the high dimension of the problem, it cannot be applied on
all DBNs because the state space cannot always be decomposed into two parts
fulfilling the condition. The framework introduced in [?] is a parallel PF for
DBNs that uses the same decomposition of the joint probability as that of the
DBN to reduce the number of particles required for tracking. The state space is
divided into several subspaces that are in some respect relatively independent.
The particles for these subspaces can then be generated independently using
different proposal densities. This approach offers a very flexible way of choosing
the proposal density for sampling each subspace. However the definition of the
different subspaces requires the DBN to have a particular independence struc-
ture, limiting the generalization of this algorithm. In our paper, we address
more general problems where no such independences hold. We focus on PS [?
?] for its simplicity and generalization potential. In [?], PS was proved to
be comparable to the Annealed Particle Filter [?], which is one of the best
algorithms for tracking problems of high dimensions. We believe that PS can
be significantly improved by better exploiting the independences in DBNs. This
idea will be developed in the next sections.

4. Partitioned Sampling and Dynamic Bayesian Networks

Our approach relies both on the exploitation of a PS-like scheme and on
that of d-separation, the independence property at the core of DBN. Therefore,
in Subsection ??, we describe in details PS and, in Subsection ??, we present
Dynamic Bayesian Networks and show that PS’s soundness is actually related
to d-separation.

4.1. Partitioned Sampling (PS)

PS is an effective PF designed for tracking complex objects with large state
space dimensions using only a reduced number of particles. Its key idea is
to partition the state space into an appropriate set of subspaces and to apply
sequentially PF on each subspace. PS uses a tailored sampling scheme, called
“weighted resampling”, which ensures that the sets of particles resulting from
the sequential applications of PF actually represent the joint distribution of the
whole state space and are focused on its peaks.

6

Weighted resampling is defined as follows: let g : X 7→ R be any strictly
positive continuous function, where X denotes the state space. Given a set of

particles Pt = {x
(i)
t , w

(i)
t }

N
i=1 with weights w

(i)
t , weighted resampling proceeds

as follows: let ρt be defined as ρt(i) = g(x
(i)
t)/

∑N

j=1 g(x
(j)
t) for i = 1, . . . , N .

Select independently indices k1, . . . , kN according to probability ρt. Finally,

construct a new set of particles P ′
t = {x′(i)

t , w′(i)
t }

N
i=1 defined by x′(i)

t = x
(ki)
t

and w′(i)
t = w

(ki)
t /ρt(ki). MacCormick [?] shows that P ′

t represents the same
probability distribution as Pt while focusing the particles on the peaks of g.

PS’s key idea is to exploit some natural decomposition of the system dy-
namics w.r.t. subspaces of the state space in order to apply PF only on those
subspaces. This leads to a significant reduction in the number of particles
needed for tracking. So, assume that state space X and observation space
Y can be partitioned as X = X 1 × · · · × XP and Y = Y1 × · · · × YP re-
spectively. For instance, a system representing a hand could be defined as
X hand = X palm ×X thumb ×X index ×Xmiddle ×X ring ×X little. Assume in addi-
tion that the dynamics of the system follows this decomposition, i.e., that:

ft(xt−1, n
x
t) = fP

t ◦ f
P−1
t ◦ · · · ◦ f2

t ◦ f
1
t (xt−1), (3)

where ◦ is the usual function composition operator and where each function
f i
t : X 7→ X modifies the particles’ states only on subspace X i 1.

The PF scheme consists of resampling particles, of propagating them using
proposal function ft and, finally, of updating their weights using the observa-
tions at hand. Here, the same result can be achieved by substituting the ft
propagation step by the sequence of applications of the f i

t as given in Eq. (??),
each one followed by a weighted resampling that produces new particles sets fo-
cused on the peaks of a function g. To be effective, PS thus needs g to be peaked
with the same region as the posterior distribution restricted to X i. When the
likelihood function decomposes as well on subsets Yi, i.e., when:

p(yt|xt) =
P
∏

i=1

pi(yi
t|x

i
t), (4)

where yi
t and xi

t are the projections of yt and xt on Yi and X i respectively,
weighted resampling focusing on the peaks of the posterior distribution on X i

can be achieved by first multiplying the particles’ weights by pi(yi
t|x

i
t) and,

then, by performing a usual resampling. Note that Eq. (??) naturally arises
when tracking articulated objects. This leads to the condensation diagram
given in Fig. ??, where operations “∗f i

t” refer to propagations of particles using
proposal function f i

t as defined above, “×pit” refers to the correction steps where
particle weights are multiplied by pi(yi

t|x
i
t) (see Eq. (??)), and “∼” refers to

usual resamplings. MacCormick and Isard showed that this diagram produces
mathematically correct results [?].

1Note that, in [?], functions f i
t are more general since they can modify states on X i ×

· · · × X p. However, in practice, particles are often propagated only one X j at a time.

7

∗f1
t ×p1t

∗fP
t ×pPt p(xt|y1:t)

∗f2
t ×p2t

p(xt−1|y1:t−1)

· · ·

∼

∼

Figure 2: Partitioned Sampling condensation diagram: PS starts with a particle set estimating
p(xt−1|y1:t−1). It first propagates particles using proposal function f1

t (applied on X 1), then
it corrects them using function p1t and it resamples them. Second, it propagates and corrects
the second part of the resulting particle set (over X 2) using f2

t and p2t respectively, and it
resamples the result. And so on. After iterating over the P parts of the particles, the particle
set estimates p(xt|y1:t).

4.2. d-separation: the independences assumed by PS

The hypotheses used by PS can best be explained by a DBN representing
the conditional (in)dependences between random variables of states and obser-
vations [?]:

Definition 1 (Bayesian network (BN)). A BN is a pair (G,P) where G =
(V,A) is a directed acyclic graph (DAG) and each node X ∈ V corresponds to
a random variable2. P is the set of the probability distributions of each node
X ∈ V conditionally to its parents pa(X) in G, i.e., p(X|pa(X)). The joint
probability over all the random variables in V is then the product of all these
conditional distributions:

p(V) =
∏

X∈V

p(X|pa(X)).

BNs [?] can model the uncertainties inherent to object tracking problems:
in this case, V is the set of state variables {xt} and observation variables {yt}.
The probabilistic dependencies between these variables are then encoded by
arcs in the network. Fig. ?? thus represents a generic BN designed for object
tracking. For articulated objects, we have seen previously that state space X
can be partitioned into X 1 × · · · × XP . In this case, instead of having only one
node xt per “time slice”, the BN contains one node xi

t per X i and per time
slice. The probabilistic relationships between these variables are again encoded
by arcs and the BN looks like that of Fig. ??. DBNs, or more precisely 2TBNs,
are an extension of BNs specifically designed to cope with time evolving systems:

Definition 2 (DBN: 2-slice Temporal Bayesian Network (2TBN)).
A 2TBN is a pair (B1, B→) of BN. B1 represents the BN at time slice t = 1
and represents the joint probability p(x1,y1). The BN B→ defines the transition
between different time slices p(xt,yt|xt−1,yt−1). It is assumed that the BN in
each time slice t > 1 is identical to B→.

2By abuse of notation, since there is a one-to-one mapping between nodes in V and random
variables, we will use interchangeably X ∈ V (resp. V) to denote a node in the network (resp.
all the nodes) and its corresponding random variable (resp. all the random variables).

8

x
2
t−1

y
2
t−1

x
1
t−1

y
1
t−1

x
3
t−1

y
3
t−1

x
2
t

x
1
t

x
3
t

y
2
t

y
1
t

y
3
t

x
2
t+1

x
1
t+1

x
3
t+1

y
2
t+1

y
1
t+1

y
3
t+1

time slice t− 1 time slice t time slice t+ 1

Figure 3: A Dynamic Bayesian Network for body tracking.

For instance, Fig. ?? represents an unrolled 2TBN: B1 is constituted by
a BN x1 → y1, i.e., the BN at time slice 1, and B→ corresponds to the BN
of the second time slice (including the arcs from time slice 1 to time slice 2).
For articulated object tracking, the BN in each time slice can have several
nodes. For instance, assume that an object to be tracked is composed of 3
parts: a torso, a left arm and a right arm. Let x1

t ,x
2
t ,x

3
t represent these parts

respectively and y1
t ,y

2
t ,y

3
t represent the observations on these nodes. Then this

body tracking can be represented by the DBN of Fig. ??. Indeed, in this figure,
the arcs actually represent the probabilistic dependences between the nodes.
For instance, there is a direct dependence between torso x1

t and right arm x2
t ,

and the position of the torso at time t has a direct influence on its position at
time t+ 1, hence the arc x1

t → x1
t+1.

From a particle filtering perspective, the key feature of BNs and DBNs is
their graphical representation of probabilistic independences, which is called the
d-separation criterion [?].

Definition 3 (d-separation [?]). Two nodes xi
t and xj

s of a DBN are de-
pendent conditionally to a set of nodes Z if and only if there exists a chain
{c1 = xi

t, . . . , cn = xj
s} linking xi

t and xj
s in the DBN such that the following

two conditions hold:

1. for every node ck such that the DBN’s arcs are ck−1 → ck ← ck+1, either
ck or one of its descendants is in Z;

2. none of the other nodes ck belongs to Z.

Such a chain is called active (else it is called blocked). If there exists an active
chain linking two nodes, these nodes are dependent and are called d-connected,
otherwise they are independent conditionally to Z and are called d-separated.

For instance, conditionally to states xi
t, observations yi

t of Fig. ?? are in-
dependent of the other random variables. Consequently, Eq. (??) implicitly
holds in this DBN. In addition, by Definition ??, x1

t is independent of x2
t−1 and

x3
t−1 conditionally to {x1

t−1}. Similarly, x2
t is independent of x3

t−1 condition-
ally to {x1

t ,x
2
t−1} and x3

t is independent of x2
t conditionally to {x1

t ,x
3
t−1}. As

a consequence, the condensation diagram of Fig. ?? can be exploited to track
this object since the “probabilistic” propagations/corrections of each part of

9

the object depend only on this part and its parents in the DBN. Therefore, by
their d-separation property, DBNs provide a sound mathematical framework for
proving the correctness of PS. But they can do more, as we will prove in the
next section, which describes our main contribution.

5. Improving Particle Filtering by exploiting DBNs

The first step of our approach, which is presented in Subsection ??, consists
of parallelizing PS’s propagations/corrections among carefully selected sets of
object parts xi

t. This allows us to reduce the number of necessary resamplings,
hence increasing the tracking accuracy. Then, and it is the main contribution of
this paper, we show in Subsection ?? how permutations over some subsamples of
the object parts processed in parallel can improve the estimation of the posterior
density p(xt|y1:t) by focusing the particle set near the modes of this density while
still guaranteeing that the density is correctly estimated.

5.1. A d-separation-based parallelization of PS

By d-separation, it can be proved that, in Fig. ??, x3
t is independent of x2

t−1

conditionally to {x1
t ,x

3
t−1}. Combining this independence property with those

mentioned at the end of the preceding section, this implies that the propaga-
tions/corrections of x2

t and x3
t can be performed in parallel since none of them

has any impact on the other one. Thus, this suggests the new condensation
diagram of Fig. ?? where object parts x2

t and x3
t are processed in parallel.

∗f1
t ×p1t ∼

∗f2
t ×p2t

∗f3
t ×p3t

∼ p(xt|y1:t)

p(xt−1|y1:t−1)

Figure 4: Condensation diagram exploiting conditional independences.

Of course, this illustrative example can be easily extended to more general
2TBNs. In this paper, we will focus on DBNs in which observations depend
only on their corresponding state and in which the proposal transition function
of a given part xi

t of the object at time t depends only on that part in time t−1
(and possibly on other parts in time t). Note that these assumptions are rather
mild for object tracking and they hold in most applications. For instance, they
hold in Fig. ??. More formally, this leads to the following definition:

Definition 4 (Object Tracking DBN – OTDBN). An OTDBN is a 2TBN
defined over random variables {xi

t,y
i
t}, where xi

t and yi
t represent the state and

observation of part i in time slice t, and satisfy the following four conditions:

1. there does not exist any arc xi
s → xj

t with s < t− 1 or s > t;

2. for every i and t > 1, there exists an arc xj
t−1 → xi

t if and only if j = i;

3. for each node xi
t, there exists a node yi

t whose only parent is xi
t;

10

4. nodes yi
t have no children.

Now, let us extend the condensation diagram of Fig. ?? for arbitrary OT-
DBNs. Let Xt denote a generic node of an OTDBN G in time slice t (so either
Xt = xi

t or Xt = yi
t for some i). Let pa(Xt) and pat(Xt) denote the set of

parents of Xt in G in all time slices and in time slice t only respectively. For
instance, in Fig. ??, pa(x2

t) = {x1
t ,x

2
t−1} and pat(x

2
t) = {x1

t}. Similarly, let
an(Xt) and ant(Xt) be the set of ancestors of Xt in all time slices and in time
slice t only respectively. Assume that the tracked object state space X is de-
composed as X = X 1×· · ·×XP and that the probabilistic dependences between
all random variables xi

t and yi
t, i = 1, . . . , P , are represented by an OTDBN G.

Let {P1, . . . , PK} be a partition of {1, . . . , P} defined by:

• P1 = {k ∈ {1, . . . , P} : pat(x
k
t) = ∅};

• for any j > 1, Pj = {k ∈ {1, . . . , P}\∪
j−1
h=1Ph : pat(x

k
t) ⊆

⋃j−1
h=1

⋃

r∈Ph
{xr

t}}.

Intuitively, P1 is the set of indices k of the object parts xk
t that have no parent

in time slice t (in Fig. ??, P1 = {1}); P2 is the set of indices of the object parts
whose parents in time slice t all belong to P1 (in Fig. ??, P2 = {2, 3}), and so
on.

It is not hard to see that, by d-separation, all the nodes xk
t of a given Pj

are independent conditionally to their parents pa(xk
t). Consequently, PS can

propagate/correct all these nodes independently (in parallel) and produce a
correct estimation of the a posteriori joint density p(xt|y1:t). This suggests
the condensation diagram of Fig. ?? where, for every j ∈ {1, . . . ,K}, Pj =

{i1Pj
, . . . , i

kj

Pj
} and each object part x

ihPj has its own proposal function f
ihPj

t and

its own correction function p
ihPj

t (as described in Eq. (??)). In this diagram,
all the propagations and corrections of the object parts in a given set Pj are
thus performed in parallel and, subsequently, a resampling is performed over all
these parts. The correctness of the diagram follows from Proposition ??.

Proposition 1. The set of particles resulting from the diagram of Fig. ?? rep-
resents probability distribution p(xt|y1:t).

.....

.....

.....

∗f
i1P1
t ×p

i1P1
t

∗f
i
k1
P1

t ×p
i
k1
P1
t

∗f
i1PK
t ×p

i1PK
t

×p
i
kK
PK
t∗f

i
kK
PK

t

∼ p(xt|y1:t)

∼p(xt−1|y1:t−1)

Figure 5: Parallelized Partitioned Sampling condensation diagram.

11

x
(2)
t x

(3)
tx

(1)
t

x′
t
(1)

x′
t
(2)

x′
t
(3)

a)

b)

Figure 6: The particle swapping scheme: a) before swapping; b) after swapping

5.2. Swapping-Based Partitioned Sampling

There are two major differences between the diagrams of Fig. ?? and Fig. ??:
the latter performs fewer resamplings, thus it introduces less noise in the par-
ticle set and, more importantly, it enables to produce better fitted particles
by swapping their subparts. Actually, consider again our body tracking exam-

ple and assume that we generated the 3 particles x
(i)
t of Fig. ??.a where X 1

is the middle part of the object and X 2 and X 3 are its left and right parts
respectively, and where the shaded areas represent the object’s true state. Ac-
cording to the DBN of Fig. ??, for fixed values of x1

1:t, the sets of left and
right parts of the particles represent p(x2

t ,y
2
1:t|x

1
1:t) and p(x3

t ,y
3
1:t|x

1
1:t) respec-

tively (summing out variables x2
1:t−1,x

3
1:t−1 from the DBN). Hence, after per-

muting the values of the particles on X 2 (resp. X 3) for a fixed value of x1
1:t,

distribution p(x2
t ,y

2
1:t|x

1
1:t) (resp. p(x3

t ,y
3
1:t|x

1
1:t)) remains unchanged. A for-

tiori, this does not affect the representation of the joint posterior distribution
∫

p(x1
1:t,y

1
1:t)p(x

2
t ,y

2
1:t|x

1
1:t)p(x

3
t ,y

3
1:t|x

1
1:t)dx

1
1:t−1 = p(xt,y1:t). On Fig. ??.a,

particles x
(1)
t and x

(3)
t have the same state on X 1. Thus their right parts can

be permuted, resulting in the new particle set of Fig. ??.b. Remark that we

substituted 2 particles, x
(1)
t and x

(3)
t , which had low weights due to their bad

estimation of the object’s right or left part states, by one particle x′
t
(1)

with a
high weight (due to a good estimation of all the object’s parts) and another one

x′
t
(3)

with a very low weight. After resampling, the latter will most probably be
discarded and, therefore, swapping will have focused particles on the peaks of
the posterior distribution. Note however that not all permutations are allowed:

for instance, none can involve particle x
(2)
t because its center part differs from

that of the other particles.
The SBPS algorithm introduces these swappings into the diagram of Fig. ??,

which leads to that of Fig. ??, where operations “⇋Pj” refer to the particle
subpart swappings briefly described above. Remark that, after the resampling
operation of part Pj , the particles with high weights will be duplicated, which
will enable swapping when processing next part Pj+1.

Swappings need however to be further formalized. For this purpose, we need
more precise notations. As SBPS does not process all the object parts at the
same time, we will denote by Qj = ∪

j
h=1Ph and Rj = ∪

K
h=j+1Ph the set of parts

already processed at the jth step by SBPS and those still to be processed re-

spectively. In addition, let Q0 = RK = ∅. Thus (x
(i),Qj

t ,x
(i),Rj

1:t−1) now represents
the state of the ith particle after j steps of SBPS and, as shown in the proof of

Proposition ??, {(x
(i),Qj

t ,x
(i),Rj

t−1), w(i)} estimates p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t). Sim-

12

.....

.....

.....

∗f
i1P1
t ×p

i1P1
t

∗f
i
k1
P1

t ×p
i
k1
P1
t

⇋
P1 ∼

∗f
i1PK
t ×p

i1PK
t

×p
i
kK
PK
t∗f

i
kK
PK

t

⇋
PK ∼ p(xt|y1:t)

p(xt−1|y1:t−1)

Figure 7: Swapping-based Partitioned Sampling (SBPS) condensation diagram.

ilarly, when needed, for any set H ⊆ {1, . . . , P}, x
(i),H
1:t will refer to the whole

trajectory of the subparts in H of the ith particle, i.e., their values from time
slice 1 to time slice t. Now, to guarantee that swapping operations ⇋

Pj do
not alter the estimated distributions, it is not sufficient to permute only the
subparts in Pj . The reason why can be easily understood using the OTDBN:
the network encodes the joint distribution using conditional probabilities of the
type p(xh

t |pa(x
h
t)), hence permuting only the elements of some subpart xk

t in

sample {(x
(i),Qj

t ,x
(i),Rj

t−1)} will change the parents’ values of any child xr
t of xk

t ,
and thus the sample will no longer estimate correctly p(xr

t |pa(x
r
t)) nor the joint

probability p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t). To avoid this, we need to permute {x
(i),r
t }

similarly to {x
(i),k
t }. More generally, it is compulsory to permute all the nodes

that are linked to xk
t by chains that do not pass through xk

t ’s ancestors. More
formally, to guarantee that the estimation of the densities is unaltered by swap-
pings, the set of subparts to permute similarly to xk

t is called a “swapping set”:

Definition 5 (Swapping set). Let {(x
(i),Qj

t ,x
(i),Rj

t−1)} be the particle set at the
jth step of SBPS. Let k ∈ Pj and let Linkt(x

k
t) denote the set {xk

t }∪{x
r
t : there

exists a chain between xk
t and xr

t passing only by nodes in time slice t and by

no node in the ancestor set ant(x
k
t)}. In addition, let Link

Qj

t (xk
t) = {xr

t ∈

Linkt(x
k
t) : r ∈ Qj} and Link

Rj

t−1(x
k
t) = {xr

t−1 : xr
t ∈ Linkt(x

k
t) and r ∈ Rj}.

Then, the set Link
Qj

t (xk
t) ∪ Link

Rj

t−1(x
k
t) is called a swapping set.

For instance, in the OTDBN of Fig. ?? (where observation nodes have not
been displayed to simplify the figure), the gray nodes represent the swapping
set of node xk

t . We introduced swappings for fixed values of the parents of some
nodes. As shown below, the d-separation criterion imposes that they correspond
to the values of the nodes in Linkt over all time slices. In other words, only
admissible permutations guarantee that densities are correctly estimated:

Definition 6 (admissible permutation). Let k ∈ Pj and A
Qj

t = ant(x
k
t) ∩

(∪
xh
t ∈Link

Qj
t (xk

t)
pat(x

h
t)) and A

Rj

t−1 = ant−1(x
k
t−1)∩(∪xh

t−1∈Link
Rj
t−1(x

k
t)
pat−1(x

h
t−1)).

Finally, let A = {xh
s : xh

t ∈ A
Qj

t , 1 ≤ s ≤ t} ∪ {xh
s : xh

t−1 ∈ A
Rj

t−1, 1 ≤ s ≤ t− 1}.
A permutation σ : {1, . . . , N} 7→ {1, . . . , N} is said to be admissible if and only

if x
(i),h
t = x

(σ(i)),h
t for all h ∈ A and all i ∈ {1, . . . , N}.

13

In Fig. ??, sets A
Qj

t and A
Rj

t−1 correspond to the black nodes and A to the
two lines of nodes in the dotted polygon at the bottom of the figure.

Proposition 2. For any j ∈ {1, . . . ,K}, let ⇋Pj be a set of admissible permu-
tations σk of subparts k ∈ Pj applied to the swapping set of xk

t . Then the set of
particles resulting from SBPS represents p(xt|y1:t).

5.3. SBPS in practice

It is important to note that, to be admissible, a permutation can only swap
particles having identical values for every object part in A, i.e., on the parts

in A
Qj
s and A

Rj
s for all time slices s, not just those in A

Qj

t ∪ A
Rj

t−1, i.e, on the
current time slice. Actually, in theory, only considering the current time slice
may lead to incorrect results. For instance, in the DBN of Fig. ??, P2 = {2, 3},
i.e., object parts x2

t and x3
t are propagated/corrected in parallel and, therefore,

are good candidates for swapping. Now, Linkt(x
2
t) = {x2

t}, A
Q2

t = {x1
t} and

AR2
t−1 = ∅. By d-separation, Linkt(x

2
t) is not independent from x3

t conditionally

to AQ2

t ∪ AR2
t−1 because the chain {x2

t ,x
2
t−1,x

1
t−1,x

3
t−1,x

3
t} is active. Hence,

swapping over Linkt(x
2
t)’s parts some particles that have the same value on

AQ2

t and AR2
t−1 but not on A, can modify the estimation of the joint posterior

density p(xt|y1:t) since the x3
t part is not swapped accordingly.

However, in practice, whenever two particles have the same value on A
Qj

t ∪

A
Rj

t−1, the continuous nature of the state space make it highly probable that
one particle is a copy of the other due to resampling. Hence, their values on
the whole of A should also be identical. In other words, due to the continuous
nature of the state space, whenever two particles have precisely the same values

on A
Qj

t ∪A
Rj

t−1, they should also have the same values on the whole of A. This
leads to the following kind of permutations:

Definition 7 (almost admissible permutation). Let k ∈ Pj. A permuta-
tion σ : {1, . . . , N} 7→ {1, . . . , N} is said to be almost admissible if and only if

x
(i),h
t = x

(σ(i)),h
t for all h ∈ A

Qj

t ∪A
Rj

t−1 and all i ∈ {1, . . . , N}.

Link
Rj

t−1(x
k
t) Link

Qj

t (xk
t)

x
k
t

A
Rj

t−1

A
Qj

t

time slice t− 1 time slice ttime slice t− 2
A

Figure 8: Swapping sets and admissible permutations.

14

Our implementation approximates the posterior distributions by performing
swappings ⇋

Pj using almost admissible permutations. The advantage is that
we do not need to keep track of the trajectories of the particles from time slice
1 to t. Another improvement can be made in the case where, considering only a
single time slice, the OTDBN is a tree or a forest. This is precisely the case in
Fig. ?? and it is often the case in articulated objects tracking. In such setting, it

is easy to see that Link
Qj

t (xk
t) = {x

k
t }, Link

Rj

t−1(x
k
t) = {descendants of x

k
t in time

slice t}, A
Qj

t = pat(x
k
t) and A

Rj

t−1 = ∅. So we shall permute only particles with
the same value of pat(x

k
t). Note that, when the single time slice subnetworks of

OTDBNs are not trees or forest, there may exist some nodes xh
t ∈ Link

Qj

t (xk
t)

such that h ∈ Pj . This is for instance the case of the node at the left of xk
t in

Fig. ??. In this case, Link
Qj

t (xh
t) = Link

Qj

t (xk
t) and Link

Rj

t−1(x
h
t) = Link

Rj

t−1(x
k
t),

so it is useless to consider permuting particles first w.r.t. xk
t and, then, w.r.t.

xh
t , the second permutation canceling the first one. Such a case cannot happen

when single time slice subnetworks are trees or forests.
Finally, let us show how ⇋

Pj can determine attractive swappings, i.e., how
high-peaked regions can be discovered. From the preceding paragraph, two par-
ticles with the same value on some pat(x

r
t) have most probably been generated

from the duplication of the same particle during a resampling step. In this case,
for all k ∈ Pj , they also have the same value of pat(x

k
t). We can then partition

sample {(x
(i),Qj

t ,x
(i),Rj

t−1)}, i = 1, . . . , N , into subsets N1, . . . , NR such that the
particles of a set Nr, r = 1, . . . , R, have the same value of pat(x

k
t) for some

k ∈ Pj . For each Nr, all possible permutations are eligible. Let {r1, . . . , rs}
be the elements of Nr. For each k ∈ Pj , let σk be the permutation that sorts

weights w
(rh),k
t , h = 1, . . . , s, in decreasing order. By applying σk for all nodes

in Link
Qj

t (xk
t) ∪ Link

Rj

t−1(x
k
t) and all k ∈ Pj , we get a permutation operation

⇋
Pj that assigns to the first particle the set of the highest weights, to the sec-

ond one, the set of second best weights, etc. Thus, the first particles have the
highest weights, and the last ones the lowest (they will thus be discarded at the
next resampling step). The following proposition shows that this process results
in the permutation that increases the more the sum of the particles (when func-
tion f is linear) and that this tends to increase more the weights of the particles
with high weights (when function f is strictly convex). This justifies that our
swappings tend to move the particles toward the modes of the distributions.

Proposition 3. Let f : R 7→ R be a strictly increasing convex function. Let
Pj = {i1, . . . , i|Pj |} be a set of conditional independent subparts and let {w(i),k},
i ∈ 1, . . . , N , k ∈ Pj, be the set of weights of N particles on subpart k. Let
{v(i),k}, i ∈ 1, . . . , N , k ∈ Pj, be the weights resulting from the application of
⇋

Pj on {w(i),k}. Finally, let Sir , r ∈ {1, . . . , |Pj |}, denote the set of almost
admissible permutations over xir

t and let S = Si1 × · · · × Si|Pj |
. Then ⇋

Pj is

the unique set of permutations such that:

N
∑

i=1

f





∏

k∈Pj

v(i),k



 = max
(σi1

,...,σi|Pj |
)∈S

N
∑

i=1

f





∏

k∈Pj

w(σk(i)),k



 . (5)

15

To conclude this section, note that the time complexity of such an algorithm
for all Pj is in O(PN(E+logN)), where E is the size of variables xk

t . Actually,
for a given Pj , by using a hash table, the complexity of determining Nr is in
O(N). For each Nr, we have to sort |Pj | lists, which can be globally done in
|Pj |N logN . Finally, applying permutations modify at most P |xk

t | per particle
and is then in O(NPE).

6. Experimental results

6.1. Video sequences

Our experiments are performed on synthetic video sequences because they
allow not to have to take into account specific properties of images (noise, etc.)
and, additionally, they make it possible to simulate specific motions. This thus
allows to compare particle filters on the sole basis of their estimation accuracy
and, moreover, to focus comparisons on their different features. Therefore, we
have generated our own synthetic video sequences composed of 300 frames of
800 × 640 pixels. Each video displays an articulated object randomly moving
and deforming over time, subject to weak or strong motions. Some examples
are given in Fig. ??. With various numbers of parts, articulated objects are
designed to test the capacity of particle filters to deal with high-dimensional
state spaces. Our experiments are conducted to compare our approach against
PS.

K = 3, |Pj | = 2 K = 3, |Pj | = 3 K = 6 , |Pj | = 4 K = 7 , |Pj | = 10

P = 5, |X | = 15 P = 7, |X | = 21 P = 21, |X | = 63 P = 61, |X | = 183

Figure 9: Examples of frames extracted from our synthetic video sequences (300 frames of
800× 640 pixels), and the features of the corresponding articulated objects (number of arms
|Pj |, j > 1, length of arms K − 1, total number of parts P , and dimension of state space X).

6.2. Experimental setup

The tracked objects are modeled by a set of P polygonal parts (or regions):
a central one P1 (containing only one polygon) to which are linked |Pj |, j > 1,
arms of length K − 1 (see Section ??, and Fig. ?? for some examples). The
polygons are manually positioned in the first frame. State vectors contain the
parameters describing all the parts and are defined by xt = {x

1
t , . . . ,x

P
t }, with

xk
t = {xk

t , y
k
t , θ

k
t }, where (x

k
t , y

k
t) is the center of part k, and θkt is its orientation,

k = 1, . . . , P . We thus have |X | = 3P . A particle x
(i)
t = {x

(i),1
t , . . . ,x

(i),P
t }, i =

1, . . . , N , is a possible spatial configuration, i.e., a realization, of the articulated

16

object. Particles are propagated using a random walk whose variance has been
empirically fixed for all tests (σx = 1, σy = 1 and σθ = 0.025 rad).

A classical approach to compute particle weights consists of integrating the
color distributions given by histograms into particle filtering [?]. In such
cases, we measure the similarity between the distribution of pixels in the region
of the estimated part of the articulated object and that of the corresponding
reference region. This similarity is determined by the Bhattacharyya distance
d [?] between the histograms of the target and the reference regions. The

particle weights are then computed by w
(i)
t+1 = w

(i)
t p(yt+1|x

(i)
t+1) ∝ w

(i)
t e−λd2

,
with, in our tests, λ = 50 and d the Bhattacharyya distance between the target
(prior) and the reference (previously estimated) 8-bin histograms. In both PS
and SBPS, the articulated object’s joint distribution is estimated starting from
its central part P1. Then, PS propagates and corrects particles polygon after
polygon to derive a global estimation of the object (see the condensation diagram
of Fig. ??). Quite differently, SBPS considers the object’s arms as independent
conditionally to the central part, and thus it propagates, corrects and swaps
simultaneously the Pj ’s parts, the jth joints of all the arms, for all j = 2, . . . ,K
(see Fig. ??). PS and SBPS are compared w.r.t. two criteria: computation times
and estimation errors. The latter are given by the sum of the Euclidean distances
between each corner of the estimated parts and its corresponding corner in the
ground truth. All the results presented here are a mean over 60 runs performed
on a MacBook Pro with a 2.66 GHz Intel Core i7.

6.3. Qualitative tracking results

This subsection is dedicated to visual tracking evaluation. Figure ?? shows
some trackings resulting from PS and SBPS on two different video sequences:
the estimations made by both approaches are drawn as yellow mesh polygons on
top of the “real” colored objects. These estimations correspond to the average
(weighted sum) of all the particles. For space reasons, only frames 50, 150 and
250 are displayed and, moreover, zooms focusing on the objects are made to
better distinguish the discrepancy between the estimated and the real objects.
As can be seen, SBPS is more robust for tracking these objects: visually, its
estimation seems to be better. In Figure ??, the five best particles (i.e. those
with the highest weights) are drawn instead of the average mesh polygons.
Here again, SBPS concentrates more the best particles around the object (i.e.,
around the modes of the distribution to estimate) than PS. All these qualitative
results highlight the fact that, by embedding a swapping step, SBPS, seems
more robust than PS. In the next subsections, quantitative results will confirm
these first observations.

6.4. Quantitative tracking results

In this subsection, specific synthetic sequences have been generated in which
the object is more strongly deforming and moving during time intervals [50−150]
and [200− 250]. Figure ?? shows the tracking errors over time for two objects
described in state spaces whose dimensions are 27 and 33 respectively. Recall

17

PS

SBPS

PS

SBPS

Figure 10: Qualitative tracking results on two sequences on frames 50, 150 and 250: the
estimated object (particles’ average) is superposed in yellow. First two rows: object with
K = 4, Pj = 4 (|X | = 39), tracked with N = 50 particles. Last two rows: object with K = 3,
Pj = 6 (|X | = 39), tracked with N = 100 particles.

that the errors correspond to the sum of the Euclidean distances between the
polygon’s corners of the real object and those of the estimated object. As can
be seen, our filter is less affected than PS by strong motions of the object. This
demonstrates the robustness of the proposed approach.

One of the main features of our approach is its ability to simultaneous
deal with independent parts, making it robust for tracking in high-dimensional
spaces. To test this feature, we have performed experiments varying the two
factors that, when combined, produce these space high-dimensions: the number
of parts that can be simultaneous treated (given by parameter |Pj |), and the
length of the object’s arms (given by parameter K). Tables ?? and ?? show
comparative estimation errors resulting from PS and SBPS. In the first table,

18

PS

SBPS

Figure 11: Qualitative tracking results on a sequence containing one object with K = 4,
Pj = 3 (|X | = 30). The five best particles (i.e. those with highest weights) are superposed on
the frame 50, 150 and 250 (zooms).

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

E
rr

o
r

in
 p

ix
e
ls

Number of particles

PS
SBPS

(a)
 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

E
rr

o
r

in
 p

ix
e
ls

Number of particles

PS
SBPS

(b)

Figure 12: Estimation errors for PS and SBPS: interval times [50 − 150] and [200 − 250] are
subject to strong motions and deformations of the object. (a) Object with K = 5, |Pj | = 2
(P = 9, |X | = 27), N = 80. (b) Object with K = 3, |Pj | = 5 (P = 11, |X | = 33), N = 100.

|Pj | is fixed to 4 (i.e., objects have 4 arms), and K varies from 2 to 8. In the
second table, K is fixed to 3 and Pj varies from 2 to 10. Experiments were
performed with various numbers of particles (N = 50, N = 300 and N = 600).
In all experiments, SBPS always outperforms PS. In addition, the difference
of estimation errors between both approaches increases with K and |Pj |: this
shows the interest of the simultaneous independent treatments. As we can see,
the proposed approach is also more stable in terms of standard deviation (dis-
played inside parentheses in Tables ?? and ??), especially for high-dimensional
state spaces (i.e. high values for K or |Pj |). For example, for K = 7 and
|Pj |=4, standard deviation with N = 50 particles reaches 65 with Partitioned

19

Sampling, and 18 with our approach. We can then state our approach produces
more stable of results, despite its stochastic estimation, over a lot of runs.

We will show in the next section that SBPS also outperforms PS in terms
of computation times, so that the gain in accuracy is not made at the expense
of response times.

Table 1: Estimation errors in pixels (standard deviations are displayed inside parentheses),
for tracking an object with |Pj | = 4, depending on K.

K = 3 4 5 6 7

PS
N = 50 185(9) 309(14) 441(20) 735(42) 1245(65)
N = 300 122(2) 220(3) 316(6) 511(10) 850(23)
N = 600 116(1) 209(4) 292(7) 471(9) 767(15)

SBPS
N = 50 141(2) 251(7) 398(6) 508(10) 945(18)
N = 300 109(1) 198(2) 288(6) 415(9) 752(14)
N = 600 105(1) 194(3) 263(3) 405(9) 612(11)

Table 2: Estimation errors in pixels (standard deviations are displayed inside parentheses),
for tracking an object with K = 3, depending on |Pj |.

|Pj | = 3 5 7 9

PS
N = 50 150(10) 202(12) 326(14) 485(19)
N = 300 91(3) 126(6) 262(9) 343(12)
N = 600 80(2) 120(3) 246(7) 305(10)

SBPS
N = 50 111(2) 151(5) 234(6) 269(7)
N = 300 71(2) 116(3) 205(2) 253(5)
N = 600 66(1) 114(1) 197(2) 200(3)

Finally, we studied the convergence of the two approaches in terms of the
evolution of the tracking errors w.r.t. the number of particles. The results are
reported in Figure ?? for two different tracked objects. For both of them, we
can observe that SBPS converges faster than PS. For the first object (left graph,
|X | = 27), convergence is reached by SBPS with only N = 40 particles (tracking
error of 156 pixels, total computation time of 4 seconds) whereas PS needs
N = 70 particles to converge (tracking error of 164 pixels, total computation
time of 8 seconds). Thus, SBPS converges 50% faster than PS. For the second
object (right graph, |X | = 48), SBPS converges withN = 120 particles (tracking
error of 124 pixels, total computation time of 21 seconds) whereas PS requires
N = 200 particles to converge (tracking error of 122 pixels, total computation
time of 33 seconds). Here, SBPS converges 36% faster than PS. Overall, SBPS
always converges faster than PS.

To conclude this subsection, we have shown that our approach, consisting
in swapping independent subparts, decreases significantly the estimation errors
compared to PS. In the next subsection, we will show that this is not achieved
at the expense computation times.

20

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

E
rr

o
r

in
 p

ix
e
ls

Number of particles

PS
SBPS

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180 200

E
rr

o
r

in
 p

ix
e
ls

Number of particles

PS
SBPS

Figure 13: Convergence study for PS ans SBPS. From left to right, an object with K = 3,
|Pj | = 4 (P = 9, |X | = 27), and an object with K = 4, |Pj | = 5 (P = 16, |X | = 48).

6.5. Computation times

For measuring the global computation times, essentially three steps are im-
portant to take into account: propagations, corrections and resamplings. Prop-
agations and corrections (likelihood computations) have the same computation
times for both approaches. Thus, only resampling and swapping (for SBPS)
computation times are studied in this subsection. In Section ??, we argued
that, by simultaneously processing independent parts of the objects, our ap-
proach reduces the number of resamplings. However, it also introduces a new
swapping step that may potentially increase the global computation times. To
show that this is not the case, as in the previous subsection, we studied the
behaviors of SBPS and PS in terms of total computation times, resampling
computation times, and swapping computation times, depending on K, N and
|Pj |.

Fig. ?? reports results depending on K, i.e., the length of the |Pj | = 4 arms
of an object tracked with N = 600 particles. Total computation times of SBPS
are always lower than those of PS. Moreover, this difference increases with K.
If we only focus on resampling and swapping times, we can again see that the
difference between PS and SBPS increases with K, while swapping times seems
to be a linear function of K. We can conclude that adding the swapping step
does not increase the total computation times.

Figure ?? shows the error curves for a similar test except that the varying
feature is |Pj |, number of arms of the tracked object instead of K. For both
curves, K is fixed to K = 3 and N = 600 particles are used. Here again,
SBPS’s total computation time increases more slowly than that of PS. For PS,
resampling’s computation times increase exponentially with |Pj | while they only
increase linearly for SBPS. Note that swapping times also tend to increase lin-
early. Overall, although, compared to PS, SBPS has an additional swapping
step, SBPS clearly outperforms PS in terms of resampling’s and swapping’s
computation times. This is due to the fact that, by processing many different
parts of the object simultaneously, SBPS reduces significantly the number of re-

21

 50

 100

 150

 200

 250

 300

 3 4 5 6 7 8

T
im

e
 (

in
 s

e
c
o
n
d
s
)

K value

PS resampling
SBPS resampling

 0

 20

 40

 60

 80

 100

 120

 3 4 5 6 7 8

T
im

e
 (

in
 s

e
c
o
n
d
s
)

K value

PS resampling
SBPS resampling

SBPS swapping

Figure 14: Computation times for PS and SBPS (in seconds) for tracking an object with
|Pj | = 4 arms, depending on K (N = 600). From left to right, total computation times and
resampling and swapping computations times.

samplings performed. As swapping is a fast operation, the latter is not sufficient
to make SBPS’s computations longer than those of PS.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Pj value

PS
SBPS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Pj value

PS resampling
SBPS resampling

SBPS swapping

Figure 15: Computation times for PS and SBPS (in seconds) for tracking an object with K = 3
depending on |Pj | (N = 600). From left to right, total computation times and resampling’s
and swapping’s computation times.

Finally, Fig. ?? highlights how the number of particles used to track an
object affects the computation times. In this experiment, the object has |Pj | =
4 arms of length 7 (K = 8), hence the state space dimension is |X | = 87.
Remark that swapping times are linearly related to N , and that the differences
of resampling times between PS and SBPS increase with N , as well as, of course,
total computation times.

6.6. Extension to multiple articulated object tracking

In this section we address the multiple object tracking problem. There are
two general ways to deal with such a task: either one filter can be used for all
the tracked objects but, then, this filter has to deal with very high-dimensional
state spaces, e.g., for M objects, the number of dimensions of the state space

22

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700

T
im

e
 (

in
 s

e
c
o
n
d
s
)

N value

PS
SBPS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700

T
im

e
 (

in
 s

e
c
o
n
d
s
)

N value

PS resampling
SBPS resampling

SBPS swapping

Figure 16: Computation times for PS and SBPS (in seconds) for tracking an object with
K = 8, |Pj | = 4 depending on N . From left to right, total computation times and resampling’s
and swapping’s computation times.

is multiplied by M ; or one filter can be used per object, and each such filter
just works in the reduced state space corresponding to the object it tracks. The
goal of this subsection is to show that using one SBPS filter for all the objects
is at least as efficient as using one PS filter per object: this will demonstrate
the capacity of our approach to deal with high-dimensional subspaces by taking
into account all the independences in the tracking problem.

Table ?? provides comparative results concerning the estimation errors and
the computation times for both PS and SBPS. Here, each tracked object is
defined by |Pj | = 4 and K = 3, and all objects are moving and deforming
independently over time. We tested cases with M = 2 or M = 3 objects. When
only one filter is used to estimate M objects, this one always uses N = 100×M
particles. When M filters are used (one per object), two configurations are
tested: the case where each filter uses N = 100 ×M particles and that where
N = 100 particles are used per filter. As each such filter tracks only one object,
it should actually need fewer particles for an accurate tracking. First, note that
the lowest estimation errors result from SBPS (either one filter or M filters).
Remark that using M PS filters is more interesting than using one for all the
objects. This holds for all the numbers N of particles tested and it follows from
the fact that the “lower” the dimension of the state space, the more robust PS is
known to be. Conversely, for SBPS, the estimation errors are lower when using
only one filter instead of M . This follows from the fact that increasing state
space dimensions also increase the efficiency of swappings (because the products
of the best weights w(i),k also tend to increase).

As for the response times, for a fixed number of particles, PS’s resampling
times are divided by M when dealing with one filter per object. This follows
from the fact that, although the number of resamplings is identical whether one
or M filters are used, the dimension of the state space for the single filter case is
M times that of the multiple filter case. Conversely, SBPS’s resampling times
are equivalent when using one or M filters because the M filters perform M
times the number of resamplings of the single filter but the latter are made in

23

Table 3: Estimation errors (e, in pixels) and computation times (in seconds, t total compu-
tation time, r resampling time and s swapping time), for M objects with K = 3 and |Pj | = 4
(N is the number of particles used per filter).

1 PS M PS 1 SBPS M SBPS
N = M × 100 M × 100 100 M × 100 M × 100 100

M = 2

e 356 281 311 211 236 260
t 36.6 34.9 16.4 36.3 34.9 16.3
r 3.0 1.7 0.6 0.9 1.0 0.3
s - - - 1.1 0.5 0.2

M = 3

e 611 312 370 242 253 308
t 86.9 78.6 37.4 82.1 79.8 37.8
r 12.3 4.5 1.6 2.2 2.5 0.8
s - - - 3.0 1.3 0.5

a space M times larger than those used by the M filters. For the same reason,
swapping times are equivalent for one and M filters. Finally, when N decreases,
all the computation times decrease, but the estimation errors increase, so that
this induces a trade-off between response time and accuracy.

Overall, our approach produces more accurate results than PS and is also
faster. In addition, from the accuracy point of view, one single SBPS filter is
better than one SBPS filter per object. However, the latter requires much fewer
particles and can thus be significantly faster. This can prove to be particularly
useful when dealing with large-scale state spaces.

7. Conclusion

We have presented a new approach for sequential estimation of densities
that has two main advantages. First, it exploits the probabilistic independences
encoded into DBNs to apply particle filter computations on smaller subspaces.
Second, it swaps some subsets of particles so that they concentrate around
modes of the densities. We proposed a sound theoretical framework that guar-
antees that distributions are correctly estimated. In addition, we provided the
time complexity of our approach. Experiments showed that our permutation
operation is not time-consuming. The combination of this swapping step with
the parallel processing of conditionally independent parts significantly reduces
the number of required resampling steps, inducing overall computation times
that are often smaller than PS. Moreover, we have shown that this gain of
computation time increases with the state space dimension (number of parts of
articulated objects, number of objects), as well as with the number of particles.

To conclude, our current works concern the choice of a better criterion for
optimizing swapping steps. In particular, this leads us to study new definitions
of what a good particle set should be.

24

8. Appendix: proofs

Proof Proposition ??: For any j = 1, . . . ,K − 1, let Qj = ∪jh=1Ph and
Rj = ∪Kh=j+1Ph, i.e., Qj and Rj represent the set of parts processed up to
the processing of parts Pj and those still to be processed respectively. Let
Q0 = RK = ∅. By abuse of notation, for any set H ⊆ {1, . . . , P}, let xH

t denote
the set of nodes {xk

t : k ∈ H}.
First, let us prove that, for every j ∈ {1, . . . ,K} and every k ∈ Pj , we have:

xk
t⊥⊥

⋃

h∈Pj\{k}

{xh
t } ∪ x

Qj−1

t ∪ x
Rj−1

t−1 ∪ y1:t−1 ∪ y
Qj−1

t | pa(xk
t). (6)

If there existed in the OTDBN an active chain {c1 = xk
t , . . . , cn} between xk

t

and one of the nodes in the independent part of Eq. (??), its first arc would
necessarily be c1 → c2 since c1’s parents are the conditioning set. Let cV denote
the last node such that, for all 2 ≤ h ≤ V , the arcs of the chain are ch−1 → ch.

By definition of sets Pj ’s, none of the nodes xh
t ∈ x

Pj

t \{x
k
t } is a descendant

of xk
t . In addition, by definition of OTDBNs, nodes in time slice t − 1 cannot

be some descendant of xk
t . Consequently, cV 6= cn and, thus, the active chain

contains arcs cV−1 → cV ← cV+1. As cV is a descendant of xk
t , neither it

nor its descendants are in the conditioning set and, by d-separation, the chain
cannot be active and (??) holds.

Assume now that, before processing parts Pj , the particle set represents

probability distribution p(x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t). Note that this is the case
just before processing part P1 since this distribution is equal to p(xt−1|y1:t−1).

Let us show that, after the parallel propagations “∗f
ikPj

t ”, the particle set rep-

resents probability distribution p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t). Operation “∗f
ikPj

t ”
corresponds to multiplying the distribution represented by the particle set by

p(x
ikPj

t |pa(x
ikPj

t)) and integrating out variable x
ikPj

t−1. Overall, the parallel propa-
gations in Pj correspond to computing:

∫

p(x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t)
∏

k∈Pj

p(xk
t |pa(x

k
t)) dx

Pj

t−1 (7)

because (??) implies that no operation “∗fk
t ” depends on x

Pj\{k}
t . Now, since

for all k ∈ Pj , pa(x
k
t) ⊆ x

Qj−1

t , Eq. (??) implies that:

p(xk
t |pa(x

k
t)) = p(xk

t |
⋃

h∈Pj\{k}

{xh
t },x

Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t).

By the well-known chain rule formula, the above equation thus implies that:

∏

k∈Pj

p(xk
t |pa(x

k
t)) = p(x

i1Pj

t , . . . ,x
i
kj

Pj

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t)

= p(x
Pj

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t).

25

Therefore, Eq. (??) is equivalent to:
∫

p(x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t)p(x
Pj

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t) dx
Pj

t−1

=

∫

p(x
Pj

t ,x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t) dx
Pj

t−1.

As Qj = Qj−1 ∪ Pj and Rj−1 = Pj ∪ Rj , the above equation is equivalent to

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t).

Now, let us show that after the parallel corrections “×p
ikPj

t ”, the particle set

estimates distribution p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t). These operations correspond to
performing, up to a constant:

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t)×
∏

k∈Pj

p(yk
t |x

k
t). (8)

By definition of OTDBNs, nodes yk
t have no children and only one parent:

xk
t . Hence, by d-separation, they are independent of the rest of the network

conditionally to this parent. Therefore, as in the preceding paragraph, we can
easily prove that:

∏

k∈Pj

p(yk
t |x

k
t) = p(y

Pj

t |x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj−1

t).

Therefore, Eq. (??) is equivalent to p(x
Qj

t ,x
Rj

t−1,y
Pj

t |y1:t−1,y
Qj−1

t), which, when

normalized, is equal to p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t ,y
Pj

t) = p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t).
The last step of the processing of Pj is a resampling that does not alter this
distribution. Finally, note that this probability is precisely that assumed at the
beginning of the proof. Hence, after processing all the Pj ’s, the particle set

estimates p(xQK

t ,xRK

t−1|y1:t−1,y
QK

t) = p(xt|y1:t). 2

Proof Proposition ??: Let k ∈ Pj and let σk be an admissible permutation
for xk

t as described above. To prove the proposition, it is sufficient to show
that, after applying σk on all the nodes in the swapping set of xk

t , the particle

set still estimates p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t). Let us partition (x
Qj

t ,x
Rj

t−1) into the
following sets:

• L = Link
Qj

t (xk
t) ∪ Link

Rj

t−1(x
k
t), i.e., the set of nodes to permute;

• A
Qj

t ∪A
Rj

t−1 as described in Definition ??, i.e., the set of nodes that separate
L from the rest of the OTDBN in time slice t− 1 : t;

• B1
t = x

Qj

t \(Link
Qj

t (xk
t) ∪A

Qj

t) and B2
t−1 = x

Rj

t−1\(Link
Rj

t−1(x
k
t) ∪A

Rj

t−1).

Duplicate these nodes over all times slices:

Link = ∪ts=1{x
h
s : xh

t ∈ Link
Qj

t (xk
t)} ∪

t−1
s=1 {x

h
s : xh

t−1 ∈ Link
Rj

t−1(x
k
t)},

A = ∪ts=1{x
h
s : xh

t ∈ A
Qj

t } ∪
t−1
s=1 {x

h
s : xh

t−1 ∈ A
Rj

t−1},

B = ∪ts=1{x
h
s : xh

t ∈ B1
t } ∪

t−1
s=1 {x

h
s : xh

t−1 ∈ B2
t−1}.

26

Finally, consider the observations on these sets of nodes: let yA = {yh
s : xh

s ∈
A}, let yB = {yh

s : xh
s ∈ B} and let yLink = {yh

s : xh
s ∈ Link}. Then:

p(x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj

t) ∝ p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t)

= p(L,A
Qj

t , A
Rj

t−1, B
1
t , B

2
t−1,y1:t−1,y

Qj

t)

=

∫

p(L,A,B1
t , B

2
t−1,y1:t−1,y

Qj

t) d(A\(A
Qj

t ∪A
Rj

t−1))

=

∫

p(L,A,B1
t , B

2
t−1,y

Link,yA,yB) d(A\(A
Qj

t ∪A
Rj

t−1))

=

∫

p(A,yA)p(L,yLink|A)p(B1
t , B

2
t−1,y

B |L, yLink, A)d(A\(A
Qj

t ∪A
Rj

t−1))(9)

because, in OTDBNs, conditioning by A is equivalent to conditioning by A,yA

due to conditions 3 and 4 of Definition ??.
Let us now prove that (B1

t ∪B
2
t−1 ∪ y

B)⊥⊥L∪ yLink|A. Again by conditions
3 and 4 of Definition ??, it is sufficient to show that there exists no active chain
between one node of Link and one node of B. Suppose that there exists such
an active chain {c1, . . . , cn} with c1 ∈ Link and cn ∈ B. First, note that the
chain cannot pass through any node in time slice s > t because, since c1 and
cn belong to time slices ≤ t and due to condition 1 of Definition ??, there
would exist a node ch = xw

s such that ch−1 → ch ← ch+1 which would block
the chain since neither xw

s nor its descendants are in the conditioning set A.
For the same reason, it is impossible that the chain passes through a node in

Link
Rj

t (xk
t) = Linkt(x

k
t)\Link

Qj

t (xk
t). Now, let ch = xv

s be the first node in the
chain belonging to B. Assume that ch−1 = xw

r ∈ Link. Then, by definition of
the arcs of OTDBNs, either (r = s) ∧ (v 6= w) or (r 6= s) ∧ (v = w).

First case: if r 6= s, then ch = xw
s is a duplicate of ch−1 in another time slice

and, by definition of Link, either ch ∈ Link, which leads to a contradiction since

ch ∈ B by hypothesis, or ch = xw
t ∈ Link

Rj

t (xk
t) which is also impossible by the

preceding paragraph. Second case: if r = s, then, by definition of Link, xw
t ∈

Linkt(x
k
t) and, by definition of OTDBNs, the arc between xw

t and xv
t exists in the

OTDBN. Hence, xv
t ∈ Linkt(x

k
t) and either ch ∈ Link or ch = xv

t ∈ Link
Rj

t (xk
t)

and, similarly to the first case, both conditions imply a contradiction. So ch−1 6∈

Link and ch−1 6∈ B. Therefore, either ch−1 ∈ Link
Rj

t (xk
t) or ch−1 ∈ A. We saw

above that the first case leads to a contradiction, so ch−1 ∈ A.
So, for the chain to be active, since we condition on the nodes in A, necessar-

ily the chain has the following arcs: ch−2 → ch−1 ← ch. Let x
u
z = ch−2. Again,

by definition of OTDBNs, either (r = z)∧ (u 6= w) or (r 6= z)∧ (u = w). In the
second case, ch−2 is a duplicate of ch−1 in another time slice, hence ch−2 ∈ A
and, by d-separation, the arc ch−2 → ch−1 blocks the chain. In the first case,
by definition of A, ch−1 = xw

r ∈ anr(x
k
r) and, since ch−2 is a parent of ch−1,

ch−2 ∈ anr(x
k
r). This implies that ch−2 6∈ Link. But, by assumption, ch is the

first node in the chain belonging to B. Hence, necessarily, ch−2 ∈ A and arc

27

ch−2 → ch−1 blocks the chain. Overall, {c1, . . . , cn} cannot be an active chain.
Hence (B1

t ∪B2
t−1 ∪ yB)⊥⊥L ∪ yLink|A.

Now, exploiting this independence, Eq. (??) becomes:

p(x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj

t) =
∫

p(A,yA)p(L,yLink|A)p(B1
t , B

2
t−1,y

B |A)d(A\(A
Qj

t ∪A
Rj

t−1)).

Particles’ permutations over subparts L for fixed values of A do not affect dis-
tribution p(L,yLink|A) since estimations by samples are insensitive to the order
of the elements in the samples. In addition, the estimations of p(A,yA) and
p(B1

t , B
2
t−1,y

B |A) are neither affected since conditionally to A, B is d-separated
from L. Consequently, applying permutation σk over L does not alter the esti-

mation of p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t). 2

Proof Proposition ??: First, consider 2 particles a, b ∈ 1, . . . , N , whose
weights, say t(a) and t(b), are such that

∏

k∈Pj
t(a),k ≥

∏

k∈Pj
t(b),k and such

that there exists h ∈ Pj such that t(b),h > t(a),h. Let ρ = t(b),h − t(a),h and
denote:

α =
∏

k∈Pj ,k 6=h t
(a),k × t(a),h β =

∏

k∈Pj ,k 6=h t
(a),k × ρ,

γ =
∏

k∈Pj ,k 6=h t
(b),k × t(a),h δ =

∏

k∈Pj ,k 6=h t
(b),k × ρ.

Then, let us show that f(α+β)+f(γ) > f(α)+f(γ+δ) or, in other words, that
swapping the hth weight between particles (a) and (b) strictly increases the sum
over these particles of f(weight). By hypothesis,

∏

k∈Pj
t(a),k ≥

∏

k∈Pj
t(b),k and

t(b),h > t(a),h, which implies that
∏

k 6=h t
(a),k >

∏

k 6=h t
(b),k. Hence β > δ. As

f is strictly increasing, f(α + β) > f(α + δ). Therefore, f(α + β) + f(γ) >
f(α + δ) + f(γ). Now, let us show that f(α + δ) + f(γ) ≥ f(α) + f(γ + δ).
This is equivalent to showing that f(α + δ) − f(α) ≥ f(γ + δ) − f(γ). It is
well known that, for any convex function g, and any x1 < x2 < x3, we have:
g(x3)−g(x2)

x3−x2
≥ g(x2)−g(x1)

x2−x1
. Now, γ < γ + δ ≤ α < α + δ because all these

quantities are strictly positive and γ + δ and α are the weights of particles (b)
and (a) respectively. Hence, if γ + δ = α, then

f(α+ δ)− f(α)

α+ δ − α
≥

f(α)− f(γ)

α− γ
=

f(γ + δ)− f(γ)

γ + δ − γ
,

else (i.e., when γ + δ < α):

f(α+ δ)− f(α)

α+ δ − α
≥

f(α)− f(γ + δ)

α− γ − δ
≥

f(γ + δ)− f(γ)

γ + δ − γ
.

Overall f(α+δ)−f(α) ≥ f(γ+δ)−f(γ) and, by transitivity, f(α+β)+f(γ) >
f(α) + f(γ + δ).

Let σ be a permutation maximizing
∑N

i=1 f(
∏

k∈Pj
wsk(i),k) over all permu-

tations (s1, . . . , s|Pj |) ∈ S. Denote by v(i),k the weights wσk(i),k resulting from

28

the application of σ on the original particle weights {w(i),k}. Without loss of
generality, assume that σ sorts the “total” particle weights in decreasing order,
i.e., that

∏

k∈Pj
v(a),k ≥

∏

k∈Pj
v(b),k ⇐⇒ a ≤ b. By the preceding paragraph,

there cannot exist h ∈ Pj such that there exists i ≥ 2 such that v(i),h > v(1),h,
else by permuting v(i),h and v(1),h, we would get a permutation strictly increas-
ing the sum of f(weights). For the same reason, there cannot exist h ∈ Pj such
that there exists i ≥ 3 such that v(i),h > v(2),h. By induction, we have that,
for any r, there cannot exist h ∈ Pj such that there exists i > r such that
v(i),h > v(r),h. This precisely correspond to the permutation operation ⇋

Pj .
Therefore, ⇋Pj is the unique permutation satisfying Equation (??). 2

29

