
HAL Id: hal-00821797
https://hal.sorbonne-universite.fr/hal-00821797v1

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dbn-based combinatorial resampling for articulated
object tracking

Severine Dubuisson, Christophe Gonzales, Xuan Son Nguyen

To cite this version:
Severine Dubuisson, Christophe Gonzales, Xuan Son Nguyen. Dbn-based combinatorial resampling
for articulated object tracking. Conference on Uncertainty in Artificial Intelligence (UAI’12), Aug
2012, Catalina Island, United States. pp.237-246. �hal-00821797�

https://hal.sorbonne-universite.fr/hal-00821797v1
https://hal.archives-ouvertes.fr

DBN-Based Combinatorial Resampling for Articulated Object Tracking

Séverine Dubuisson Christophe Gonzales Xuan Son NGuyen

Laboratoire d’Informatique de Paris 6 — Université Pierre et Marie Curie

4, place Jussieu, F-75005 Paris

email: firstname.lastname@upmc.fr

Abstract

Particle Filter is an effective solution to track ob-

jects in video sequences in complex situations.

Its key idea is to estimate the density over the

possible states of the object using a weighted

sample whose elements are called particles. One

of its crucial step is a resampling step in which

particles are resampled to avoid some degener-

acy problem. In this paper, we introduce a new

resampling method called Combinatorial Resam-

pling that exploits some features of articulated

objects to resample over an implicitly created

sample of an exponential size better representing

the density to estimate. We prove that it is sound

and, through experimentations both on challeng-

ing synthetic and real video sequences, we show

that it outperforms all classical resampling meth-

ods both in terms of the quality of its results and

in terms of response times.

1 INTRODUCTION

Tracking articulated structures with accuracy and within a

reasonable time is challenging due to the high complexity

of the problem to solve. Actually, the state space of such

a problem is inevitably high-dimensional and the estima-

tion of the state of an object thus requires that of many

parameters. When the dynamics of the objects is linear or

linearizable and when the uncertainties about their position

are Gaussian or mixtures of Gaussians, tracking can be per-

formed analytically by Kalman-like Filters [Chen, 2003].

Unfortunately, in practice, such properties seldom hold

and people often resort to sampling to approximate so-

lutions of the tracking problem. The Particle Filter (PF)

methodology [Gordon et al., 1993] is popular among these

approaches and, in this paper, we focus on PF.

PF consists of estimating the density over the states of the

tracked object using weighted samples whose elements are

possible realizations of the object state and are called par-

ticles. PF and its variants, e.g., Partition Sampling (PS)

[MacCormick and Blake, 1999], all use a resampling step

to avoid a problem of degeneracy of the particles, i.e., the

case when all but one of the particle’s weights are close

to zero [Douc et al., 2005]. Without this step, this problem

would necessarily occur [Doucet et al., 2001].

A few resampling algorithms are classically used, e.g.,

Multinomial Resampling [Gordon et al., 1993], Residual

Resampling [Liu and Chen, 1998], Stratified and System-

atic Resampling [Kitagawa, 1996]. However, these meth-

ods have not been designed specifically to deal with articu-

lated objects and, as such, they do not exploit their features.

In this paper, we introduce Combinatorial Resampling, an

algorithm that exploits them to produce better samples by

resampling over an implicitly created sample of an expo-

nential size. More precisely, in articulated object tracking,

a particle may be thought of as a tuple of the realizations of

each “part” of the object and it is often the case that swap-

ping the realizations of a given part among several particles

has no impact on the estimated distribution. For instance,

in a human body tracking, it may be the case that swap-

ping the positions of the left arm estimated by two particles

does not alter the estimated distribution. Given a particle

set, Combinatorial Resampling produces implicitly a new

set of particles resulting from all such swappings and re-

samples from it. As such, this new set is of exponential size

and acts as a much better description of the state space.

The paper is organized as follows. The next section recalls

the basics of articulated object tracking and, in particular,

Partitioned Sampling. It also recalls the fundamentals of

dynamic Bayesian networks, as our resampling method re-

lies on them. Section 3 presents a short overview of the

aforementioned classical resampling approaches and the

next one details our new resampling approach and its cor-

rectness. Section 5 shows some experimental results both

on challenging synthetic and real video sequences. Those

highlight the efficiency of our method both in terms of the

quality of its results and in terms of response times. Finally,

we give some concluding remarks and perspectives.

....x1

y1 y2

x2

yt

xt

Figure 1: A Markov chain for object tracking.

2 ARTICULATED OBJECT TRACKING

In this paper, articulated object tracking consists of esti-

mating a state sequence {xt}t=1,...,T , whose evolution is

given by equation xt = ft(xt−1,n
x
t), from observations

{yt}t=1,...,T related to the states by yt = ht(xt,n
y
t). Usu-

ally, ft and ht are nonlinear functions, and nx
t and n

y
t are

i.i.d. noise sequences. From a probabilistic viewpoint, this

problem can be represented by the Markov chain of Fig. 1

and it amounts to estimate, for any t, p(x1:t|y1:t) where

x1:t denotes the tuple (x1, . . . ,xt). This can be computed

iteratively using Eq. (1) and (2), which are referred to as a

prediction step and a correction step respectively.

p(x1:t|y1:t−1) = p(xt|xt−1)p(x1:t−1|y1:t−1) (1)

p(x1:t|y1:t) ∝ p(yt|xt)p(x1:t|y1:t−1) (2)

with p(xt|xt−1) the transition corresponding to ft and

p(yt|xt) the likelihood corresponding to ht.

The PF framework [Gordon et al., 1993] approximates the

above densities using weighted samples {x
(i)
t , w

(i)
t }, i =

1, . . . , N , where each x
(i)
t is a possible realization of state

xt called a particle. In its prediction step (Eq. (1)), PF

propagates the particle set {x
(i)
t−1, w

(i)
t−1} using a proposal

function q(xt|x
(i)
1:t−1,yt) which may differ from p(xt|x

(i)
t-1)

(but, for simplicity, we will assume they do not); in its cor-

rection step (2), PF weights the particles using a likelihood

function, so that w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t)

p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1,yt)

,

with
∑N

i=1 w
(i)
t = 1. The particles can then be resampled:

those with the highest weights are duplicated while the oth-

ers are eliminated. The estimation of the posterior density

p(xt|y1:t) is then given by
∑N

i=1 w
(i)
t δ

x
(i)
t

(xt), where δ
x
(i)
t

are Dirac masses centered on particles x
(i)
t .

As shown in [MacCormick and Isard, 2000], the number

of particles necessary for a good estimation of the above

densities grows exponentially with the dimension of the

state space, hence making PF’s basic scheme unusable in

real-time for articulated object tracking. To cope with this

problem, different variants of PF have been proposed, rang-

ing from local search-based methods like the Annealed

Particle Filter [Deutscher and Reid, 2005, Gall, 2005]

and hierarchical-refining methods [Chang and Lin, 2010]

to decomposition techniques like Partitioned Sampling

(PS) [MacCormick and Blake, 1999] and its siblings

[Rose et al., 2008, Besada-Portas et al., 2009]. Here, we

focus on decomposition-based particle filters like PS.

PS’s key idea is that the state and observation spaces X and

Y can often be naturally decomposed as X = X 1 × · · · ×
XP and Y = Y1 × · · · × YP where each X j represents

some “part” of the object. For instance, on Fig. 2, a human

body is decomposed as 6 parts (head, torso, etc.) numbered

from 1 to 6. The state of the jth part at time t is denoted

x
j
t . Then, by exploiting conditional independences among

different subspaces (X j ,Yj), PS estimates p(x1:t|y1:t) us-

ing only sequential applications of PF over (X j ,Yj). For

instance, on Fig. 2, given the position of the torso, the left

and right arm positions may be independent so, after ap-

plying PF on the torso, PS can apply it sequentially to the

left and right arms and still compute a correct estimation

of p(x1:t|y1:t). As the (X j ,Yj) subspaces are “smaller”

than (X ,Y), the distributions to estimate at each iteration

of PF have fewer parameters than those defined on (X ,Y),
which significantly reduces the number of particles needed

for their estimation and, thus, speeds up the computations.

The exploitation of the conditional independences among

the (X j ,Yj) leads to generalizing the Markov chain of

Fig. 1 by the Dynamic Bayesian Network (DBN) of Fig. 2

x
1
t

x
6
t

y
6
t

y
1
t

x
4
t

y
2
t y

4
t

y
5
t

x
5
t

y
3
t

x
3
t

x
2
t

1
2

3

4

5

6

y
3
t−1 y

5
t−1

time slice ttime slice t− 1

x
P2
t

x
Q2
t

A human body: part 1 corresponds to the torso,

parts 2 and 3 to the left arm, parts 4 and 5 to the

right arm and part 6 to the head. On the right

side of the figure, the corresponding DBN: to

the jth part corresponds a pair of state and ob-

servation variables x
j
t ,y

j
t . The arcs show the

dependences between variables, including be-

tween different time slices.

x
R2
t−1 = x

P3
t−1

x
1
t−1

x
6
t−1

y
6
t−1

y
1
t−1

x
4
t−1

y
2
t−1 y

4
t−1

x
5
t−1x

3
t−1

x
2
t−1

x
P1
t

Figure 2: A Dynamic Bayesian Network.

[Murphy, 2002], in which the global state xt of the object

is more finely described as the set of states x
j
t of each part

of the object. The semantics of DBNs is similar to that of

Markov chains: the arcs correspond to probabilistic depen-

dences and the joint distribution over all the nodes in the

network is equal to the product of the distributions of each

node conditionally to its parents in the graph.

The resampling scheme we introduce in this paper, i.e.,

Combinatorial Resampling, is designed to be part of PS-

like algorithms and relies on DBNs. Therefore, we shall

now formalize PS in terms of operations over DBNs. For

this purpose, for any set J = {j1, . . . , jk}, let xJ
t denote

the tuple (xj1
t , . . . ,xjk

t), i.e., the tuple of the states of the

object parts in J . For instance, on Fig. 2, if J = {2, 3},
then xJ

t represents the state of the whole left arm. Simi-

larly, let x
(i),J
t denote the tuple of the parts in J of the ith

particle. For instance, for J = {2, 3}, x
(i),J
t corresponds

the state of left arm as represented by the ith particle. In

the rest of the paper, we will assume that the object is com-

posed of precisely P parts (in Fig. 2, P = 6). Now, we

shall describe a slight generalization of PS where PF is it-

eratively applied on sets of object parts instead of just sin-

gletons like PS does. When PF is applied on a set, it is

applied independently on all its elements. We need to dis-

tinguish at each step of such tracking algorithm the parts

that were already processed by PF from those that were not

yet. Thus, for any step j,

• let Pj denote the set of object parts being processed at

the jth step (in the case of PS, Pj = {j});

• let Qj =
∑j

h=1 Ph denote the set of all the object

parts processed up to (including) the jth step;

• let Rj =
∑P

h=j+1 Ph denote the set of the object parts

yet to process after the jth step is completed.

Fig. 2 illustrates these notations: here, P1 = {1}, i.e., PF

is first applied only on the torso; P2 = {2, 4, 6}, i.e., at

Input: A particle set {x
(i)
t−1, w

(i)
t−1} at time t− 1, an image I

Output: A particle set {x
(i)
t , w

(i)
t } at time t

Q← ∅; R← {1, . . . , P}
for j = 1 to K do

foreach k in Pj do
Q′ ← Q ∪ {k}; R′ ← R\{k}

{(x
(i),Q′

t ,x
(i),R′

t−1)} ← propagate ({x
(i),Q
t ,x

(i),R
t−1 })

{(w
(i),Q′

t , w
(i),R′

t−1)} ←

correct ({(x
(i),Q′

t ,x
(i),R′

t−1), (w
(i),Q
t , w

(i),R
t−1)}, I)

Q← Q′; R← R′

{(x
(i),Q
t ,x

(i),R
t−1), (w

(i),Q
t , w

(i),R
t−1)} ←

resample ({(x
(i),Q
t ,x

(i),R
t−1), (w

(i),Q
t , w

(i),R
t−1)})

return {x
(i)
t , w

(i)
t }

Algorithm 1: Partitioned Sampling PS.

its 2nd step, the tracking algorithm applies PF in paral-

lel on parts 2, 4 and 6. Therefore, at the 2nd step, parts

Q2 = {1, 2, 4, 6} have been processed and there remains

to process parts R2 = {3, 5}. Thus, if PF has propa-

gated all the parts in Q2 from time t − 1 to t, in the par-

ticles, the parts in R2 still refer to time t − 1 (see Fig. 2).

Let K denote the number of steps of the tracking algo-

rithm, i.e., the number of sets Pj (for PS, K = P). To

simplify the proofs in the rest of the paper, we shall fix

Q0 = RK = ∅. Now, PS can be described in Algo-

rithm 1. In [MacCormick and Isard, 2000], it is showed

that this algorithm is mathematically sound when its resam-

pling method is a weighted resampling using a g function

corresponding to p(yt|xt) (see the next section).

3 RESAMPLING METHODS

Several resampling schemes are classically used, that we

shall review briefly now. Comparisons of their pros and

cons can be found in [Douc et al., 2005].

Multinomial resampling consists of selecting N numbers

ki, i = 1, . . . , N , w.r.t. a uniform distribution U((0, 1])

on (0, 1]. Then, sample S = {x
(i)
t , w

(i)
t } is sub-

stituted by a new sample S ′ = {x
(D(ki))
t , 1

N
} where

D(ki) is the unique integer j such that
∑j−1

h=1 w
(h)
t <

ki ≤
∑j

h=1 w
(h)
t . If (n1, . . . , nN) denote the number

of times each of the particles in S are duplicated, then

(n1, . . . , nN) is distributed w.r.t. the multinomial distribu-

tion Mult(N ;w
(1)
t , . . . , w

(N)
t). Stratified resampling dif-

fers from multinomial resampling by selecting randomly

the ki’s w.r.t. the uniform distribution U((i−1
N

, i
N
]). In

systematic resampling, some number k is drawn w.r.t.

U((0, 1
N
]) and, then, the ki’s are defined as ki =

i−1
N

+ k.

Residual resampling [Liu and Chen, 1998] is a method

very efficient for decreasing the variance of the particle

set induced by the resampling step. It is performed in two

steps. First, for every i ∈ {1, . . . , N}, n′
i = ⌊Nw

(i)
t ⌋ du-

plicates of particle x
(i)
t of S are inserted into S ′. The N −∑n

i=1 n
′
i particles still needed to complete the N -sample

S ′ are drawn randomly using the multinomial distribution

Mult(N −
∑n

i=1 n
′
i;Nw

(1)
t − n′

1, . . . , Nw
(N)
t − n′

N), for

instance using the multinomial resampling algorithm. The

weights assigned to all the particles in S ′ are 1/N .

Finally, weighted resampling is defined as follows: let

g : X 7→ R be any strictly positive continuous func-

tion, where X denotes the state space. Weighted resam-

pling proceeds as follows: let ρt be defined as ρt(i) =

g(x
(i)
t)/

∑N

j=1 g(x
(j)
t) for i = 1, . . . , N . Select in-

dependently indices k1, . . . , kN according to probability

ρt. Finally, construct the new set of particles S ′ =

{x
(ki)
t , w

(ki)
t /ρt(ki)}

N
i=1. [MacCormick, 2000] shows that

S ′ represents the same probability distribution as S while

focusing the particles on the peaks of g. Note however

that, unlike the other resampling methods described above,

weighted resampling does not assign equal weights (1/N)

to all the particles. In the rest of the paper, we will need

this “equal weight” feature, so whenever weighted resam-

pling will be used, it will be implicitly followed by one of

the other above resampling methods.

In the next section, we will propose a new resampling

method that exploits the structure within articulated objects

to improve the efficiency of particle filtering.

4 DBN-BASED COMBINATORIAL

RESAMPLING

Our resampling scheme is suitable for particle filters as

described in Algo. 1. More precisely, we will show in

Subsection 4.1 that, in articulated object tracking, the set

{1, . . . , P} of parts of the objects to track can be parti-

tioned into some sets {P1, . . . , PK} such that those parts

in each Pj are all independent conditionally to ∪h<jPh.

For instance, in Fig. 2, P = 6 and K = 3, P1 = {1}
corresponds to the torso, P2 = {2, 4, 6} to the head and

both arms, and P3 = {3, 5} to the forearms. In addition,

given the position of the torso (P1), those of the head and

the arms (P2) are independent. In Subsection 4.2, these

independences will be exploited to justify that permuta-

tions of some particles’ parts do not alter the estimation of

p(x1:t|y1:t). Then, our resampling scheme, which will be

described in Subsection 4.3, will exploit these permutations

to construct implicitly some new exponential-size sample

from which it will resample new high-quality samples.

4.1 IDENTIFYING SETS P1, . . . , PK

To be sound, i.e., to not alter the estimation of p(x1:t|y1:t),
Combinatorial Resampling exploits conditional indepen-

dences among the different parts of the object. The par-

tition into sets P1, . . . , PK precisely accounts for these in-

dependences and thus naturally results from a d-separation

analysis, the independence property at the core of DBNs:

Definition 1 (d-separation [Pearl, 1988]) Two nodes xi
t

and xj
s of a DBN are dependent conditionally to a set of

nodes Z if and only if there exists a chain, i.e., an undi-

rected path, {c1 = xi
t, . . . , cn = xj

s} linking xi
t and xj

s in

the DBN such that the following two conditions hold:

1. for every node ck such that the arcs are ck−1 → ck ←
ck+1, either ck or one of its descendants is in Z;

2. none of the other nodes ck belongs to Z.

Such a chain is called active (else it is blocked). If there

exists an active chain linking two nodes, these nodes are

dependent and are called d-connected, otherwise they are

independent conditionally to Z and are called d-separated.

In Fig. 2, conditionally to the position of the torso up to

time t, both arms are thus independent.

In the rest of the paper, we will assume that, within each

time slice, the DBN structure is a directed tree, i.e., there

do not exist nodes xi
t,x

j
t ,x

k
t such that xi

t → x
j
t ← xk

t .

We will also assume that arcs across time slices link sim-

ilar nodes, i.e., there exist no arc xi
t−1 → x

j
t with j 6= i.

Finally, we will assume that nodes y
j
t have only one parent

x
j
t and no children. For articulated object tracking, these

requirements are rather mild and Fig. 2 satisfies all of them.

Now, we can construct sets P1, . . . , PK : for any node, say

Xt, in time slice t of the DBN, let Pa(Xt) and Pat(Xt)
denote the set of parents of Xt in the DBN in all time

slices and in time slice t only respectively. For instance,

in Fig. 2, Pa(x2
t) = {x

1
t ,x

2
t−1} and Pat(x

2
t) = {x

1
t}. Let

{P1, . . . , PK} be a partition of {1, . . . , P} defined by:

• P1 = {k ∈ {1, . . . , P} : Pat(x
k
t) = ∅};

• for any j > 1, Pj = {k ∈ {1, . . . , P}\
⋃j−1

h=1 Ph :

Pat(x
k
t) ⊆

⋃j−1
h=1

⋃
r∈Ph
{xr

t}}.

On Fig. 2, this results in P1 = {1}, P2 = {2, 4, 6} and

P3 = {3, 5}. It turns out that the way we constructed the

Pj’s, all the xk
t ∈ Pj can be processed independently by

PF because they are independent conditionally to Pa(xk
t),

and this is precisely this independence property which is

needed to enable a sound object part swapping within Com-

binatorial Resampling:

Proposition 1 The particle set resulting from Algorithm 1,

with Pj defined as in the preceding paragraph, Qj =∑j

h=1 Ph and Rj =
∑K

h=j+1 Ph, represents p(xt|y1:t).

Proof: By induction on j. Assume that, be-

fore processing parts Pj , particles estimate

p(x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t). This is clearly the

case for P1 since P1 are the first parts processed. Remem-

ber that Pj , Qj , Rj are the set of parts processed at the jth

step, up to the jth step and still to process respectively. We

will now examine sequentially the distributions estimated

by the particle set after applying in parallel PF’s predic-

tion step over the parts in Pj , then after applying PF’s

correction step and, finally, after resampling.

1. Let us show that after the parallel propagations of the

parts in Pj (prediction step), the particle set represents den-

sity p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t). For instance, on Fig. 2,

this means that, after propagating the parts in P2, the parti-

cle set estimates p(x1,2,4,6
t ,x3,5

t−1|y1:t−1,y
1
t), i.e., only the

positions of the forearms still refer to time t − 1 and the

only observation taken into account at time t is the position

of the torso (not yet those of the head and arms). All these

parallel operations correspond to computing:

∫
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t)
∏
k∈Pj

p(xk
t |Pa(xk

t)) dx
Pj

t−1.

By d-separation, a node is independent of all of its non

descendants conditionally to its parents. Hence, for every

k ∈ Pj , xk
t is independent of x

Pj\{k}
t ∪ x

Qj−1

t ∪ x
Rj−1

t−1 ∪

y1:t−1∪y
Qj−1

t conditionally to Pa(xk
t) (see Fig. 3.a where

xk
t is the doubly-circled node, Pa(xk

t) are the striped nodes

and the black and shaded nodes correspond to the inde-

pendent observation and state nodes respectively). Con-

sequently, the above integral is equivalent to:

∫
p(x

Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t)

p(x
Pj

t |x
Qj−1

t ,x
Rj−1

t−1 ,y1:t−1,y
Qj−1

t) dx
Pj

t−1

=

∫
p(x

Pj

t ,x
Qj−1

t ,x
Rj−1

t−1 |y1:t−1,y
Qj−1

t) dx
Pj

t−1.

As Qj = Qj−1 ∪ Pj and Rj−1 = Pj ∪ Rj , the above

equation is equivalent to p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t).

2. Let us show that after the parallel corrections of the Pj

parts, the particle set estimates p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t).
These operations correspond to computing, up to

a constant, distribution p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t) ×∏
k∈Pj

p(yk
t |x

k
t). By d-separation, nodes yk

t are inde-

pendent of the rest of the DBN conditionally to xk
t , so

p(y
Pj

t |x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj−1

t) =
∏

k∈Pj
p(yk

t |x
k
t). Af-

ter the corrections over Pj , the particle set thus esti-

mates p(x
Qj

t ,x
Rj

t−1,y
Pj

t |y1:t−1,y
Qj−1

t), which, when nor-

malized, is equal to p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj−1

t ,y
Pj

t) =

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t). As resamplings do not alter

densities, at the end of the algorithm, the particle set es-

timates p(xQK

t ,xRK

t−1|y1:t−1,y
QK

t) = p(xt|y1:t). �

4.2 SUBSTATE PERMUTATIONS

The advantage of using the Pj’s as defined above instead

of singletons as the classical PS does is that this enables

to improve by permutations the particle set without alter-

ing the joint posterior density. Those permutations are the

core of Combinatorial Resampling as the latter creates im-

plicitly new particle sets resulting from all the possible per-

mutations. The next proposition determines the permuta-

tions that guarantee the distributions are not altered. Intu-

itively, it asserts that whenever two particles are such that

they have the same states on some nodes Pas(x
k
s), then

swapping their states on xk
s and its descendants cannot al-

ter the density estimated by the particle set. For instance,

on Fig. 3.b, if two particles have the same value for the

striped nodes Pas(x
k
s), their values on the shaded node xk

s

and the black one (xk
s ’s descendant) can be safely swapped.

Proposition 2 Let {(x
(i),Qj

t ,x
(i),Rj

t−1)} be the particle set

at the jth step of Algo. 1. Let k ∈ Pj and let Desct(x
k
t)

be the set of descendants of xk
t in time slice t. Let σ :

{1, . . . , N} 7→ {1, . . . , N} be any permutation such that

x
(i),h
s = x

(σ(i)),h
s for all the nodes xh

s ∈ ∪
t
s=1Pas(x

k
s).

Then, the particle set resulting from the application of σ on

the parts of {(x
(i),Qj

t ,x
(i),Rj

t−1)} corresponding to {xk
t }∪

Desct−1(x
k
t−1) still estimates p(x

Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t).

Proof: If j = 1, the proposition trivially holds since σ
is applied to all the nodes of the connected component

of xk
t . Assume now that j 6= 1. We shall now par-

tition the object parts as described on Fig. 3.c to high-

light which parts shall be permuted, which ones shall be

identical to enable permutations and which parts are un-

concerned: let xD
t−1 = Desct−1(x

k
t−1), x

k′

t = Pat(x
k
t),

xV
t = x

Qj

t \({x
k
t ,x

k′

t }) and xW
t−1 = x

Rj

t−1\x
D
t−1. Thus, the

permuted parts are xk
t ∪ xD

t−1 (see Fig. 3.c), the identical

part is xk′

t , and the unconcerned parts are xV
t ∪ xW

t−1.

p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t) ∝ p(x
Qj

t ,x
Rj

t−1,y1:t−1,y
Qj

t)

= p(x
{k,k′}∪V
t ,xD∪W

t−1 ,y
{k,k′}∪V
1:t ,yD∪W

1:t−1)

=

∫
p(x

{k}∪V
t ,xk′

1:t,x
D∪W
t−1 ,y

{k,k′}∪V
1:t ,yD∪W

1:t−1)dx
k′

1:t−1

Conditionally to {xk′

1:t}, S = {xk
t } ∪ xD

t−1 ∪ yk
1:t ∪ yD

1:t−1

is independent of the rest of the DBN because, by Defini-

tion 1, no active chain can pass through an arc outgoing

from a node in a conditioning set and, removing from the

DBN the arcs outgoing from {xk′

1:t}, S is not connected

anymore to the rest of the DBN. For the same reason,

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

time t(b)time t− 1time t(a)time t− 1 time t− 1 time t(c)

x
k
t

x
V
t

x
k′

t
x

Qj
t

x
W
t−1x

D
t−1

x

Rj
t−1

Figure 3: d-separation analysis.

xV
t ∪ x

W
t−1 ∪ y

V
1:t ∪ y

W
1:t−1 is independent of the rest of the

DBN conditionally to {xk′

1:t}. Therefore, the above integral

is equal to:

∫
p(xk′

1:t,y
k′

1:t) p(x
k
t ,x

D
t−1,y

k
1:t,y

D
1:t−1|x

k′

1:t)

p(xV
t ,x

W
t−1,y

V
1:t,y

W
1:t−1|x

k′

1:t) dx
k′

1:t−1.
(3)

Permuting particles over parts {xk
t } ∪ xD

t−1 for fixed

values of xk′

1:t cannot change the estimation of density

p(xk
t ,x

D
t−1,y

k
1:t,y

D
1:t−1|x

k′

1:t) because estimations by sam-

ples are insensitive to the order of the elements in the

samples. Moreover, it can neither affect the estimation of

density p(xV
t ,x

W
t−1,y

V
1:t,y

W
1:t−1|x

k′

1:t) since xV
t ∪ xW

t−1 ∪
yV
1:t ∪ yW

1:t−1 is independent of {xk
t } ∪ xD

t−1 conditionally

to {xk′

1:t}. Consequently, applying permutation σ on parts

{xk
t }∪x

D
t−1 does not change the estimation of Eq. (3) and,

therefore, of p(x
Qj

t ,x
Rj

t−1|y1:t−1,y
Qj

t). �

As shown in the next subsection, these permutations can be

exploited at the resampling level to improve samples.

4.3 OUR RESAMPLING APPROACH

All the permutations satisfying Proposition 2 can be ap-

plied to the particle set without altering the estimation of

the posterior density. For instance, let x
(1)
t and x

(2)
t be two

particles whose torso positions are identical, then swapping

their left arm and forearm positions (x2
t ,x

3
t−1) cannot alter

the density estimation. Similarly, the latter is unaffected by

duplications of all the particles within a particle set. This

leads to Combinatorial Resampling:

Definition 2 (Combinatorial Resampling) Let S be the

particle set at the jth step of Algo. 1. For any k ∈ Pj ,

let Σk be the set of permutations satisfying Proposition 2.

Let Σ =
∏

k∈Pj
Σk. Let S′ = ∪σ∈Σ{particle set result-

ing from the application of σ to S}. Combinatorial resam-

pling consists of applying any resampling algorithm over

the combinatorial set S′ instead of S.

On the example of Fig. 2, let x
(1)
t = 〈1, 2, 3, 4, 5, 6〉,

x
(2)
t = 〈1, 2′, 3′, 4′, 5′, 6′〉 and x

(3)
t =

〈1′′, 2′′, 3′′, 4′′, 5′′, 6′′〉 be three particles, where each

number, 1, 1′′, 2, 2′, 2′′, etc., corresponds to the state of a

part in Fig. 2. Assume that S = {x
(1)
t ,x

(2)
t ,x

(3)
t } at the

2nd step of Algo. 1, i.e., the object parts just processed

are P2 = {2, 4, 6}. Parts {2, 3}, {4, 5} and {6} can be

permuted in x
(1)
t and x

(2)
t because their torso, i.e. 1, are

identical, hence S′ is the union of the result of all such

permutations over S and is thus equal to:

〈1,2 ,3 ,4 ,5 ,6 〉
〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4′,5′,6′〉

〈1,2′,3′,4′,5′,6′〉
〈1,2′,3′,4′,5′,6 〉
〈1,2′,3′,4 ,5 ,6′〉
〈1,2′,3′,4 ,5 ,6 〉
〈1,2 ,3 ,4′,5′,6′〉
〈1,2 ,3 ,4′,5′,6 〉
〈1,2 ,3 ,4 ,5 ,6′〉
〈1,2 ,3 ,4 ,5 ,6 〉

〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉
〈1′′,2′′,3′′,4′′,5′′,6′′〉

Constructing S′ in extension is impossible in practice be-

cause |Σ| grows exponentially with N , the number of par-

ticles. Fortunately, we can sample over S′ without actually

constructing it. We shall explain the idea on the particle set

S illustrated on Fig. 4, which corresponds to the object of

Fig. 2 in which we omitted the head part for clarity reasons.

Assume that parts Pj = {3, 5}, i.e., the forearms, have just

been processed and we wish to sample over combinatorial

sample S′ induced by S. To construct a new particle, the

idea is to first select a value for the parts in Qj−1, i.e., those

processed at previous steps by PF and in which no permu-

tation will occur. Here, Qj−1 = {1, 2, 4}. We thus first

determine the different values of x
Qj−1

t in S and partition

S into sets S1, . . . , SR such that all the particles in each

set Sh have the same value for x
Qj−1

t (see Fig. 4). In this

figure, S1 thus contains the first two particles since their

values on x
Qj−1

t are both 〈1, 0, 3〉. To each such set Sh

is assigned a weight Wh defined below so that picking the

value of x
Qj−1

t in Sh w.r.t. weight Wh results in a parti-

cle set estimating the same distribution as that of S. Once

the value of x
Qj−1

t has been chosen, there just remains to

pick independently values for each xk
t and their descen-

dants, k ∈ Pj , that are compatible with that chosen for

x
Qj−1

t . Thus, for any h ∈ {1, . . . , R}, let Sk
h denote the set

of particles in S whose kth part value is compatible with

the value of x
Qj−1

t in Sh. By Proposition 2, Sk
h is the set of

particles in S that have the same value of Pat(x
k
t) as those

in Sh. For instance, in Fig. 4, S3
1 is the set of the first 3

particles because all of them have value 1 on part 2.

Now, to determine the aforementioned weights Wh, there

just needs to count how many times the combinatorial set

has duplicated Sh. So, let N1, . . . , NR and Nk
1 , . . . , N

k
R

denote the sizes of S1, . . . , SR and Sk
1 , . . . , S

k
R respec-

tively. Finally, let Nk = max{Nk
1 , . . . , N

k
R} and, for any

h ∈ {1, . . . , R}, let W k
h denote the sum of the weights as-

signed to the kth part of the particles in Sk
h , i.e., W k

h =∑
x
(i)
t ∈Sk

h

w(i),k. Then, as proved below, for any h,

5
6
7
10
11

8
9

12
13
14

0
0
0
0
0

1
1
1
2
2

3
3
4
4
4

1parts:
Pj = {parts 3,5}

Qj−1 = {parts 1,2,4}

Pat(x
3
t) = {x

2
t}

Pat(x
5
t) = {x

4
t}S3

3

S3
1 = S3

2
S1

S2

S3

2 43 5

Figure 4: Sets Sih and Sik
h

. Each row represents a particle

x
(i)
t and each number a value x

(i),j
t of part j of the particle.

Input: A particle set {(x
(i),Qj

t ,x
(i),Rj

t−1), w
(i)
t }

N
i=1

Output: A new particle set {(x
′′(i),Qj

t ,x
′′(i),Rj

t−1), w
′′(i)
t }Ni=1

for i = 1 to N do
h← sample {1, . . . , R} w.r.t. weights W1, . . . ,WR

x
′′(i),Qj−1
t ← x

(z),Qj−1
t where x

(z)
t is any element in Sh

w
′′(i)
t ← 1

foreach k in Pj do

x
(r)
t ← sample from Sk

h w.r.t. weights {w
(r),k
t }

x
r
t∈Sk

h

x
′′(i),k
t ← x

(r),k
t ; w

′′(i)
t ← w

′′(i)
t × w

(r),k
t

x
′′(i),Desct−1(x

k
t−1)

t−1 ← x
(r),Desct−1(x

k
t−1)

t−1

return {x′′(i)
t , w′′(i)}Ni=1

Algorithm 2: Efficient resampling over S′.

Wh = Nh ×
∏
k∈Pj

Nk!

A
Nh

Nk
h

×A
Nh−1

Nk
h
−1
×W k

h , (4)

where Ak
n = n!/(n − k)! stands for the number of k-

permutations out of n elements. Resampling over S′ can

thus be performed efficiently as in Algo. 2. To scale-up to

large particle sets, log(Wh) should be computed instead of

Wh and the weights used in line 2 of Algo. 2 should be

exp(logWh − logW), where W = max{W1, . . . ,WR}.

Proposition 3 Algorithm 2 produces a particle set estimat-

ing the same density as that given in input.

Proof: Let S = {(x
(i),Qj

t ,x
(i),Rj

t−1)}Ni=1 and S′ its combi-

natorial set (see Def. 2). In lines 2–3, Algo. 2 selects which

central part Qj−1 particle x′′
t should have. By definition,

this amounts to selecting one set Sh w.r.t. the sum of the

weights of the particles in S′ having the same central part

as those in Sh. Let us show that this is achieved using the

weights described in Eq. (4).

In Definition 2, Σk is the set of all the possible permuta-

tions of the kth part of the particles in S. Clearly, within

each set Sk
h , all the Nk

h ! permutations of the kth part of the

particles of this set are admissible. They form the cycles

within the permutations of Σk and, as such, a given per-

mutation σ over Sk
h shall appear many times within Σk.

There is no need to count precisely how many times σ
is repeated, what is important is that the repeated sets of

particles estimate the same density as S. To do so, re-

mark that Nk = max{Nk
1 , . . . , N

k
R} is the size of the

biggest set Sk
1 , . . . , S

k
R. Applying all the permutations over

this set multiplies its size by Nk!, so the size of all the

other sets should be multiplied by the same amount. Du-

plicating Nk!/Nk
h ! permutation σ guarantees that all the

Qj−1-central parts of the particles in S are duplicated the

same number of times. Now, the particles in Sh also be-

long to Sk
h . As |Sh| = Nh, there are ANh

Nk
h

different pos-

sibilities to assign some k-part of Sk
h to the particles of

Sh. The number of times these permutations are repeated

within those over Sk
h is thus Nk

h !/A
Nh

Nk
h

. Hence, duplicating

(Nk!/Nk
h !) × (Nk

h !/A
Nh

Nk
h

) = Nk!/ANh

Nk
h

times the permu-

tations over Sh ensures that the particle set estimates the

same density as S. The same applies to all the other parts

in Pj , hence the product in Eq. (4).

Now, let us compute the sum of the weights of the parti-

cles resulting from all the permutations over Sh. Each such

permutation generates a new set of Nh particles. By sym-

metry, if W is the sum of the weights of the first particle

in each set, call it x
(i)
t , then the overall sum we look for

is Nh ×W. As permutations over the parts in Pj are in-

dependent, W is equal to the product over parts k ∈ Pj

of the sum Wk of the weights induced by all the permuta-

tions over the kth part, i.e., the permutations over Sk
h . By

symmetry, any weight in Sk
h can be assigned to x

(i)
t , hence

Wk is equal to the sum of all these weights, W k
h , times the

number O of occurrences of each weight induced by all the

permutations over Sk
h . For instance, if there are 3 weights

1,2,3, then there are O = 2 permutations where the first

particle as a weight of 1: 〈1, 2, 3〉 and 〈1, 3, 2〉. Once parti-

cle x
(i)
t has been assigned a weight, there remains Nh − 1

weights to assign to the other particles from a set of Nk
h −1

weights, hence there are O = ANh−1
Nk

h
−1

possibilities. Over-

all, Wk is thus equal to W k
h ×ANh−1

Nk
h
−1

and we get Eq. (4).

So, lines 2–3 select correctly the Qj−1 part. Once this is

done, by d-separation, all the parts in Pj are independent

and should be sampled w.r.t. p(xk
t |Pat(x

k
t)), which is done

in lines 5–8 since p(xk
t |Pat(x

k
t)) ∝ w

(i),k
t . �

We shall now provide some experiments highlighting the

efficiency of our resampling scheme.

5 EXPERIMENTATIONS

We performed experiments on synthetic data in order to

create sequences varying the criteria whose impact on our

algorithm’s efficiency are the most important, i.e. the num-

ber of parts processed in parallel and the length of the ob-

ject’s arms. As such, this resulted in a fine picture of the

behaviors of our algorithm. These results are given in Sub-

section 5.1. Of course, our algorithm is also effective on

real sequences. This is illustrated in Subsection 5.2.

For both cases, articulated objects are modeled by a set of

P polygonal parts (or regions): a central one P1 (contain-

ing only one polygon) to which are linked |Pj |, j > 1, arms

of length K − 1 (see Fig. 5 for some examples). The poly-

gons are manually positioned in the first frame. State vec-

tors contain the parameters describing all the parts and are

defined by xt = {x1
t , . . . ,x

P
t }, with xk

t = {xk
t , y

k
t , θ

k
t },

where (xk
t , y

k
t) is the center of part k, and θkt is its ori-

entation, k = 1, . . . , P . We thus have |X | = 3P . A

particle x
(i)
t = {x

(i),1
t , . . . ,x

(i),P
t }, i = 1, . . . , N , is a

possible spatial configuration, i.e., a realization, of the ar-

ticulated object. Particles are propagated using a random

walk whose variances σx, σy and σθ have been empiri-

cally fixed. Particle weights are computed by measuring

the similarity between the distribution of pixels in the re-

gion of the estimated part of the object and that of the cor-

responding reference region using the Bhattacharyya dis-

tance [Bhattacharyya, 1943]. The particle weights are then

computed by w
(i)
t+1 = w

(i)
t p(yt+1|x

(i)
t+1) ∝ w

(i)
t e−λd2

,

with, in our tests, λ = 50 and d the Bhattacharyya dis-

tance between the target (prior) and the reference (previ-

ously estimated) 8-bin histograms. The articulated object’s

distribution is estimated starting from its central part P1.

5.1 TESTS ON SYNTHETIC VIDEO SEQUENCES

We have generated our own video sequences composed of

300 frames of 800× 640 pixels. Each video displays an ar-

ticulated object randomly moving and deforming over time,

subject to either weak or strong motions. Some examples

are given in Fig. 5. With various numbers of parts, the artic-

ulated objects are designed to test the ability of resampling

to deal with high-dimensional state spaces.

We compare six different resampling approaches. The

first five (multinomial, systematic, stratified, residual and

weighted resampling) are integrated into PS. PS propagates

and corrects particles polygon after polygon to derive a

global estimation of the object. For combinatorial resam-

pling, the object’s arms are considered independent condi-

tionally to the central part and, thus, the Pj parts, j > 1,

correspond to the jth joints of all the arms. For weighted

resampling, function g is set empirically to g(w) = e20w

to favor the selection of high-weighted particles over low-

weighted ones. Results are compared w.r.t. two criteria:

computation times and estimation errors, defined as the

sum of the Euclidean distances between each corner of the

estimated parts and its sibling in the ground truth. For all

these tests, we fixed σx = σy = 1 pixel and σθ = 0.025
rad. All the results presented are a mean over 30 runs per-

formed on a MacBook Pro with a 2.66 GHz Intel Core i7.

We first compared the estimation errors. Fig 6.(a-c) show

a convergence study of the resampling methods depending

on the number N of particles for the 3 objects of Fig. 5. For

(a) (b) (c)

K = 4, |Pj | = 4 K = 6, |Pj | = 4 K = 4, |Pj | = 8

P = 13, |X | = 39 P = 21, |X | = 63 P = 25, |X | = 125

Figure 5: Excerpts of frames from our synthetic video se-

quences, and the features of the corresponding articulated

objects (number of arms |Pj |, j > 1, length of arms K−1,

total number of parts P , and dimension of state space X).

all these tests, combinatorial resampling (CR) outperforms

all the other methods: i) it converges faster (about only

N = 100 particles are necessary to do so) when the other

methods often require 300 particles to converge; ii) CR’s

error at convergence is much lower than that of the other

methods. For instance, in Fig.6(a), CR reaches the conver-

gence error of the other methods (about 230 pixels) with

only N = 20 particles and, with 100 particles, its error de-

creases to 112 pixels. When the length of the arms (given

by K) increases (Fig 6(b)), CR stays robust, whereas multi-

nomial, systematic, stratified and residual resampling tend

to fail (estimation errors twice higher). Weighted resam-

pling seems more stable, but gives estimation errors 25%
higher than those of CR. Finally, when the number of parts

treated in parallel increases (Fig 6(c)), CR stays stable:

with only N = 20 particles, its estimation error is 2.5 to

3 times lower than the one of other resampling approaches.

Finally, resampling times (in seconds) over the whole se-

quences, are reported in Table 1 for the estimation of the

densities of the objects of Fig. 5(a-c) with N = {100, 600}
particles. The first four resampling approaches have similar

behaviors. Due to its additional step ensuring that weights

are equal to 1/N , which is required by Algo. 1, weighted

resampling is longer. The best approach is CR when the

number of particles is high (600) and when the size of

the Pj’s is high. For instance, when tracking the object

of Fig. 5(c) (8 parts processed simultaneously), the resam-

pling times are considerably lower with CR than with the

other methods. This is due to the fact that, by process-

ing several object parts simultaneously, the number of re-

samplings performed is significantly reduced. Hence, even

if performing CR once is longer than performing another

method, overall, CR is globally faster. Note also that CR’s

response times increase more slowly with N than the other

methods. Finally, when K increases (Fig. 5(b)), our ap-

proach also provides significantly smaller resampling times

when N becomes high.

5.2 TESTS ON REAL VIDEO SEQUENCES

We tested our approach on sequences from the UCF50

dataset (http://server.cs.ucf.edu/∼vision/data/UCF50.rar),

to demonstrate the efficiency of our combinatorial resam-

pling to make the particle set better focus on the modes

Table 1: Resampling times (in seconds) for the estimation

of the density of different objects, with N = {100, 600}.
Fig. 5.a Fig. 5.b Fig. 5.c

100 600 100 600 100 600

Multinomial 0.5 17.1 1.3 46.9 1.8 79.6

Systematic 0.5 19.8 1.2 53.6 1.7 80.5

Stratified 0.5 16.9 1.3 44.8 1.7 74.9

Residual 0.5 20.3 1.3 55.7 1.8 83.4

Weighted 1.0 33.0 2.5 90.1 3.5 157.8

Combinatorial 0.7 10.6 1.5 26.3 1.5 22.3

(a) (b) (c)

Figure 6: Comparison of convergence for different resampling approaches: errors of estimation of the density of objects

depending on N : (a) with |Pi| = 4, K = 4 (object of Fig. 5.(a)), (b) with |Pi| = 4, K = 6 (object of Fig. 5.(b)) and (c)

with |Pi| = 8, K = 4 (object of Fig. 5.(c)).

Figure 7: Tracking results on JumpRope sequence with N = 500 particles (frames 10, 50, 121 and 234). First line, using

residual resampling, last line, using our combinatorial resampling.

of the densities to estimate. This feature holds even when

there are wide movements over time and when images

have a low resolution. Qualitative results are given by su-

perimposing on the frames of the sequences a red articu-

lated object corresponding to the estimation derived from

the weighted sum of the particles. For this test, we fixed

σx = σy = 2 pixels and σθ = 0.08 rad.

Figure 7 shows tracking results on the JumpRope se-

quence (containing 290 frames of 320 × 240 pixels) with

N = 500 particles. In this sequence, a person is

quickly moving from left to right while jumping, and cross-

ing/uncrossing his arms and legs. For this test, we defined

an articulated object with P = 12 parts, hence |X | = 36,

and we compared the estimations resulting from PS with a

residual resampling (top line) with those resulting from our

proposed resampling approach (bottom line). As can be

observed, our approach produces better results: its estima-

tions are more stable along the sequence. For example, on

the images of the 2nd and 3rd columns, we can see the es-

timation of the articulated object fails with residual resam-

pling but is correct with our combinatorial resampling. For

this sequence, on average over 20 runs, our method needed

16 seconds while residual resampling needed 22. In addi-

tion, our algorithm proved to be more robust and provided

more accurate results. As for synthetic sequences, our tests

show that the higher the number of particles, the more our

algorithm outperforms residual resampling in terms of re-

sponse time. It is also always more accurate.

6 CONCLUSION

In this paper, we have introduced a new resampling method

called Combinatorial Resampling. From a given sample S,

this algorithm constructs implicitly a new sample S′ expo-

nentially larger than S. By construction, S′ is more repre-

sentative than S of the density over the whole state space

and resampling from S′ rather than S produces much bet-

ter results, as confirmed by our experiments. We proved the

mathematical correctness of the method and showed that it

is effective for real time tracking. For future researches,

there remains to exhibit theoretical convergence results for

PS combined with this new resampling scheme.

References

[Besada-Portas et al., 2009] Besada-Portas, E., Plis, S.,

Cruz, J., and Lane, T. (2009). Parallel subspace sam-

pling for particle filtering in dynamic Bayesian net-

works. In Proc. of ECML PKDD, pages 131–146.

[Bhattacharyya, 1943] Bhattacharyya, A. (1943). On a

measure of divergence between two statistical popula-

tions defined by probability distributions. Bulletin of the

Calcutta Mathematical Society, 35:99–110.

[Chang and Lin, 2010] Chang, I.-C. and Lin, S.-Y. (2010).

3D human motion tracking based on a progressive par-

ticle filter. Pattern Recognition, 43(10):3621–3635.

[Chen, 2003] Chen, Z. (2003). Bayesian filtering: from

Kalman filters to particle filters, and beyond.

[Deutscher and Reid, 2005] Deutscher, J. and Reid, I.

(2005). Articulated body motion capture by stochas-

tic search. International Journal of Computer Vision,

61:185–205.

[Douc et al., 2005] Douc, R., Cappé, O., and Moulines, E.

(2005). Comparison of resampling schemes for parti-

cle filtering. In International Symposium on Image and

Signal Processing and Analysis, pages 64–69.

[Doucet et al., 2001] Doucet, A., de Freitas, N., , and Gor-

don, N., editors (2001). Sequential Monte Carlo meth-

ods in practice. Springer Verlag, New York.

[Gall, 2005] Gall, J. (2005). Generalised annealed particle

filter - mathematical framework, algorithms and appli-

cations. Master’s thesis, University of Mannheim.

[Gordon et al., 1993] Gordon, N., Salmond, D., and

Smith, A. (1993). Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. IEE Proc. of Radar

and Signal Processing, 140(2):107–113.

[Kitagawa, 1996] Kitagawa, G. (1996). Monte Carlo fil-

ter and smoother for non-Gaussian nonlinear state space

models. Journal of Computational and Graphical

Statistics, 5(1):1–25.

[Liu and Chen, 1998] Liu, J. and Chen, R. (1998). Se-

quential Monte Carlo methods for dynamic sys-

tems. Journal of the American Statistical Association,

93:1032–1044.

[MacCormick, 2000] MacCormick, J. (2000). Probabilis-

tic modelling and stochastic algorithms for visual local-

isation and tracking. PhD thesis, Oxford University.

[MacCormick and Blake, 1999] MacCormick, J. and

Blake, A. (1999). A probabilistic exclusion principle

for tracking multiple objects. In Proc. of ICCV, pages

572–587.

[MacCormick and Isard, 2000] MacCormick, J. and Isard,

M. (2000). Partitioned sampling, articulated objects, and

interface-quality hand tracking. In Proc. of ECCV, pages

3–19.

[Murphy, 2002] Murphy, K. (2002). Dynamic Bayesian

Networks: Representation, Inference and Learning.

PhD thesis, UC Berkeley.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in

Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufman.

[Rose et al., 2008] Rose, C., Saboune, J., and Charpillet,

F. (2008). Reducing particle filtering complexity for 3D

motion capture using dynamic Bayesian networks. In

Proc. of AAAI, pages 1396–1401.

