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Abstract

The symmetric rank-one update method is well-known in optimization for its applications in the
quasi-Newton algorithm. In particular, Conn, Gould, and Toint proved in 1991 that the matrix sequence
resulting from this method approximates the Hessian of the minimized function. Extending their idea,
we prove that the symmetric rank-one update algorithm can be used to approximate any sequence of
symmetric invertible matrices, thereby adding a variety of applications to more general problems, such as
the computation of constrained geodesics in shape analysis imaging problems. We also provide numerical
simulations for the method and some of these applications.

1 Introduction

Let d be an integer, f : Rd → R be a C2 function, and consider the problem of minimizing f over R
d. A

well-known efficient algorithm to numerically solve this minimization problem is Newton’s method: starting
at some point x0, it considers the sequence

xk+1 = xk − hkH(f)−1
xk

∇f(xk),

with ∇f the gradient of f , H(f) its Hessian, and hk > 0 some appropriate step.

However, very often the Hessian of f is too difficult to compute, leading to the introduction of the
so-called quasi-Newton methods. The method defines a sequence

xk+1 = xk − hkB
−1
k ∇f(xk),

where (Bk) is a sequence of symmetric matrices such that

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (1)

Indeed, since

∇f(xk+1)−∇f(xk) =

(
∫ 1

0
H(f)xk+t(xk+1−xk)dt

)

(xk+1 − xk) ≃ H(f)xk
(xk+1 − xk),

we get
Bk+1(xk+1 − xk) ≃ H(f)xk

(xk+1 − xk).

It is then expected that Bk is close to H(f)xk
in the direction sk = xk+1 − xk. See [3, 4, 5] for more.

There are many ways to build a matrix sequence (Bk) satisfying (1). However, it was proved in [2] and
[8] that some of these methods let Bk approximate H(f)xk

in all directions instead of just one, i.e.

‖Bk −H(f)xk
‖ →

k→∞
0 =⇒ ‖Bk −H(f)x∗

‖‖Bk −H(f)xk
‖ →

k→∞
0.
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with the additional assumption of the uniform linear independence of the sequence

sk = xk+1 − xk,

a notion that will be recalled later. In [2] for example, this is proved for the update of Bk by

yk = ∇f(xk+1)−∇f(xk) = Aksk, rk = Bksk − yk, Bk+1 = Bk +
rkr

T
k

rTk sk
, (2)

with

Ak =

∫ 1

0
H(f)xk+t(xk+1−xk)dt.

In this paper, our aim is to generalize the approach in [2] by defining the above symmetric rank-one
algorithm for any sequences of symmetric matrices (Ak) and vectors (sk), and derive a convergence result,
opening a wider range of applications.

For instance, if a sequence Ak converges to an invertible matrix A∗, we can use the above algorithm to
approximate the inverse A−1

∗ of the limit A∗. Indeed, let (e0, . . . , ed−1) be the canonical vector basis of Rd,
and define the sequence (sk) in R

d by

sk := Akek[d], yk = A−1
k sk = ek[d], (3)

where k[d] is the remainder of the Euclidean division of k by d. This sequence is uniformly linearly indepen-
dent, hence the sequence Bk defined by (2) will converge to A−1

∗ . This convergence might be a little slow
depending on the dimension d and the rate of convergence of Ak, but Bk is much easier to compute than
A−1

k .

This can be used to compute geodesics constrained to embedded submanifolds of Riemannian spaces.
Indeed, to obtain a geodesic between two fixed points of a submanifold, we need to find a converging sequence
of maps t 7→ λk(t) given implicitly by an equation of the form ([1])

Ak(t)λk(t) = ck(t),

where Ak(t) is a convergent sequence of symmetric, positive definite matrices of high dimension. The λk are
the Lagrange multipliers induced by the equations of the submanifold. It is very consuming to solve such a
linear system for every time t and every step k. Instead, we can take

λk(t) = Bk(t)ck(t),

with Bk(t) obtained by applying the symmetric rank-one algorithm described in the previous paragraph.
This is particularly useful in Shape Spaces, where the studied manifolds have a very high dimension and
a very complex metric. The present article was actually motivated by such a problem appearing in shape
analysis, investigated in [1].

This paper is structured as follows. We give the general framework in Section 2, then state the main
result after recalling two equivalent definitions of the uniform linear independence of a sequence of vectors
in Section 3. Then, Section 4 is dedicated to intermediary results that will, along with notions developed in
Section 5, derive the proof of our theorem.

2 Notations and symmetric rank-one algorithm

Consider a sequence (Ak)k∈N of real square symmetric matrices of size d. Assume that this sequence
converges to some matrix A∗, i.e.

‖Ak −A∗‖ →
k→∞

0,
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where ‖ · ‖ is the operator norm on Md(R) induced by the canonical Euclidean norm | · | on R
d. Then define

ηk,l = sup
k≤i≤l

‖Ai −Ak‖, and ηk,∗ = sup
i≥k

‖Ai −Ak‖

for all k ≤ l ∈ N. Note that

∀k ≤ l ∈ N, ηk,l ≤ ηk,∗ and ηk,∗ → 0 as k → ∞.

Now let (sk)k∈N be a sequence of vectors of Rd.

Recall that we want to find a somewhat simple sequence (Bk)k∈N of symmetric matrices such that Bk → A∗,
using only sk and yk = Aksk.

We use the symmetric rank-one update method from [2]. Start with B0 = Id. Then, define for k ∈ N

yk = Aksk, rk = (Ak −Bk)sk = yk −Bksk,

then take

Bk+1 = Bk +
rkr

T
k

rTk sk
.

It is of course required that rTk sk 6= 0 for every k.

3 Main Result

For every k, we have
Bk+1sk = Bksk + rk = Bksk + yk −Bksk = yk,

so
Aksk = Bk+1sk.

The main idea is that if Ak, Ak+1, . . . , Ak+m are not too far apart (i.e., for k large enough), we expect
Bk+msk+i to be relatively close to Ak+msk+i for i ≤ m. Then, if we can extract from every finite subsequence
(sk, . . . , sk+m) a vector basis of Rd, we will obtain the desired convergence.

For a more precise statement, we next define the notion of uniform linear independence. The most
intuitive and geometric definition is the following.

Definition 1 Take a sequence s = (sk)k∈N of vectors in R
d, d ∈ N

∗, and let m ≥ d be an integer. Then s

is said to be m-uniformly linearly independent if for some constant α > 0, and for all k ∈ N, there are d

integers k ≤ k1 < · · · < kd ≤ k +m such that

|det (sk1 , . . . , skd)| ≥ α|sk1 | . . . |skd |.

In other words, from every finite segment of (sk) of length m, we can extract a linear basis sk1 , . . . , skd that
will, once normalized, form a parallelepiped that does not become flat as k goes to infinity.

Another definition was given in [2] after [7] as follows.

Definition 2 A sequence s = (sk)k∈N of vectors in R
d, d ∈ N

∗, is said to be (m,β)-uniformly linearly

independent, where d ≤ m ∈ N and β ∈ R, if for all k ∈ N, there are d integers k ≤ k1 < · · · < kd ≤ k +m

such that
∣

∣

∣

∣

λ

(

sk1
|sk1 |

, . . . ,
skd
|skd |

)
∣

∣

∣

∣

≥ β,

where λ(M) is the complex eigenvalue of the square matrix M with smallest module.
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Remark: A sequence s = (sk) in R
d is (m,β)-uniformly linearly independent for some m ≥ d and β > 0

if and only it is m-uniformly linearly independent in the sense of Definition 1. Indeed, let v1, . . . , vd ∈ R
d,

and denote V =

(

v1

|v1|
, . . . ,

vd

|vd|

)

. If |λ(V )| ≥ β > 0, then det(V ) ≥ βd, which proves the first part of the

equivalence. On the other hand, we know that the eigenvalue of V with largest modulus has modulus less

than
√
d max
i=1,...,d

|ski |
|ski |

=
√
d. Now, assume that det(V ) ≥ α > 0. Then |λ(V )| ≥ α

d
d−1
2

, ensuring the second

part of the equivalence.

This definition is sufficient to state our main result.

Theorem 1 Let (Ak), (sk), (yk), (rk) and (Bk) be defined as in Section 2, with (Ak) having a limit A∗.
Assume that for some fixed constant c > 0,

|rTk sk| ≥ c|rk||sk|.

Then, for every β > 0 such that (sk) is (m,β)-uniformly linearly independent in the sense of Definition 2,

we have for all k ∈ N the quantitative estimates

‖Bk+m −A∗‖ ≤
(

1 +

(

2 + c

c

)m+1
) √

d

β
ηk,∗. (4)

The next sections are dedicated to the proof of this theorem.

4 First estimates

In this section, we give upper bounds on
∣

∣

∣

∣

(Bk+m −Ak)
sk

|sk|

∣

∣

∣

∣

,

and deduce estimates on
∣

∣

∣

∣

(Bk+m −A∗)x
|x|

∣

∣

∣

∣

for a particular set of x ∈ R
d.

Proposition 1 Let (Ak)k∈N be a sequence of real symmetric matrices in Md(R), d ∈ N, and (sk) be any

sequence in R
d. Define yk, Bk and rk as above. Assume that for some fixed constant 0 < c ≤ 1 and for all

k ∈ N,

rTk sk ≥ c|rk||sk|.
Then, for all l ≥ k + 1,

|(Ak −Bl)sk| ≤
(

2 + c

c

)l−k−1

ηk,l−1|sk|.

Proof: We prove this inequality by induction on l, with k ∈ N fixed. For l = k + 1, we know that
Bk+1sk = Aksk = yk, hence

|(Ak −Bk+1)sk| = 0.

We will use the notation

IH(l) :=

(

2 + c

c

)l−k−1

ηk,l−1|sk|,

where IH stands for Induction Hypothesis. Now, assume the result to be true for some l ≥ k + 1, i.e.

|(Ak −Bl)sk| ≤
(

2 + c

c

)l−k−1

ηk,l−1|sk| = IH(l). (5)
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Let us prove that

|(Ak −Bl+1)sk| ≤
(

2 + c

c

)l−k

ηk,l|sk| = IH(l + 1).

Note that

|(Ak −Bl+1)sk| = |Aksk − (Bl +
rlr

T
l

rTl sl
)sk|

= |Aksk −Blsk −
rlr

T
l sk

rTl sl
|

≤ |(Ak −Bl)sk|+
|rl||rTl sk|
c|rl||sl|

≤ IH(l) +
|rTl sk|
c|sl|

.

(6)

Let us find a bound for
|rT

l
sk|

c|sl| , the second term of the right-hand side. First we have

|rTl sk| = |yTl sk − sTl Blsk|
≤ |yTl sk − sTl yk|+ |sTl (yk −Blsk)|
= |yTl sk − sTl yk|+ |sTl (Ak −Bl)sk|
≤ |yTl sk − sTl yk|+ |sl|IH(l).

However, since Al is symmetric and yl = Alsl,

|yTl sk − sTl yk| = |sTl (Al −Ak)sk| ≤ ηk,l|sl||sk|,

from which we deduce
|rTl sk| ≤ ηk,l|sl||sk|+ IH(l)|sl|.

Going back to Inequality (6), we get

|(Ak −Bl+1)sk| ≤ IH(l) +
|rTl sk|
c|sl|

≤ IH(l) +
1

c
ηk,l|sk|+

1

c
IH(l)

= (1 +
1

c
)IH(l) +

1

c
ηk,l|sk|

=
1 + c

c

(

2 + c

c

)l−k−1

ηk,l−1|sk|+
1

c
ηk,l|sk|

≤
(

2 + c

c

)l−k

ηk,l|sk| = HI(l + 1),

where the last inequality comes from the simple fact that ηk,l−1 ≤ ηk,l. �

This proposition shows that if Ak, Ak+1, . . . , Al are not too far away from each other (i.e. if ηk,l is
small), then Blsk stays quantifiably close to Aksk.

Now, note that ‖A∗ − Ak‖ ≤ ηk,∗, and ηk,∗ decreases to 0 as k goes to infinity. Keeping the same
assumptions, we obtain the following result.

Corollary 1 Take m,k ∈ N, and let x ∈ R
d be in the span of sk, . . . , sk+m. If

x

|x| =
m
∑

i=0

λi
sk+i

|sk+i|
, λ0, . . . , λm ∈ R,
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then

|Bk+mx−A∗x|
|x| ≤ ηk,∗

(

1 +

(

2 + c

c

)m+1
)

m
∑

0

|λi|.

Proof: First, it follows from Lemma 1 that

|Bk+mx−A∗x|
|x| ≤

m
∑

i=0

|λk+i|
|sk+i|

|Bk+msk+i −A∗sk+i|

≤
m
∑

i=0

|λk+i|
|sk+i|

(

|Bk+msk+i −Ak+isk+i|+ |Ak+ms∗ −Ak+isk+i|
)

≤
m
∑

i=0

|λi|
(

(

2 + c

c

)i+1

ηk,k+m−1 + ηk,∗

)

.

Now, if we take

C(m) =

(

1 +

(

2 + c

c

)m+1
)

and use the fact that ηk,k+m ≤ ηk,∗, then we get

|Bk+mx−A∗x|
|x| ≤ ηk,∗C(m)

m
∑

0

|λi|.

The result follows. �

In particular, if we can let k go to infinity while keeping
m
∑

i=0

|λi| bounded, then we obtain Bk+mx → A∗x.

Thus, if we can do it for all x ∈ R
d, we will have proved that Bk → A∗.

In other words, we need every normalized vector x ∈ R
d to be a uniformly bounded linear combination of

sk, . . . , sk+m as k goes to infinity. In the next section of this paper, we will define a third notion of uniform
linear independence of a sequence directly related to to this property and prove that it is equivalent to the
previous definitions.

5 Uniform m-span of a sequence and applications

In order to investigate the subspace on which Bk → A∗, we need a notion that is more precise than uniform
linear independence.

Definition 3 Let s = (sk)k≥0 be a sequence in R
d, and let m ∈ N. We say that a vector x in R

d is uniformly

in the m−span of s if for some fixed γx > 0,

∀k ∈ N, ∃λ0, . . . , λm ∈ R
x

|x| =
m
∑

i=0

λi
sk+i

|sk+i|
and

m
∑

i=0

|λi| ≤ γx. (7)

We denote by USm(s) the set of all such vectors.

USm(s) is a vector sub-space of Rn. Moreover, there exists a constant γ > 0 such that Property (7) holds
for all x ∈ USm(s) with γx = γ, i.e.

∃γ > 0, ∀k ∈ N, x ∈ USm(s), ∃λ0, . . . , λm ∈ R,
x

|x| =
m
∑

i=0

λi
sk+i

|sk+i|
and

m
∑

i=0

|λi| ≤ γ. (8)
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To prove the existence of γ in (8), it suffices to consider an orthonormal basis (xi)i of USm(s), associated
with some constants (γxi

)1≤i≤d, in Property (7). Then we can just take γ = γx1
+ · · ·+ γxd

.

Remark: There holds USm(s) ⊂
∞
⋂

k=0

span(sk, . . . , sk+m).

Example: Define the sequence s = (sk) by

sk =







ek[d] when k[d] 6= n− 1,

e0 +
1

k
ed−1 when k[d] = n− 1,

where k[d] is the remainder of the Euclidean division of k by d. Then

USm(s) =

{

{0} if 0 ≤ m ≤ n− 2

span(e0, . . . , ed−2) otherwise.

Using this definition, a simple application of Corollary 1 gives the following result.

Proposition 2 Let (Ak), (sk), (yk), (rk) and (Bk) be defined as in Section 2, assuming that (Ak) has a

limit A∗ and that |rTk sk| ≥ c|rk||sk| for some fixed constant c > 0.
Then, for every m ∈ N

sup
x∈USm(γ)

|Bk+mx−A∗x|
|x| ≤ C(m)γηk,∗, (9)

where γ is taken from (8) and

C(m) =

(

1 +

(

2 + c

c

)m+1
)

.

Finally the main result follows by combining this proposition with the following lemma.

Lemma 1 Let s = (sk)k≥0 be a sequence in R
d, and let m ∈ N. Then s is (m,β)-uniformly linearly

independent if and only if USm(s) = R
d. Moreover, we can take γ =

√
d
β

in (8).

Proof: Let v1, . . . , vd be linearly independent elements of Rd and define the invertible matrix

V =

(

v1

|v1|
, . . . ,

vd

|vd|

)

.

Let Λ = (λ1, . . . , λd) ∈ R
d, and define x ∈ R

d a normalized vector such that

x =

d
∑

i=1

λivi = V Λ.

Then
d
∑

i=1

|λi| ≤
√
d|Λ| =

√
d|V −1x| ≤

√
d

|λ(V )| .

This proves that if a sequence s = (sk) in R
d is (m,β)-uniformly linearly independent, then USm(s) = R

d

and we can take γm(s) =
√
d
β
.

On the other hand, take x ∈ R
d a normalized such that

V −1TV −1x =
1

λ(V )2
x.
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Then, if denoting (λ1, . . . , λd) = Λ = V −1x,

1

|λ(V )| = |λ(V )| 1

|λ(V )|2 = |λ(V )||V −1TV −1x| = |λ(V )||V −1TΛ| ≤ |Λ| ≤
d
∑

i=1

|λi|,

which proves the converse. �

Our main result is proved.

6 Examples of applications and numerical simulations

In this section, after running numerical simulations of the algorithm on random symmetric matrices, we
check that the inverse of a sequence of matrices can indeed be approximated. Then we give an application
for computing constrained geodesics between two fixed points in Riemannian manifolds.

All simulations were done using Matlab.

6.1 Approximation of a sequence of matrices

Here we test the algorithm on random symmetric matrices with coefficients generated by a normalized
Gaussian law. Let d ∈ N

∗, which will denote the size of the matrices.
First we define a square symmetric matrix A∗ = 1

2 (M +MT ), where the entries of the d× d matrix M

were chosen at random using the normalized Gaussian law. Then, fix 0 < λ < 1, and define the sequence
(Ak) of symmetric matrices by perturbating A∗ as follows

Ak = A∗ +
λk

2
(Mk +MT

k ),

where Mk is a matrix with random coefficients taken uniformly in [0, 1].
Obviously, Ak → A∗ linearly as k → ∞.
Now, we define the sequence (Bk) thanks to the symmetric rank-one algorithm, starting with B0 = Id,

and the sequence (sk) by the formula
sk = ek mod d, k ∈ n,

where (e0, . . . , ed−1) is the canonical basis of Rd.

Using the classical norm given by the Euclidean product 〈X,Y 〉 = tr(XTY ) on the space of square
matrices of size n, we give in the following table the distance between Bk and A∗. We took d = 10, and
several values of λ for a various number of steps.

Number of steps 10 20 50 100

λ =0.9 4 2 0.1 0.005

λ =0.5 1 1e-3 1e-12 0

λ =0.1 0.02 2e-12 0 0

In the case of the usual quasi-Newton method ([7], the goal is to approximate the inverse of the Hessian
H(f) of some function f on R

d. For this, we get a sequence of points xk converging to the minimum x∗,
and we define

sk := xk+1 − xk,

Ak :=

∫ 1

0
H(f)xk+tskdt,

yj := Aksk = ∇g(xk+1)−∇g(xk).

Then limk→∞Ak = H(x∗).

This is a perfect example of a situation where it is easy to compute Aksk for some particular sk, but
where it might be much harder to compute the actual Ak (or just H(xk) for that matter). A large number
of numerical simulations showing the efficiency of the symmetric rank-one algorithm can be found in [2].
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6.2 Approximation of the inverse of a sequence

As mentioned in the introduction, another application is the computation of the inverse A−1
∗ of the limit

A∗, provided A∗ is invertible.

Indeed, consider the following sequences for the symmetric rank-one algorithm

sk := Akek mod d, yk = A−1
k sk = ek mod d. (10)

Then the sequence (sj) is (d, β)-linearly independent for some β > 0 (at least starting at some k0 large
enough). Therefore, the sequence Bk will converge to A−1

∗ . This convergence might be a bit slow depending
on the dimension d and the rate of convergence of Ak, but Bk is much easier to compute than A−1

k .
This can be useful when solving approximately converging sequences of linear equations, as we will show

in the next section.

In the following numerical simulation, we used the same sequence (Ak) with random coefficients as in
the previous section, with (Ak) converging linearly to a random matrix A∗ with rate λ = 0.5. We then
computed the distance between Bk and A−1

∗ . We also added an extra test. Indeed, the form of the sequence
sk in (10) has no reason to be particularly good (i.e. uniformly linearly independent with a nice constant).
Therefore, we applied the algorithm by taking a random vector yk with coefficients taken along a normal
Gaussian law at each step and sk = Akyk.

Number of steps 10 20 50 100

yk = ek mod d 0.5 (300) 0.001 (0.2) 1e-7 (1e-4) 1e-13 (1e-11)

yk random 1 (500) 0.01 (0.5) 1e-6 (1e-3) 1e-13 (1e-10)

For each case, we performed twenty experiments. Each entry in the previous table gives the mean value
of the distance between Bk and A−1

∗ , with the highest value obtained in parentheses. This number can be
significantly larger than the mean because of the randomness of A∗, which can cause it to be almost singular,
leading the algorithm to behave badly as the sk are less uniformly linearly independent with this method.

This experiment shows that taking yk random is not as efficient as taking yk to periodically be equal to
the canonical basis of Rd.

6.3 An application: constrained optimisation

Consider the following control system on R
d

ẋ = Kx(t)u(t), u ∈ R
d,

withKx a semi-positive symmetric matrix with coefficients of class C2. This corresponds to a sub-Riemannian
control system where u is the momentum of the trajectory and Kx the co-metric at x ([6]). This is a very
natural formulation for problems of shape analysis, see [1].

Take C ∈ Ml,d(R) such that the l × l matrix

Ax = CKxC
T

is invertible for every x ∈ R
d, and take an initial point x0 ∈ R

d such that Cx0 = 0.

We consider the optimal control problem of minimizing

L(u) =
1

2

∫ 1

0
u(t)TKx(t)u(t)dt+ g(x(1)), where ẋ = Kx(t)u(t),

over all possible u ∈ L2([0, 1],Rd) such that

CKx(t)u(t) = 0 a.e. t ∈ [0, 1].
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This is the same as minimizing L(u) over trajectories that stay in the sub-space ker(C). According to
the Pontryagin Maximum Principle ([1, 9]), if u is optimal for this constrained problem, then there exists
p ∈ W 1,2([0, 1],Rd) such that p(1) + dgx(1 = 0, and







ẋ = Kx

(

p− C ′A−1
x CKxp

)

,

ṗ = −1

2

(

p− C ′A−1
x CKxp

)T
Kx

(

p−C ′A−1
x CKxp

)

.
(11)

for almost every t ∈ [0, 1]. Moreover,

L(u) = L̃(p(0)) =
1

2

(

p(0)− C ′A−1
x(0)CKx(0)p(0)

)T

Kx(0)

(

p(0)− C ′A−1
x(0)CKx(0)p(0)

)

+ g(x(1)). (12)

Since (11) is an ordinary differential equation, and since the minimization of L reduces to the minimization
of L̃ with respect to the initial momentum p0 = p(0). Then, the computation the gradient of L̃ requires
solving an adjoint equation with coefficients depending on the derivatives of the right-hand side of (11).
This is described in more details in [1].

One of the most time-consuming aspects of this method is the computation, at each time step, of the
inverse of Ax. Therefore, we applied the Quasi-Newton Algorithm as follows.

For any k ∈ N, define yk = ek mod d. We start with the initial momentum p0 = 0, and let B0(t) = Idl
for all t ∈ [0, 1]. Then, assuming we have constructed an initial momentum pk and a family of matrices
Bk(t), t ∈ [0, 1], we use (11) to compute a trajectory xk(t), replacing A−1

x by Bkt. Finally, at each time t,
we define

sk(t) = Axk(t)yk,

rk(t) = Bk(t)sk(t)− yk,

Bk+1(t) = Bk(t) +
rk(t)r

T
k (t)

rTk (t)sk(t)
.

We can then compute the gradient of L̃ with an adjoint equation, where any derivative

∂x(Axk(t))
−1 = −A−1

xk(t)
∂xAxk(t)A

−1
xk(t)

is replaced by −Bk(t)∂xAxk(t)Bk(t). This allows the minimization of L̃ using gradient descent or a regular
quasi-Newton algorithm.

As long as the algorithm gives a converging sequence of initial momenta pk, the trajectories xk(t) will
also converge to a trajectory x∗(t), making each Axk(t), with t ∈ [0, 1] fixed, a converging sequence, with
invertible limit A∗(t). Therefore, each Bk(t), t ∈ [0, 1] fixed, converges to A∗(t) as k → ∞. In other words,
as k → ∞, we are indeed computing the true gradient of L̃.
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