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Abstract. We consider the optimal distribution of several elastic materials in a fixed working domain. In

order to optimize both the geometry and topology of the mixture we rely on the level set method for the de-
scription of the interfaces between the different phases. We discuss various approaches, based on Hadamard

method of boundary variations, for computing shape derivatives which are the key ingredients for a steep-

est descent algorithm. The shape gradient obtained for a sharp interface involves jump of discontinuous
quantities at the interface which are difficult to numerically evaluate. Therefore we suggest an alternative

smoothed interface approach which yields more convenient shape derivatives. We rely on the signed distance

function and we enforce a fixed width of the transition layer around the interface (a crucial property in order
to avoid increasing ”grey” regions of fictitious materials). It turns out that the optimization of a diffuse

interface has its own interest in material science, for example to optimize functionally graded materials.

Several 2-d examples of compliance minimization are numerically tested which allow us to compare the
shape derivatives obtained in the sharp or smoothed interface cases.

Key words: Shape and topology optimization, multi-materials, signed distance function.

1. Introduction

Structural optimization has dragged the interest of an increasing number of engineers during the last
decades. It provides valuable help in problems where mechanical intuition is limited. One instance of such
a problem, which is of great relevance in material science and industry, is to find the optimal distribution of
several materials in a fixed working domain, in order to minimize a criterion related to the overall mechanical
behavior or cost of the phases mixture.

A crucial issue in the modeling of this problem is the parametrization of the phases mixture. While the
exact formulation requires the material properties, or the global Hooke’s tensor, to be discontinuous at the
interfaces between two materials, it is often convenient, for numerical purposes, to devise an appropriate
interpolation scheme to smoothen the coefficients or equivalently to replace sharp interfaces by diffuse ones.
This diffuse or smeared interface approach has its own interest when one is interested in the optimization of
functionally graded materials [11], [30], [47], [51], [52].

There is already a vast literature about multiphase optimization and various methods have been proposed
to address this problem. The Hadamard method of geometric shape optimization, as described in [21], [27],
[36], was used, for example, in [26] for optimal composite design. The homogenization method [1], [17], [50]
was the main tool in the multiphase problem studied in [3] for the optimal reloading of nuclear reactors
(sequential laminates were shown to be optimal composite materials). In the framework of the SIMP (Solid
Isotropic Material with Penalization) method, several interpolation schemes have been proposed for the
mathematical formulation of the Hooke’s tensor of the mixture [9], [49], [57]. In general, material interpola-
tion schemes can be quite involved [57] and one may design such a model in order to favor certain phases [49].
Applications range from the design of materials with extreme or unusual thermal expansion behavior [44] to
multi-material actuators [45], through conductivity optimization for multi-phase microstructural materials
[59]. In the framework of the phase-field method, a generalized Cahn-Hilliard model of multiphase transition
was implemented in [58] to perform multimaterial structural optimization.

The first publications on multiphase optimization, using the level set method, are [33] and [55] (see
also [34], [54], [56]). Following an idea of Vese and Chan [53], the authors in [33], [55] used m level set
functions to represent up to n = 2m materials: we shall adhere to this setting (see section 5). The level
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set functions are advected through eikonal Hamilton-Jacobi equations in which the normal velocity is given
by the shape derivative of the objective function. Unfortunately, the shape derivatives, derived in [33]
and [55], are not correct in full mathematical rigor as we explain in section 4. Fortunately, these shape
derivatives are approximations of the correct formula upon various assumptions. A first goal of the present
paper is to clarify the issue of shape differentiability of a multiphase optimization problem. In section 2
we give the correct shape derivative in the setting of a sharp interface between phases (see Proposition
2.2). It was first obtained in [5] for a problem of damage and fracture propagation but, in a scalar setting,
previous contributions can be found in [28], [10], [41]. Because the phase properties are discontinuous through
the interfaces, the transmission conditions imply that only the elastic displacement and the normal stress
are continuous at the interfaces, leaving the tangential stress and the normal strain discontinuous. These
discontinuities yield obvious difficulties which must be handled carefully. The exact or continuous shape
derivative turns out to be somehow inadequate for numerical purposes since it involves jumps of strains and
stresses through the interfaces, quantities which are notably hard to evaluate with continuous finite elements.
Therefore, Proposition 2.5 gives a discrete variant of this shape derivative which does not involve any jumps
and is similar to the result of [33] and [55]. The idea is to consider a finite element approximation of the
elasticity system, the solution of which has no derivative jumps through the interface, implying that the
shape derivative is much easier to compute.

Another delicate issue in multiphase optimization using the level set method is that the interface is in-
evitably diffuse and its thickness may increase, thus deterioring the peformance of the analysis and eventually
of the optimization. Note that, for most objective functions, it is always advantageous to introduce inter-
mediate values of the material properties, so that the interface spreading is produced by the optimization
process itself and not merely by the numerical diffusion. In [33] the authors introduced a penalization term
to control the width of the interpolation zone between the materials. In [55] the level set functions are
re-initialized to become signed distance functions, which permits a more explicit control of the interpolation
width. A second goal of the present paper is to propose a smoothed interface setting which guarantees a
fixed thickness of the interface without any increase in its width (as it is already the case in the standard
single material level set method for shape and topology optimization). In section 3 we describe a regular-
ization of the interface which relies on the signed distance function to the interface. Note that the signed
distance function has nothing to do with the level set function which is used in numerical simulations. In-
deed, the solution of the advection Hamilton-Jacobi equation (with a velocity given by the shape derivative)
is usually not the signed distance function (which explains why reinitialization is often used in practice). In
such a smoothed interface setting our main result is Theorem 3.14 which gives the shape derivative of the
objective function. It requires several intermediate technical results, notably finding the shape derivative
of the distance function (first obtained in [22]) and using a coarea formula to reduce a volume integral to
a product integral on the interface and along normal rays. Once again, we show in section 3.5 that, when
the regularization parameter (or the thickness of the diffuse interface) is vanishingly small, the exact shape
derivative can be approximated by the formula already obtained in Proposition 2.5 which corresponds to the
result of [33] and [55] too.

Section 3.6 explains how the smoothed interface model converges to the sharp interface problem as the
regularization parameter goes to zero. Next, section 4 is devoted to a comparison with [33] and [55]. Since,
for simplicity, all the previous theoretical results were stated in the case of a single interface between two
phases, we explain how to generalize our smoothed interface setting to more materials in section 5. Finally,
in section 6 we show several 2-d results and make comparisons between the different settings and formulas
for the shape derivatives. Some optimal designs obtained by our approach are compared to those previously
computed in [55] and [56]: ours are more symmetric and sometimes slightly different. We believe it is due
to our use of a correct shape derivative instead of an approximate one. We also compute optimal designs
of functionally graded materials, i.e., pure phases separated by a diffuse interface of constant thickness (see
subsection 6.3 and [52] for more examples). This is a unique feature of our approach, compared to the
previous works in the literature.

2



2. Sharp-interface formulation in a fixed mesh framework

To simplify the exposition in the first sections we limit ourselves to the case of two materials. Of course,
the proposed approach extends to more phases and the corresponding details are given in section 5.

2.1. Description of the problem.

The general purpose of this paper is to optimize the position of the interface Γ between two linear
elastic materials, hereafter labeled as 0 and 1, with respective Hooke’s laws A0, A1. These materials fill two
respective subdomains Ω0,Ω1 of a (bounded) working domain D of Rd, (d = 2 or 3) which accounts for the
resulting structure of the optimal distribution of materials, i.e. D = Ω0 ∪ Γ ∪ Ω1. To avoid mathematical
technicalities, we assume that Γ is a smooth surface without boundary and strictly included in D, that is,
Γ ∩ ∂D = ∅. We refer to Ω1 as the exterior subdomain, so that ∂Ω0 = Γ (see Figure 1). Thus, the shape of
the interface Γ is altogether conditionned by that of Ω0, and conversely. In the sequel, the variable of shape
optimization is denoted either by Γ or Ω0, without distinction.

D

Ω0

Ω1

Γ

Figure 1. Fixed working domain D occupied by two distinct materials Ω0 and Ω1 separated
by a smooth interface Γ.

The structure D is clamped on a part ΓD ⊂ ∂D of its boundary, and is submitted to body forces and
surface loads, to be applied on a part ΓN ⊂ ∂D, which are given as two vector-valued functions defined on
D, respectively f ∈ L2(D)d, and g ∈ H1(D)d.

Perhaps the most natural and physical way to model such a distribution of two materials among a fixed
working domain is the so-called sharp-interface formulation. More specifically, the total Hooke’s law on D
is defined as Aχ := A0χ0 + A1χ1, where χi stands for the characteristic function of the phase Ωi. In this
context, the displacement field u is the unique solution in H1(D)d to the linearized elasticity system

(1)

 −div (Aχ e(u)) = f in D
u = 0 on ΓD

(A1 e(u))n = g on ΓN ,

where e(u) =
t∇u+∇u

2 is the strain tensor, and n stands for the outer unit normal vector to ∂D.

Our purpose is to minimize an objective function of the interface Γ, which is rather expressed as a function
J(Ω0) of the interior subdomain,

(2) J(Ω0) =

∫
D

j(x, u) dx+

∫
ΓN

k(x, u) ds,
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where j(x, u) and k(x, u) are smooth functions satisfying adequate growth conditions. A typical example is
the compliance of the structure D (the work done by the loads), which reads

(3) J(Ω0) =

∫
D

f · u dx+

∫
ΓN

g · u ds =

∫
D

Aχ(x)e(u) : e(u)dx.

Of course, the minimization of (2) or (3) is complemented by a volume constraint on the phase A0. In
particular, it is often a requirement in order to avoid obvious designs made of only one phase.

We do not discuss the well-posedness of this optimal design problem. Let us simply recall that the
minimization of (2) or (3) usually does not admit a solution in the class of open subsets Ω0 ⊂ D. Exis-
tence of an optimal shape is rather obtained with some additional smoothness or geometrical or topological
constraints (e.g. imposing a uniform bound on the perimeter of Ω0, i.e., on the measure of the interface Γ
[8], or a constraint on the regularity of admissible shapes [16] or on their maximum number of ‘holes’ [14, 48]).

2.2. Shape-sensitivity analysis of the sharp-interface problem.

There exists a vast literature on the Hadamard method for computing derivatives with respect to the
exterior boundary (see e.g. [2], [21], [27], [36] and references therein) but relatively few works on the
derivation with respect to an interface between two regions. In the conductivity context (i.e. replacing (1)
by a scalar equation), derivatives with respect to an interface have been obtained in [28], [10], [41]. These
results were extended to the elasticity setting in [5]. Let us also mention the works [29], [38] where similar
results are obtained for a stratified media (where the interfaces are flat and parametrized by a single scalar
parameter).

We briefly recall the definition of shape differentiation in the present context of interface variations. For
a smooth open subset Ω0 ⊂ D, we consider variations of the type(

Id+ θ
)
(Ω0) :=

{
x+ θ(x) for x ∈ Ω0

}
,

with θ ∈W 1,∞(D;Rd) such that θ is tangential on ∂D (this last condition ensures that D = (Id+ θ)D). It
is well known that, for sufficiently small θ, (Id+ θ) is a diffeomorphism in D.

Definition 2.1. The shape derivative of a function J(Ω0) is defined as the Fréchet derivative in W 1,∞(D;Rd)
at 0 of the application θ → J

((
Id+ θ

)
Ω0
)
, i.e.

J
((
Id+ θ

)
Ω0
)

= J(Ω0) + J ′(Ω0)(θ) + o(θ) with lim
θ→0

|o(θ)|
‖θ‖W 1,∞

= 0 ,

where J ′(Ω0) is a continuous linear form on W 1,∞(D;Rd).

As noticed in [5] and [41], the essential ingredients that must be considered in the calculation of the
shape derivative of a problem such as (1) are the transmission conditions and the differentiability of the
solution u with respect to the interface Γ. Furthermore, when a numerical implementation is sought, an
additional element must be taken into account: the way in which the transmission conditions (continuity of
the displacement and continuity of the normal stress across the interface) are interpreted by finite element
methods in a fixed mesh framework. In general these methods either partially preserve the transmission
conditions (e.g. classical Lagrange finite elements method) or exactly preserve the transmission conditions
(e.g. extended finite elements XFEM [46], adapted interface meshing [18], etc.).

It is known [5], [41] that the solution u ∈ H1(D) of (1) is not shape differentiable with respect to the
interface Γ. The reason is that some spatial derivatives of u are discontinuous across the interface because
of the jump of the material elastic properties. Note however that the transported (or pull-back) function
uθ := u ◦ (Id + θ) is indeed differentiable with respect to θ (this is the difference between the material
derivative in the latter case and the shape derivative in the former case, see [2], [27]). It is not necessary to
use the concept of material derivative for computing the shape derivative of the objective function. One can
stay in a Eulerian framework and use Céa’s formal Lagrangian method [13] to find the correct formula for
the shape derivative J ′(Ω0)(θ). In order to circumvent the non-differentiability of u, the idea is to introduce
the restrictions of u on Ω0 and Ω1, denoted by u0 := u|Ω0 and u1 := u|Ω1 .
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We recall the result of [5] for the shape derivation of the objective function (2). We need to introduce
some notations about jumps through the interface Γ. For any quantity s which is discontinuous across Γ,
taking values s0 (resp. s1) on Ω0 (resp. Ω1), denote as [s] = s1 − s0 the jump of s. We also introduce
at each point of Γ the local basis obtained by gathering the unit normal vector n (pointing outward Ω0)
and a collection of of unit tangential vectors, denoted by τ , such that (τ, n) is an orthonormal frame. For a
symmetric d× d matrix M, written in this basis, we introduce the notation

M =

(
Mττ Mτn

Mnτ Mnn

)

where Mττ stands for the (d− 1)× (d− 1) minor of M, Mτn is the vector of the (n− 1) first components
of the n-th column of M, Mnτ is the row vector of the (n− 1) first components of the n-th row of M, and
Mnn the (n, n) entry of M. Finally, we define the adjoint problem

(4)

 −div (Aχ e(p)) = −j′(x, u) in D,
p = 0 on ΓD,

(A1 e(p))n = −k′(x, u) on ΓN ,

where the symbol ′ denotes differentation with respect to u.

Proposition 2.2. The shape derivative of the cost function J , defined in (2), reads

J ′(Ω0)(θ) = −
∫

Γ

D(u, p) θ · nds,

(5) D(u, p) = −σ(p)nn : [e(u)nn]− 2σ(u)nτ : [e(p)nτ ] + [σ(u)ττ ] : e(p)ττ .

where [·] = ·1 − ·0 denotes the jump through Γ, n = n0 = −n1 and σ(v) = Aχ e(v).

Remark 2.3. To better appreciate the expression (5) where some terms have jumps and others not, we recall
that the tangential strain tensors e(u)ττ and e(p)ττ are continuous through the interface Γ while the normal
components e(u)nn, e(u)nτ , e(p)nn and e(p)nτ are discontinuous. On the contrary, the normal components
of the stress tensors σ(u)nn, σ(u)nτ , σ(p)nn and σ(p)nτ are continuous through Γ while their tangential parts
σ(u)ττ and σ(p)ττ are discontinuous.

Proof. We merely sketch the proof that can be found in [5]. In order to apply Céa’s Lagrangian method [13],
we first introduce the restrictions of u on Ω0 and Ω1, denoted by u0 := u|Ω0 and u1 := u|Ω1 , which satisfy
the transmission problem:

(6)


−div

(
A1 e(u

1)
)

= f in Ω1

u1 = 0 on ΓD ∩ ∂Ω1(
A1 e(u

1)
)
n = g on ΓN ∩ ∂Ω1

u1 = u0 on Γ
(A0e(u

0))n0 + (A1e(u
1))n1 = 0 on Γ,

and

(7)

 −div
(
A0 e(u

0)
)

= f in Ω0

u1 = u0 on Γ
(A0e(u

0))n0 + (A1e(u
1))n1 = 0 on Γ.
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Of course, (1) and (6)-(7) are equivalent. Note that, by standard regularity theory [32], u is smooth on each
subdomain, namely u0 ∈ H2(Ω0) and u1 ∈ H2(Ω1). Then, we define the Lagrangian

L(θ, v1, v0, q1, q0) =
∑
i=0,1

(∫
(Id+θ)Ωi

j(x, vi)dx+

∫
ΓN

k(x, vi)ds

)
(8)

+
∑
i=0,1

(∫
(Id+θ)Ωi

Aie(v
i) : e(qi)dx−

∫
(Id+θ)Ωi

f · qidx−
∫

ΓN

g · qids
)

+
1

2

∫
(Id+θ)Γ

(σ1(v1) + σ0(v0))n · (q1 − q0)ds

+
1

2

∫
(Id+θ)Γ

(σ1(q1) + σ0(q0))n · (v1 − v0)ds,

where the last two surface integrals account for the transmission conditions. Differentiating L with respect
to q1, q0 yields the state equations (6)-(7), while differentiating with respect to v1, v0 leads to the adjoint
equation (4). Then a standard, albeit nasty, computation (see [5] for full details) shows that

J ′(Ω0)(θ) =
∂L
∂θ

(0, u1, u0, p1, p0)(θ),

which yields the result. �

Remark 2.4. Proposition 2.2 can be extended in several ways. For example, if the integrand j depends on
χ, namely if the objective function is

J(Ω0) =

∫
D

jχ(x, u)dx+

∫
ΓN

k(x, u)ds :=
∑
i=0,1

∫
Ωi
ji(x, u)dx+

∫
ΓN

k(x, u)dx,

we obtain a shape derivative which is

J ′(Ω0)(θ) = −
∫

Γ

(
[jχ(x, u)] +D(u, p)

)
θ · nds,

with the same expression (5) for D(u, p).

Although formula (5) for the shape derivative makes perfect sense in a continuous setting, its numerical
discretization is not obvious. Indeed, (5) involves jumps through the interface which are difficult to evaluate
from a numerical point of view if the interface is not exactly meshed. Let us explain the difficulty by making
some specific discretization choices, keeping in mind that any other numerical method will feature similar

drawbacks. Suppose D is equipped with a conformal simplicial mesh Dh =
⋃N
i=1Ki with N elements Ki of

maximal size h. Let Π1(Dh) and Π0(Dh) be the finite-dimensional spaces of Lagrange P1, respectively P0,
finite element functions. Define uh, ph ∈ Π1(Dh) the internal approximations of u and p respectively, i.e.,

(9)

∫
D

Aχe(uh) : e(vh) dx =

∫
D

f · vh dx+

∫
ΓN

g · vh ds, ∀vh ∈ Π1(Dh),

and

(10)

∫
D

Aχe(ph) : e(vh) dx = −
∫
D

j′(x, uh) · vh dx−
∫

ΓN

k′(x, uh) · vh ds, ∀vh ∈ Π1(Dh).

Since the discrete strain tensors e(vh) are constant in each cell Ki, we can replace Aχ in the above internal
approximate variational formulation by its P0 interpolate A∗ defined by

A∗|K = ρA0 + (1− ρ)A1, with ρ =

∫
K

χdx.

Within this discretized framework the naive evaluation of the jumps in (5) has no meaning. Indeed, consider
the generic case of an element K cut in its interior by the interface Γ (see Figure 2). For P1 Lagrange finite
elements the strain tensors e(vh), for vh = uh, ph, are constant in K, thus yielding a zero jump. Similarly, if
the stress tensors are evaluated as σh = A∗e(vh), they are constant in K and their jump is again zero, leading
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to a vanishing shape derivative ! There is an alternative formula for the stress tensor which is σh = Aχe(vh):
it yields a non-vanishing jump [A]e(vh) and the discretization of (5) would be

(11) (D(u, p))h = ([A]e(u))ττ : e(p)ττ ,

which is different from the discrete formula (13) by lack of any normal components. On the same token, note
that the ”exact” continuity of the normal stress through Γ does not hold for σh = Aχe(vh) with vh = uh, ph
since

[σhn] = ([A]e(vh))n 6= 0.

Γ

A∗ = ρA0 + (1− ρ)A1

u0h = u1h

(σ0(u0h))n 6= (σ1(u1h))n

(σ∗(u0h))n = (σ∗(u1h))n

A1

A0

Figure 2. Transmission condition in a fixed mesh framework.

Therefore, some special care is required for the numerical approximation of (5). A complicated process
was proposed in [5] for computing the jump of a discontinuous quantity sh, based on the diffuse interface
approximation

(12) [sh] ≈
(

(1− χ)sh − χsh
)
.

Notwithstanding this approximation seems to work well when the contrast between the two elastic phases
is very large (as is the case in damage or fracture models, see [5]), more general numerical experiences for
comparable elastic moduli indicate a much worse behavior of this approximation, up to the point that (5)
does not any longer provide a proper descent direction to minimize (2) (see section 6.2).

This difficulty in the numerical evaluation of the shape derivative (5) is just another example of the well-
known paradigm ”should we differentiate first and then discretize or vice versa ?” as already studied in [39].
In order to get around this issue it is tempting, and we do so now, to investigate the case when we first
discretize and then differentiate. In other words we consider the objective function

Jh(Ω0) =

∫
D

j(x, uh) dx+

∫
ΓN

k(x, uh) ds,

where uh ∈ Π1(Dh) is the discrete solution of (9).

Proposition 2.5. Assume that the interface Γ generically cuts the mesh Dh, namely that it is never aligned
with part of a face of any cell Ki. Then, the solution uh of (9) is shape differentiable and the shape derivative
of the cost function Jh is given by

(13) J ′h(Ω0)(θ) = −
∫

Γ

[Aχ]e(uh) : e(ph) θ · nds,

where [·] denotes the jump through Γ and ph is the solution of (10).

Remark 2.6. Note that Proposition 2.5 holds true for most finite elements discretization and not merely
P1 Lagrange finite elements. The assumption on the interface Γ is necessary in the sense that, if a face of
an element K of the mesh is embedded in Γ, then neither uh nor Jh are shape differentiable (in the most
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favorable case, there would be two directional derivatives corresponding to Γ moving on one side or on the
other of this face of K). However, if instead of Lagrange finite elements, we use Hermite finite elements which
ensure that e(uh) is continuous on D, then the results of Proposition 2.5 hold true without any assumption
on Γ.

Proof. Let us denote by φi(x) the basis functions of the finite element space Π1(Dh). The solution uh ∈
Π1(Dh) is decomposed as

uh(x) =
∑
i

Uhi φi(x),

and the vector Uh of components Uhi is the solution of the linear system

KhUh = Fh,

where the stiffness matrix Kh and the right hand side Fh are defined as

Kh
i,j =

∫
D

Aχe(φi) : e(φj) dx, and Fhi =

∫
D

f · φi dx+

∫
ΓN

g · φi ds.

The basis functions φi are independent of Γ so the shape differentiability of the function uh reduces to that
of the vector Uh and thus of the rigidity matrix Kh. Since the quantity e(φi) : e(φj) is piecewise constant
on each element K, we need our assumption on Γ which does not overlap any face of K. In such a case we
obtain (

Kh
ij

)′
(Γ)(θ) =

∫
Γ

[Aχ]e(φi) : e(φj) θ · nds

and thus

u′h(Γ)(θ) =
∑
i

(
Uhi
)′

(Γ)(θ)φi, where
(
Uh
)′

(Γ)(θ) = −(Kh)−1
(
Kh
)′

(Γ)(θ)Uh.

Once uh is shape differentiable, it is not necessary anymore to consider a complicated Lagrangian like (8),
taking into account the transmission conditions through Γ (which, by the way, do not hold true for uh).
Therefore we define a discrete Lagrangian as

Lh(θ, vh, qh) =

∫
D

j(x, vh) dx+

∫
ΓN

k(x, vh) ds+

∫
D

A(Id+θ)χe(vh) : e(qh) dx−
∫
D

f · qh dx−
∫

ΓN

g · qh ds,

to which it is easy to apply Céa’s method. Note that the adjoint problem obtained by differentiating Lh
with respect to vh is exactly (10) which was a discretization of the continuous adjoint. Therefore we deduce

J ′h(Ω0)(θ) =
∂Lh
∂θ

(0, uh, ph)(θ),

which yields the desired result. �

There is a clear difference between the discrete derivative (13) and the continuous one (5). Even if the
continuous derivative is further discretized as suggested in (11), there is still a difference between (13) and
(11) which is that the latter one is restricted to the tangential components of the stress and strain tensors.

There is however one case where both formulas coincide which is when one of the phases is void. Indeed,
assume that A0 = 0 (and similarly that f = 0 and j = 0 in Ω0 so that no loads are applied to the void
region). Then, in the domain Ω0 we have

σ(p)nn = 0, σ(p)nτ = 0, σ(u)nn = 0 and σ(u)nτ = 0.

Thus, we deduce that the continuous derivative (5) becomes

J ′(Ω0)(θ) = −
∫

Γ

σ(u1)ττ : e(p1)ττ θ · nds,

which, upon discretization, coincides with the discrete derivative (13)

J ′h(Ω0)(θ) = −
∫

Γ

A1e(uh) : e(ph) θ · nds,

since σ(u1)nn = σ(u1)nτ = 0 on Γ.
8



The above study shows that the numerical discretization of the sharp-interface problem should be handled
carefully when a standard finite element method is used for solving the state and adjoint systems (1) and
(4) in a fixed mesh setting. The main reason of this difficulty lies in the difference of regularity of the exact
and approximated solutions through the interface. The discrete derivative (13) is very efficient in numerical
practice. Many examples are given in [20] in the context of optimal design of laminated composite panels.

3. Shape derivative in the smoothed-interface context

3.1. Description of the problem.

We now present an alternative approach to that of section 2 which can be coined as smoothed or diffuse
interface approach. It can be seen as a mathematically convenient approximation of the sharp-interface
problem but, as explained in the introduction, it has its own merits for some problems in material science
which feature physically thick transition zones [11], [47], [51], [52]. More precisely, either for a mathematical
approximation or for physical reasons, it may be desirable to model the interface Γ between Ω0 and Ω1 as a
thin layer of (small) width 2ε > 0 rather than as a sharp interface. In this context, we rely on the notion of
signed distance function.

Definition 3.1. Let Ω ⊂ Rd be a Lipschitz open set. The signed distance function dΩ : Rd → R to Ω is
defined as

(14) dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω
d(x, ∂Ω) if x ∈ cΩ

,

where d(·, ∂Ω) is the usual Euclidean distance to the boundary ∂Ω.

The material properties in D are defined as a smooth interpolation between A0 and A1 in the layer of
width 2ε around Γ, so that the resulting Hooke’s tensor AΩ0,ε reads

(15) AΩ0,ε(x) = A0 + hε(dΩ0(x))(A1 −A0), ∀x ∈ D,

where hε : R→ R is a smooth approximation of the Heaviside function, that is, a smooth monotone function
enjoying the properties : hε(t) = 0 for t < −ε, hε(t) = 1 for t > ε. In the sequel, we chose the C2 function

(16) ∀ t ∈ R, hε(t) =

 0 if t < −ε
1
2

(
1 + t

ε + 1
π sin(πtε )

)
if − ε ≤ t ≤ ε

1 if t > ε.

Remark 3.2. Formula (16) expresses a simple choice for the interpolation of the material properties between
the two materials, and of course, one could think of different interpolation rules. Moreover, the interpolation
function could also contain parameters that are themselves subject to optimization (e.g. the layer width
ε) and both a geometric and parametric optimization could be combined using a method of alternating
directions.

We modify (1) so that the elastic displacement now solves

(17)

 −div
(
AΩ0,ε e(u)

)
= f in D

u = 0 on ΓD
(A1 e(u))n = g on ΓN .

The objective function does not change and we still minimize (2) which depends on dΩ0 through (15). Before
we compute its shape derivative, we need to recall some properties of the signed distance function dΩ0 . This
is the purpose of the next subsections.
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3.2. Shape differentiability of the signed distance function.

The purpose of this section is to recall some results on the signed distance function and to explore its
shape differentiability which holds in a non-classical and subtle sense (see below for details). For simplicity
we drop the index 0 of Ω0 in the sequel. For a Lipschitz bounded domain Ω ⊂ D we consider shape varia-
tions in the sense of Hadamard as in Definition 2.1, i.e., (Id+θ)Ω, for a (small) vector field θ ∈W 1,∞(D,Rd).

Let us start by collecting some definitions (see Figure 3 for a geometric illustration).

Definition 3.3. Let Ω ⊂ Rd be a Lipschitz bounded open set.

• For any x ∈ Rd, Π∂Ω(x) := {y0 ∈ ∂Ω such that |x− y0| = infy∈∂Ω |x− y|} is the set of projections
of x on ∂Ω. It is a closed subset of ∂Ω. When Π∂Ω(x) reduces to a single point, it is called the
projection p∂Ω(x) of x onto ∂Ω.

• Σ :=
{
x ∈ Rd such that (dΩ)2 is not differentiable at x

}
is the skeleton of ∂Ω (or Ω by a small abuse

in terminology).
• For any x ∈ ∂Ω, ray∂Ω(x) := {y ∈ Rd such that dΩ is differentiable at y and p∂Ω(y) = x} is the ray

emerging from x. Equivalently, ray∂Ω(x) = p−1
∂Ω(x).

We now recall some classical results (see [21], chapter 7, theorems 3.1, 3.3 and [7]).

Lemma 3.4. Let Ω ⊂ Rd be a Lipschitz bounded open set.

• A point x /∈ ∂Ω has a unique projection p∂Ω(x) on ∂Ω if and only if x /∈ Σ. In such a case, it satisfies
d (x, ∂Ω) = |x− p∂Ω(x)| and the gradient of dΩ at x reads

∇dΩ (x) =
x− p∂Ω(x)

dΩ (x)
.

• As a consequence of Rademacher’s theorem ([23], section 3.1.2), Σ has zero Lebesgue measure in Rd.
Furthermore, when Ω is C2, Σ has zero Lebesgue measure too [31].

• For any x ∈ Rd, p ∈ Π∂Ω(x), α ∈ [0, 1], denoting xα := p+ α(x− p) the points of the ray of x lying
between p and x, we have dΩ(xα) = αdΩ(x) and Π∂Ω(xα) ⊂ Π∂Ω(x).

• If Ω is of class Ck, for k ≥ 2, then dΩ is Ck too in a tubular neighborhood of ∂Ω. In that case, dΩ is
differentiable at every point x ∈ ∂Ω, and ∇dΩ(x) = n(x), the unit normal vector to Ω.

Unfortunately, the signed distance function is not, strictly speaking, shape differentiable in the sense of
Definition 2.1. One reason is the lack of smoothness of the gradient of dΩ at the skeleton Σ. However, its
pointwise values dΩ(x) are shape differentiable for x ∈ D \ Σ. This is the purpose of the next result which
can be found in [22] (without much details however ; see [18] for a detailed and pedagogical proof).

Proposition 3.5. Assume Ω ⊂ D is an open set of class C1, and fix a point x /∈ Σ. Then θ 7→ d(Id+θ)Ω(x)

is Gâteaux-differentiable at θ = 0, as an application from W 1,∞(D,Rd) into R, and its derivative is

d′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

Remark 3.6. Actually, a more general result than that of Proposition 3.5 holds. Indeed, retaining the
hypothesis that Ω is of class C1, for any point x ∈ Rd, and denoting, for a real parameter t > 0,

Ωtθ = (I + tθ)Ω,

the application t 7→ dΩtθ (x) is right-differentiable at t = 0+, and

• if x ∈ Ω, d
dt (dΩtθ (x)) |t=0+ = − inf

y∈Π∂Ω(x)
θ(y) · n(y).

• if x ∈ cΩ, d
dt (dΩtθ (x)) |t=0+ = − sup

y∈Π∂Ω(x)

θ(y) · n(y).

Of course, these formulae agree with the previous result since Π∂Ω(x) = {p∂Ω(x)} if x /∈ Σ.
Note also that a similar analysis could be performed when Ω is only assumed to be Lipschitz. However,

the results are then more tedious to write, since the normal vector field n is not defined everywhere on ∂Ω
(which is an indicator of specific geometric phenomena, see [18]).
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Remark 3.7. The signed distance function can also be seen as a solution of the following Hamilton-Jacobi
equation {

|∇dΩ (x) | = 1 in D,
dΩ (x) = 0 on ∂Ω.

The behavior of the variations of dΩ with respect to the domain can be retrieved by a formal computation.
Indeed, assuming that dΩ is shape differentiable, a formal computation yields that the directional shape
derivative d′Ω(θ) satisfies {

∇dΩ(x) · ∇d′Ω(θ)(x) = 0 in D,
d′Ω(θ)(x) = −θ(x) · n(x) on ∂Ω.

Ω

Σ

x
•

• p∂Ω(x)

n(p∂Ω(x))

ray∂Ω(x) |dΩ(x)|

• •• y
z1 ∈ Π∂Ω(y)Π∂Ω(y) � z2

Figure 3. For a point x lying outside the skeleton Σ of Ω, unique projection point p∂Ω(x)
and line segment ray∂Ω(x). For a point y ∈ Σ, at least two points z1, z2 belong to the set of
projections Π∂Ω(y).

Corollary 3.8. Let Ω be a bounded domain of class C1 and m(x, s) : Rdx × Rs → R a function of class C1.
Define the functional J(Ω) as

(18) J(Ω) =

∫
D

m(x, dΩ(x)) dx.

The application θ 7→ J((Id + θ)Ω), from W 1,∞(D,Rd) into R, is Gâteaux-differentiable at θ = 0 and its
derivative reads

(19) J ′(Ω)(θ) = −
∫
D

∂m

∂s
(x, dΩ(x)) θ(p∂Ω(x)) · n(p∂Ω(x)) dx.

The shape derivative (19) satisfies the Hadamard structure theorem since it depends only on the values
of θ · n on the boundary of ∂Ω. However (19) is not a surface integral on ∂Ω as usual. Therefore the task
of the next subsection is to transform (19) into a surface integral by using the notion of rays (see Definition
3.3), along which dΩ and p∂Ω take very simple forms, altogether with the coarea formula.

3.3. An application of the coarea formula to integral functions of the signed distance function.

The purpose of this section is to derive a Fubini-like formula for integrals of the form (19) and transform
them in surface integrals. To this end, we use the following coarea formula [15].

Proposition 3.9. Let X,Y be two smooth Riemannian manifolds of respective dimension m ≥ n, and
f : X → Y a surjective map of class C1, whose differential ∇f(x) : TxX → Tf(x)Y is surjective for almost
every x ∈ X. Let ϕ an integrable function over X. Then:∫

X

ϕ(x)dx =

∫
Y

(∫
z∈f−1(y)

ϕ(z)
1

Jac(f)(z)
dz

)
dy

11



where Jac(f)(z) is the the Jacobian of the function f .

Remark 3.10. If m ≥ n, and f : Rm → Rn is a differentiable function at a point x ∈ Rm, the Jacobian
Jac(f)(x) of f at x is defined as

Jac(f)(x) :=
√

det(∇f(x)∇f(x)T ).

The definition of the Jacobian is similar when f is a map between two Riemannian manifolds X and Y , once
the tangent planes TxX,Tf(x)Y have been identified to Rm and Rn respectively (see [15], exercise III.11).
In any case, the Jacobian is positive Jac(f)(x) > 0 if and only if ∇f(x) is of maximum rank, or equivalently
∇f(x) is surjective from Rm to Rn.

We apply this formula in our context to X = Ω, Y = ∂Ω and f = p∂Ω. To apply Proposition 3.9 we
need the differentiability of p∂Ω which will be deduced from the following classical result on the second-order
differentiability of the signed distance function [12].

Lemma 3.11. Assume Ω is of class C2. For i = 1, ..., d− 1, denote by κi the principal curvatures of ∂Ω and
ei its associated directions (see Figure 4). For every x ∈ D, and every y ∈ Π∂Ω(x), we have

(20) −κi(y)dΩ(x) ≤ 1, 1 ≤ i ≤ d− 1.

Define Γ the singular set of Ω, namely the set of points x /∈ Σ such that, for some i, one of the inequality (20)
is actually an equality. Then, Σ = Σ ∪ Γ and Σ has zero Lebesgue measure. If x /∈ Σ, then all inequalities
(20) are strict and dΩ is twice differentiable at x. Its Hessian reads

HdΩ(x) =

d−1∑
i=1

κi(p∂Ω(x))

1 + κi(p∂Ω(x))dΩ(x)
ei(p∂Ω(x))⊗ ei(p∂Ω(x)).

Lemma 3.12. Let x ∈ D \ Σ. The projection map p∂Ω is differentiable at x and, in the orthonormal basis
{e1, ..., ed−1, n} (p∂Ω(x)) of Rd (see Figure 4), its gradient is a d× d diagonal matrix

(21) ∇p∂Ω(x) =


1− dΩ(x)κ1

1+dΩ(x)κ1
0 ... 0

0
. . .

. . .
...

...
. . . 1− dΩ(x)κd−1

1+dΩ(x)κd−1
0

0 ... 0 0

 ,

where the the principal curvatures κi are evaluated at p∂Ω(x).

Proof. The proof starts from the characterization of the projection map when x ∈ D \ Σ (see Lemma 3.4)

p∂Ω(x) = x− dΩ(x)∇dΩ(x).

This last equality can then be differentiated once more for x ∈ D \ Σ

(22) ∇p∂Ω(x) = Id−∇dΩ(x)∇dΩ(x)T − dΩ(x)HdΩ(x).

Since ∇dΩ(x) = n(p∂Ω(x)), a simple calculation ends the proof. �

We now come to the main result of this section.

Corollary 3.13. Let Ω ⊂ D be a C2 bounded domain, and let ϕ an integrable function over D. Then,

(23)

∫
D

ϕ(x)dx =

∫
∂Ω

(∫
ray∂Ω(y)∩D

ϕ(z)

d−1∏
i=1

(1 + dΩ(z)κi(y))dz

)
dy,

where z denotes a point in the ray emerging from y ∈ ∂Ω and dz is the line integration along that ray.

Proof. Since Σ is of zero Lebesgue measure, we have∫
D

ϕ(x)dx =

∫
D\Σ

ϕ(x)dx.
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Figure 4. Principal directions, normal vector at the projection point of x ∈ Rd.

Applying Lemmas 3.11 and 3.12, p∂Ω is a surjective and differentiable map from D \ Σ into ∂Ω, with a
positive finite Jacobian for any x ∈ D \ Σ

Jac (p∂Ω) (x) =
1

d−1∏
i=1

(
1 + dΩ(x)κi(p∂Ω(x))

) .
Proposition 3.9 then yields the desired result. �

3.4. Shape derivative of the compliance in the multi-materials setting.

We now have all the necessary ingredients to differentiate the cost function (2) with respect to the domain.
We keep the geometrical assumptions of section 2, namely for a given bounded open set D ⊂ Rd which is
partitioned in two subdomains Ω0,Ω1 ⊂ D, Ω0 is a strict subset of D in the sense that its boundary Γ, as
well as its thick approximation, does not touch ∂D (see Figure 1) and Γ is smooth.

We define the adjoint problem

(24)

 −div
(
AΩ0,ε e(p)

)
= −j′(x, u) in D,

p = 0 on ΓD,
(A1 e(p))n = −k′(x, u) on ΓN ,

where the symbol ′ denotes differentation with respect to u.
Our main result is the following.

Theorem 3.14. The objective function (2) is shape differentiable in the sense of Gâteaux, namely θ 7→
J((Id+ θ)Ω0) admits a Gâteaux derivative at θ = 0, which is

(25) J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)
(
f0(x) + f1(x)

)
dx, ∀ θ ∈W 1,∞(D,Rd),

where n is the outer unit normal to Ω0 and f0, f1 are scalar functions defined by

f0(x) =

∫
rayΓ(x)∩Ω0

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)

d−1∏
i=1

(1 + dΩ0(z)κi(x))dz,

f1(x) =

∫
rayΓ(x)∩Ω1

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)

d−1∏
i=1

(1 + dΩ0(z)κi(x))dz,

where z denotes a point in the ray emerging from x ∈ Γ.

Proof. The rigorous proof of existence of the shape derivative stems from classical arguments (typically the
implicit function theorem) similar to those invoked in [36] or chapter 5 in [27]. We rather focus on the actual
computation of the shape derivative and use once again the formal Lagrangian method of Céa [13]. As the
computation unfolds very similarly to that in the proof of Theorem 3.6 in [4], we limit ourselves to the main
arguments.
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Define first the functional space V := {v ∈ H1(D)d such that v = 0 on ΓD}, in which are sought the
solution of the state equation (17) and of the adjoint equation (24). We introduce the Lagrangian L :
W 1,∞ (D,Rd)× V × V → R, defined by

(26) L(θ, v, q) =

∫
D

j(x, v) dx+

∫
ΓN

k(x, v) ds+

∫
D

A(Id+θ)Ω0,εe(v) : e(q) dx−
∫
D

f · q dx−
∫

ΓN

g · q ds.

Here, q is intended as the Lagrange multiplier associated to the enforcement of the state equation. As usual,
stationarity of the Lagrangian provides the optimality conditions for the minimization problem. At θ = 0,
cancelling the partial derivative of L with respect to q yields the variational formulation of the state u. In
the same way, the nullity of the partial derivative of L with respect to v leads to the variational formulation
of the adjoint p.

Eventually, the shape derivative of the objective function is the partial derivative of L with respect to θ,
evaluated at u and p

J ′(Ω0)(θ) =
∂L
∂θ

(0, u, p)(θ).

Some elementary algebra, using the shape differentiability of dΩ0(x) for almost every x ∈ D, yields

(27)
J ′(Ω0)(θ) =

∫
D

(
A(Id+θ)Ω0,ε

)′
(θ) e(u) : e(p) dx

= −
∫
D

h′ε(dΩ0(x)) (θ(pΓ(x)) · n(pΓ(x))) (A1 −A0)e(u) : e(p) dx,

where
(
A(Id+θ)Ω0,ε

)′
(θ) is the directional shape derivative of A(Id+θ)Ω0,ε while h′ε is the standard derivative

of the real function hε. It remains to transform this expression by the coarea formula in order to deduce a
boundary integral. Using formula (23) for (27), we get

J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)

(∫
rayΓ(x)∩D

h′ε(dΩ0(z))(A1 −A0)e(u)(z) : e(p)(z)

d−1∏
i=1

(1 + dΩ0(z)κi(x))dz

)
dx.

Now decomposing the above integral over Ω0 and Ω1 readily yields the desired result. �

Remark 3.15. Theorem 3.14 provides a simple way of choosing a descent direction for a shape gradient
based algorithm. Indeed it is enough to perturb the interface Γ by choosing the vector field

θ(x) =
(
f0(x) + f1(x)

)
n(x),

which ensures that the directional derivative (25) is negative and thus yields a decrease of the objective
function (3). This is in sharp contrast with Corollary 3.8 which provided formula (19) for the shape derivative.
However it was impossible to extract directly from (19) an explicit value of θ which was a guaranteed descent
direction.

Remark 3.16. In the case of compliance minimization, namely for the objective function (3), we have
j′ = f , k′ = g and thus p = −u. If we assume that material 1 is stronger than material 0, in the sense that
A1 ≥ A0 as positive definite tensors, we deduce from the formulas of Theorem 3.14 that both f0 and f1 are
non-positive because 1 + κi(x)dΩ0(z) ≥ 0 by virtue of Lemma 3.11. Thus, a descent direction is obtained by
choosing θ such that θ(x) · n(x) < 0 on Γ, namely we expand Ω1. This is in accordance with the mechanical
intuition that a more robust mixture of the two materials is achieved when A1 prevails over A0. Of course,
for the problem to be reasonable, a volume constraint is imposed on the phases.

3.5. Approximate formulas for the shape derivative.

Although formula (25) is satisfying from a mathematical point of view, its numerical evaluation is not
completely straightforward. There are two delicate issues. First, one has to compute the principal curvatures
κi(x) for any point x ∈ Γ on the interface. Second, one has to perform a 1-d integration along the rays of
the energy-like quantity [A]e(u) : e(p). This is a classical task in the level-set framework [43] but, still, it is
of interest to devise a simpler approximate formula for the shape derivative.
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A first approximate formula is to assume that the interface is roughly plane, namely to assume that the
principal curvatures κi vanish. In such a case we obtain a ”Jacobian-free” approximate shape derivative

(28)

J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)
(
f0(x) + f1(x)

)
dx

fi(x) =

∫
rayΓ(x)∩Ωi

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)dz.

A second approximate formula is obtained when the smoothing parameter ε is small. Note that, since the
support of the function h′ε is of size 2ε, the integral in formula (25) is confined to a tubular neighborhood
of Γ of width 2ε. Therefore, if ε is small, one may assume that the functions depending on z are constant
along each ray, equal to their value at x ∈ Γ. In other words, for small ε we assume

e(u)(z) ≈ e(u)(x), e(p)(z) ≈ e(p)(x) and dΩ0(z) ≈ dΩ0(x) = 0,

which yields the approximate formulas, for x ∈ Γ,

f0(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)

∫
rayΓ(x)∩Ω0

h′ε (dΩ0(z)) dz,

f1(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)

∫
rayΓ(x)∩Ω1

h′ε (dΩ0(z)) dz.

Furthermore, most rays have a length larger than 2ε so that∫
rayΓ(x)∩Ω0

h′ε (dΩ0(z)) dz +

∫
rayΓ(x)∩Ω1

h′ε (dΩ0(z)) dz = hε(ε)− hε(−ε) = 1.

In turn we obtain the following approximate formula for (25)

(29) J ′(Ω0)(θ) ≈ −
∫

Γ

(A1 −A0)e(u) : e(p) θ · ndx,

which is nothing but the discrete shape derivative (13) that we obtained in the sharp-interface case. This
computation seems a bit miraculous but makes sense as a kind of commutation property between interface
regularization and optimization.

Our numerical results show that the latter simplification (29), which we shall refer to as the approximate
shape derivative, works very well in practice for problems of compliance minimization. Formula (29) is also
used by other authors in their numerical simulations [55].

3.6. Convergence of the smoothed-interface shape optimization problem to the sharp-interface
problem.

When the smoothed-interface setting is used as an approximation of the sharp-interface case, it is a natural
task to prove that this approximation is mathematically consistent. In this section, we present a result in
this direction. More specifically, for a given regular interface Γ, we prove that the shape gradient obtained
in Theorem 3.14 for a smoothed transition layer of width 2ε converges, as ε goes to 0, to the corresponding
shape gradient in the sharp-interface context, recalled in Proposition 2.2.

To set ideas, let us limit ourselves to the case of compliance minimization, the case of a general objective
function such as (2) being no different in principle. In order to make explicit the dependence on the half-
thickness ε of the smoothed transmission area, the solution of the state system (17) is denoted uε in this
section. Similarly the stress tensor is σ(uε) = AΩ0,ε e(uε) and the compliance is

Jε(Ω
0) =

∫
D

σ(uε) : e(uε) dx.

The solution of the state system (1) in the sharp-interface case is still denoted as u, and the associated
compliance as J(Ω0).

To find the limit of J ′ε(Ω0), as ε → 0, requires some knowledge of the asymptotic behavior of e(uε)
and σ(uε) in the vicinity of the interface Γ. Unfortunately, one cannot expect all the components of e(uε)
and σ(uε) to converge toward their counterpart in e(u) and σ(u) in any space of smooth enough functions.
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Indeed, for fixed ε, e(uε) is smooth over D (because so is the associated Hooke’s tensor), whereas we recalled
in Remark 2.3 that e(u)τn and e(u)nn are discontinuous across Γ, as imposed by the transmission conditions.
However, some of the components of e(uε) and σ(uε) do behave well as ε → 0. This is the purpose of the
following lemma, which is a consequence of rather classical results in elliptic regularity theory (see [18] for a
proof).

Lemma 3.17. Assuming Γ is a C2 interface, there exists a tubular neighborhood V ⊂⊂ D of Γ such that
one can define a smooth extension in V of the normal n and of a set of tangentials and orthonormal vectors
τ . Then, the following strong convergences hold true

e(uε)ττ
ε→0−→ e(u)ττ in H1(V )(d−1)2

strong,

σ(uε)τn
ε→0−→ σ(u)τn in H1(V )d strong,

σ(uε)nn
ε→0−→ σ(u)nn in H1(V ) strong.

.

Remark 3.18. The components of the strain and stress tensors which converge in Lemma 3.17 correspond
exactly to those which are continuous through the interface Γ as explained in Remark 2.3.

We are now in a position to state the main result of the present section which implies that the shape
derivative of the smoothed-interface objective function is a consistent approximation of the corresponding
shape derivative in the sharp-interface case.

Theorem 3.19. Under the above assumptions, we have

lim
ε→0

J ′ε(Ω
0)(θ) = J ′(Ω0)(θ) ∀ θ ∈W 1,∞(D,Rd).

Sketch of the proof. As the proof involves rather classical arguments, but tedious computations, we limit
ourselves with an outline of the main steps, referring to [18] for details. The goal is to pass to the limit ε→ 0
in formula (25), for a fixed θ ∈ W 1,∞(D,Rd). To achieve this, the rays rayΓ(x) ∩ Ω0 and rayΓ(x) ∩ Ω1 are
expressed as integrals over the segment (0, 1). Therefore, (25) becomes

J ′ε(Ω
0)(θ) = −

∫
Γ

θ(x) · n(x)
(
fε0 (x) + fε1 (x)

)
dx,

where fε0 , f
ε
1 ∈ L1(Γ) are defined as

(30) fε0 (x) =

∫ 0

−1

h′ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds,

(31) fε1 (x) =

∫ 1

0

h′ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds,

with

kε(x, s) =

d−1∏
i=1

(1 + sεκi(x)) .

Since h′ε(sε) does not depend on ε, to pass to the limit in (30) and (31) requires merely the following simple
technical convergence result (see [18] for a proof)

(32)

∫ 1

0

v(s) fε(x+ sεn(x))gε(x+ sεn(x)) ds
ε→0−→

(∫ 1

0

v(s) ds

)
f(x)g(x) in L1(Γ)

for a smooth function v(s) and any sequences fε, gε ∈ H1(D), which converge strongly in H1(D) to f, g
respectively. In order to apply (32) we rewrite expressions (30) and (31) in terms of the components e(uε)ττ
and σ(uε)τn, σ(uε)nn of the strain and stress tensors, which have a fine behavior at the limit ε → 0 as
guaranteed by Lemma 3.17. After some algebra, we obtain the following rearrangement for the integrand in
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fε0 and fε1 :

(A1 −A0)e(uε) : e(uε)(x+ sεn(x)) = µ′(s) (e(uε)ττ : e(uε)ττ ) (x+ sεn(x))

+
µ′(s)

µ(s)2
(σε(uε)τn · σε(uε)τn) (x+ sεn(x))

+
4µ2(s)λ′(s) + 2µ′(s)λ2(s)

(2µ(s) + λ(s))2
tr(e(uε)ττ )2(x+ sεn(x))

+
2µ′(s) + λ′(s)

(2µ(s) + λ(s))2
σε(uε)

2
nn(x+ sεn(x))

+
4µ(s)λ′(s)− 4µ′(s)λ(s)

(2µ(s) + λ(s))2
(σε(uε)nn tr(e(uε)ττ )) (x+ sεn(x))

,

with

λ(s) = λ0 + hε(sε)(λ1 − λ0), µ(s) = µ0 + hε(sε)(µ1 − µ0),

where λ0, µ0 and λ1, µ1 are the Lamé coefficients of materials 0, 1 respectively. Note that all the functions
of s involving λ(s) and µ(s) appearing in the above expression arise as exact derivatives of functions of λ(s)
and µ(s). Passing to the limit in the above expression using (32) leads to

(fε0 + fε1 )→ D(u, u) in L1(Γ),

where D(u, u) is defined as

D(u, u)(x) = 2 [µ] e(u)ττ (x) : e(u)ττ (x)−
[

1
µ

]
σ(u)τn(x) · σ(u)τn(x)

+
[

2λµ
(2µ+λ)

]
tr(e(u)ττ (x))2 −

[
1

2µ+λ

]
σ(u)(x)2

nn

+
[

2λ
2µ+λ

]
σ(u)nn(x) tr(e(u)ττ (x))

,

which after some algebra rewrites as (5). This completes the proof. �

4. Discussion and comparison with previous formulae in the literature

To our knowledge, the first works on multi-phase optimization using a level-set method are [33] and [55].
Further references include [34], [54], [56]. In all these works the computation of the shape derivative is
not mathematically rigorous and the obtained formulas are not strictly correct. Indeed, either the shape
differentiation is performed in the sharp-interface case and then the non-differentiable character of the
solution of (1) is ignored (as explained in section 2.2), or the shape derivative is evaluated in the smoothed-
interface case and then the derivative of the signed distance function is not taken into account. Fortunately,
the shape derivative formulas in [33] and [55] coincide with what we called our approximate shape derivatives
obtained in Proposition 2.5 for a discretization of the sharp-interface case and in (29) for a very thin smoothed
interface. A third possibility for interpreting these works is to consider that the regularization of the interface
is made with the help of the level set function ψ (used in numerical practice for representing and advecting
the shape, see section 6 below) rather than with the signed distance function dΩ. Then the differentiation is
performed with respect to ψ rather than with respect to the shape Ω. It alleviates all the technical details
of section 3 but it has one major flaw that we now describe.

Indeed, in the context of section 3 on the smoothed interface approach, one may replace the regularization
formula (15) by a similar one

(33) AΩ0,ε(x) = A0 + hε(ψ(x))(A1 −A0), ∀x ∈ D,
where the signed distance function dΩ has simply been replaced by the level set function ψ. Then, as is done
in [33] and [34], one may differentiate the objective function with respect to ψ. A serious problem that rises
directly from this choice, is that the interpolation zone, where AΩ0,ε takes intermediate values between A0

and A1, can thicken during the optimization process, especially if the level set function ψ is not frequently
reinitialized towards the signed distance function to the boundary (see Figure 5). The reason is that the
interpolation zone corresponds to some kind of homogenized material made of A0 and A1, which is known to
be more advantageous than pure phases in most problems [2]. The optimization process therefore does not
only move the interface location but also flaten the level set function ψ so that the interpolation zone gets
thicker. Even when the level set function is reinitialized, there remains a difficulty in the sense that the value
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Figure 5. Intermediate zone for regularization with the signed distance function (left) or
with a level set functions (right).

of the objective function may change before and after reinitialization. A partial remedy to this inconvenient,
as suggested in [33], is to add to the objective function a penalization term to control the enlargement.

The computation of the shape derivative is slightly different in [55]: the authors carry out the derivation
with the level set function ψ but in the resulting formula they assume that ψ coincides with the signed
distance function to the interface dΩ. More precisely, following the notations of Corollary 3.8, they consider
a functional

(34) J(Ω) =

∫
D

m(x, ψ(x)) dx,

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+ θ · n |∇ψ| = 0.

Then, the authors claim that the shape derivative is

(35) J ′(Ω)(θ) = −
∫
D

∂m

∂ψ
(x, ψ(x)) θ(x) · n(x) dx.

Note the difference with our formula (19), which involves the projection pΓ(x) of x on the boundary Γ = ∂Ω,
and that we recall as

J ′(Ω)(θ) = −
∫
D

∂m

∂ψ
(x, dΩ(x)) θ(pΓ(x)) · n(pΓ(x)) dx.

Unfortunately, there is no a priori guarantee that the transported signed distance function to the boundary
∂Ω remains the signed distance function to the transported boundary (Id + θ)∂Ω. Therefore, the shape

derivative d′Ω(θ)(x) cannot be replaced by the expression ∂ψ
∂t = −θ ·n |∇ψ| coming from the Hamilton-Jacobi

equation, as it is done in [33] and [55], without making any further assumptions. For example, in [25] it is
shown that the transported level set function remains the signed distance function (at least for a small time)
if the advection velocity remains constant along the normal, namely (θ · n)(x) = (θ · n)(pΓ(x)).

A difficulty with (35) is that it does not satisfy the Hadamard structure theorem (see e.g. [2], [21], [27],
[36] and references therein) since it does not depend solely on the normal trace θ ·n on the interface Γ = ∂Ω.
In fact, assuming that the support of ∂m

∂ψ is concentrated around Γ, formula (35) would be similar to what

we called earlier approximate shape derivative, obtained in Proposition 2.5 for a discretization of the sharp-
interface case and in (29) for the smoothed-interface case when the regularization parameter ε is small. In
any case, (35) does not guarantee a descent direction in general, unless ∂m

∂ψ keeps a constant sign along the

normal, at least for the width of the intermediate zone.
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Figure 6. Two subdomains of D (top) and the four phase domains derived by combining
them together (down).

5. Extension to more than 2 materials

The methods presented in sections 2 and 3 for two phases can be extended to the case of several materials
to be optimally placed in the domain D, following a classical idea in the level-set framework [53], [55].

Hitherto, we considered a single subdomain Ω0 ⊂ D, which allows to account for two separate phases
within D, occupying respectively the domains Ω0 and Ω1 := cΩ0 (where c denotes the complementary part
in D). To consider more phases, we introduce m subdomains O0, ...,Om−1 ⊂ D which are not subject to any
geometrical constraints (they can intesect, or not, and they don’t need to cover D). These m subdomains
allows us to treat up to 2m distinct phases, filling respectively the phase domains Ω0, ...,Ω2m−1 ⊂ D, defined
as (see Figure 5)

(36)


Ω0 = O0 ∩ O1 ∩ ... ∩ Om−1,

Ω1 = cO0 ∩ O1 ∩ ... ∩ Om−1,
...

Ω2m−1 = cO0 ∩ cO1 ∩ ... ∩ cOm−1.

Note that Ω0, ...,Ω2m−1 is a partition of D. To simplify the exposition, from now on we take m = 2, meaning
that we consider four different materials, with respective Hooke’s law A0, A1, A2, A3. Two subdomains
O0,O1 of D are then introduced, and each material Ai fills an area Ωi ⊂ D, defined through formula (36).

For the sharp-interface problem, the definition of the mixture Hooke’s tensor Aχ is standard. Introducing
χ0 and χ1 the characteristic functions of O0 and O1, respectively, we define

(37) Aχ(x) := χ0(x)χ1(x)A0 + (1− χ0(x))χ1(x)A1 + χ0(x) (1− χ1(x))A2 + (1− χ0(x)) (1− χ1(x))A3.

For the smoothed-interface problem, we propose a formula inspired from (37)

(38)
AO0,O1,ε(x) = (1− hε(dO0(x)))(1− hε(dO1(x)))A0 + hε(dO0(x))(1− hε(dO1(x)))A1

+ (1− hε(dO0(x)))hε(dO1(x))A2 + hε(dO0(x))hε(dO1(x))A3,
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where hε is the smooth approximation (16) of the Heaviside function and dO0 , dO1 are the signed distance
functions to O0 and O1 respectively. Of course, there are other interpolation formulas and any alternative
choice which, as (38), satisfies the following consistency

(39) AO0,O1,ε(x) =


A0 if dO0(x) < −ε and dO1(x) < −ε,
A1 if dO0(x) > +ε and dO1(x) < −ε,
A2 if dO0(x) < −ε and dO1(x) > +ε,
A3 if dO0(x) > +ε and dO1(x) > +ε,
a smooth interpolation between A0, A1, A2, A3 otherwise,

will do. In particular, for applications in material science where the thick interface has a clear physical
interpretation, one could choose a physically relevant choice of the interpolant Hooke’s law for the mixture
of A0, A1, A2, A3 in the intermediate areas, like a sequential laminate or another microstructure achieving
Hashin and Shtrikman bounds [35]. On the other hand, if the smoothed-interface problem is merely a
mathematical approximation of the sharp-interface case, then it is a consistent approximation since, as the
regularizing parameter ε goes to 0, the smooth tensor AO0,O1,ε converges to the discontinuous one Aχ.

In the multiphase case, the definition of the objective function (2) does not change

(40) J(O0,O1) =

∫
D

j(x, u) dx+

∫
ΓN

k(x, u) ds,

and the state or adjoint equations are the same, up to changing the previous Hooke’s tensor by AO0,O1,ε.
There are now two variable subdomains, O0,O1, as design variables for the optimization problem. Ac-
cordingly, we introduce two separate vector fields θ0, θ1 ∈ W 1,∞ (D,Rd) in order to vary the subdomains

O0,O1.
According to Corollary 3.8, the partial shape derivative of the objective function (40) with respect to O0

and O1, which we shall denote as ∂J
∂O0 and ∂J

∂O1 respectively, in the direction of θ0 and θ1, respectively, are

(41)
∂J

∂O0
(O0,O1)(θ0) =

∫
D

θ0(p∂O0(x)) · n0(p∂O0(x))
∂A

∂dO0

(dO0 , dO1)e(u) : e(p) dx,

(42)
∂J

∂O1
(O0,O1)(θ1) =

∫
D

θ1(p∂O1(x)) · n1(p∂O1(x))
∂A

∂dO1

(dO0 , dO1)e(u) : e(p) dx,

where A(dO0 , dO1) = AO0,O1,ε, defined in (39). Of course, one can apply Theorem 3.14 to simplify (41) and
(42) and transform them in surface integrals on ∂O0 and ∂O1.

Remark 5.1. In the sharp interface context one could compute shape derivatives of the objective function
J with respect to O0 and O1 too, thus recovering formulas similar to (41) and (42). However, it is possible
only if we assume that the boundary of O0 and O1 do not superpose. Indeed if, for example, ∂O0 = ∂O1,
then moving O0 inside O1, or vice versa, implies that one phase or another one appears. This means that
a topology change is occuring which cannot be handled by Hadamard’s method. At most, one can expect
to compute two different directional derivatives (inward and outward) which clearly shows that there is no
differentiability in this case. Note that there is no such difficulty in the smoothed interface setting: formulas
(41) and (42) hold true for any geometrical situation of O0 and O1 since AO0,O1,ε is a smooth function of x
in D.

6. Numerical results

6.1. Level-set representation.

Following the lead of [4], [5], we represent the moving and optimizable interfaces by level set functions
[40] defined on a fixed mesh in an Eulerian framework. According to Section 5, using m level-set functions
we can represent up to 2m separate phases.

When there are only two phases to optimize, it suffices to use one level-set function to represent the
interface Γ between two complementary sub-domains Ω0 and Ω1 of the working domain D. The level set
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function ψ (see Figure 7) is defined by ψ(x) = 0 for x ∈ Γ = ∂Ω0,
ψ(x) < 0 for x ∈ Ω0,
ψ(x) > 0 for x ∈ Ω1.

D

Ω0

Ω1

Γ
ψ < 0

ψ > 0

ψ = 0

Figure 7. Level-set representation of the domains Ω0 and Ω1.

During the optimization process the shape is advected with a scalar velocity field V (x) in the direction
of the outer normal vector field n(x) to Ω0 (V = θ · n). According to section 3, the value of this scalar field
is derived from the shape sensitivity analysis of Theorem 3.14. More precisely, the choice

V (x) = f0(x) + f1(x),

where f0, f1 are defined by (25), clearly gives a descent direction for θ = V n. The functions f0 and f1

are defined for all points x ∈ Γ as integrals along rays in the normal direction. Since the interface Γ is
not explicitly discretized, f0 and f1 are evaluated at the nodes of the elements that are crossed by the zero
level-set. The normal vector is computed for each of these nodes, which defines the direction of the rays
and a simple quadrature formula is used for the numerical approximation of f0 and f1. This computation is
done only in a band of thickness 2ε around the interface, where h′ε is non-zero, and as long as the skeleton
(see Definition 3.3) is not detected (recall that the rays end up at the skeleton). When integrating along a
ray the skeleton is identified as soon as the signed-distance function looses its monotonicity.

The advection is described in the level set framework by introducing a pseudo time t ∈ R+ and solving
the Hamilton-Jacobi equation over D

(43)
∂ψ

∂t
+ V |∇ψ| = 0,

using an explicit upwind scheme [43]. However, the scalar field V is a priori defined only on the boundary
of the shape and therefore it is necessary to extend it to the whole domain in order to be able to perform
multiple iterations of the transport equation (43) for each finite element analysis. Moreover, it is numerically
advantageous to regularize the advection velocity in order to assure some smoothness required by sensitivity
analysis [19]. One way to extend and regularize at the same time V is to solve the variational formulation
for V reg ∈ H1(D)

(44)

∫
D

(
α2∇V reg · ∇W + V regW

)
dx = J ′(Ω)(W n) for any W ∈ H1(D),

where α > 0 is a positive parameter that controls the regularization width (typically α is of the order of the
mesh size). Then, choosing W = −V reg, we find

J ′(Ω)(−V reg n) = −
∫
D

(
α2|∇V reg|2 + (V reg)2

)
dx,
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which guarantees again a descent direction for J .
In order to describe up to four distinct phases, two level-set functions ψ0 and ψ1 are defined such that

ψ0(x) = 0 for x ∈ ∂O0,
ψ0(x) < 0 for x ∈ O0,

ψ0(x) > 0 for x ∈ cO0,
and


ψ1(x) = 0 for x ∈ ∂O1,
ψ1(x) < 0 for x ∈ O1,

ψ1(x) > 0 for x ∈ cO1,

following the notations of Figure 5. Then, each level-set function ψi, i = 0, 1, is transported independently
solving (43), where Vi, i = 0, 1 results from the formulas (41) and (42).

•1

2

Figure 8. Boundary conditions for the long cantilever.

6.2. Two materials in the sharp interface context.

We work in the context of Section 2, namely in a sharp interface framework. We compare the two shape
derivatives: the continuous formula furnished by Proposition 2.2 and the discrete formula given in Proposition
2.5. The numerical implementation of the continuous formula of the shape derivative in Proposition 2.2 is
achieved according to the scheme proposed in [5] for computing the jump approximation (12). We consider
a long cantilever of dimensions 2 × 1, discretized by 100 × 50 P1 elements, clamped at its left side and
submitted to a unit vertical load at the middle of its right side (see Figure 8). The domain is filled by two
isotropic materials 0 and 1, with different Young’s moduli, respectively E0 = 0.5 and E1 = 1 (material 1
is stiffer than material 0) but with the same Poisson ratio ν = 0.3. We minimize the compliance (3) with
a constraint of fixed volume for the two phases. The computations are done with the FreeFem++ package
[42].

For all the numerical examples in this paper, an augmented Lagrangian method is applied to handle the
constraints. Following the approach in [37], supposing that our problem contains m equality constraints of
the type ci(Ω

0) = 0 (i = 1, ...,m), an augmented Lagragian function is constructed as

L(Ω0, `, µ) = J(Ω0)−
m∑
i=1

`ici(Ω
0) +

m∑
i=1

µi
2
c2i (Ω

0),

where ` = (`i)i=1,...,m and µ = (µi)i=1,...,m are Lagrange multipliers and penalty parameters for the con-
straints. The Lagrange multipliers are updated at each iteration n according to the optimality condition
`n+1
i = `ni − µici(Ω0

n). The penalty parameters are augmented every 5 iterations. With such an algorithm
the constraints are enforced only at convergence (see for example Figure 10). Of course, other (and possibly
more efficient) optimization algorithms could be used instead.

The results are displayed on Figure 9. As usual the strong phase 1 is black and the weak phase 0 is white.
The design obtained with the discrete formula is quite similar to the one exposed in Figure 11 (c) and is
reminiscent of those obtained in Figures 6 and 8 of [6] (with a small-amplitude approximation and a density-
based approach). However the continuous formula gives a different optimal shape which is worse in terms of
the objective function than the one obtained with the discrete formula (see Figure 10). This is completely
natural, since the discrete shape gradient is exactly the gradient of the (discrete) indeed computed objective
function.
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Figure 9. Optimal shapes for the long cantilever using the discrete shape gradient (left)
and the continuous formula (right).

Figure 10. Convergence history of the compliance (left) and the volume (right) for the
sharp interface results displayed on Figure 9.

6.3. Two materials in the smoothed-interface context.

We now switch to the smoothed-interface setting as described in Section 3. We perform the same test
case, with the same parameter values, as in Section 6.2. All computations are performed in Scilab with a
160× 80 mesh, unless otherwise specified. A first goal is to compare the smoothed-interface approach to the
sharp-interface one. A second goal is to compare the various formulas for the shape derivative obtained in
Section 3.

We minimize again the compliance (3) with a constraint of fixed volume for the two phases which is
written ∫

D

hε(dΩ0(x))dx = VT ,

where VT is the target volume of the strong phase occupying Ω1.
We test three different formulas for the shape gradient. The first one is the ”true” formula given by (25)

(see also (41) and (42) in the case of more than two phases). The second one, called ”Jacobian-free”, is (28)
which is obtained from (25) by neglecting the part of the integrand corresponding to the Jacobian of the
projection application p∂Ω (see Remark 3.10). The reason for this choice is that the curvature is not precisely
calculated using a fixed mesh and therefore we may introduce a significant approximation error. In any case,
it amounts to neglecting a positive factor (because of Lemma 3.11). The third one is the ”approximate”
formula (29) obtained for a very thin smoothing zone around the interface.

First, we consider the case of a ”thin” interface. The interpolation width is chosen as ε = 2∆x, where ∆x
is the uniform mesh size. The results for VT = 0.7|D| are shown in Figure 11. We plot the Young modulus
distribution (black being the strong material A1 and white the weak material A0). The convergence histories
are almost identical for the ”true” and ”Jacobian-free” formulas of the shape derivative. It is slightly more
oscillating for the ”approximate” formula although it converges to almost the same value of the objective
function. The resulting optimal designs are very similar and, as already said, are reminiscent of those
obtained in Figures 6 and 8 of [6] (with a small-amplitude approximation and a density-based approach).

Second, we consider the case of a ”thick” interface, meaning that the interpolation width is larger, ε = 8∆x.
The results are displayed in Figure 12. We clearly see a difference for the optimal shape obtained using the
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Long cantilever using two phases with VT = 0.7|D| and a small smoothing
parameter ε = 2∆x; (a) initialization, (b) optimized shape using the ”true” formula, (c)
optimized shape using the ”Jacobian-free” formula, (d) optimized shape using the ”approx-
imate” formula, (e) convergence of the compliance, (f) convergence of the volume.

”true” formula of the shape derivative: in this case, the algorithm produces a very long and oscillating
interface in such a way that the overall structure is almost like a composite structure. This is due to the fact
that the intermediate zone inside the interface is very favorable compared to the pure phases. Nevertheless,
despite the differences in the final shapes, the values of the compliance are almost the same for the ”true”
and ”Jacobian-free” formulas, slightly worse for the ”approximate” formula of the shape gradient.

Third, we examine the mesh-dependency of the smoothed-interface method with still the same test case.
However, there are two different ways for testing the sensitivity to mesh refinement of our approach. First,
the grid size ∆x varies together with the interface half-width which is chosen as ε = 2∆x. Second, the
smoothing parameter ε is kept fixed with the constant value ε = 0.025 (the same as in Figure 11) while the
grid size ∆x is decreased. For all runs, the ”Jacobian-free” formula and the initialization of Figure 11 (a)
have been used. The results are shown in Figure 13 (ε = 2∆x) and 14 (ε = 0.025). The two approaches for
reducing the grid size give similar results and the designs are clearly convergent under mesh refinement. Of
course, there are less geometrical details with the coarser mesh.

6.4. Four phases in the smoothed interface context.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Long cantilever using two phases with VT = 0.7|D| and a large smoothing
parameter ε = 8∆x; (a) initialization, (b) optimized shape using the ”true” formula, (c)
optimized shape using the ”Jacobian-free” formula, (d) optimized shape using the ”approx-
imate” formula, (e) convergence of the compliance, (f) convergence of the volume.

We consider now the case of using up to four phases and consequently two level-set functions. A smoothed
approximation of the characteristic function of each phase can be constructed using combinations of the
functions hε, defined in equation (16), as follows

(45)


χ0 = (1− hε(dO0))(1− hε(dO1)),
χ1 = hε(dO0)(1− hε(dO1)),
χ2 = (1− hε(dO0))hε(dO1),
χ3 = hε(dO0)hε(dO1),

and the global Hooke’s tensor in given by (38). The optimization problem now reads

(46)
min

O0,O1∈Uad
J(O0,O1) =

∫
D

AO0,O1,ε(x)e(u) : e(u) dx

s.t.

∫
D

χidx = V iT , i = 0, ..., 3 ,

where V iT is the target volume for the phase i (they sum up to the volume of D). As previously, an augmented
Lagrangian algorithm is applied to enforce the constraints. In this section we work with a ”thin” interface,
namely ε = 2∆x. For all test cases, we checked numerically that the three formulas of the shape gradient

25



(a) (b)

(c) (d)

Figure 13. Long cantilever using two phases with VT = 0.7|D|, ε = 2∆x and a grid of
varying size: (a) 80× 40, (b) 120× 60, (c) 160× 80, (d) 240× 120 elements.

(a) (b)

(c) (d)

Figure 14. Long cantilever using two phases with VT = 0.7|D|, ε = 0.025 and a grid of
varying size: (a) 80× 40, (b) 120× 60, (c) 160× 80, (d) 240× 120 elements.

give very similar optimal shapes, as expected. The results presented in the sequel have been obtained using
the ”Jacobian-free” formula.

We test our method with several benchmark examples presented in [9], [55] and [56]. Since the initial
designs are different, as well as the numerical methods, it is hard to make a quantitative comparison and we
satisfy ourselves with a qualitative comparison.

6.4.1. Short cantilever using two materials and void.
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In this paragraph we consider only three phases, made of two materials and void. The first structure to be
optimized is a two-dimensional short cantilever, of dimensions 1× 2, discretized using 80× 160 Q1 elements.
The left part of the structure is clamped and a unitary vertical force is applied at the mid point of its right
part (see Figure 15). The Young moduli of the four phases are defined as E0 = 0.5, E1 = 10−3, E2 = 1 and
E3 = 10−3, where both phases 1 and 3 represent void. The target volumes for phases 0 and 2 are set to
V 0
T = 0.2|D| and V 2

T = 0.1|D|. Remark that phases 1 and 3 are the same, corresponding to void. The fact
that the void zone is represented by two different characteristic functions has no influence on the numerical
results (at least in all our numerical experiments). The initial and the optimal shape (obtained after 200
iterations) are shown in Figure 16 (a) and (b). We plot the Young modulus with a grey scale: dark stands
for the stronger phase, white for void and grey for the intermediate phase.

This test case was previously studied in [55] (see figures 7 and 8 therein for two different initializations).
Our results are roughly similar to those in [55] and even slightly better since the design of Figure 16 (b) is
symmetric (as expected), contrary to the results in [55].

•

1

2

Figure 15. Boundary conditions and initialization for the short cantilever.

6.4.2. Short cantilever using three materials and void.

The same example as in the previous paragraph is considered here with an additional phase: half of the
volume of material 0 is replaced by a weaker material 1. More precisely, the Young moduli of the four phases
are defined as E0 = 0.5, E1 = 0.25, E2 = 1 and E3 = 10−3, while the target volumes for the three materials
0, 1 and 2 are set to V 0

T = V 1
T = V 2

T = 0.1|D|. The initial and optimal shapes (after 200 iterations) are
displayed on Figure 16 (c) and (d).

This test case was also studied in [55] (see figures 11 and 12 therein for two different initializations). Our
result differs notably from these previous ones. Indeed, in [55] the strong material 2 always forms a two-bar
truss which is further reinforced by the other materials. On the contrary, in our Figure 16 (d) the strong
phase is disconnected and the intermediate material 0 plays a more active role in the transfer of the load to
the fixed wall.

6.4.3. 3-force bridge using two materials and void.

A bridge-type structure of dimensions 2× 1 is discretized by 160× 80 Q1 elements. Both the horizontal
and vertical displacement are fixed at the lower left part as well as the vertical displacement of the lower
right part. Three equally spaced forces are applied at the lower part (see Figure 17). The value of F is set
to 1. The Young moduli of the four phases are set to E0 = 0.5, E1 = 10−3, E2 = 1 and E3 = 10−3 and the
target volumes for phases 0 and 2 are set to V 0

T = 0.2|D| and V 2
T = 0.1|D|. The initial and optimal designs

(after 250 iterations) are shown in Figure 18 (a) and (b).
Once again this test case was performed in [55] (see figure 13 therein). Our result is quite different. First,

our design in Figure 18 (b) is symmetric, as it should be. Second, a major difference occurs in the use of the
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(a) (b)

(c) (d)

Figure 16. Short cantilever using two or three phases and void; (a) initialization for two
phases and void, (b) optimal shape for two phases and void, (c) initialization for three phases
and void, (d) optimal shape for three phases and void.

strong phase. In our design, the strong material is used in the lower part of the ”radial” bars whereas it was
absent in figure 13 of [55] (and rather used in the upper ”arch”).

•

1

2

• •

F F2F

Figure 17. Boundary conditions for the 3-force bridge.

6.4.4. 3-force bridge using three materials and void.

The same example as in the previous paragraph is considered here with an additional phase: half of the
volume of material 0 is replaced by a weaker material 1. The Young moduli of the four phases are defined
as E0 = 0.5, E1 = 0.25, E2 = 1 and E3 = 10−3, while the target volumes for phases 0, 1 and 2 are set to
V 0
T = V 1

T = V 2
T = 0.1|D|. The initial and optimal designs (after 250 iterations) are displayed on Figure 16

(c) and (d).
This test case can be found in [55] (figure 14) too, and again our result is quite different.
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(a) (b)

(c) (d)

Figure 18. 3-force bridge using two or three phases and void; (a) initialization for two
phases and void, (b) optimal shape for two phases and void, (c) initialization for three
phases and void, (d) optimal shape for three phases and void.

6.4.5. Medium cantilever using three materials and void.

The next structure is a medium cantilever of dimensions 3.2× 2, discretized using 120× 75 Q1 elements.
The left part of the structure is clamped and a unitary vertical force is applied at the bottom of its right
part (see Figure 19). The Young moduli of the four phases are again set to E0 = 0.5, E1 = 0.25, E2 = 1
and E3 = 10−3, while the target volumes for phases 0, 1 and 2 are V 0

T = V 1
T = V 2

T = 0.1|D|. The initial and
optimal shapes (after 250 iterations) are shown in Figure 20.

This test case was also performed in [56] (see figure 7 therein). Our optimal design has a more complex
topology and a different layout of the three materials. However, the final volumes of the three materials in
[56] are not the same as ours and thus a comparison is not easy to establish.

•

2

3.2

Figure 19. Boundary conditions and initialization for the medium cantilever.

6.4.6. L-beam using two materials and void.

The example of an L-shaped structure of dimensions 1 × 1 is borrowed from Chapter (2.9) in [9]. The
domain is discretized using 120×120 Q1 elements and a non-optimizable empty area of dimensions 0.6×0.6
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(a) (b)

Figure 20. Medium cantilever using three materials and void; (a) initialization, (b) optimal shape.

is imposed in its upper-right corner. The structure is clamped on its upper side and a unit vertical force is
applied on the middle of its right side (see Figure 21).

The two materials are represented by phases 0 and 2. Phases 1 and 3 represent void and their Young
moduli are set to E1 = E3 = 10−4. The Young modulus of phase 0 is set to E0 = 1.0. The target volumes
for phases 0 and 2 are V 0

T = V 2
T = 0.25|D|. Figures 22 (a), (b), (c) display the results obtained with different

material property for phase 2: its Young modulus E2 is equal to 0.2, 0.5 and 0.8, respectively. The results
are slightly different than those in [9] (relying on SIMP method), but they follow the same logic in the
placement of materials.

1

1

•
0.6

0.6

(a) (b)

Figure 21. (a) Boundary conditions and (b) initialization for the L-beam.

(a) (b) (c)

Figure 22. Results for the L-beam with varying second phase.
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6.4.7. Long cantilever using two materials and void.

The goal of this last paragraph is twofold. First, we consider again the 2×1 long cantilever, as in Figure 8,
but with four phases, defined by their Young moduli E0 = 0.5, E1 = 10−3, E2 = 1 and E3 = 10−3. Second,
we switch to an unconstrained optimization algorithm. We do not impose equality constraints for the volume
of each phase. Rather, we fix Lagrange multipliers and we minimize an objective function J(O0,O1), which
reads

(47) J(O0,O1) =

∫
D

A(dO0 , dO1)e(u) : e(u)dx+

3∑
i=0

`i
∫
D

χi(x)dx.

We then carry out a standard constraint-free steepest descent algorithm in order to minimize J .

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

10 20 30 405 15 25 35
200

300

250

Figure 23. Initialization with two materials (top left), optimial shape (top right) and
convergence history of the objective function (bottom).

A small tolerance parameter tol > 0 (in the example below, we used tol = 0.02) over acceptance of the
produced shapes is introduced so as to ease the occurrence of topological changes and is then turned off
after some iterations. More accurately, in the course of the optimization process, a step O0

n → O0
n+1 and

O1
n → O1

n+1 is accepted provided:

J(O0
n+1,O1

n+1) < (1 + tol)J(O0
n,O1

n).

For the results shown in Figure 23, the Lagrange multipliers in (47) are set to `0 = 100, `1 = 0, `2 = 200, `3 =
0. As can be expected the strong material is distributed at the areas of high stress, while the weak material
completes the shape of the optimal cantilever.

It is interesting to see the optimal subdomains O0 and O1 (defined in Section 5) in Figure 24. Recall
that it is the intersections of these two subdomains and their complementaries which give rise to the phase
domains in the optimal design of Figure 23. Nevertheless, O0 and O1 are important from a numerical point
since, rather than the phase domains, they are advected by the shape gradients and represented by the level
set functions.
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Figure 24. Final subdomains O0 (left) and O1 (right).
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