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ON A FRACTIONAL GINZBURG-LANDAU EQUATION

AND 1/2-HARMONIC MAPS INTO SPHERES

VINCENT MILLOT AND YANNICK SIRE

ABSTRACT. This paper is devoted to the asymptotic analysis of a fractional version of the Ginzburg-Landau
equation in bounded domains, where the Laplacian is replaced by an integro-differential operator related to
the square root Laplacian as defined in Fourier space. In the singular limit ε → 0, we show that solutions
with uniformly bounded energy converge weakly to sphere valued 1/2-harmonic maps, i.e., the fractional
analogues of the usual harmonic maps. In addition, the convergence holds in smooth functions spaces away
from a countably H n−1-rectifiable closed set of finite (n − 1)-Hausdorff measure. The proof relies on the
representation of the square root Laplacian as a Dirichlet-to-Neumann operator in one more dimension, and
on the analysis of a boundary version of the Ginzburg-Landau equation. Besides the analysis of the fractional
Ginzburg-Landau equation, we also give a general partial regularity result for stationary 1/2-harmonic maps
in arbitrary dimension.

Keywords: Fractional Ginzburg-Landau equations; Fractional harmonic maps; Square root Laplacian; Dirichlet-
to-Neuman operator; Nonlinear boundary reactions; Partial regularity; Generalized varifolds.

1. INTRODUCTION

Let n > 1 and m > 2 be given integers, and let ω ⊆ Rn be a smooth bounded open set. In this
paper we investigate the asymptotic behavior, as ε ↓ 0, of weak solutions vε : Rn → Rm of the fractional
Ginzburg-Landau equation

(−∆)
1
2 vε =

1

ε
(1− |vε|2)vε in ω , (1.1)

possibly subject to an exterior Dirichlet condition

vε = g on Rn \ ω , (1.2)

where g : Rn → Rm is a smooth function satisfying |g| = 1 in Rn\ω. The action of the integro-differential
operator (−∆)

1
2 on a smooth bounded function v : Rn → Rm is defined by

(−∆)
1
2 v(x) := p.v.

(
γn

∫
RN

v(x)− v(y)

|x− y|n+1
dy

)
with γn :=

Γ
(
n+1

2

)
π
n+1
2

,

and the notation p.v.means that the integral is taken in the Cauchy principal value sense. In Fourier space1,
this operator has symbol 2π|ξ|, while 4π2|ξ|2 is the symbol of−∆. In particular, (−∆)

1
2 is the square root

of the standard Laplacian when acting on the Schwartz class S (Rn).
The weak sense for equation (1.1) will be understood varationally using the distributional formulation

of the fractional Laplacian in the open set ω. More precisely, we define the action of (−∆)
1
2 v on an

element ϕ ∈ D(ω) by setting

〈
(−∆)

1
2 v, ϕ

〉
ω

:=
γn
2

∫∫
ω×ω

(
v(x)− v(y)

)
·
(
ϕ(x)− ϕ(y)

)
|x− y|n+1

dxdy

+ γn

∫∫
ω×(Rn\ω)

(
v(x)− v(y)

)
·
(
ϕ(x)− ϕ(y)

)
|x− y|n+1

dxdy .

This formula turns out to define a distribution on ω whenever v ∈ L2
loc(Rn) satisfies

E(v, ω) :=
γn
4

∫∫
ω×ω

|v(x)− v(y)|2

|x− y|n+1
dxdy +

γn
2

∫∫
ω×(Rn\ω)

|v(x)− v(y)|2

|x− y|n+1
dxdy <∞ . (1.3)

In such a case we say that v is admissible, and (−∆)
1
2 v belongs to H−1/2(ω), i.e., the topological dual

space of H1/2
00 (ω) (functions in H1/2(Rn) vanishing outside ω). When prescribing the exterior Dirichlet

condition (1.2), the class of admissible functions is given by the affine space H1/2
g (RN ) := g + H

1/2
00 (ω).

1we consider here the ordinary frequency Fourier transform v 7→ v̂ given by v̂(ξ) :=
∫
Rn v(x)e−2iπx·ξ dξ.

1
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Note that weak and strong definitions of (−∆)
1
2 are consistent, i.e., if v is smooth and bounded, then v

is admissible, and the pointwise and distributional definitions of (−∆)
1
2 v agree. Then observe that the

derivative at v of E(·, ω) in the direction ϕ ∈ D(ω) is precisely given by
〈
(−∆)

1
2 v, ϕ

〉
ω

. Hence the energy
E(·, ω), which is built on the H1/2-seminorm, can be thought as Dirichlet 1/2-energy in ω associated to the
operator (−∆)

1
2 . Integrating the potential in the right hand side of (1.1) we obtain the Ginzburg-Landau

1/2-energy associated to the equation in ω,

Eε(v, ω) :=
1

2

∫
ω

e(v, ω) +
1

2ε
(1− |v|2)2 dx , (1.4)

where we have set e(v, ω) to be the nonlocal energy density in ω given by

e
(
v(x), ω

)
:=

γn
2

∫
ω

|v(x)− v(y)|2

|x− y|n+1
dy + γn

∫
Rn\ω

|v(x)− v(y)|2

|x− y|n+1
dy . (1.5)

We define weak solutions of (1.1) as critical points of Eε with respect to perturbations supported in ω.

If −∆ is used instead of its square root and m = 1, equation (1.1) reduces to the well known Allen-
Cahn equation. This scalar equation appears in the van der Waals-Cahn-Hilliard theory of phase transi-
tions in fluids. From the geometrical point of view, the Allen-Cahn equation provides an approximation,
as ε → 0, of codimension one minimal surfaces, i.e., limits of critical points are functions with values
in {±1}, and the limiting interfaces between the two phases ±1 are generalized minimal hypersurfaces, see
e.g. [37, 47]. Since the work of ALBERTI, BOUCHITTÉ, & SEPPECHER [1, 2], fractional generalizations of
the Allen-Cahn equation involving (−∆)s with 0 < s < 1 have been investigated by many authors, see
[12, 13, 14, 15, 16, 49, 62], specially in the case s = 1/2 which is related to models for dislocations in
crystals [30], and to thin-film micromagnetics [38, 39]. The convergence as ε → 0 of minimizers of the
fractional Ginzburg-Landau s-energy has been treated very recently in [55, 56]. In these papers, Dirichlet
and Ginzburg-Landau s-energies are built on theHs-seminorm and are defined as in (1.3)-(1.4)-(1.5) with
the weight |x − y|−(n+2s) in place of |x − y|−(n+1). It is proved in [55, 56] that limits of minimizers still
take values in {±1}, and the geometrical characterization of the associated interfaces depends on wether
s > 1/2 or s < 1/2. For s > 1/2, limiting interfaces turn out to be (usual generalized) area-minimizing
minimal surfaces, while the picture completely changes for s < 1/2, where limiting interfaces are the so-
called nonlocal s-minimal surfaces introduced by CAFFARELLI, ROQUEJOFFRE, & SAVIN [17]. The interface
induced by a map v taking values in {±1} is said to be a minimizing s-minimal surface if v itself is min-
imizing the Dirichlet s-energy in the class of maps with values in {±1}. In a sense, nonlocal s-minimal
surfaces can be thought as fractional s-harmonic maps with values in S0 ' {±1}. The dichotomy in the
parameter s essentially comes from the fact that characteristic functions of (smooth) sets do not belong
to Hs for s > 1/2, so that the s-energy density concentrates near a limiting interface very much like in
the local case. For s < 1/2, the Hs-regularity allows for (some) characteristic functions, and the energy
of minimizers remains uniformly bounded as ε tends to 0.

In the vectorial case m = 2, the local Ginzburg-Landau equation (i.e., with −∆ instead of its square
root) has been widely studied because it shares many of the relevant features of more elaborated models
of superconductivity or superfluidity, see e.g. [8, 52, 53]. In the spirit of the classical Landau’s theory of
phase transtions, fractional Ginzburg-Landau equations have been recently suggested in the physics lit-
erature in order to incorporate a long-range dependence posed by a nonlocal ordering, as it might appear
in certain high temperature superconducting compounds, see [45, 66, 68] and the references therein. In
arbitrary dimensions n > 1 andm > 2, the local Ginzburg-Landau equation has a geometrical flavor like
in the scalar case, and the limiting system in the asymptotic ε→ 0 is given by the harmonic map equation
into the sphere Sm−1 (or into more general manifolds according to the potential well). Harmonic maps
can be seen as higher dimensional generalizations of geodesics and are defined as critical points of the
Dirichlet energy with respect to perturbations in the target. If the target is a sphere, the Euler-Lagrange
equation for harmonic maps reads (in the sense of distributions)

−∆v∗ ⊥ Tv∗S
m−1 ⇐⇒ −∆v∗ = |∇v∗|2v∗ . (1.6)

A main feature of this system is its critical structure concerning regularity. Indeed, the right hand side
in equation (1.6) has a priori no better integrability than L1. This is precisely the borderline case where
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linear elliptic regularity does not apply. In dimension n = 2, harmonic maps are smooth by the famous
result of HÉLEIN [36]. However, equation (1.6) admits highly discontinuous solutions in dimensions
n > 3 [51], and specific assumptions are required to obtain at least partial regurality (i.e., smoothness
outside some ”small set”, see Subsection 4.1 for a more detailed discussion and references). In addition to
this regularity issue, equation (1.6) turns out to be invariant under composition with conformal maps in
dimension n = 2. This invariance implies that sequences of harmonic maps are usually non-compact in
the energy space [41], and this lack of compactness is formally transferred to the local Ginzburg-Landau
equation in the asymptotic ε→ 0. The weak convergence of critical points of the local Ginzburg-Landau
energy towards (weakly) harmonic maps has been proved by LIN &WANG [42, 43, 44] (see also [18]). In
the spirit of the blow-up analysis for harmonic maps developped in [41], the authors have determined
in [42, 43, 44] the geometrical nature of the possible defect measure arising in the weak convergence
process, as well as the rectifiability of the energy concentration set.

The main object of the present article is to provide a careful analysis of critical points of the Ginzburg-
Landau 1/2-energy Eε as ε → 0 in the spirit of [42, 43, 44], and as a byproduct to extend the previous
works on the scalar case to the vectorial setting. By analogy with the local case, we expect solutions of
the fractional Ginzburg-Landau equation (1.1) with uniformly bounded energy in ε to converge weakly
as ε → 0 to critical points of the Dirichlet 1/2-energy under the constraint to be Sm−1-valued. In other
words, a limit v∗ of critical points of the Ginzburg-Landau 1/2-energy should satisfy[

d

dt
E
(
v∗ + tϕ

|v∗ + tϕ| , ω
)]

t=0

= 0 for all ϕ ∈ D(ω;Rm) . (1.7)

Computing the associated Euler-Lagrange equation, we obtain

(−∆)
1
2 v∗ ⊥ Tv∗S

m−1 in ω , (1.8)

in the distributional sense. In the case where |v∗| = 1 in Rn, the Lagrange multiplier related to the
constraint takes a quite simple form and leads to the equation

(−∆)
1
2 v∗(x) =

(
γn
2

∫
Rn

|v∗(x)− v∗(y)|2

|x− y|n+1
dy

)
v∗(x) in ω , (1.9)

which is in clear analogy with (1.6). We shall refer to as weak 1/2-harmonic map into Sm−1 in ω any map
taking values into Sm−1 in ω and satisfying condition (1.7).

The notion of 1/2-harmonic map into a manifold has been introduced in the case ω = R by DA LIO

& RIVIÈRE [20, 21]. More precisely, weak 1/2-harmonic maps from R into Sm−1 are defined in [20] as
critical points of the line energy

L(v) :=
1

2

∫
R

∣∣(−∆)
1
4 v
∣∣2 dx ,

under the Sm−1-constraint as in (1.7). Here (−∆)
1
4 is the operator with symbol

√
2π|ξ|. A classical

computation in Fourier space givesL(v) = E(v,R), so that the two notions of 1/2-harmonic maps indeed
coincide. Recently, 1/2-harmonic maps into a manifold have found applications in geometrical problems
such as minimal surfaces with free boundary (see [22, 28], and Remark 4.28). While the main purpose
of [20, 21] was to show the regularity of 1/2-harmonic maps for n = 1, it was suggested there that they
arise as limits of the fractional Ginzburg-Landau equation. Our primary objective here is to prove this
assertion in arbitrary dimensions and for arbitrary domains, prescribing eventually an exterior Dirichlet
condition like in (1.2). Working on such a program, it is natural to face the regularity problem for 1/2-
harmonic maps in arbitrary dimension, and this is our secondary objective. Looking at the 1/2-harmonic
map equation (1.8)-(1.9), one immediately realizes that it has precisely the same critical structure than the
one of the local case, for both regularity and compactness. Here, equation (1.8) turns out to be invariant
in dimension n = 1 under composition with traces on R of conformal maps from the half plane R2

+ into
itself. By analogy with the local case again, it suggests that solutions of the fractional Ginzburg-Landau
equation (1.1) are not strongly compact as ε → 0 in general. Describing the possible defect of strong
convergence shall be one of the main concern in our asymptotic analysis of the fractional Ginzburg-
Landau equation.
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Our first main result, stated in Theorem 1.1 below, deals with the fractional Ginzburg-Landau equa-
tion supplemented with the Dirichlet exterior condition (1.2), and provides an answer to the questions
above. We assume in this theorem the uniform energy bound with respect to εwhich easily holds in most
cases whenever the exterior condition g admits an Sm−1-valued extension in ω of finite energy. Note that,
if g does not admits a smooth Sm−1-valued extension in ω, singularities have to appear in the limit ε→ 0

as in usual Ginzburg-Landau problems. If n = m, this is the case when ∂ω ' Sn−1 and g : ∂ω → Sn−1

has a non vanishing topological degree.

Theorem 1.1. Let ω ⊆ Rn be a smooth bounded open set, and let g : Rn → Rm be a smooth map satisfying
|g| = 1 in Rn \ω. Let εk ↓ 0 be an arbitrary sequence, and let {vk}k∈N ⊆ H1/2

g (ω;Rm)∩L4(ω) be such that for
each k ∈ N, vk weakly solves 

(−∆)
1
2 vk =

1

εk
(1− |vk|2)vk in ω ,

vk = g in Rn \ ω .

If supk Eεk (vk, ω) < ∞, then there exist a (not relabeled) subsequence and v∗ ∈ H
1/2
g (ω;Rm) a weak 1/2-

harmonic map into Sm−1 in ω such that vk − v∗ ⇀ 0 weakly in H
1/2
00 (ω). In addition, there exist a finite

nonnegative Radon measure µsing on ω, a countably H n−1-rectifiable relatively closed set Σ ⊆ ω of finite (n−1)-
dimensional Hausdorff measure, and a Borel function θ : Σ→ (0,∞) such that

(i) e(vk, ω) L n ω
∗
⇀ e(v∗, ω) L n ω + µsing weakly* as Radon measures on ω;

(ii)
(1− |vk|2)2

εk
→ 0 in L1

loc(ω);

(iii)
1− |vk(x)|2

εk
⇀

γn
2

∫
Rn

|v∗(x)− v∗(y)|2

|x− y|n+1
dy + µsing in D ′(ω);

(iv) µsing = θH n−1 Σ;

(v) v∗ ∈ C∞(ω \ Σ) and vn → v∗ in C2,α
loc (ω \ Σ) for every 0 < α < 1;

(vi) if n > 2, the limiting 1/2-harmonic map v∗ and the defect measure µsing satisfy the stationarity relation[
d

dt
E
(
v∗ ◦ φt, ω

)]
t=0

=
1

2

∫
Σ

divΣX dµsing (1.10)

for all vector fields X ∈ C1(Rn;Rn) compactly supported in ω, where {φt}t∈R denotes the flow on Rn

generated by X ;

(vii) if n = 1, the set Σ is finite and v∗ ∈ C∞(ω).

The proof of this theorem rests on the representation of (−∆)
1
2 as Dirichlet-to-Neumann operator as-

sociated to the harmonic extension to the open half space Rn+1
+ := Rn × (0,∞) given by the convo-

lution product with the Poisson kernel, see (2.9). More precisely, denoting by v 7→ ve this harmonic
extension, we shall prove that it is well defined on the space of functions of finite Dirichlet 1/2-energy,
and that ∂νve = (−∆)

1
2 v as distributions on ω. Here, ∂ν denotes the exterior normal differentiation on

∂Rn+1
+ ' Rn. When applying the extension procedure to a solution vε of the fractional Ginzburg-Landau

equation (1.1), we end up with the following system of Ginzburg-Landau boundary reactions
∆ve

ε = 0 in Rn+1
+ ,

∂ve
ε

∂ν
=

1

ε
(1− |ve

ε|2)ve
ε on ω .

(1.11)

The asymptotic analysis of this system as ε → 0 will lead us to the main conclusions stated in Theo-
rem 1.1. To this purpose, we shall first establish an epsilon-regularity type of estimate for (1.11) in the
spirit of the regularity theory for harmonic maps [7, 58] or usual Ginzburg-Landau equations [18]. This
estimate is the key to derive the convergence result and the rectifiability of the defect measure. Note
that Theorem 1.1 actually shows that µsing is a (n − 1)-rectifiable varifold in the sense of ALMGREN,
see e.g. [60]. We emphasize that identity (1.10) is precisely the coupling equation between the limiting
1/2-harmonic v∗ and the defect measure µsing. It states that the first inner variation of the Dirichlet 1/2-
energy of v∗ is equal to − 1

2
times the first inner variation of the varifold µsing, see [60, formulas 15.7
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and 16.2]. We shall achieve (1.10) in two independent steps. The first step consists in proving an analo-
gous identity when passing to the limit ε→ 0 in system (1.11). In the spirit of [44], the convenient way to
let ε→ 0 in the first inner variation of the Dirichlet energy of ve

ε is to use the notion of generalized varifold
of AMBROSIO & SONER [4], once adapted to the boundary setting. In turn, the second step allows us to
return to the original formulation on Rn. It shows that the first inner variation of the Dirichlet 1/2-energy
of an arbitrary map v is equal to the first inner variation up to ω of the Dirichlet energy of its harmonic
extension ve, see Lemma 4.16. Note that this crucial observation also implies that an harmonic extension
ve is stationary up to ω for the Dirichlet energy whenever the original function v is stationary for the
Dirichlet 1/2-energy. Here, stationarity means stationarity with respect to inner variations.

Concerning the regularity issue for 1/2-harmonic maps, it is also fruitful to rephrase the problem in
terms of harmonic extensions. Applying the extension procedure to a weak Sm−1-valued 1/2-harmonic
map v∗ in ω leads to the system 

∆ve
∗ = 0 in Rn+1

+ ,

∂ve
∗

∂ν
⊥ Tve∗S

m−1 on ω .
(1.12)

This system turns out to be (almost) included in the class of harmonic maps with free boundary (see Re-
mark 4.5) for which a regularity theory do exist [24, 25, 35, 57]. This theory provides partial regularity
results, and it requires minimality, or at least stationarity up to the free boundary. As already mentioned
in the discussion above, if v∗ is assumed to be stationary, then the extension ve

∗ is stationary up to ω.
Similarly, we shall see that harmonic extensions also inherit minimality up to ω. This is then enough to
derive a general regularity result for 1/2-harmonic maps under a minimality or stationarity assumption.
We finally point out that the relation between fractional harmonic maps and harmonic maps with a free
boundary has been previously noticed by MOSER [48] for a (non-explicit) operator slightly different from
the square root Laplacian (−∆)

1
2 , and leading to somehow weaker results.

Our regularity results for 1/2-harmonic maps can be summarized in the following theorem. For
simplicity we only state it for a sphere target, but we would like to stress that it actually holds for more
general target manifolds, see Remark 4.24. Notice that it is an interior regularity result. The regularity at
the boundary when prescribing an exterior Dirichlet condition (1.2) remains an open question.

Theorem 1.2. Let ω ⊆ Rn be a smooth bounded open set, and let v∗ ∈ Ĥ1/2(ω;Rm) ∩ L∞(Rn) be a weak
1/2-harmonic map into Sm−1 in ω. Then v∗ ∈ C∞

(
ω \ sing(v∗)

)
, where sing(v∗) denotes the complement of the

largest open set on which v∗ is continuous. Moreover,

(i) if n = 1, then sing(v∗) ∩ ω = ∅;

(ii) if n > 2 and v∗ is stationary, then H n−1
(
sing(v∗) ∩ ω

)
= 0;

(iii) if v∗ is minimizing, then dimH

(
sing(v∗) ∩ ω

)
6 n− 2 for n > 3, and sing(v∗) ∩ ω is discrete for n = 2.

The paper organized as follows. In Section 2, we present all the needed material on the functional
aspects of the square root Laplacian / Dirichlet-to-Neumann operator, as well as some key estimates
related to harmonic extensions. Actually, we believe that this section can be of independent interest.
Section 3 is devoted to the qualitative analysis of the fractional Ginzburg-Landau equation for ε fixed,
and provides regularity results for this equation. Section 4 is entirely devoted to the analysis of 1/2-
harmonic maps. In a first part, we give the regularity theory and prove Theorem 1.2. The second part
deals with explicit examples of 1/2-harmonic maps underlying their geometrical nature, and stressing
the analogies with standard harmonic maps. In Section 5, we prove the aforementioned epsilon-regularity
estimate for the system of Ginzburg-Landau boundary reactions, and its asymptotic analysis as ε → 0

follows in Section 6. Then we return to the fractional Ginzburg-Landau equation in Section 7 where we
perform its asymptotic analysis with and without exterior Dirichlet condition. The special case of energy
minimizers under exterior Dirichlet condition is also treated. Finally, we collect in Appendix A the proofs
of several statements from Section 2, and Appendix B provides some elliptic estimates coming into play
in the proof of the epsilon-regularity result.



6 VINCENT MILLOT AND YANNICK SIRE

Notations. Throughout the paper, Rn is identified with ∂Rn+1
+ = Rn × {0}. We denote by Br(x) the

open ball in Rn+1 of radius r centered at x, while Dr(x) := Br(x) ∩ Rn is the open disc in Rn centered
at x ∈ Rn. For a set A ⊆ Rn+1, we write A+ := A ∩ Rn+1

+ and ∂+A := ∂A ∩ Rn+1
+ . If A ⊆ Rn and

no confusion arises, the complement of A in Rn is simply denoted by Ac. The Froebenius inner product
between two matrices M = (Mij) and N = (Nij) is denoted by M : N :=

∑
i,jMijNij .

Concerning bounded open sets Ω ⊆ Rn+1
+ , we shall say that Ω is an admissible open set whenever

• ∂Ω is Lipschitz regular;

• the open set ∂0Ω ⊆ Rn defined by

∂0Ω :=
{
x ∈ ∂Ω ∩ RN : B+

r (x) ⊆ Ω for some r > 0
}
,

is non empty and has Lipschitz boundary;

• ∂Ω = ∂+Ω ∪ ∂0Ω .

Finally, we shall always denote by C a generic positive constant which only depends on the dimen-
sions n and m, and possibly changing from line to line. If a constant depends on additional given pa-
rameters, we shall write those parameters using the subscript notation.

2. ENERGY SPACES AND LOCAL REPRESENTATION OF THE 1/2-LAPLACIAN

2.1. Basics on H1/2-spaces. Given an open set ω ⊆ Rn, the fractional Sobolev space H1/2(ω;Rm) is
defined by

H1/2(ω;Rm) :=
{
v ∈ L2(ω;Rm) : [v]H1/2(ω) <∞

}
,

where

[v]2H1/2(ω) :=
γn
4

∫∫
ω×ω

|v(x)− v(y)|2

|x− y|n+1
dxdy , γn :=

Γ
(
(n+ 1)/2

)
π(n+1)/2

,

and we recall that H1/2(ω;Rm) is an Hilbert space normed by

‖v‖H1/2(ω) := ‖v‖L2(ω) + [v]H1/2(ω) .

Then H1/2
loc (Rn;Rm) denotes the class of functions which belongs to ∈ H1/2(ω;Rm) for every bounded

open set ω ⊆ Rn. The linear space H1/2
00 (ω;Rm) is defined by

H
1/2
00 (ω;Rm) :=

{
v ∈ H1/2(Rn;Rm) : v = 0 a.e. in Rn \ ω

}
⊆ H1/2(Rn;Rm) .

Endowed with the norm induced by H1/2(Rn;Rm), the space H1/2
00 (ω;Rm) is also an Hilbert space, and

for v ∈ H1/2
00 (ω;Rm),

[v]2H1/2(Rn) =
γn
4

∫∫
ω×ω

|v(x)− v(y)|2

|x− y|n+1
dxdy +

γn
2

∫∫
ω×ωc

|v(x)− v(y)|2

|x− y|n+1
dxdy . (2.1)

The topological dual space ofH1/2
00 (ω;Rm) will be denoted byH−1/2(ω;Rm). We recall that if the bound-

ary of ω is smooth enough (e.g. if ∂ω is Lipschitz regular), then

H
1/2
00 (ω;Rm) = D(ω;Rm)

‖·‖
H1/2(Rn) , (2.2)

see [32, Theorem 1.4.2.2].

Throughout the paper we shall be interested in functions for which the right hand side of (2.1) is finite.
We denote this class of funtions by

Ĥ1/2(ω;Rm) :=
{
v ∈ L2

loc(Rn;Rm) : E(v, ω) <∞
}
,

where E(·, ω) is the 1/2-Dirichlet energy defined in (1.3). The following properties hold for any bounded
open subsets ω and ω′ of Rn:

• Ĥ1/2(ω;Rm) is a linear space;

• Ĥ1/2(ω;Rm) ⊆ Ĥ1/2(ω′;Rm) whenever ω′ ⊆ ω, and E(v, ω′) 6 E(v, ω) ;

• Ĥ1/2(ω;Rm) ∩H1/2
loc (Rn) ⊆ Ĥ1/2(ω′;Rm) ;

• H1/2
loc (Rn;Rm) ∩ L∞(Rn) ⊆ Ĥ1/2(ω;Rm) .
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An elementary property concerning Ĥ1/2(ω;Rm) is given in Lemma 2.1 below whose proof is given
in Appendix A.

Lemma 2.1. Let x0 ∈ ω and ρ > 0 be such thatDρ(x0) ⊆ ω. There exists a constant Cρ > 0, independent of x0,
such that ∫

Rn

|v(x)|2

(|x− x0|+ 1)n+1
dx 6 Cρ

(
E
(
v,Dρ(x0)

)
+ ‖v‖2L2(Dρ(x0))

)
for all v ∈ Ĥ1/2(ω;Rm).

We now observe that for any v ∈ Ĥ1/2(ω;Rm),

v +H
1/2
00 (ω;Rm) ⊆ Ĥ1/2(ω;Rm) . (2.3)

Moreover, if v = g a.e. in Rn \ω for some g ∈ Ĥ1/2(ω;Rm), then v−g ∈ H1/2
00 (ω;Rm). As a consequence,

the affine subspace

H1/2
g (ω;Rm) :=

{
v ∈ Ĥ1/2(ω;Rm) : v = g a.e. in Rn \ ω

}
is characterized by

H1/2
g (ω;RM ) = g +H

1/2
00 (ω;Rm) . (2.4)

Finally, we shall keep in mind that

H1/2
g (ω;Rm) ⊆ H1/2

loc (Rn;Rm) (2.5)

whenever g ∈ Ĥ1/2(ω;Rm) ∩H1/2
loc (Rn).

2.2. The fractional Laplacian. Let ω ⊆ RN be a bounded open set. For a given map v ∈ Ĥ1/2(ω;Rm),
we define the distribution (−∆)

1
2 v through its action on Ĥ1/2(ω;Rm) by setting

〈
(−∆)

1
2 v, ϕ

〉
ω

:=
γn
2

∫∫
ω×ω

(v(x)− v(y)) · (ϕ(x)− ϕ(y))

|x− y|n+1
dxdy

+ γn

∫∫
ω×ωc

(v(x)− v(y)) · (ϕ(x)− ϕ(y))

|x− y|n+1
dxdy . (2.6)

Then the restriction of (−∆)
1
2 v to H1/2

00 (ω;Rm) belongs to H−1/2(ω;Rm) with the estimate

‖(−∆)
1
2 v‖2H−1/2(ω) 6 E(v, ω) , (2.7)

which follows from (2.1) and Cauchy-Schwarz Inequality.

Noticing that E(v, ω) is quadratic in v, we observe that formula (2.6) is precisely the symmetric bilinear
form associated to E(·, ω). In particular, the restriction of (−∆)

1
2 v to H−1/2(ω;Rm) corresponds to the

first variation of the energy E(v, ω) with respect to pertubations supported in ω, i.e.,〈
(−∆)

1
2 v, ϕ

〉
ω

=

[
d

dt
E(v + tϕ, ω)

]
t=0

(2.8)

for all ϕ ∈ H1/2
00 (ω;Rm).

Remark 2.2. Consider an open set ω′ ⊆ ω. Since Ĥ1/2(ω;Rm) ⊆ Ĥ1/2(ω′;Rm) and H
1/2
00 (ω′;Rm) ⊆

H
1/2
00 (ω;Rm), direct computations from (2.6) yield〈

(−∆)
1
2 v, ϕ

〉
ω

=
〈
(−∆)

1
2 v, ϕ

〉
ω′

for all ϕ ∈ H1/2
00 (ω′;Rm).

Remark 2.3. If v is a smooth bounded function, the distribution (−∆)
1
2 v can be rewritten from (2.6) as a

pointwise defined function through the formula

(−∆)
1
2 v(x) = p.v.

(
γn

∫
RN

v(x)− v(y)

|x− y|n+1
dy

)
:= lim

δ↓0
γn

∫
RN\Dδ(x)

v(x)− v(y)

|x− y|n+1
dy .

In turn, this last formula can be written in a non-singular form, that is

(−∆)
1
2 v(x) =

γn
2

∫
RN

v(x)− v(x+ h)−∇v(x) · h
|h|n+1

dh .

or
(−∆)

1
2 v(x) =

γn
2

∫
RN

−v(x+ h) + 2v(x)− v(x− h)

|h|n+1
dh .
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Finally, as a motivation to the following subsection, we recall that (−∆)
1
2 is the infinitesimal generator

of the Poisson Kernel, i.e.,

e−t(−∆)
1
2

(x, y) =
γnt

(|x− y|2 + t2)
n+1
2

, t > 0 ,

see e.g. [40].

2.3. Harmonic extension and the Dirichlet-to-Neumann operator. Throughout the paper, for a measur-
able function v defined over Rn, we shall denote by ve its extension to the half-space Rn+1

+ given by the
convolution of v with the Poisson kernel, i.e.,

ve(x) := γn

∫
Rn

xn+1v(z)

(|x′ − z|2 + x2
n+1)

n+1
2

dz , (2.9)

where we write x = (x′, xn+1) ∈ Rn+1
+ = Rn × (0,∞). Notice that ve is well defined if v belongs to the

Lebesgue space Lp over Rn with respect to the finite measure

m := (1 + |z|)−(n+1) dz (2.10)

for some 1 6 p 6∞. In particular, ve can be defined whenever v ∈ Ĥ1/2(ω;Rm) for some open bounded
set ω ⊆ Rn by Lemma 2.1. Moreover, if v ∈ L∞(Rn), then ve ∈ L∞(Rn+1

+ ) and

‖ve‖
L∞(Rn+1

+ )
6 ‖v‖L∞(Rn) . (2.11)

For an admissible function v, the extension ve is harmonic in Rn+1
+ . In addition, it has a pointwise trace

on ∂Rn+1
+ = Rn which is equal to v at every Lebesgue point. In other words, ve solves∆ve = 0 in Rn+1

+ ,

ve = v on Rn .
(2.12)

The operator v 7→ ve enjoys some useful continuity properties. Among them, we shall use the follow-
ing lemma which is proven in Appendix A.

Lemma 2.4. For every R > 0, the linear operator PR : L2(Rn,m)→ L2(B+
R) defined by

PR(v) := ve
|B+
R
, (2.13)

is continuous.

If v ∈ Ḣ1/2(Rn;Rm), it is well known that the harmonic extension ve belongs to Ḣ1(Rn+1
+ ;Rm), and

the H1/2-seminorm of v can be computed from the Dirichlet energy of ve (here Ḣ1/2 and Ḣ1 denote the
homogeneous Sobolev spaces). Moreover, ve turns out to be the extension of v of minimal energy. This
result, summarized in Lemma 2.5 below, is a classical application of Fourier Transform.

Lemma 2.5. Let v ∈ Ḣ1/2(Rn;Rm), and let ve be its harmonic extension to Rn+1
+ given by (2.9). Then ve

belongs to Ḣ1(Rn+1
+ ;Rm) and

[v]2H1/2(Rn) =
1

2

∫
Rn+1
+

|∇ve|2 dx = inf

{
1

2

∫
Rn+1
+

|∇u|2 dx : u ∈ Ḣ1(Rn+1
+ ;Rm) , u = v on Rn

}
.

For a bounded open set ω ⊆ Rn, we have the following analogous result whose proof is postponed to
Appendix A.

Lemma 2.6. Let ω ⊆ Rn be a bounded open set. For every v ∈ Ĥ1/2(ω;Rm), the harmonic extension ve given
by (2.9) belongs to H1

loc(Rn+1
+ ∪ ω;Rm) ∩ L2

loc(Rn+1
+ ). In addition, for every x0 ∈ ω, R > 0 and ρ > 0 such

that D3ρ(x0) ⊆ ω, there exist constant CR,ρ > 0 and CR > 0, independent of v and x0, such that∥∥ve
∥∥2

L2(B+
R

(x0))
6 CR,ρ

(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
,

and ∥∥∇ve
∥∥2

L2(B+
ρ (x0))

6 Cρ
(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
.
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Remark 2.7. By the previous lemma, for any v ∈ Ĥ1/2(ω;Rm) ∩ H1/2
loc (Rn), the harmonic extension ve

belongs to H1
loc(Rn+1

+ ;Rm), and for any R > 0,∥∥ve
∥∥2

H1(B+
R

)
6 CR

(
E
(
v,D2R

)
+ ‖v‖2L2(D2R)

)
.

If v ∈ Ĥ1/2(ω;Rm) for some bounded open set ω ⊆ Rn with Lipschitz boundary, we now observe
that ve admits a distributional (exterior) normal derivative ∂νve on ω by its harmonicity in Rn+1

+ . More
precisely, we define ∂νve through its action on ϕ ∈ D(ω;Rm) by〈

∂ve

∂ν
, ϕ

〉
:=

∫
Rn+1
+

∇ve · ∇Φ dx , (2.14)

where Φ is any smooth extension of ϕ compactly supported in Rn+1
+ ∪ ω. Note that the right hand side

of (2.14) is well defined by Lemma 2.6. Using the harmonicity of ve and the divergence theorem, it is
routine to check that the integral in (2.14) does not depend on the choice of the extension Φ, and that
∂νv

e coincides with the classical exterior normal derivative of ve on ω ⊆ ∂Rn+1
+ whenever v is smooth.

It turns out that ∂νve coincides with the distribution (−∆)
1
2 v defined in the previous subsection. Here

again the proof is left to Appendix A.

Lemma 2.8. Let ω ⊆ Rn be a bounded open set with Lipschitz boundary. For every v ∈ Ĥ1/2(ω;Rm) we have〈
(−∆)

1
2 v, ϕ

〉
ω

=

〈
∂ve

∂ν
, ϕ

〉
for all ϕ ∈ H1/2

00 (ω;Rm) ,

where ve is the harmonic extension of v to Rn+1
+ given by (2.9).

Up to now, we have not said anything about the local counterpart of Lemma 2.5 concerning the min-
imality of ve for a function v in Ĥ1/2(ω;Rm). This is the purpose of the following lemma inspired from
[17, Lemma 7.2].

Corollary 2.9. Let ω ⊆ Rn be a bounded open set, and let Ω ⊆ Rn+1
+ be an admissible bounded open set such

that ∂0Ω ⊆ ω. Let v ∈ Ĥ1/2(ω;Rm), and let ve be its harmonic extension to Rn+1
+ given by (2.9). Then,

1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

|∇ve|2 dx > E(u, ω)− E(v, ω) (2.15)

for all u ∈ H1(Ω;Rm) such that u− ve is compactly supported in Ω ∪ ∂0Ω. In the right hand side of (2.15), the
trace of u on ∂0Ω is extended by v outside ∂0Ω.

Proof. Let u ∈ H1(Ω;Rm) such that u − ve is compactly supported in Ω ∪ ∂0Ω. We extend u by ve

outside Ω. Then h := u − ve ∈ H1(Rn+1
+ ;Rm) and h is compactly supported in Ω ∪ ∂0Ω. Hence

h|Rn ∈ H
1/2
00 (∂0Ω;Rm). Since v ∈ Ĥ1/2(∂0Ω;Rm) we deduce from (2.3) that u admits a trace on Rn

which belongs to Ĥ1/2(∂0Ω;Rm).
Using Lemma 2.5 and Lemma 2.8, we now estimate

1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

|∇ve|2 dx =
1

2

∫
Rn+1
+

|∇h|2 dx+

∫
Rn+1
+

∇ve · ∇h dx

=
1

2

∫
Rn+1
+

|∇h|2 dx+
〈
(−∆)

1
2 v, h|Rn

〉
∂0Ω

>
[
h|Rn

]2
H1/2(Rn)

+
〈
(−∆)

1
2 v, h|Rn

〉
∂0Ω

= E(h|Rn , ∂
0Ω) +

〈
(−∆)

1
2 v, h|Rn

〉
∂0Ω

. (2.16)

Using the fact that u|Rn , v ∈ Ĥ1/2(∂0Ω;Rm), we derive

E(h|Rn , ∂
0Ω) = E(u|Rn , ∂

0Ω) + E(v, ∂0Ω)−
〈
(−∆)

1
2 v, u|Rn

〉
∂0Ω

, (2.17)

and 〈
(−∆)

1
2 v, h|Rn

〉
∂0Ω

=
〈
(−∆)

1
2 v, u|Rn

〉
∂0Ω
− 2E(v, ∂0Ω) . (2.18)

Gathering (2.16)-(2.17)-(2.18) yields

1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

|∇ve|2 dx > E(u|Rn , ∂
0Ω)− E(v, ∂0Ω) .



10 VINCENT MILLOT AND YANNICK SIRE

Since u|Rn = v outside ∂0Ω, we infer that

E(u|Rn , ∂
0Ω)− E(v, ∂0Ω) = E(u|Rn , ω)− E(v, ω) ,

and the conclusion follows. �

3. THE FRACTIONAL GINZBURG-LANDAU EQUATION

We consider for the entire section a bounded open set ω ⊆ Rn with Lipschitz boundary. We are
interested in weak solutions vε ∈ Ĥ1/2(ω;Rm) ∩ L4(ω) of the fractional Ginzburg-Landau equation

(−∆)
1
2 vε =

1

ε
(1− |vε|2)vε in ω . (3.1)

Here the notion of weak solution is understood in the duality sense according to the formulation (2.6) of
the fractional Laplacian, i.e.,〈

(−∆)
1
2 vε, ϕ

〉
ω

=
1

ε

∫
ω

(1− |vε|2)v · ϕ dx for all ϕ ∈ H1/2
00 (ω;Rm) ∩ L4(ω)

(or equivalently for all ϕ ∈ D(ω;Rm)). By (2.8), such solutions correspond to critical points in ω of the
Ginzburg-Landau 1/2-energy

Eε(v, ω) := E(v, ω) +
1

4ε

∫
ω

(1− |v|2)2 dx .

In other words, we are interested in maps vε ∈ Ĥ1/2(ω;Rm) ∩ L4(ω) satisfying[
d

dt
Eε(vε + tϕ, ω)

]
t=0

= 0 for all ϕ ∈ H1/2
00 (ω;Rm) ∩ L4(ω) .

Among all kinds of critical points are the minimizers. We say that vε ∈ Ĥ1/2(ω;Rm)∩L4(ω) is a minimizer
of Eε in ω if

Eε(vε, ω) 6 Eε(vε + ϕ, ω) for all ϕ ∈ H1/2
00 (ω;Rm) ∩ L4(ω)

(or equivalently for all ϕ ∈ D(ω;Rm)). The most standard way to construct minimizing solutions (and in
particular solutions of (3.1)) is to minimize Eε(·, ω) under an exterior Dirichlet condition. More precisely,
given a map g ∈ Ĥ1/2(ω;Rm) ∩ L4(ω), one consider the minimization problem

min
{
Eε(v, ω) : v ∈ H1/2

g (ω;Rm) ∩ L4(ω)
}
, (3.2)

whose resolution follows directly from the Direct Method of Calculus of Variations.

To investigate the qualitative properties of solutions of (3.1), we rely on the harmonic extension to the
half space Rn+1

+ introduced in the previous section. According to Lemma 2.8, if vε ∈ Ĥ1/2(ω;Rm)∩L4(ω)

is a weak solution of (3.1), then its harmonic extension ve
ε given by (2.9) weakly solves

∆ve
ε = 0 in Rn+1

+ ,

∂ve
ε

∂ν
=

1

ε

(
1− |ve

ε|2
)
ve
ε on ω .

(3.3)

In view of Lemma 2.6 and (2.14), the weak sense for this system corresponds to∫
Rn+1
+

∇ve
ε · ∇Φ dx =

1

ε

∫
ω

(
1− |ve

ε|2
)
ve
ε · Φ dH n (3.4)

for all Φ ∈ H1(Rn+1
+ ;Rm) ∩ L4(ω) compactly supported in Rn+1

+ ∪ ω. System (3.3) also has a variational
structure. Indeed, considering an admissible bounded open set Ω ⊆ Rn+1

+ such that ∂0Ω ⊆ ω, and setting
for u ∈ H1(Ω;Rm) ∩ L4(∂0Ω),

Eε(u,Ω) :=
1

2

∫
Ω

|∇u|2 dx+
1

4ε

∫
∂0Ω

(1− |u|2)2 dH n , (3.5)

the weak formulation (3.4) can be rephrased as[
d

dt
Eε (ve

ε + tΦ,Ω)

]
t=0

= 0
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for all Φ ∈ H1(Ω;Rm)∩L4(∂0Ω) compactly supported in Ω∪ ∂0Ω. Hence ve is a critical point of Eε in Ω

for all admissible bounded open set Ω ⊆ Rn+1
+ such that ∂0Ω ⊆ ω. The energy Eε is what we may refer

to as Ginzburg-Landau boundary energy.

If vε turns out to be minimizing, we can transfer the minimality of vε to ve
ε with the help of Corol-

lary 2.9. In the following proposition, we say that u ∈ H1(Ω;Rm) ∩ L4(∂0Ω) is minimizer of Eε in Ω

if

Eε(u,Ω) 6 Eε(u+ Φ,Ω)

for all Φ ∈ H1(Ω;Rm) ∩ L4(∂0Ω) compactly supported in Ω ∪ ∂0Ω.

Proposition 3.1 (Minimality transfer). Let vε ∈ Ĥ1/2(ω;Rm) ∩ L4(ω) be a minimizer of Eε in ω, and let ve
ε

be its harmonic extension to Rn+1
+ given by (2.9). Then ve

ε is a minimizer of Eε in every admissible bounded open
set Ω ⊆ Rn+1

+ such that ∂0Ω ⊆ ω.

Concerning regularity for system (3.1), it suffices to investigate the boundary regularity of the har-
monic extension which satisfies (3.3). For this issue we can rely on the well known regularity theory for
linear Neumann boundary value problems, see e.g. [31]. The following theorem deals with regularity
in the interior of the free boundary, and a simple proof can be found in [16, Lemma 2.2] (which actually
deals with scalar valued equations, but a quick inpection of the proof shows that the result still holds in
the vectorial case).

Theorem 3.2. Let R > 0, and let uε ∈ H1(B+
2R;Rm) ∩ L∞(B+

2R) be a weak solution of
∆uε = 0 in B+

2R ,

∂uε
∂ν

=
1

ε
(1− |uε|2)uε on D2R .

Then u ∈ C∞
(
B+
R ∪DR

)
.

Applying Theorem 3.2 to system (3.3) yields interior regularity for bounded variational solutions of the
fractional Ginzburg-Landau system (3.1).

Corollary 3.3. Let vε ∈ Ĥ1/2(ω;Rm) ∩ L∞(Rn) be a weak solution of (3.1). Then vε ∈ C∞(ω).

Dealing with arbitrary critical points of Eε(·, ω) in H1/2
g (ω;Rm) for a smooth domain ω and a smooth

(exterior) Dirichlet data g, one may wonder if regularity holds accross the boundary ∂ω. If vε is such a
critical point and ve

ε is its harmonic extension, we end up with the mixed boundary value problem

∆ve
ε = 0 in Rn+1

+ ,

∂ve
ε

∂ν
=

1

ε

(
1− |ve

ε|2
)
ve
ε on ω ,

ve
ε = g on Rn \ ω .

(3.6)

Even if we obviously expect regularity in the interior of ω, it might not hold across the edge ∂ω, since
solutions of linear mixed boundary value problems are usually not better than Hölder continous (and 1/2
is in general the best possible Hölder exponant, see e.g. [54] and the references therein). Hölder continuity
for variational solutions of (non homogeneous) linear mixed boundary value problems follows from the
general results of STAMPACCHIA [63, 64] (see also [19]), and an estimate on the order of regularity is given
by the classical result of SHAMIR [59]. In our case, it is enough to prove an a priori global L∞-bound on
vε to derive from [59] the regularity stated in the following theorem.

Theorem 3.4. Assume that ∂ω is smooth. Let g ∈ C1(Rn;Rm)∩L∞(Rn), and let vε ∈ H1/2
g (ω;Rm)∩L4(ω)

be a weak solution of (3.1). Then vε ∈ C∞(ω) and vε is α-Hölder continuous near ∂ω for every α ∈ (0, 1/2).

As mentioned in the few lines above, the proof of Theorem 3.4 rely on the boundedness of vε. Indeed,
once the L∞-bound on vε is obtained, the right hand side in the Neumann equation of (3.6) remains
bounded. This is enough to apply the regularity result of [59], and then deduce the Hölder continuity of
ve
ε (and thus of vε). The higher order regularity away from ∂ω follows from Theorem 3.2.
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Lemma 3.5. Let ω and g be as in Theorem 3.4. Let vε ∈ H1/2
g (ω;Rm) ∩ L4(ω) be a weak solution of (3.1). Then

vε ∈ L∞(Rn).

Proof. Let us fix for the whole proof an admissible bounded open set Ω ⊆ Rn+1
+ with smooth boundary

such that ω ⊆ ∂0Ω. We shall use an argument in the spirit of the proof by BREZIS & KATO for the
standard Laplacian.
Step 1. By (2.5) and Remark 2.7, ve

ε ∈ H1
loc(Rn+1

+ ;Rm) and ve
ε weakly solves (3.6). By standard elliptic

regularity for the Dirichlet problem, we have ve
ε ∈ C1(Rn+1

+ \ ω). Since dist(∂+Ω, ω) > 0, we have

M := ‖ve
ε‖L∞(∂+Ω) + ‖∇ve

ε‖L∞(∂+Ω) <∞ .

Let us now consider the scalar function

η :=
√
|ve
ε|2 + λ ∈ H1(Ω) ∩ L4(ω)

with λ := max(1, ‖g‖2L∞(Rn\ω)), and fix an arbitrary nonnegative function Φ ∈ C∞(Ω) with compact
support in Ω ∪ ω ∪ ∂+Ω. By the chain-rule formula for Sobolev functions we have∫

Ω

∇η · ∇Φ dx =

n+1∑
j=1

∫
Ω

(ve
ε · ∂jve

ε)∂jΦ√
|ve
ε|2 + λ

dx .

Since
ve
ε√

|ve
ε|2 + λ

∈ H1(Ω;Rm) ,

we deduce that∫
Ω

∇η · ∇Φ dx =

∫
Ω

∇ve
ε · ∇

(
Φve

ε√
|ve
ε|2 + λ

)
dx−

∫
Ω

(
|∇ve

ε|2√
|ve
ε|2 + λ

−
n+1∑
j=1

|ve
ε · ∂jve

ε|2

(|ve
ε|2 + λ)3/2

)
Φ dx .

On the other hand Φ > 0, so that∫
Ω

∇η · ∇Φ dx 6
∫

Ω

∇ve
ε · ∇

(
Φve

ε√
|ve
ε|2 + λ

)
dx .

Using equation (3.6), we infer that∫
Ω

∇η · ∇Φ dx 6
∫
∂+Ω

(
vε ·

∂ve
ε

∂ν

)
Φ√

|ve
ε|2 + λ

dH n +
1

ε

∫
ω

(1− |ve
ε|2)

|ve
ε|2Φ√
|ve
ε|2 + λ

dH n ,

whence∫
Ω

∇η · ∇Φ dx 6
∫
∂+Ω

(
vε ·

∂ve
ε

∂ν

)
Φ

η
dH n − 1

ε

∫
ω

|ve
ε|2(η +

√
1 + λ)

η
(η −

√
1 + λ)Φ dH n . (3.7)

Then we conclude by approximation that (3.7) actually holds for any nonnegative Φ ∈ H1(Ω) ∩ L4(ω)

satisfying Φ = 0 H n-a.e. on ∂0Ω \ ω.

Step 2. Given T > 0 and β > 0, we define

ρ := max{η −
√

2λ, 0} , ρT := min(ρ, T ) , ΨT,β := ρβT ρ , ΦT,β := ρ2β
T ρ .

Those functions belong to H1(Ω) ∩ L4(ω) and vanish on ∂0Ω \ ω. Setting ΩT := {0 < ρ < T} ∩ Ω,
straightforward computations yield∫

Ω

|∇ΨT,β |2 dx =

∫
Ω

ρ2β
T |∇η|

2 dx+ (β2 + 2β)

∫
ΩT

ρ2β |∇η|2 dx ,

and ∫
Ω

∇η · ∇ΦT,β dx =

∫
Ω

ρ2β
T |∇η|

2 dx+ 2β

∫
ΩT

ρ2β |∇η|2 dx .

From this two equalities we now infer that∫
Ω

|∇ΨT,β |2 dx 6 (β + 1)

∫
Ω

∇η · ∇ΦT,β dx .

Using ΦT,β as a test function in (3.7), we deduce that∫
Ω

|∇ΨT,β |2 dx 6 (β + 1)

∫
∂+Ω

(
vε ·

∂ve
ε

∂ν

)
ρ2β
T ρ

η
dH n − β + 1

ε

∫
ω

|ve
ε|2(η +

√
1 + λ)

η
ρ2β
T ρ

2 dH n ,
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which leads to ∫
Ω

∣∣∣∇(ρβT ρ)∣∣∣2 dx 6 (β + 1)H n(∂+Ω)M2β+2 .

Applying the Poincaré Inequality in [69, Corollary 4.5.2] to ρβT ρ yields∫
∂Ω

∣∣ρβT ρ∣∣2 dx 6 CΩ,ω(β + 1)M2β+2 ,

for a constant CΩ,ω > 0 which only depends on Ω and ω. Next we let T → ∞ in this last inequality to
obtain

‖ρ‖L2(β+1)(∂Ω) 6 C
1/(2β+2)
Ω,ω (β + 1)1/(2β+2)M .

Letting now β →∞ leads to ‖ρ‖L∞(∂Ω) 6M , which in turn implies vε ∈ L∞(ω). Since vε = g outside ω,
we have thus proved that vε ∈ L∞(Rn). �

We now deduce from the maximum principle the following upper bound on the modulus of a critical
point vε satisfying an exterior Dirichlet condition.

Corollary 3.6. Let ω and g be as in Theorem 3.4. Let vε ∈ H1/2
g (ω;Rm) ∩ L4(ω) be a weak solution of (3.1).

Then ‖vε‖L∞(Rn) 6 max(1, ‖g‖L∞(Rn\ω)).

Proof. We consider the function mε := λ2 − |ve
ε|2 with λ := max(1, ‖g‖L∞(Rn\ω)). Then mε satisfies

−∆mε = 2|∇ve
ε|2 > 0 in Rn+1

+ ,

∂mε

∂ν
= −2

ε
|ve
ε|2(mε + 1− λ2) on ω

mε > 0 on Rn \ ω .

Assume that mε achieves its minimum over Rn at a point x0 ∈ ω. Then x0 is a point of maximum of
|vε|, and hence x0 is an absolute minima of mε over the whole half space Rn+1

+ by (2.11). If m(x0) < 0

we obtain ∂νmε(x0) > 0. On the other hand, by the strong maximum maximum principle and the Hopf
boundary lemma, we have ∂νmε(x0) < 0 which leads to contradiction. �

Remark 3.7. In the case where the exterior condition g satisfies ‖g‖L∞(Rn\ω) 6 1, Corollary 3.6 pro-
vides the estimate |vε| 6 1 which is very standard for the usual (local) Ginzburg-Landau equation. We
emphasize that, in this case, we have |ve

ε| 6 1.

4. 1/2-HARMONIC MAPS: DEFINITIONS, REGULARITY, AND EXAMPLES

4.1. Definitions and regularity theory. In this subsection we assume that ω ⊆ Rn is a bounded open set
with Lipschitz boundary. We start introducing the concept of 1/2-harmonic map in ω with values into the
sphere Sm−1 as well as the related notion of boundary harmonic map. We shall then discuss their regularity
in view of the existing theory for classical harmonic maps. To simplify slightly the presentation, we
made the choice to focus on the case where the target manifold is a sphere. However definitions and
results extend to more general compact manifolds without boundary, see Remark 4.24 at the end of this
subsection.

Definition 4.1. Let v ∈ Ĥ1/2(ω;Rm) be such that |v| = 1 a.e. in ω. We say that v is weakly 1/2-harmonic
into Sm−1 in ω if [

d

dt
E
(
v + tϕ

|v + tϕ| , ω
)]

t=0

= 0 (4.1)

for all ϕ ∈ H1/2
00 (ω;Rm) ∩ L∞(ω) compactly supported in ω.

Writing explicitly the criticality condition (4.1), we find the variational formulation of the Euler-
Lagrange equation for 1/2-harmonic into Sm−1 as stated in the following proposition.

Proposition 4.2. Let v ∈ Ĥ1/2(ω;Rm) be such that |v| = 1 a.e. in ω. Then v is a weak 1/2-harmonic into Sm−1

in ω if and only if 〈
(−∆)

1
2 v, ϕ

〉
ω

= 0 (4.2)
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for all ϕ ∈ H1/2
00 (ω;Rm) satisfying

ϕ(x) ∈ Tv(x)Sm−1 a.e. in ω .

Proof. Step 1. We start proving that (4.2) implies (4.1). By the density of compactly supported smooth
functions stated in (2.2), it is enough to consider the case where ϕ ∈ D(ω;Rm). Then we observe that
(ϕ · v)v ∈ H1/2

00 (ω;Rm). Hence ψ := ϕ − (ϕ · v)v belongs to H1/2
00 (ω;Rm), and it satisfies ψ · v = 0 a.e.

in ω. Noticing that
v(x) + tϕ(x)

|v(x) + tϕ(x)| = v(x) + tψ(x) +O(t2) as t→ 0 ,

we obtain by dominated convergence and assuming (4.2) that[
d

dt
E
(
v + tϕ

|v + tϕ| , ω
)]

t=0

=
〈
(−∆)

1
2 v, ψ

〉
ω

= 0 ,

and this first step is complete.

Step 2. We now prove the reverse implication. Let ϕ ∈ H
1/2
00 (ω;Rm) be such that ϕ · v = 0 a.e. in ω.

By standard truncations and cut-off arguments, we may assume without loss of generality that ϕ is
compactly supported in ω and that ϕ ∈ L∞(ω). Then,

v(x) + tϕ(x)

|v(x) + tϕ(x)| =
v(x) + tϕ(x)√
1 + t2|ϕ(x)|2

= v(x) + tϕ(x) +O(t2) as t→ 0 ,

and we deduce again by dominated convergence and assumption (4.1) that

0 =

[
d

dt
E
(
v + tϕ

|v + tϕ| , ω
)]

t=0

=
〈
(−∆)

1
2 v, ϕ

〉
ω
,

which ends the proof. �

Remark 4.3. Let v ∈ Ĥ1/2(ω;Rm) be a weak 1/2-harmonic map into Sm−1 in ω. In view of Proposi-
tion 4.2, the Euler-Lagrange equation can be written in the form

(−∆)
1
2 v ⊥ Tv Sm−1 in H−1/2(ω) , (4.3)

which is the clear analogue of the classical (weak) harmonic map system. Of course this equation is not
completely explicit, but one can rewrite it computing the Lagrange multiplier associated to the constraint.
In the case where |v| = 1 a.e. in all of Rn, it takes a quite simple form. Indeed, for ϕ ∈ D(ω;Rm),
Proposition 4.2 yields 〈

(−∆)
1
2 v, ϕ

〉
ω

=
〈
(−∆)

1
2 v, (ϕ · v)v

〉
ω
.

After some direct computations using the representation (2.6), we obtain〈
(−∆)

1
2 v, (ϕ · v)v

〉
ω

=
γn
2

∫∫
ω×Rn

|v(x)− v(y)|2

|x− y|n+1
v(x) · ϕ(x) dxdy .

Combining the two identities above leads to

(−∆)
1
2 v(x) =

(
γn
2

∫
Rn

|v(x)− v(y)|2

|x− y|n+1
dy

)
v(x) in D ′(ω) ,

which is again in clear analogy with the standard harmonic map system into a sphere.

We now introduce what we call Sm−1-boundary harmonic maps. Those maps correspond to critical
points of the Dirichlet energy under the constraint to be Sm−1-valued on a prescribed portion of the
boundary.

Definition 4.4. Let Ω ⊆ Rn+1
+ be an admissible bounded open set, and let u ∈ H1(Ω;Rm) be such that

|u| = 1 H n-a.e. on ∂0Ω. We say that u is weakly harmonic in Ω with respect to the (partially) free boundary
condition u(∂0Ω) ⊆ Sm−1 if ∫

Ω

∇u · ∇Φ dx = 0 (4.4)

for all Φ ∈ H1(Ω;Rm) ∩ L∞(Ω) compactly supported Ω ∪ ∂0Ω and satisfying

Φ(x) ∈ Tu(x)Sm−1 H n-a.e. on ∂0Ω . (4.5)

In short, we shall say that u is a weak (Sm−1, ∂0Ω)-boundary harmonic map in Ω.
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Defintion 4.4 can be motivated by the fact that[
d

dt

(
1

2

∫
Ω

|∇ut|2 dx

)]
t=0

=

∫
Ω

∇u · ∇Φ dx

for variations ut of the form

ut :=
u+ tΦ√
1 + t2|Φ|2

,

with Φ satisfying (4.5). Such variations ut belong to H1(Ω;Rm), and they satisfy the constraint |ut| = 1

H n-a.e. on ∂0Ω by (4.5). Actually, if u ∈ H1(Ω;Rm) is a weak (Sm−1, ∂0Ω)-boundary harmonic map
in Ω, a standard truncation argument shows that (4.4) holds for any Φ ∈ H1(Ω;Rm) with compact
support support in Ω ∪ ∂0Ω and satisfying (4.5). Moreover, choosing Φ with compact support in Ω in
formula (4.4) shows that ∆u = 0 in Ω. Integrating by parts in (4.4) then yields∫

∂0Ω

∂u

∂ν
· Φ dH n = 0

for all smooth functions Φ compactly supported in Ω ∪ ∂0Ω and satisfying (4.5). In general the inte-
gral above has of course to be understood in the H−1/2 − H

1/2
00 duality sense. Therefore, the weak

(Sm−1, ∂0Ω)-boundary harmonic map system can be reformulated as
∆u = 0 in Ω ,

∂u

∂ν
⊥ Tu Sm−1 in H−1/2(∂0Ω) .

(4.6)

Remark 4.5. In view of the discussion above, let us mention that (Sm−1, ∂0Ω)-boundary harmonic maps
belong to a larger class of harmonic maps known in the literature as harmonic maps with partially free
boundary, see [5, 23, 24, 25, 33, 34, 35, 57] and references therein. In most studies, one considers a smooth
compact Riemannian manifoldMwithout boundary (that we can assume to be isometrically embedded
in some Euclidean space by the Nash embedding Theorem), and N a smooth closed submanifold ofM.
The boundary portion ∂0Ω is called the partially free boundary, and N is the supporting manifold. Then
M-valued (weak) harmonic maps in Ω with the partially free boundary condition u(∂0Ω) ⊆ N are
defined as critical points of the Dirichlet energy under the constraints u(x) ∈ M for a.e. x ∈ Ω and
u(x) ∈ N for H n-a.e. x ∈ ∂0Ω. For (Sm−1, ∂0Ω)-boundary harmonic maps, we may consider the
submanifoldN = Sm−1 of the targetM = Rm. However, to apply known results on harmonic maps, the
compactness ofM is usually required. Similarly to [48, Sec. 3], a way to avoid this problem is to consider
bounded (Sm−1, ∂0Ω)-boundary harmonic maps, noticing that Sm−1 can be viewed as a submanifold of
a flat torus M = Rm/rZm with factor r > 2. Indeed, if u is a (Sm−1, ∂0Ω)-boundary harmonic map
in Ω satisfying ‖u‖L∞(Ω) < r/2, then it can be considered as a M-valued harmonic map. We finally
point out that such L∞-bound is not too restrictive in many applications. For instance, if we consider an
additional Dirichlet boundary condition u = g on ∂+Ω with g : ∂+Ω → Sm−1 smooth, then we usually
obtain ‖u‖L∞(Ω) 6 1 through some maximum principle.

As a consequence of (2.14), Lemma 2.8, and Proposition 4.2, we can relate 1/2-harmonic maps into
Sm−1 to (Sm−1, ∂0Ω)-boundary harmonic maps, as we already did for the fractional Ginzburg-Landau
equation.

Proposition 4.6 (Criticality transfer). Let v ∈ Ĥ1/2(ω;Rm) be a weak 1/2-harmonic map into Sm−1 in ω, and
let ve be its harmonic extension to Rn+1

+ given by (2.9). Then ve is a weak (Sm−1, ∂0Ω)-boundary harmonic map
in Ω for every admissible bounded open set Ω ⊆ Rn+1

+ such that ∂0Ω ⊆ ω.

For what concerns regularity, let us emphasize that a full regularity result cannot hold in general
neither for weakly 1/2-harmonic maps into Sm−1 nor for weak (Sm−1, ∂0Ω)-boundary harmonic maps
due to topological constraints. In the case of boundary harmonic maps, the regularity issue is of course
the regularity at the free boundary ∂0Ω, since the system is the usual Laplace equation in Ω (so that
boundary harmonic maps are smooth in the interior of the domain). At the end of the next subsection,
we shall give examples of weakly 1/2-harmonic maps from R2 into S1 which are not continuous at the
origin (see Proposition 4.30), the prototypical one being v(x) = x

|x| . Obviously, such examples do not



16 VINCENT MILLOT AND YANNICK SIRE

exclude some partial regularity to hold, but dealing with general weak solutions we actually don’t expect
any reasonable kind of regularity by analogy with the classical harmonic map equation into a manifold
and the famous counterexample of RIVIÈRE [51] (of a weak harmonic map from the three dimensional
ball into S2 which is everywhere discontinuous). In the context of 1/2-harmonic maps into spheres, we
are not aware of an analoguous counterexample to regularity, but we believe that it should exist. As it
is the case for harmonic maps into a maniflod, it is then reasonnable to ask for an extra assumption on a
weak 1/2-harmonic map to derive at least partial regularity. The (usual) assumption we make is either
energy minimality or stationarity, i.e., criticality under inner variations. We now recall these notions for
1/2-harmonic maps and for boundary harmonic maps.

Definition 4.7. Let v ∈ Ĥ1/2(ω;Rm) be such that |v| = 1 a.e. in ω. We say that v is a minimizing 1/2-
harmonic map into Sm−1 in ω if

E(v, ω) 6 E(ṽ, ω)

for all ṽ ∈ Ĥ1/2(ω;Rm) such that |ṽ| = 1 a.e. in ω, and ṽ − v is compactly supported in ω.

Definition 4.8. Let Ω ⊆ Rn+1
+ be an admissible bounded open set, and let u ∈ H1(Ω;Rm) be such that

|u| = 1 H n-a.e. on ∂0Ω. We say that u is a minimizing harmonic map in Ω with respect to the (partially) free
boundary condition u(∂0Ω) ⊆ Sm−1 if

1

2

∫
Ω

|∇u|2 dx 6
1

2

∫
Ω

|∇ũ|2 dx

for all ũ ∈ H1(Ω;Rm) such that |ũ| = 1 H n-a.e. on ∂0Ω, and ũ − u is compactly supported in Ω ∪ ∂0Ω.
In short, we shall say that u is a minimizing (Sm−1, ∂0Ω)-boundary harmonic map in Ω.

Obviously, if v ∈ Ĥ1/2(ω;Rm) is a minimizing 1/2-harmonic map into Sm−1 in ω, then v is a weak
1/2-harmonic map into Sm−1 in ω. In the same way, minimizing (Sm−1, ∂0Ω)-boundary harmonic
maps are weak (Sm−1, ∂0Ω)-boundary harmonic maps. As already pursued for the fractional Ginzburg-
Landau equation, the minimality of a 1/2-harmonic map can be transfered to its harmonic extension
with the help of Corollary 2.9.

Proposition 4.9 (Minimality transfer). Let v ∈ Ĥ1/2(ω;Rm) be a minimizing 1/2-harmonic map into Sm−1

in ω. Let ve be the harmonic extension of v in Rn+1
+ given by (2.9). Then ve is a minimizing (Sm−1, ∂0Ω)-

boundary harmonic map in Ω for every admissible bounded open set Ω ⊆ Rn+1
+ such that ∂0Ω ⊆ ω.

As mentioned above, the regularity theory for harmonic maps also deals with stationary harmonic
maps. For boundary harmonic maps, the stationarity criteria has to allow inner variations up to the
partially free boundary ∂0Ω, and it leads to the following definition.

Definition 4.10. Let Ω ⊆ Rn+1
+ be an admissible bounded open set, and let u ∈ H1(Ω;Rm) be a weak

(Sm−1, ∂0Ω)-boundary harmonic map in Ω. We say that u is stationary if[
d

dt

(
1

2

∫
Ω

∣∣∇(u ◦ Φt)
∣∣2 dx

)]
t=0

= 0 (4.7)

for any differentiable 1-parameter group of smooth diffeomorphisms Φt : Rn+1 → Rn+1 satisfying

• Φ0 = idRn+1 ;
• Φt(Rn) ⊆ Rn;
• Φt − idRn+1 is compactly supported, and supp(Φt − idRn+1) ∩ Rn+1

+ ⊆ Ω ∪ ∂0Ω.

Remark 4.11. It is well known that the usual stationarity definition can be recast in terms of the infini-
tesimal generator X of the 1-parameter group {Φt}t∈R of diffeomorphisms (see e.g. [61, Chapter 2.2]). In
the free boundary context, a map u ∈ H1(Ω;Rm) is stationary in Ω up to the free boundary ∂0Ω if and
only if ∫

Ω

(
|∇u|2divX− 2

n+1∑
i,j=1

(∂iu · ∂ju)∂jXi

)
dx = 0 (4.8)

for all vector fields X = (X1, . . . ,Xn+1) ∈ C1(Ω;Rn+1) compactly supported in Ω ∪ ∂0Ω and satisfying
Xn+1 = 0 on ∂0Ω (the left hand side of (4.8) being exactly minus twice the value of the derivative in (4.7)).
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Moreover, using the so-called stress-energy tensor T = (Ti)
n+1
i=1 given by

(Ti)j(u) := |∇u|2δij − 2(∂iu · ∂ju) , 1 6 j 6 n+ 1 ,

identity (4.8) can be rewritten as the following system of conservation lawsdiv Ti = 0 in Ω for each i ∈ {1, . . . , n+ 1} ,

Ti · ν = 0 on ∂0Ω for each i ∈ {1, . . . , n} ,
(4.9)

in the sense of distributions.

Remark 4.12. For any u ∈ H1(Ω;Rm) satisfying ∆u = 0 in Ω, it turns out that the integral in the left
hand side of (4.8) only depends on the trace of (X1, . . . ,Xn) on ∂0Ω. Indeed, if u is harmonic in Ω, then
we have div T = 0 in Ω. Therefore, if X vanishes on ∂0Ω, integrating by parts this integral shows that it
is equal to zero (no matter what the trace of u on ∂0Ω is).

Remark 4.13. Note that minimizing boundary harmonic maps are always stationary, but a stationary
boundary harmonic map might not be minimizing. On the other hand, if a boundary harmonic map
is smooth enough up to the free boundary ∂0Ω, then it is stationary. Indeed, under such a smoothness
assumption a simple computation shows that a solution of (4.6) satisfies (4.9).

Concerning the 1/2-Dirichlet energy, we define the notion of stationarity in the usual way through
inner variations.

Definition 4.14. Let v ∈ Ĥ1/2(ω;Rm) be a weak 1/2-harmonic map into Sm−1 in ω. We say that v is
stationary in ω if [

d

dt
E
(
v ◦ φt, ω

)]
t=0

= 0

for any differentiable 1-parameter group of smooth diffeomorphisms φt : Rn → Rn satisfying

• φ0 = idRn ;
• φt − idRn is compactly supported, and supp(φt − idRn) ⊆ ω.

Another consequence of Corollary 2.9 is that stationarity for 1/2-harmonic maps implies stationarity
for harmonic extensions as stated in the following proposition.

Proposition 4.15 (Stationarity transfer). Let v ∈ Ĥ1/2(ω;Rm) be a stationary weak 1/2-harmonic map
into Sm−1 in ω. Let ve be the harmonic extension of v in Rn+1

+ given by (2.9). Then ve is a stationary weak
(Sm−1, ∂0Ω)-boundary harmonic map in Ω for every admissible bounded open set Ω ⊆ Rn+1

+ such that ∂0Ω ⊆ ω.

As matter of fact, Proposition 4.15 is directly implied by the following lemma together with Re-
marks 4.11 & 4.12.

Lemma 4.16. Let Ω ⊆ Rn+1
+ be an admissible bounded open set such that ∂0Ω ⊆ ω. Given X ∈ C1(Rn;Rn)

compactly supported in ∂0Ω, let {φt}t∈R be the flow generated by X . For each v ∈ Ĥ1/2(ω;Rm) we have[
d

dt
E
(
v ◦ φt, ω

)]
t=0

= −1

2

∫
Ω

(
|∇ve|2divX− 2

n+1∑
i,j=1

(∂iv
e · ∂jve)∂jXi

)
dx ,

where X = (X1, . . . ,Xn+1) ∈ C1(Ω;Rn+1) is any vector field compactly supported in Ω ∪ ∂0Ω satisfying
X = (X, 0) on ∂0Ω.

Proof. Let X = (X1, . . . ,Xn+1) ∈ C1(Ω;Rn+1) be an arbitrary vector field compactly supported in
Ω ∪ ∂0Ω and satisfying X = (X, 0) on ∂0Ω. Then consider a compactly supported C1-extension of X to
the whole space Rn+1, still denoted by X, such that X = (X, 0) on Rn. We define {Φt}t∈R to be the flow
generated by X, i.e., for each x ∈ Rn+1 the map t 7→ Φt(x) is defined as the solution of

d

dt
Φt(x) = X

(
Φt(x)

)
,

Φ0(x) = x .
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One can easily check that the family {Φt}t∈R is admissible for Definition 4.10. Noticing that Φt = (φt, 0)

on Rn, we now infer from Corollary 2.9 that

1

2

∫
Ω

∣∣∇(ve ◦ Φt)
∣∣2 dx− 1

2

∫
Ω

|∇ve|2 dx > E
(
v ◦ φt, ω

)
− E(v, ω) .

Dividing both sides of this inequality by t > 0, and then letting t→ 0, we obtain

−1

2

∫
Ω

(
|∇ve|2divX− 2

n+1∑
i,j=1

(∂iv
e · ∂jve)∂jXi

)
dx >

[
d

dt
E
(
v ◦ φt, ω

)]
t=0

. (4.10)

Here, straightforward computations yield[
d

dt
E
(
v ◦ φt, ω

)]
t=0

=
(n+ 1)γn

4

∫∫
ω×ω

|v(x)− v(y)|2

|x− y|n+1

(x− y) · (X(x)−X(y))

|x− y|2 dxdy

+
(n+ 1)γn

2

∫∫
ω×ωc

|v(x)− v(y)|2

|x− y|n+1

(x− y) ·X(x)

|x− y|2 dxdy

− γn
2

∫∫
ω×Rn

|v(x)− v(y)|2

|x− y|n+1
divX(x) dxdy . (4.11)

Since X was chosen arbitrary, inequality (4.10) holds with (−X) and (−X) instead of X and X respec-
tively, and we conclude that inequality (4.10) is in fact an equality. �

Remark 4.17. From formula (4.11), one can actually deduce that any sufficiently smooth 1/2-harmonic
map v in ω is stationary.

Proof. To see this, we write the first two terms in the right hand side of (4.11) as A and B, respectively.
We have

A = lim
δ↓0

γn
2

∫
ω

(∫
ω\Dδ(y)

|v(x)− v(y)|2X(x) · ∇x
( −1

|x− y|n+1

)
dx

)
dy =: lim

δ↓0
Aδ .

Since X is compactly supported in ω, we can write for δ > 0 small enough

B =
γn
2

∫
ωc

(∫
ω\Dδ(y)

|v(x)− v(y)|2X(x) · ∇x
( −1

|x− y|n+1

)
dx

)
dy .

Given y ∈ Rn \ ∂ω and δ > 0 small enough, we integrate by parts to find that∫
ω\Dδ(y)

|v(x)− v(y)|2X(x) · ∇x
( −1

|x− y|n+1

)
dx =

∫
ω\Dδ(y)

|v(x)− v(y)|2

|x− y|n+1
divX(x) dx

+ 2

∫
ω\Dδ(y)

v(x)− v(y)

|x− y|n+1
·
(
X(x) · ∇v(x)

)
dx+

χω(y)

δn+1

∫
∂Dδ(y)

|v(x)− v(y)|2 (x− y) ·X(x)

|x− y| dH n−1
x ,

where χω denotes the characteristic function of the set ω. Therefore, for δ small we have

Aδ +B =
γn
2

∫
Rn

∫
ω\Dδ(y)

|v(x)− v(y)|2

|x− y|n+1
divX(x) dx dy

+ γn

∫
Rn

∫
ω\Dδ(y)

v(x)− v(y)

|x− y|n+1
·
(
X(x) · ∇v(x)

)
dxdy

+
γn

2δn+1

∫
ω

∫
∂Dδ(y)

|v(x)− v(y)|2 (x− y) ·X(x)

|x− y| dH n−1
x dy =: Iδ + IIδ + IIIδ . (4.12)

Obviously,

lim
δ↓0

Iδ =
γn
2

∫∫
ω×Rn

|v(x)− v(y)|2

|x− y|n+1
divX(x) dxdy .

Then we rewrite

IIδ = γn

∫
ω

(∫
Rn\Dδ(x)

v(x)− v(y)

|x− y|n+1
dy

)
·
(
X(x) · ∇v(x)

)
dx ,

so that

lim
δ↓0

IIδ =

∫
ω

(−∆)
1
2 v(x) ·

(
X(x) · ∇v(x)

)
dx .

Finally, expanding v around y, we easily get that

lim
δ↓0

IIIδ =
γn
2

∫
ω

(∫
Sn−1

|σ · ∇v(y)|2X(y) · σ dH n−1
σ

)
.
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We claim that the integral above vanishes, i.e., limδ IIIδ = 0. Indeed, write for y ∈ ω fixed,∫
Sn−1

|σ · ∇v(y)|2X(y) · σ dH n−1
σ =

m∑
i=1

∫
Sn−1

|−→a i · σ|2
−→
b · σ dH n−1

σ ,

where we have set −→a i := ∇vi(y) and
−→
b := X(y). Given i ∈ {1, . . . ,m}, we can assume that −→a i and

−→
b

belongs to R2 × {(0, . . . , 0)} by invariance under rotation. Then,∫
Sn−1

|−→a i · σ|2
−→
b · σ dH n−1

σ = Cn

∫
S1
|−→a i · σ|2

−→
b · σ dH 1

σ ,

for a dimensional constant Cn. Now observe that the function in the right hand side is a homogeneous
polynomial in σ of degree 3. Hence its integral over S1 vanishes, and the claim is proved.

Gathering (4.11) with (4.12), we have thus shown that[
d

dt
E
(
v ◦ φt, ω

)]
t=0

=

∫
ω

(−∆)
1
2 v(x) ·

(
X(x) · ∇v(x)

)
dx . (4.13)

Finally, since v(x) ∈ Sn−1 for x ∈ ω, we have ∂jv(x) ∈ Tv(x)Sn−1 for x ∈ ω and j = 1, . . . , n. Then
the Euler-Lagrange equation (4.3) yields (−∆)

1
2 v · ∂jv = 0 in ω for j = 1, . . . , n. Therefore the function

under the integral in (4.13) vanishes in ω, which shows that v is stationary. �

Going back to our discussion on the regularity of harmonic maps, we now mention that there is only
one case where full (interior) regularity holds for general critical points. It is the case where the starting
dimension equals two (the conformal dimension), and this is a well known result due to HÉLEIN [36].
In higher dimensions, the (optimal) partial regularity result for minimizing harmonic maps has been
obtained in the pioneering work of SCHOEN & UHLENBECK [58]. It has then been extended to station-
ary harmonic maps by BETHUEL [7] (see also [26]). All this results have an analogue in the context of
harmonic maps with partially free boundary, where the new issue is of course to determine the partial
regularity at the relative interior of the free boundary ∂0Ω. Higher order regularity starting from contin-
uous solutions has been studied and proved by GULLIVER & JOST [33], see also [5, 34]. The minimizing
case has been handled independently by HARDT & LIN [35] and DUZAAR & STEFFEN [24, 25], while full
regularity in the conformal dimension and partial regularity under the stationarity condition has been
more recently proved by SCHEVEN [57, Theorem 2.2, Theorem 4.1]. All these results on partial regularity
essentially deals with an estimate on the Hausdorff dimension of the so-called singular set. The singular
set sing(u) of a map u is usually defined as the complement of the largest (relative) open set on which
u is continuous. It is therefore a relatively closed subset of the domain where u is defined. For a har-
monic map with partially free boundary it is then a relatively closed subset of Ω ∪ ∂0Ω, and in case of a
(Sm−1, ∂0Ω)-boundary harmonic map it is a relatively closed subset of ∂0Ω (since regularity holds in Ω).
In view of Remark 4.5, we can obtain a partial regularity theory for bounded Sm−1-boundary harmonic
maps from the known results mentioned above about harmonic maps with partially free boundary. In
the statements below, dimH denotes the Hausdorff dimension.

Theorem 4.18. Let Ω ⊆ Rn+1
+ be an admissible bounded open set. If u ∈ H1(Ω;Rm) ∩ L∞(Ω) is a weak

(Sm−1, ∂0Ω)-boundary harmonic map in Ω, then u ∈ C∞
(
(Ω ∪ ∂0Ω) \ sing(u)

)
. Moreover,

(i) if n = 1, then sing(u) = ∅;

(ii) if n > 2 and u is stationary, then H n−1(sing(u)) = 0;

(iii) if u is minimizing, then dimH (sing(u)) 6 n− 2 for n > 3, and sing(u) is discrete for n = 2.

Thanks to Theorem 4.18, we can now deduce the partial regularity theory for bounded 1/2-harmonic
maps into Sm−1.

Proof of Theorem 1.2. Let v ∈ Ĥ1/2(ω;Rm) ∩ L∞(Rn) be a weak 1/2-harmonic map into Sm−1 in ω, and
let Ω ⊆ Rn+1

+ be an arbitray admissible bounded open set such that ∂0Ω ⊆ ω. By Proposition 4.6, ve

is a weak (Sm−1, ∂0Ω)-boundary harmonic map in Ω. If n = 1, then Theorem 4.18 shows that ve ∈
C∞(Ω ∪ ∂0Ω), whence v ∈ C∞(ω) by arbitrariness of Ω. Let us now assume that n > 2, and that v is
stationary. By Proposition 4.15, ve is stationary. Since sing(v) ∩ ∂0Ω = sing(ve) ∩ ∂0Ω, Theorem 4.18
yields H n−1(sing(v) ∩ ∂0Ω) = 0, and the conclusion follows by monotone convergence letting ∂0Ω ↑ ω.
In the case where v is minimizing, the argument follows the same lines using Proposition 4.9. �
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Remark 4.19. In recent papers, DA LIO & RIVIÈRE have obtained a direct proof for the full regularity of
weak 1/2-harmonic maps in the case ω = R, first for a sphere target in [20], and then for more general
target manifolds in [21]. A main point of their proof is to rewrite the Euler-Lagrange equation (4.3) in
a form that exhibits a special algebraic structure which allows to use some compensated compactness
arguments (somehow in the spirit of [36]). Even if we have deduced here the regularity theory for 1/2-
harmonic maps from the existing literature, we believe that the analysis in [20, 21] could be of first
importance for further investigations.

Remark 4.20. The relation between 1/2-harmonic maps and harmonic maps with partially free bound-
ary was first noticed by MOSER [48] for a different, non-explicit, integro-differential operator (which
coincides with (−∆)

1
2 only in the case ω = Rn). Roughly speaking, the Dirichlet-to-Neumann opera-

tor considered in [48] is associated to a ”homogeneous Neumann type condition” on the exterior of ω,
while we are dealing with Dirichlet exterior conditions. In this Neumann framework and under an addi-
tional technical condition, [48] provides a similar partial regularity result from the regularity theory for
harmonic maps with partially free boundary.

Remark 4.21. In the context of harmonic map with partially free boundary, DUZAAR & GROTOWSKI [23]
have studied regularity for the mixed boundary value problem which consists in prescribing a Dirichlet
data on the remaining part ∂+Ω of the boundary of Ω. Under suitable smoothness conditions on the
Dirichlet data, ∂+Ω and ∂0Ω, and assuming that ∂+Ω and ∂0Ω meet orthogonaly, they have proved that
minimizing solutions are continuous accross the edge ∂+Ω ∩ ∂0Ω. Unfortunately, this result cannot be
used for 1/2-harmonic maps with exterior Dirichlet condition (even for minimizing maps) since the two
parts of the boundary would have to meet tangentially. Up to our knowledge, there is no regularity result
at the boundary ∂ω for the 1/2-harmonic map problem with a prescribed exterior Dirichlet condition.

Remark 4.22 (Energy Monotonicity). For usual harmonic maps, it is well known that the stationarity
property yields a monotonic control on the energy on balls with respect to the radius. For a stationary
boundary harmonic map u ∈ H1(Ω;Rm), the relation (4.8) leads to the monotonicity of the function

r ∈
(
0, dist(x0, ∂

+Ω)
)
7→ 1

2rn−1

∫
B+
r (x0)

|∇u|2 dx ,

for every x0 ∈ ∂0Ω.

Remark 4.23 (Liouville property). As a consequence of the energy monotonicity above, if n > 2 and
u ∈ Ḣ1(Rn+1

+ ;Rm) is an entire stationary boundary harmonic map (i.e., a stationary boundary harmonic
map in B+

r for every r > 0), then u is constant. As a byproduct, if n > 2 and v ∈ Ḣ1/2(Rn;Rm) is an
entire stationary 1/2-harmonic map (i.e., a stationary 1/2-harmonic map in Dr for every r > 0), then v is
constant.

Remark 4.24 (General target manifold). The definition of 1/2-harmonic maps extends to a more general
target submanifold N ⊆ Rm in the following way. Assuming that N is smooth, compact, and without
boundary, the nearest point retraction πN on N is smooth in a small tubular neighborhood of N . We
then say that a map v ∈ Ĥ1/2(ω;Rm) satisfying v(x) ∈ N for a.e. x ∈ ω, is weakly 1/2-harmonic into N
in ω if [

d

dt
E (πN (v + tϕ), ω)

]
t=0

= 0

for all ϕ ∈ H
1/2
00 (ω;Rm) ∩ L∞(ω) compactly supported in ω. The associated Euler-Lagrange equation

reads

(−∆)
1
2 v ⊥ TvN in H−1/2

00 (ω) ,

i.e.,
〈
(−∆)

1
2 v, ϕ

〉
ω

= 0 for all ϕ ∈ H1/2
00 (ω;Rm) satisfying ϕ(x) ∈ Tv(x)N for a.e. x ∈ ω.

Concerning the definition of (N , ∂0Ω)-valued boundary harmonic maps, we simply reproduce Defi-
nition 4.4 replacing Sm−1 by the manifoldN . The notions of minimality and stationarity for both bound-
ary harmonic and 1/2-harmonic maps remain unchanged. With these definitions, all the results of this
subsection do hold. In particular, we have the same partial regularity theory for (N , ∂0Ω)-boundary
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harmonic maps as stated in Theorem 4.18 by the general regularity results in [35, 24, 25, 57]. As a con-
sequence, we have the same partial regularity theory for 1/2-harmonic maps into N as stated in Theo-
rem 1.2.

4.2. 1/2-harmonic lines into S1. We provide in this subsection some explicit examples of 1/2-harmonic
maps into S1 enlightening the geometric flavour of the 1/2-harmonic map equation, as well as its analogy
with usual harmonic maps. We start with an explicit representation formula for all entire 1/2-harmonic
maps from the line R into S1 with finite energy. In the sequel, we identify R2 with the complex plane C
writing z = x1 + ix2. The open unit disc of C is denoted by D, and ∂D is identified with S1.

Theorem 4.25. Let v ∈ Ḣ1/2(R; S1) be a non-constant entire 1/2-harmonic map into S1, and let ve be its
harmonic extension to R2

+ given by (2.9). There exist some d ∈ N, θ ∈ R, {λk}dk=1 ⊆ (0,∞), and {ak}dk=1 ⊆ R
such that ve(z) or its complex conjugate equals

eiθ
d∏
k=1

λk(z − ak)− i
λk(z − ak) + i

. (4.14)

In addition,

E(v,R) = [v]2H1/2(R) =
1

2

∫
R2
+

|∇ve|2 dz = πd . (4.15)

Remark 4.26. As a consequence of Theorem 4.25, taking θ = 0, d = 1, λ1 = 1, and a1 = 0 in (4.14))
shows that the map

x ∈ R 7→
(
x2 − 1

x2 + 1
,
−2x

x2 + 1

)
∈ S1

is a 1/2-harmonic map. Note that this map is precisely the inverse of the stereographic projection with
pole at (1, 0) going from the circle into the line.

The proof of Theorem 4.25 is based on an observation due to MIRONESCU & PISANTE [46] together
with the following preliminary lemma.

Lemma 4.27. Let v ∈ Ḣ1/2(R;R2) be a nontrivial entire 1/2-harmonic map into S1, and let ve be its harmonic
extension to R2

+ given by (2.9). Then ve is either a conformal or an anti-conformal transformation of R2
+ into the

closed unit disc D.

Proof. First recall that ve is smooth in R2
+ by Theorem 4.18, and ve takes values in D by (2.11). Let us now

consider the Hopf differentialH of ve defined by

H(z) :=
(
|∂1v

e|2 − |∂2v
e|2
)
− 2i(∂1v

e · ∂2v
e) .

It is well-known that ve is conformal or anti-conformal if and only if H ≡ 0. We thus have to prove that
H vanishes identically.

First notice thatH is holomorphic since ve is harmonic. Since v(x) ∈ S1 we find that ∂1v
e(x) ∈ Tv(x)S1

for every x ∈ R. By the boundary equation in (4.6), it implies that ∂1v
e · ∂2v

e vanishes on R. Setting g to
be the imaginary part of H, the function g is harmonic in R2

+ by holomorphicity of H. Since g vanishes
on R, we can extend g to the whole plane by odd reflection (i.e., setting g(z) := −g(z) if Im(z) < 0), and
the resulting function (still denoted by g) is harmonic in R2. On the other hand, ve ∈ Ḣ1(R2

+;R2) by
Lemma 2.5. Hence g ∈ L1(R2), which leads to g ≡ 0 by the mean value property of harmonic functions.
Therefore H takes real values, and it must be constant by holomorphicity. We then conclude that H ≡ 0

sinceH ∈ L1(R2
+). �

Remark 4.28 (Minimal surfaces). According to Remark 4.24, Lemma 4.27 still holds if S1 is replaced by a
smooth compact manifoldN ⊆ Rm without boundary, i.e., if v ∈ Ḣ1/2(R;Rm) is a nontrivial entire 1/2-
harmonic map intoN , then ve is conformal or anti-conformal. If m = 3 andN is a surface, it shows that
the image of R2

+ by ve is a minimal surface in R3 whose boundary lies in N , and meets N orthogonaly,
see [65]. IfN is a closed boundary curve, then the image of R2

+ by ve is a minimal surface spanned byN .
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Proof of Theorem 4.25. By Lemma 4.27 we may assume that ve is conformal (otherwise we simply consider
the complex conjugate of v). We introduce the so-called Caley transform C : R2

+ → D defined by

C(z) :=
z − i
z + i

.

It is well known that C is a conformal map which is one-to-one from R2
+ into D, and one-to-one from R

into S1 \ {(1, 0)}. Setting

w := ve ◦ C−1 ,

we find that w is conformal in D, and thus holomorphic in D. Moreover, by conformality of C, we have
w ∈ H1(D;C), and more precisely ∫

D
|∇w|2 dz =

∫
R2
+

|∇ve|2 dz . (4.16)

In particular g := w|S1 ∈ H1/2(S1;C). But g is smooth on S1 \ {(0, 1)} and g(z) = v ◦ C−1(z) for every
z ∈ S1 \ {(0, 1)}, so that g ∈ H1/2(S1; S1). Now, w being holomorphic, it is also harmonic in D. It is
therefore the harmonic extension to the disc of the map g. By a result of BREZIS & NIRENBERG [10, 11],
it implies that |w(z)| → 1 uniformly as |z| → 1. For a nonconstant holomorphic map this latter property
implies that it is a (finite) Blaschke product, see [46] and the references therein. In other words, we can
find a positive d ∈ N, θ̃ ∈ R, and α1, . . . , αd ∈ D such that

w(z) = eiθ̃
d∏
k=1

z − αk
1− αkz

. (4.17)

Then (4.14) follows from the previous formula with

λk :=
|1− αk|2

1− |αk|2
, ak := − 2Im(αk)

|1− αk|2
, θ := θ̃ +

d∑
k=1

θk where θk ∈ R and eiθk =
1− αk
1− αk

.

On the other hand, it is easy to check from (4.17) (see e.g. [46]) that∫
D
|∇w|2 dz = 2πd ,

which combined with (4.16) implies (4.15) by Lemma 2.5. �

Remark 4.29 (1/2-harmonic circles). By analogy with our definition of E in (1.3), we can consider on
H1/2(S1;C) the energy

E(g, S1) :=
γ1

4

∫∫
S1×S1

|g(x)− g(y)|2

|x− y|2 dxdy .

It is well known that for every g ∈ H1/2(S1;C),

E(g, S1) =
1

2

∫
D
|∇wg|2 dx ,

where wg ∈ H1(D;C) denotes the harmonic extension of g to the disc. In view of identity (4.16) and
Lemma 2.5, we have

E(g, S1) = E(g ◦ C,R) for all g ∈ H1/2(S1;C) ,

where C is the Caley transform. Defining (weak) 1/2-harmonic maps from S1 into S1 as critical points of
E(·, S1) with respect to perturbations in the target (as in Definition 4.1, see (4.19) below), we deduce that
g is such a 1/2-harmonic map if and only if g ◦C is a (finite energy) 1/2-harmonic map from R into S1. In
terms of the harmonic extension wg , the Euler-Lagrange equation for 1/2-harmonic maps from S1 into
S1 writes

∂wg
∂ν
∧ g = 0 on S1 , (4.18)

where ∂
∂ν

is the exterior normal derivative on ∂D ' S1. As a consequence of Theorem 4.25, we find
that g is a 1/2-harmonic map from S1 into S1 if and only if g is the restriction to S1 of a (finite) Blaschke
product (i.e., g is of the form (4.17)). This fact fact has also been discovered independently by BERLYAND,
MIRONESCU, RYBALKO, & SANDIER [6] (with essentially the same proof), and by DA LIO & RIVIÈRE [22].
Note that the explicit formula (4.17) shows that the energy is quantized by the topological degree, i.e.,

E(g, S1) = π|deg(g)| ,
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for any 1/2-harmonic map g from S1 into S1. By the result of MIRONESCU & PISANTE [46], it shows in
particular that every 1/2-harmonic map from S1 into S1 is minimizing in its own homotopy class. Here
the homotopy classes are classified by the topological degree forH1/2(S1; S1)-maps as defined in [10, 11].
These properties of 1/2-harmonic circles into S1 are in clear analogy with the theory of usual harmonic
maps where it is well known that harmonic 2-spheres into S2 are minimizing in their own homotopy class
and have an energy quantized by the degree.

With the help of Theorem 4.25 we can now give an explicit representation of 0-homogeneous maps
wich are weakly 1/2-harmonic from the unit disc of R2 into S1. Those maps provide examples of singular
weak 1/2-harmonic maps. In particular, it shows that x

|x| is a weak 1/2-harmonic map into S1. It would
be interesting to determine which maps are minimizing or stationary, and then to compare the result
with [9] (which deals with 0-homogeneous harmonic maps from the unit ball in R3 into S2).

Proposition 4.30. For n = 2, let v ∈ Ĥ1/2(D1;R2) be a 0-homogeneous map in all of R2 such that |v| = 1 a.e.
in R2. Then v is a weak 1/2-harmonic map into S1 in D1 if and only if v(x) = g( x

|x| ) for a 1/2-harmonic circle g
into S1 in the sense of Remark 4.29.

Proof. Step 1. Let us consider an arbitrary map v ∈ Ĥ1/2(D1;R2) which is 0-homogeneous. By a rescaling
argument we first deduce that v ∈ H1/2

loc (R2;R2), and in view of Remark 2.7, ve ∈ H1
loc(R3

+;R2). Since ve

clearly inherits the 0-homogeneity of v, we infer that the map ṽ e := ve
|S2+

belongs to H1(S2
+;R2) where

S2
+ := S2 ∩ R3

+. Therefore g := ṽ e
|∂S2+

∈ H1/2(S1;R2) identifying ∂S2
+ with S1. Obviously, we have

v = g( x
|x| ) and ve(x) = ṽ e( x

|x| ). From the harmonicity of ve, we deduce that ṽ e is the unique solution of∆S2 ṽ
e = 0 on S2

+ ,

ṽ e = g on ∂S2
+ ,

where ∆S2 denotes the Laplace-Beltrami operator on S2.
We now introduce the one-to-one conformal mapping S : D→ S2

+ defined by

S(x) :=

(
2x1

|x|2 + 1
,

2x2

|x|2 + 1
,

1− |x|2

|x|2 + 1

)
.

Note that S is the identity on S1. By conformality of S the map wg := ṽ e ◦S ∈ H1(D : R2) is harmonic
in D, and wg = g on S1 in the trace sense. It is therefore the harmonic extension of g to the disc D, and
we infer from Remark 4.29 and the conformality of S that

1

2

∫
S2+

|∇T ṽ e|2 dH2 =
1

2

∫
D
|∇wg|2 dx = E(g, S1) ,

where∇T denotes the tangential gradient.

Step 2. Assume that v ∈ Ĥ1/2(D1;R2) is a 0-homogeneous 1/2-harmonic map into S1 in D1. We claim
that the associated map g as defined in Step 1 is a 1/2-harmonic circle into S1, i.e.,[

d

dt
E
(
g + tϕ

|g + tϕ| , S
1

)]
t=0

= 0 (4.19)

for all ϕ ∈ H1/2(S1;R2) ∩ L∞(S1). Arguing as in the proof of Proposition 4.2, we infer that it is enough
to prove (4.19) for all ϕ ∈ H1/2(S1;R2)∩L∞(S1) such that ϕ · g = 0 a.e. on S1. For such a function ϕ, we
have [

d

dt
E
(
g + tϕ

|g + tϕ| , S
1

)]
t=0

=

[
d

dt
E
(
g + tϕ , S1)]

t=0

=

[
d

dt

(
1

2

∫
D
|∇(wg + twϕ)|2 dx

)]
t=0

,

where wϕ is the harmonic extension of ϕ to the disc D (notice that wϕ ∈ H1(D;R2) ∩ L∞(D)). Setting
Φ := wϕ ◦S−1 ∈ H1(S2

+;R2) ∩ L∞(S2
+), we can argue as in Step 1 to obtain

1

2

∫
D
|∇(wg + twϕ)|2 dx =

1

2

∫
S2+

|∇T (ṽ e + tΦ)|2 dH 2 .
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Consequently,

[
d

dt
E
(
g + tϕ

|g + tϕ| , S
1

)]
t=0

=

[
d

dt

(
1

2

∫
S2+

|∇T (ṽ e + tΦ)|2 dH 2

)]
t=0

=

∫
S2+

∇T ṽ e · ∇TΦ dH 2 . (4.20)

Let us now consider a function η ∈ C1((0,+∞)) with compact support in the interval (0, 1) satisfying∫ 1

0
η(r)r2 dr = 1. Define for x ∈ R3

+, Φ̃ := η(|x|)Φ( x
|x| ). Then Φ̃ ∈ H1(B+

1 ;R2)∩L∞(B+
1 ), Φ̃ has compact

support in B+
1 ∪D1, and Φ̃ · ve = 0 H 2-a.e. on D1. Since v is assumed to be 1/2-harmonic, we deduce

from Proposition 4.6 that ∫
B+

1

∇ve · ∇Φ̃ dx = 0 . (4.21)

On the other hand, by homogeneity of ve, we have∫
B+

1

∇ve · ∇Φ̃ dx =

(∫ 1

0

η(r)r2 dr

)∫
S2+

∇T ṽ e · ∇TΦ dH 2 =

∫
S2+

∇T ṽ e · ∇TΦ dH 2 . (4.22)

Gathering (4.20)-(4.21)-(4.22) leads to (4.19), and the claim is proved.

Step 3. Consider a 1/2-harmonic circle g : S1 → S1, and set v := g( x
|x| ). From the smoothness of g, we

infer that v ∈ H1/2
loc (R2;R2)∩L∞(R2) ⊆ Ĥ1/2(D1;R2), and v is smooth away from the origin. Moreover,

we deduce from Step 1 that

ve(x) = wg ◦S−1

(
x

|x|

)
.

As a consequence,
∂ve

∂ν
(x) =

1

|x|
∂wg
∂νp

(p) on R2 \ {0} ,

where p := S−1
(
x
|x|

)
∈ S1 and νp denotes the exterior normal to ∂D ' S1 at the point p. In view of

(4.18) we have
∂ve

∂ν
(x) ∧ v(x) =

1

|x|
∂wg
∂νp

(p) ∧ g(p) = 0 on R2 \ {0} .

From Lemma 2.8 we then infer that (−∆)
1
2 v ∧ v = 0 in R2 \ {0}, and thus v satisfies (4.2) in D1 \ Dρ

for every 0 < ρ < 1. Since v belongs to Ĥ1/2(D1;R2), a standard capacity argument shows that (4.2)
actually holds in D1. Hence v is a weak 1/2-harmonic map in D1 by Proposition 4.2. �

5. SMALL ENERGY ESTIMATE FOR GINZBURG-LANDAU BOUNDARY REACTIONS

In this section we perform a preliminary analysis on the asymptotic, as ε→ 0, of critical points of the
Ginzburg-Landau boundary energyEε defined in (3.5). The first step we make here is to prove an epsilon-
regularity type of estimate which allows to control the regularity of solutions under the assumption that
the energy, suitably renormalized, is small. This is the purpose of the following theorem which is a corner
stone of the present paper. The entire section is devoted to its proof.

Theorem 5.1. Let ε > 0 and R > 0 such that ε 6 R. There exist constants η0 > 0 and C0 > 0 independent of ε
and R such that for each map uε ∈ C2(B+

R ∪DR;Rm) satisfying |uε| 6 1 and solving
∆uε = 0 in B+

R ,

∂uε
∂ν

=
1

ε
(1− |uε|2)uε on DR ,

(5.1)

the condition Eε(uε, B+
R) 6 η0R

n−1 implies

sup
B+
R/4

|∇uε|2 + sup
DR/4

(1− |uε|2)2

ε2
6
C0

R2
η0 . (5.2)
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The proof of Theorem 5.1 is divided into three main parts according to the following subsections.
For the local Ginzburg-Landau equation, the argument leading to the analoguous estimate is essentially
based on the so-called Bochner inequality satified by the energy density, see e.g. [18]. In our case, such
inequality does not seem to be avaible, and to prove (5.2) we better use a compactness approach in the
spirit of [67].

5.1. Energy monotonicity and clearing-out lemma. As usual in Ginzburg-Landau or harmonic map
problems, the first main ingredient to derive regularity estimates is a useful monotonicity formula. This
is the purpose of the following lemma.

Lemma 5.2 (Monotonicity formula). LetR > 0 and uε ∈ C2(B+
R ∪DR;Rm) satisfying (5.1). Then, for every

x0 ∈ DR and every 0 < ρ < r < dist(x0, ∂DR),

1

rn−1
Eε
(
uε, B

+
r (x0)

)
− 1

ρn−1
Eε
(
uε, B

+
ρ (x0)

)
=

∫ r

ρ

1

tn−1

(∫
∂+Bt(x0)

∣∣∣∣∂uε∂ν
∣∣∣∣2 dH n

)
dt

+
1

4ε

∫ r

ρ

1

tn

(∫
Dt(x0)

(1− |uε|2)2 dH n

)
dt .

Proof. Step 1. Consider a smooth vector field X = (X1, . . . ,Xn+1) : Rn+1 → Rn+1 compactly supported
in BR and satisfying Xn+1 = 0 on Rn. For t ∈ R small, the map Φt(x) := x − tX(x) defines a smooth
diffeomorphism from BR into BR satisfying Φt(DR) ⊆ DR, and Φt(B

+
R) ⊆ B+

R . Setting ut := uε ◦ Φt,
standard computations (see e.g. [61, Chapter 2.2]) yield[

d

dt

(
1

2

∫
B+
R

∣∣∇ut∣∣2 dx

)]
t=0

=
1

2

∫
B+
R

(
|∇uε|2divX− 2

n+1∑
i,j=1

(∂iuε · ∂juε)∂jXi

)
dx , (5.3)

and [
d

dt

(
1

4ε

∫
DR

(1− |ut|2)2 dH n

)]
t=0

=
1

4ε

∫
DR

(1− |uε|2)2divRnX dH n .

Using (5.1) we integrate by parts in (5.3) to find[
d

dt

(
1

2

∫
B+
R

∣∣∇ut∣∣2 dx

)]
t=0

= − 1

4ε

∫
DR

(1− |uε|2)2divRnX dH n ,

whence [
d

dt
Eε(ut, B

+
R)

]
t=0

= 0 . (5.4)

Step 2. Let x0 ∈ DR, and 0 < r < dist(x0, ∂DR). Without loss of generality we may assume that x0 = 0

(to simplify the notation). Let η ∈ C∞(R; [0, 1]) be an even function such that η(t) = 0 for |t| > r. Using
the vector field X(x) = η(|x|)x in Step 1, we find

n− 1

2

∫
B+
R

|∇uε|2η(|x|) dx+
1

2

∫
B+
R

|∇uε|2η′(|x|)|x| dx

−
∫
B+
R

∣∣∣∣ ∂uε∂|x|

∣∣∣∣2 η′(|x|)|x| dx+
n

4ε

∫
DR

(1− |uε|2)2η(|x|) dH n

+
1

4ε

∫
DR

(1− |uε|2)2η′(|x|)|x| dH n = 0 . (5.5)

Then, given an arbitrary t ∈ (0, r), we consider a sequence {ηk} of functions as above such that ηk
converges weakly* inBV as k →∞ to the characteristic function of the interval [−t, t]. Using ηk as a test
function in (5.5) and letting k →∞ leads to

n− 1

2

∫
B+
t

|∇uε|2 dx− t

2

∫
∂+Bt

|∇uε|2 dH n + t

∫
∂+Bt

∣∣∣∣∂uε∂ν
∣∣∣∣2 dH n

+
n

4ε

∫
Dt

(1− |uε|2)2 dH n − t

4ε

∫
∂Dt

(1− |uε|2)2 dH n−1 = 0 .
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Dividing by tn and rearranging terms, we end up with

d

dt

(
1

tn−1
Eε(uε, B

+
t )

)
=

1

tn−1

∫
∂+Bt

∣∣∣∣∂uε∂ν
∣∣∣∣2 dH n +

1

4εtn

∫
Dt

(1− |uε|2)2 dH n .

Integrating this equality between ρ > 0 and r yields to the announced result. �

Remark 5.3 (Liouville property). As a consequence of Lemma 5.2 and the stationarity equation (5.4),
any entire (smooth) solution uε : Rn+1

+ → Rm of the Ginzburg-Landau boundary equation (i.e., uε solves
(5.1) for every radius R > 0) satisfying Eε(uε,Rn+1

+ ) < ∞, has to be constant. In view of (3.3) and
Lemma 2.5, the same Liouville property holds for entire solutions of the fractional Ginzburg-Landau
equation having finite energy. More precisely, if vε : Rn → Rm is a (smooth) solution of (3.1) in Rn

satisfying Eε(vε,Rn) <∞, then vε is constant. The argument goes as follows.

Proof. If n > 2, Lemma 5.2 implies Eε(uε, B+
ρ ) 6 C(r/ρ)1−n for every 0 < ρ 6 r, and the constancy of

uε follows letting r → ∞. The case n = 1 is slightly more involved, and relies on (5.4). For n = 1 we
consider a nonnegative cut-off function ζ ∈ C∞(R2) such that ζ = 1 on B1 and ζ = 0 on R2 \B2. Setting
ζk(x) := ζ(x/k), we use the vector field X(x) = ζk(x)x in (5.4) to obtain

1

2

∫
B+

2k
\B+

k

(
|∇uε|2(x · ∇ζk)− 2

2∑
i,j=1

(∂iuε · ∂juε)xi∂jζk

)
dx

+
1

4ε

∫
D2k

(1− |uε|2)2ζk dH 1 +
1

4ε

∫
D2k\Dk

(1− |uε|2)2x1∂1ζk dH 1 = 0 .

Since |∇ζk| 6 C/k, this identity yields

1

ε

∫
Dk

(1− |uε|2)2 dH 1 6 CEε(uε, B
+
2k \B

+
k ) −→

k→∞
0 ,

and we deduce that |uε| ≡ 1. We then infer that uε is a bounded solution of
∆uε = 0 in Rn+1

+ ,

∂uε
∂ν

= 0 on Rn ,

and the constancy of uε follows from Liouville Theorem on bounded entire harmonic functions. �

The second key ingredient in Ginzburg-Landau problems is the so-called clearing-out property which
essentially asserts that a solution must take values in a small neighborhood of the potential-well when-
ever the energy is small enough. This is precisely the object of the following lemma. The proof uses some
ingredients from [57, Lemma 3.1] suitably modified to fit the Ginzburg-Landau setting.

Lemma 5.4 (Clearing-out). Let ε ∈ (0, 1]. There exists a constant η1 > 0 independent of ε such that for each
map uε ∈ C2(B+

1 ∪D1;Rm) satisfying |uε| 6 1 and (5.1) with R = 1, the condition Eε(uε, B+
1 ) 6 η1 implies

|uε| >
1

2
in B+

1/2 . (5.6)

Proof. Step 1. We assume in this first step that ε > 1/2. We claim that we can find η2 > 0 only de-
pending on n and m such that if Eε(uε, B+

1 ) 6 η2, then |uε| > 1/2 in B
+
1/2. Indeed, for an arbitrary

map uε satisfying the statement of the theorem, since |uε| 6 1 and ε > 1/2, we deduce from [16,
Lemma 2.2] that ‖uε‖C2,β(B+

1/2
)
6 Cβ for a constant Cβ only depending on n, m, and β ∈ (0, 1). We

now proceed by contradiction assuming that there exist sequences {εk} ⊆ [1/2, 1], {xk} ⊆ B
+
1/2, and

{uk} ⊆ C2(B+
1 ∪ D1;Rm) satisfying |uk| 6 1 and (5.1) with R = 1, such that Eεk (uk, B

+
1 ) → 0 and

|uk(xk)| < 1/2. Then we can find a (not relabeled) subsequence such that uk converges uniformly on
B

+
1/2. Since Eεk (uk, B

+
1 )→ 0 the limit has to be a constant of modulus one. As a consequence, |uk| → 1

uniformly on B
+
1/2, which contradicts the assumption |uk(xk)| < 1/2.

Step 2. We now consider the case ε < 1/2. Let us fix an arbitrary point x0 = (x′0, (x0)n+1) in B+
1/2, and

set x1 := (x′0, 0) ∈ D1/2. By the Monotonicity Formula in Lemma 5.2 we have

1

rn−1
Eε(uε, B

+
r (x1)) 6 (1− |x1|)1−nEε(uε, B

+
1−|x1|(x1)) 6 2n−1Eε(uε, B

+
1 ) 6 2n−1η1 (5.7)
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for every 0 < r < 1− |x1|. We set

R :=
1

3
|x1 − x0| .

Case 1) Let us first assume that R 6 ε/7. Since ε < 1/2 < 1− |x1|we have

1

εN−1
Eε(uε, B

+
ε (x1)) 6 2n−1η1 .

Next we define for y ∈ B+
1 ∪D1,

vε(x) := uε(x1 + εy) ,

so that 
∆vε = 0 in B+

1 ,

∂vε
∂ν

= (1− |vε|2)vε on D1 ,

and

E1(vε, B
+
1 ) =

1

εn−1
Eε(w,B

+
ε (x1)) 6 2n−1η1 .

Choosing η1 such that 2n−1η1 6 η2, we infer from Step 1 that |vε| > 1/2 in B+
1/2. Hence |uε| > 1/2 in

B+
ε/2(x1), and thus |uε(x0)| > 1/2.

Case 2) We assume that R > ε/7, so that ε/R < 7. Noticing that 5R < 1− |x1|, we have B+
5R(x1) ⊆ B+

1 .
Let us set

ūε :=
1

|B+
5R(x1)|

∫
B+

5R
(x1)

uε(y) dy .

We consider for x ∈ B2R(x0) ⊆ B+
5R(x1),

vε(x) := uε(x)− ūε .

Denote by Gx0 the fundamental solution in Rn+1 of the Laplace equation with pole at x0. We recall
that

|∇Gx0(x)| 6 C

|x− x0|n
for all x ∈ Rn+1 \ {x0} . (5.8)

Then consider a smooth cut-off function ζ ∈ C∞c (B2R(x0); [0, 1]) such that ζ ≡ 1 in BR(x0), ζ ≡ 0 in
B2R(x0) \B3R/2(x0), and |∇ζ| 6 C/R.

We estimate

|vε(x0)|2 =

∫
B2R(x0)

Gx0∆(|vε|2ζ2) dx

= −
∫
B2R(x0)

∇Gx0 · ∇(|vε|2ζ2) dx

= −2

∫
B3R/2(x0)

ζ2( n∑
j=1

∂jGx0∂jvε · vε
)

dx− 2

∫
AR(x0)

|vε|2ζ∇Gx0 · ∇ζ dx

6 ‖vε‖L∞(B3R/2(x0))

∫
B3R/2(x0)

|∇Gx0 ||∇uε| dx+
C

Rn+1

∫
AR(x0)

|vε|2 dx , (5.9)

where AR(x0) := B2R(x0) \BR(x0).
By harmonicity of uε, ∇uε is harmonic in B+

1 . Since BR/4(x) ⊆ B+
5R(x1) for all x ∈ B3R/2(x0), we

deduce that

∇uε(x) =
1

|BR/4(x)|

∫
BR/4(x)

∇uε(y) dy for all x ∈ B3R/2(x0) .

From Jensen’s inequality and (5.7), we then infer that

|∇uε(x)|2 6 1

|BR/4(x)|

∫
BR/4(x)

|∇uε(y)|2 dy 6
C

Rn+1
Eε(uε, B

+
5R(x1)) 6

C

R2
η1

for all x ∈ B3R/2(x0). Consequently,

|∇uε(x)| 6 C

R

√
η1 for all x ∈ B3R/2(x0) . (5.10)

Using (5.8) together with (5.10), we obtain that∫
B3R/2(x0)

|∇Gx0 ||∇uε|dx 6 C
√
η1 . (5.11)
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Estimate (5.10) also yields

‖vε‖L∞(B3R/2(x0)) 6 |vε(x0)|+ 3R

2
‖∇uε‖L∞(B3R/2(x0)) 6 |vε(x0)|+ C

√
η1 . (5.12)

Next we infer from Poincaré Inequality that∫
B2R(x0)\BR(x0)

|vε|2 dx 6
∫
B+

5R
(x1)

|uε − ūε|2 dx 6 CR2

∫
B+

5R
(x1)

|∇uε|2 dx ,

so that
1

Rn+1

∫
B2R(x0)\BR(x0)

|vε|2 dx 6
C

Rn−1
Eε(uε, B

+
5R(x1)) 6 Cη1 . (5.13)

Gathering (5.9), (5.11), (5.12), and (5.13), we conclude that

|vε(x0)|2 6 C√η1

(
|vε(x0)|+√η1

)
6

1

2
|vε(x0)|2 + Cη1 ,

and thus

|uε(x0)− ūε| 6 C
√
η1 .

In particular, ∣∣1− |uε(x0)|
∣∣ 6 ∣∣1− |ūε|∣∣+ C

√
η1 . (5.14)

Now we claim that ∣∣1− |ūε|∣∣ 6 C√η1 . (5.15)

Setting for y ∈ Rm, d(y) := |1− |y||, the function d is 1-Lipschitz. Since d(ūε) 6 d(uε(x)) + |uε(x)− ūε|,
we have

d(ūε) 6
1

|B+
5R(x1)|

∫
B+

5R
(x1)

d(uε(x)) dx+
1

|B+
5R(x1)|

∫
B+

5R
(x1)

|uε(x)− ūε| dx . (5.16)

Then we use Jensen and Poincaré inequalities together with (5.7), to derive(
1

|B+
5R(x1)|

∫
B+

5R
(x1)

|uε(x)− ūε| dx

)2

6
1

|B+
5R(x1)|

∫
B+

5R
(x1)

|uε(x)− ūε|2 dx

6
C

Rn−1

∫
B+

5R
(x1)

|∇uε|2 dx 6 Cη1 . (5.17)

Using again Jensen and Poincaré inequalities for the function d ◦ uε, estimate (5.7), and the facts that
|∇d| 6 1 and ε/R < 7, we obtain(

1

|B+
5R(x1)|

∫
B+

5R
(x1)

d ◦ uε dx

)2

6
1

|B+
5R(x1)|

∫
B+

5R
(x1)

|d ◦ uε|2 dx

6 C

(
1

Rn

∫
D5R(x1)

|d ◦ uε|2 dH n +
1

Rn−1

∫
B+

5R
(x1)

|∇(d ◦ uε)|2 dx

)

6
C

Rn−1

(
1

ε

∫
D5R(x1)

(1− |uε|2)2 dH n +

∫
B+

5R
(x1)

|∇uε|2 dx

)
6 Cη1 . (5.18)

Combining (5.16), (5.17), and (5.18), yields (5.15)
Now (5.14) and (5.15) imply that

∣∣1 − |uε(x0)|
∣∣ 6 C

√
η1, and thus |uε(x0)| > 1/2 whenever η1 is

chosen small enough, smallness depending only on the dimensions n and m. �

5.2. Proof of Theorem 5.1, Step 1. By rescaling variables, it suffices to consider the case R = 1 and
ε ∈ (0, 1]. We shall choose η0 6 η1 where η1 is given by Lemma 5.4, so that

|uε| >
1

2
in B

+
1/2 . (5.19)

Arguing as in the proof of Lemma 5.4, we infer that

1

rn−1
Eε(uε, B

+
r (x)) 6 2n−1η0 for all x ∈ D1/2 and 0 < r < 1− |x| . (5.20)

We are going to prove that if η0 is small enough, smallness depending only on n and m, then

|∇uε|2 6 Cη0 in B
+
1/4 .
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In view of the Neumann boundary condition, it clearly implies the full estimate (5.2). We shall achieve
it considering two different cases. In the spirit of [18], we start with the localization of an interior region
where |∇uε|2 is large.

Since uε is smooth, we can find σε ∈ (0, 1/2) such that

(1/2− σε)2 sup
B+
σε

|∇uε|2 = max
06σ61/2

(
(1/2− σ)2 sup

B+
σ

|∇uε|2
)
, (5.21)

and xε ∈ B+
σε such that

2|∇uε(xε)|2 > sup
x∈B+

σε

|∇uε|2 =: eε . (5.22)

Denote by x̄ε ∈ Dσε the orthogonal projection of xε on RN , and set

ρε :=
1

2

(1

2
− σε

)
and Rε :=

1

3
|xε − x̄ε| .

We now distinguish two cases.

Case 1). We first assume that Rε > ρε/7. Since∇uε is harmonic in B+
1 , we have

∇uε(xε) =
1

|BRε(xε)|

∫
BRε (xε)

∇uε dx .

Then we deduce from the harmonicity of uε, Jensen’s inequality, (5.20), and (5.22) that

eε 6
2

|BRε(xε)|

∫
BRε (xε)

|∇uε|2 dx 6
C

Rn+1
ε

∫
B+

5Rε
(x̄ε)

|∇uε|2 dx 6
C

R2
ε

η0 6
C

ρ2
ε

η0 .

Here we have also used that BRε(xε) ⊆ B+
5Rε

(x̄ε) ⊆ B+
1 . Consequently,

ρ2
εeε =

1

4
(1/2− σε)2eε 6 Cη0 .

Choosing σ = 1/4 in (5.21) yields

sup
B+

1/4

|∇uε|2 6 Cη0 ,

which is the announced estimate.

Case 2). We now assume that Rε 6 ρε/7, and we claim that if η0 is small enough, only depending on the
dimensions n and m, then

Rε 6
1

7
√
eε
. (5.23)

Indeed, assume that (5.23) does not hold. Then, arguing as in Case 1), we obtain

eε 6
C

R2
ε

η0 6 Ceεη0 .

Hence 1 6 Cη0, which is impossible whenever η0 is small enough.

Next we assume that η0 is sufficiently small so that (5.23) holds. Then,

|xε − x̄ε| 6 min

{
1

2
√
eε
,
ρε
2

}
.

Noticing that B+
ρε(x̄ε) ⊆ B

+
σε+ρε

, we deduce that

sup
B+
ρε (x̄ε)

|∇uε|2 6 sup
B+
σε+ρε

|∇uε|2 . (5.24)

Since σε + ρε ∈ (0, 1/2), we infer from (5.21) and (5.24) that

sup
B+
ρε (x̄ε)

|∇uε|2 6 4eε . (5.25)

Let us now introduce the quantity

rε := ρε
√
eε .

We claim that

rε 6 1 . (5.26)
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The proof of (5.26) is postponed to the next subsection, and we complete now the argument. Then, taking
(5.26) for granted, (5.21) yields

max
06σ61/2

(
(1/2− σ)2 sup

B+
σ

|∇uε|2
)

= (1/2− σε)2 sup
B+
σε

|∇uε|2 = 4ρ2
εeε 6 4 .

Choosing σ = 1/4 in the inequality above, we obtain

sup
B+

1/4

|∇uε|2 6 64 6 Cη0 ,

as desired. �

5.3. Proof of Theorem 5.1, Step 2. We are now going to prove (5.26) by contradiction, assuming that
rε > 1. The following proposition is the key point of the argument.

Proposition 5.5. If η0 > 0 is small enough (depending only on nand m), then there exists a constant ς0 > 0

(depending only on n and m) such that for each ε > 0 and each map vε ∈ C2(B
+
1 ;Rm) solving

∆vε = 0 in B+
1 ,

∂vε
∂ν

=
1

ε
(1− |vε|2)vε on D1 ,

(5.27)

with the estimates

1/2 6 |vε| 6 1 and |∇vε| 6 2 in B+
1 , (5.28)

and such that

|∇vε(zε)|2 >
1

2
(5.29)

for some point zε ∈ B+
1/2, the condition

Eε(vε, B
+
1 ) 6 2n−1η0 (5.30)

implies ε > ς0.

Proof. We argue by contradiction assuming that there exist a sequence εk ↓ 0, and corresponding so-
lutions {vεk}k∈N of (5.27) satisfying (5.28), (5.29), and (5.30). To simplify the notation, we shall write
vk := vεk and zk := zεk .

Thanks to (5.28) we can consider the C2-functions

ak := |vk| and wk :=
vk
|vk|

.

Noticing that

|∇vk|2 = |∇ak|2 + a2
k|∇wk|2 , (5.31)

we deduce from (5.28) that

1/2 6 ak 6 1 , |∇ak| 6 2 , |wk| = 1 , |∇wk| 6 4 . (5.32)

In addition, system (5.27) yields 
−∆ak + |∇wk|2ak = 0 in B+

1 ,

∂ak
∂ν

=
1

εk
(1− a2

k)ak on D1 ,
(5.33)

and 
−div(a2

k∇wk) = a2
k|∇wk|2wk in B+

1 ,

∂wk
∂ν

= 0 on D1 .

(5.34)

In view of the boundary condition in (5.34), we can extend ak and wk to B1 by even reflection across D1,
i.e.,

ak(x) = ak(x′,−xn+1) and wk(x) = wk(x′,−xn+1) for x ∈ B1 \B+
1 ,

and then derive from (5.34),

−div(a2
k∇wk) = a2

k|∇wk|2wk in B1 . (5.35)
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From (5.32) and the boundary condition in (5.33), we infer that

ak → a∗ in C0,α(B1) for every 0 < α < 1 , (5.36)

for a (not relabeled) subsequence and a function a∗ satisfying

1

2
6 a∗ 6 1 , |∇a∗| 6 2 , a∗ = 1 on D1 . (5.37)

From (5.32), (5.35), and standard elliptic regularity, we can find a further subsequence (not relabeled)
such that

wk → w∗ in C1,α
loc (B1) ∩ C0,α(B1) for every 0 < α < 1 , (5.38)

for a map w∗ satisfying |w∗| = 1, |∇w∗| 6 4, and solving
−div(a2

∗∇w∗) = a2
∗|∇w∗|2w∗ in B+

1 ,

∂w∗
∂ν

= 0 on D1 .

(5.39)

In view of (5.37), we infer from [31, Theorem 8.32] that

‖w∗‖C1,α(Br) 6 Cα,r (5.40)

for every 0 < α < 1 and every 0 < r < 1, where Cα,r denotes a constant which only depends on n, m, α,
and r.

In turn, we infer from the C1,α
loc -convergence of wk and (5.33) that

ak → a∗ in C1,α
loc (B+

1 ) for every 0 < α < 1 , (5.41)

again by elliptic regularity. As a consequence, a∗ solves
−∆a∗ + |∇w∗|2a∗ = 0 in B+

1 ,

a∗ = 1 on D1 .

(5.42)

Hence a∗ ∈ C1,α
loc (B+

1 ∪D1) for every 0 < α < 1, and more precisely [31, Corollary 8.36] yields

‖a∗‖C1,α(B
+
r )
6 Cα,r (5.43)

for every 0 < α < 1 and every 0 < r < 1.

Finally the convergence of ak and wk implies that vk → v∗ := a∗w∗ in C1,α
loc (B+

1 ) ∩ C0,α(B
+
1 ). In

addition v∗ ∈ C1,α
loc (B+

1 ∪D1) satisfies for every 0 < α < 1 and every 0 < r < 1,

‖v∗‖C1,α(B
+
r )
6 Cα,r , (5.44)

thanks to (5.40) and (5.43).

We now claim that vk actually converges to v∗ in the C1,α-topology locally up to the boundary D1.
We shall complete the proof of Proposition 5.5 right after proving the following lemma.

Lemma 5.6. We have vk → v∗ in C1,α
loc (B+

1 ∪D1) for every 0 < α < 1.

Proof. By (5.38) we havewk → w∗ inC1,α
loc (B+

1 ∪D1), and it is enough to prove that ak → a∗ inC1,α
loc (B+

1 ∪
D1) for every 0 < α < 1. In view of (5.41), it remains to show the desired convergence near D1. We fix
x0 ∈ D1, 0 < α < 1, and 0 < r < dist(x0, ∂D1) arbitrary. Without loss of generality we may assume that
x0 = 0.

We introduce the difference function

hk := a∗ − ak ,

and we define for y ∈ Dr/4 fixed,

ϑk,y(x) := hk(x+ y)− hn(x) for x ∈ B+
r/2 .

By (5.32) and (5.37), the Lipschitz constant of hk is bounded by 4, and hence

‖ϑk,y‖L∞(B+
r/2

)
6 4|y| .
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In addition ϑk,y satisfies 
−∆ϑk,y = fk,y in B+

r/2 ,

εk
ak(1 + ak)

∂ϑk,y
∂ν

+ ϑk,y = εkgk,y on Dr/2 ,

with

fk,y(x) := |∇wk(x+ y)|2ak(x+ y)− |∇wk(x)|2ak(x)

− |∇w∗(x+ y)|2a∗(x+ y) + |∇w∗(x)|2a∗(x) ,

and

gk,y(x) :=

(
1

ak(x)(1 + ak(x))
− 1

ak(x+ y)(1 + ak(x+ y))

)
∂hk(x+ y)

∂ν

+
1

ak(x+ y)(1 + ak(x+ y))

∂a∗(x+ y)

∂ν
− 1

ak(x)(1 + ak(x))

∂a∗(x)

∂ν
.

From (5.32), (5.38), (5.40), and (5.43), we infer that

‖fk,y‖L∞(B+
r/2

)
6 Cα,r|y|α , (5.45)

and

‖gk,y‖L∞(Dr/2) 6 Cα,r|y|α . (5.46)

Next we consider the unique (variational) solution ζk ∈ H1(B+
r/2) of

−∆ζk = 1 in B+
r/2 ,

ζk = 1 on ∂+Br/2 ,

4εk
3

∂ζk
∂ν

+ ζk = 0 on Dr/2 ,

By Lemma 9.1 in Appendix B, ζk ∈ C0,β(B
+
r/2) ∩ C∞(B

+
r/2 \ ∂Dr/2) for some β ∈ (0, 1), and

0 6 ζk 6 Cr εk on Dr/4 , (5.47)

for a constant Cr which only depends on n and r.
Let us now define

κk(r, y) := max

{
‖ϑk,y‖L∞(B+

r/2
)
, ‖fk,y‖L∞(B+

r/2
)

}
6 Cα,r|y|α ,

and consider the functions

H+
k (x) := κk(r, y)ζk(x)− ϑk,y(x) + εk‖gk,y‖L∞(Dr/2) ,

and

H−k (x) := κk(r, y)ζk(x) + ϑk,y(x) + εk‖gk,y‖L∞(Dr/2) .

By construction H±k satisfies 

−∆H±k > 0 in B+
r/2 ,

H±k > 0 on ∂+Br/2 ,

εn
ak(1 + ak)

∂H±k
∂ν

+H±k > 0 on Dr/2 .

By the maximum principle and the Hopf boundary lemma, it follows that H±k > 0 in B+
r/2. Therefore,∣∣ϑk,y(x)

∣∣ 6 κk(r, y)ζk(x) + εk‖gk,y‖L∞(Dr/2) .

Gathering (5.45), (5.46), (5.47) together this last estimate, we deduce that∣∣∣∣hk(x+ y)− hk(x)

εk

∣∣∣∣ 6 Cα,r|y|α for every x, y ∈ Dr/4 .
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Since hk = 1− ak on D1, we have thus proved that∥∥∥∥1− ak
εk

∥∥∥∥
C0,α(Dr/4)

6 Cα,r . (5.48)

In view of (5.36), we conclude that∥∥∥∥ 1

εk
(1− a2

k)ak

∥∥∥∥
C0,α(Dr/4)

6 Cα,r . (5.49)

Applying Lemma 9.2 in Appendix B to equation (5.33) together with estimates (5.38), (5.40), and (5.49),
we finally deduce that

‖ak‖C1,α(B
+
r/8

)
6 Cα,r ,

and thus ak → a∗ in C1,γ(B
+
r/8) for every 0 < γ < α. �

Remark 5.7. We notice that the convergence in Lemma 5.6 can be improved. Indeed, one can repeat the
argument to show that vk → v∗ in C2,α

loc (B+
1 ∪ D1) for every α ∈ (0, 1). More precisely, from the C1,α-

convergence of ak we first deduce thatwk → w∗ inC2,α
loc (B+

1 ∪D1), which in turn implies the convergence
in C2,α

loc (B+
1 ) of ak by standard elliptic theory. It then remains to improve the convergence of ak near the

boundaryD1. We proceed exactly as in Lemma 5.6 replacing ϑk,y by ∂jϑk,y with j ∈ {1, . . . , n}. In doing
so, we observe that estimates (5.45)-(5.46) now holds with ∂jfk,y and ∂jgk,y , respectively. It yields the
improvement of (5.48) with the C1,α-norm, and then the announced result.

Proof of Proposition 5.5 completed. Up to a subsequence, we have zk → z∗ for some point z∗ ∈ B
+
1/2.

Thanks to Lemma 5.6 we have ∇vk(zk) → ∇v∗(z∗). Then (5.29) leads to |∇v∗(z∗)|2 > 1/2. From (5.44)
we infer that

|∇v∗|2 > 1/4 in B+
1 ∩B%0(z∗)

for some radius 0 < %0 6 1/4 which only depends on n andm. Using assumption (5.30) we now estimate

%n+1
0 |B+

1 |
4

6
∫
B+

1

|∇v∗|2 dx 6 lim inf
k→∞

∫
B+

1

|∇vk|2 dx 6 2nη0 . (5.50)

We then find a contradiction if η0 is small enough, and the proposition is proved. �

Proof of (5.26) completed. We argue by contradiction assuming that rε > 1. We consider the rescaled
function

ũε(x) := uε

(
x√
eε

+ x̄ε

)
for x ∈ B+

1 ,

so that ũε ∈ C2(B
+
1 ;Rm) solves 

∆ũε = 0 in B+
1 ,

∂ũε
∂ν

=
1

ε̃
(1− |ũε|2)ũε on D1 ,

with ε̃ := ε
√
eε . Moreover, (5.19) and (5.25) imply that 1/2 6 |ũε| 6 1 and |∇ũε| 6 2 inB

+
1 . Considering

the point zε :=
√
eε(xε − x̄ε) ∈ B+

1/2 (which actually belongs to the half axis {0} × R+ and satisfies
|zε| = 3Rε

√
eε 6 3

7
), we observe that (5.22) yields

|∇ũε(zε)|2 >
1

2
. (5.51)

On the other hand, (5.20) leads to

Eε̃(ũε, B1) = (
√
eε)

n−1Eε
(
uε, B

+
(
√
eε)−1(x̄ε)

)
6 2n−1η0 . (5.52)

If η0 is small enough, we conclude from Proposition 5.5 that ε̃ > ς0 where ς0 > 0 only depends on n and
m. Applying [16, Lemma 2.2] we infer that ‖ũε‖C2,α(B

+
3/4

)
6 Cα for every 0 < α < 1, where Cα only

depends on α, n, and m. Arguing as in (5.50), we then find a contradiction between (5.51) and (5.52)
whenever η0 is sufficiently small. �
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6. ASYMPTOTICS FOR GINZBURG-LANDAU BOUNDARY REACTIONS

6.1. Convergence to boundary harmonic maps and defect measures. With Theorem 5.1 in hands, we
are now able to give a preliminary description of both weak limits as ε ↓ 0 of critical points of Eε, and
the possible defect measure arising in the weak convergence process. This is the object of the following
theorem.

Theorem 6.1. Let Ω ⊆ Rn+1
+ be an admissible bounded open set. Let εk ↓ 0 be an arbitrary sequence, and let

{uk}k∈N ⊆ H1(Ω;Rm) ∩ L∞(Ω) be such that for every k ∈ N, |uk| 6 1, and uk weakly solves
∆uk = 0 in Ω ,

∂uk
∂ν

=
1

εk
(1− |uk|2)uk on ∂0Ω .

If supk Eεk (uk,Ω) < ∞, then there exist a (not relabeled) subsequence and a bounded weak (Sm−1, ∂0Ω)-
boundary harmonic map u∗ in Ω such that uk ⇀ u∗ weakly in H1(Ω) as k → ∞. In addition, there exist a
finite nonnegative Radon measure µsing on ∂0Ω and a relatively closed set Σ ⊆ ∂0Ω of finite (n− 1)-dimensional
Hausdorff measure such that

(i) |∇uk|2L n+1 Ω ⇀ |∇u∗|2L n+1 Ω + µsing weakly* as Radon measures on Ω ∪ ∂0Ω;

(ii)
(1− |uk|2)2

εk
→ 0 in L1

loc(∂0Ω);

(iii) Σ = supp(µsing) ∪ sing(u∗);

(iv) uk → u∗ in C2,α
loc

(
(Ω ∪ ∂0Ω) \ Σ

)
for every α ∈ (0, 1);

(v) if n = 1 the set Σ is finite and u∗ ∈ C∞(Ω ∪ ∂0Ω).

Proof. Step 1. First notice that Theorem 3.2 yields uk ∈ C∞(Ω ∪ ∂0Ω). By assumption on uk, we can find
a (not relabeled) subsequence such that uk ⇀ u∗ weakly in H1(Ω) for some map u∗ ∈ H1(Ω;Rm). Since
|uk| 6 1 and uk harmonic in Ω, we deduce that uk → u∗ in Clloc(Ω) for every l ∈ N, u∗ is harmonic in Ω,
and |u∗| 6 1 in Ω. On the other hand, |uk| → 1 in L2(∂0Ω), and we infer from the compact imbedding
H1(Ω) ↪→ L2(∂0Ω) that |u∗| = 1 H n-a.e. on ∂0Ω.

It then remains to analyse the asymptotic behavior of uk near ∂0Ω. Setting

µk := |∇uk|2L n+1 Ω +
1

2εk
(1− |uk|2)2H n ∂0Ω ,

we have supk µk(Ω ∪ ∂0Ω) <∞. Hence we can find a further subsequence such that

µk ⇀ µ := |∇u∗|2L n+1 Ω + µsing , (6.1)

weakly* as Radon measures on Ω ∪ ∂0Ω for some nonnegative µsing on Ω ∪ ∂0Ω. Notice that the local
smooth convergence of uk to u∗ in Ω implies that

supp(µsing) ⊆ ∂0Ω (6.2)

(here supp(µsing) denotes the relative support of µsing in Ω ∪ ∂0Ω). By Lemma 5.2, we have

ρ1−nµk(Bρ(x)) 6 r1−nµk(Br(x)) (6.3)

for every x ∈ ∂0Ω and every 0 < ρ < r < dist(x, ∂+Ω). Therefore,

ρ1−nµ(Bρ(x)) 6 r1−nµ(Br(x)) (6.4)

for every x ∈ ∂0Ω and every 0 < ρ < r < dist(x, ∂+Ω). As a consequence, the (n − 1)-dimensional
density

Θn−1(µ, x) := lim
r↓0

µ(Br(x))

ωn−1rn−1
(6.5)

exists and is finite at every point x ∈ ∂0Ω. Here ωn−1 denotes the volume of the unit ball in Rn−1 if
n > 2, and ω0 = 1. Note that (6.1) and (6.3) yield

Θn−1(µ, x) 6
C(

dist(x, ∂+Ω)
)n−1 sup

k∈N
Eεk (uk,Ω) <∞ for all x ∈ ∂0Ω . (6.6)
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On the other hand, by the smooth convergence of uk toward u∗ in Ω,

Θn−1(µ, x) = 0 for all x ∈ Ω .

In addition, we observe that x ∈ ∂0Ω 7→ Θn−1(µ, x) is upper semicontinuous.

Next we define the concentration set

Σ :=

{
x ∈ ∂0Ω : inf

r

{
lim inf
k→∞

r1−nµk(Br(x)) : 0 < r < dist(x, ∂+Ω)
}
> η0

}
,

where η0 > 0 is the constant given by Theorem 5.1. From (6.3) and (6.4) we infer that

Σ =

{
x ∈ ∂0Ω : lim

r↓0
lim inf
k→∞

r1−nµk(Br(x)) > η0

}
=

{
x ∈ ∂0Ω : lim

r↓0
r1−nµ(Br(x)) > η0

}
,

and consequently,

Σ =

{
x ∈ ∂0Ω : Θn−1(µ, x) >

η0

ωn−1

}
. (6.7)

In particular, Σ is a relatively closed subset of ∂0Ω (since Θ(µ, ·) is upper semicontinuous). Moreover, by
a well known property of upper densities (see e.g. [3, Theorem 2.56]), we have

η0

ωn−1
H n−1(Σ) 6 µ(Σ) <∞ . (6.8)

If n = 1, it obviously implies that Σ is finite.

Step 2. Let us now show that uk → u∗ in C2,α
loc

(
(Ω ∪ ∂0Ω) \ Σ

)
for every α ∈ (0, 1). In view of the

local smooth convergence of uk in Ω, it suffices to prove the claim near ∂0Ω. To this purpose, let us fix
x0 ∈ ∂0Ω\Σ and 0 < r < dist(x0, ∂

+Ω∪Σ) such that r1−nµ(Br(x0)) < η0. By the monotony in (6.4), we
may assume without loss of generality that µ(∂Br(x0)) = 0. Then limk µk(Br(x0)) = µ(Br(x0)), which
in turn implies that r1−nµk(Br(x0)) 6 η0 for k sufficiently large. Taking k even larger we have εk 6 r,
and we can then apply Theorem 5.1 and Lemma 5.4 to deduce that |∇uk| 6 Cr and 1/2 6 |uk| 6 1 in
B+
r/4(x0). This is now enough to reproduce the convergence proof in Proposition 5.5, Lemma 5.6, and

Remark 5.7. It shows that uk → u∗ in C2,α
loc

(
B+
r/4(x0)∪Dr/4(x0)

)
. We finally notice that Theorem 5.1 also

provides the estimate (1− |uk|2)2 6 Crε2
k in Dr/4(x0). As a consequence,

lim
k→∞

1

εk

∫
Dr/4(x0)

(1− |uk|2)2 dH n = 0 , (6.9)

a fact that we shall use later on.

Step 3. Let us now prove that u∗ a weak Sm−1-boundary harmonic map in Ω ∪ ∂0Ω. We distinguish the
two cases n = 1 and n > 2.

Case 1, n = 1. Let Φ ∈ H1(Ω;Rm)∩L∞(Ω) with compact support in Ω∪∂0Ω such that Φ(x) ∈ Tu∗(x)Sm−1

for H n-a.e. x ∈ ∂0Ω. By Step 1 the set supp Φ ∩ Σ contains finitely many points b1, . . . , bL. Then, fix an
arbitray cut-off function ζ ∈ C∞(Rn+1; [0, 1]) such that ζ = 0 in a small neighborhood of each bl. We set
Φ̃ := ζΦ, so that Φ̃ has compact support in (Ω ∪ ∂0Ω) \ Σ. From the convergence of uk established in
Step 2, we have |(1− |uk|2)||Φ̃| 6 Cεk on ∂0Ω, and thus

lim
k→∞

1

εk

∫
∂0Ω

(1− |uk|2)uk · Φ̃ dH n = lim
k→∞

1

εk

∫
∂0Ω

(1− |uk|2)(uk − u∗) · Φ̃ dH n = 0 ,

by dominated convergence. On the other hand,

lim
k→∞

∫
Ω

∇uk · ∇Φ̃ dx =

∫
Ω

∇u∗ · ∇Φ̃ dx ,

and we deduce that ∫
Ω

∇u∗ · ∇Φ̃ dx = 0 .

Given an arbitrary δ > 0, we now choose the cut-off function ζ of the form ζ(x) = χδ(x)ζ̂(x) where ζ̂ ∈
C∞(Rn+1; [0, 1]) satisfies ζ̂ = 0 in a small neighborhood of bl only for l > 2, and χδ ∈ C∞c (Rn+1; [0, 1])

satisfies χδ = 0 in Bδ(b1), χδ = 1 outside B2δ(b1), and |∇χδ| 6 C/δ. Setting Φ̂ = ζ̂Φ, we have∫
Ω

χδ∇u∗ · ∇Φ̂ dx+

∫
Ω∩B+

2δ
(b1)

Φ̂ · (∇χδ · ∇u∗) dx = 0 . (6.10)
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Using Cauchy-Schwarz inequality we estimate∣∣∣∣∣
∫

Ω∩B+
2δ

(b1)

Φ̂ · (∇χδ · ∇u∗) dx

∣∣∣∣∣ 6 C‖Φ‖L∞(Ω)

(∫
Ω∩B+

2δ
(b1)

|∇u∗|2 dx

)1/2

−→
δ↓0

0 .

Therefore, letting δ ↓ 0 in (6.10) leads to ∫
Ω

∇u∗ · ∇Φ̂ dx = 0 .

We then repeat the argument for each point bl to reach the conclusion∫
Ω

∇u∗ · ∇Φ dx = 0 . (6.11)

Hence u∗ is a weak Sm−1-boundary harmonic map in Ω∪ ∂0Ω, and u∗ ∈ C∞(Ω∪ ∂0Ω) by Theorem 4.18.

Case 2, n > 2. Consider an arbitrary Φ as in Case 1, and write K := supp Φ. From Step 1 we know that
H n−1(Σ ∩ K) < ∞. By [27, Theorem 3, p.154] it implies that cap2(Σ ∩ K) = 0 where cap2 denotes
the Newtonian capacity. Moreover, the proof of [27, Theorem 3, p.154] provides a sequence of functions
{χl}l∈N such that χl ∈ Ḣ1(Rn+1), 0 6 χl 6 1, χl = 0 in a neighborhood of Σ ∩K, χl → 1 a.e. as l→∞,
and

lim
l→∞

∫
Rn+1

|∇χl|2 dx = 0 .

Arguing as in Case 1, we obtain that

0 =

∫
Ω

∇u∗ · ∇(χlΦ) dx =

∫
Ω

χl∇u∗ · ∇Φ dx+

∫
Ω

Φ · (∇χl · ∇u∗) dx , (6.12)

and we estimate∣∣∣∣∫
Ω

Φ · (∇χl · ∇u∗) dx

∣∣∣∣ 6 C‖Φ‖L∞(Ω)‖∇u∗‖L2(Ω)

(∫
Rn+1

|∇χl|2 dx

)1/2

−→
l→∞

0 .

Letting l→∞ in (6.12) then shows that (6.11) holds, whence u∗ is a weak Sm−1-boundary harmonic map
in Ω ∪ ∂0Ω.

Step 4. We conclude the proof by showing that Σ = supp(µsing) ∪ sing(u∗). If x0 does not belong to
supp(µsing) ∪ sing(u∗), we can find r0 > 0 such that µsing(Br(x0)) = 0 for all r < r0. Hence,

r1−nµ(Br(x0)) = lim
n→∞

r1−nµk(Br(x0)) =
r1−n

2

∫
Br(x0)∩Ω

|∇u∗|2 dx

for all r < r0. Since u∗ is smooth in a neighborhood of x0 by Theorem 4.18, we deduce that Θn−1(µ, x0) =

0, and thus x0 6∈ Σ by (6.7).
Let us now assume that x0 6∈ Σ. If x0 ∈ Ω then x0 6∈ supp(µsing)∪sing(u∗) by (6.2) and the smoothness

of u∗ in Ω. If x0 ∈ ∂0Ω we deduce from (6.9) and the convergence established in Step 2 that x0 6∈ sing(u∗),
and

µ(Br(x0)) = lim
k→∞

µk(Br(x0)) =
1

2

∫
Br(x0)∩Ω

|∇u∗|2 dx

for a radius r > 0 sufficiently small. Therefore, µsing(Br(x0)) = 0, and thus x0 does not belong to
supp(µsing).

Step 5. In view of (6.1), it only remains to prove (ii). Let K be a compact subset of ∂0Ω, and set δ0 :=
1
2
dist(K, ∂+Ω). For δ ∈ (0, δ0), we define Σδ := {x ∈ ∂0Ω : dist(x,Σ) 6 δ}. Then, K ∩ Σδ is a

compact set. From Step 4 and the local smooth convergence of uk toward u∗ outside Σ, we deduce that
ε−1
k

∫
K\Σδ

(1− |uk|2)2 dH n → 0. On the other hand, for any x0 ∈ K ∩Σδ we have B+
δ (x0) ⊆ Ω, and we

infer from the monotonicity formula in Lemma 5.2 that

1

4εk

∫
Dδ(x0)

(1− |uk|2)2 dH n 6
δn−1

δn−1
0

Eεk (uk, B
+
δ0

(x0)) .

Hence,

lim sup
k→∞

1

4εk

∫
Dδ(x0)

(1− |uk|2)2 dH n 6
δn−1

δk−1
0

sup
n∈N

Eεk (uk,Ω)−→
δ↓0

0 .

Then, by a standard covering argument we deduce that

lim
k→∞

1

εk

∫
Σδ

(1− |uk|2)2 dH n = 0 ,



ON A FRACTIONAL GINZBURG-LANDAU EQUATION 37

and thus ε−1
k

∫
K

(1− |uk|2)2 dH n → 0 as k →∞. �

To complete this subsection, we now prove the (n−1)-rectifiability of the defect measure µsing through
the celebrated PREISS criteria [50].

Proposition 6.2. Assume that n > 2. In Theorem 6.1 the set Σ is countably H n−1-rectifiable, and the defect
measure µsing satisfies

µsing = θH n−1 Σ (6.13)

for some positive Borel function θ : Σ→ (0,∞).

Proof. By a well known property of Sobolev functions (see e.g. [69, (3.3.28)]), we have

lim
r↓0

1

rn−1

∫
Ω∩B+

r (x)

|∇u∗|2 dx = 0 for H n−1-a.e. x ∈ Σ . (6.14)

Therefore (6.5) yields

Θn−1(µsing, x) := lim
r↓0

µsing(Br(x))

ωn−1rn−1
= Θn−1(µ, x) for H n−1-a.e. x ∈ Σ . (6.15)

On the other hand, we derive from (6.6) that

Θ∗,n−1(µsing, x) := lim sup
r↓0

µsing(Br(x))

ωn−1rn−1
6

C(
dist(x, ∂+Ω)

)n−1 sup
k∈N

Eεk (uk,Ω) <∞

for all x ∈ Σ. Since supp(µsing) ⊆ Σ, we infer from [3, Theorem 2.56] that µsing is absolutely continuous
with respect to H n−1 Σ. Then we deduce from (6.15) and (6.5)-(6.6)-(6.7) that

Θn−1(µsing, ·) = Θn−1(µ, ·) ∈ (0,∞) µsing-a.e. ,

and according to PREISS rectifiability criteria [50], it implies that µsing is a (n − 1)-rectifiable measure
(see e.g. [3, Definition 2.59]). Next we infer from [3, Theorem 2.83], (6.15), and (6.6)-(6.7) that µsing is of
the form (6.13) with θ(x) := Θn−1(µ, x) ∈ (0,∞). As a consequence, Σ is a countably H n−1-rectifiable
set. �

Remark 6.3 (Approximate tangent space). As a consequence of Proposition 6.2 and the fact that Σ ⊆
∂0Ω ⊆ Rn, the measure µsing admits an (n − 1)-dimensional approximate tangent space TxΣ ⊆ Rn at
x with multiplicity θ(x) for H n−1-a.e. x ∈ Σ (see e.g. [3, Theorem 2.83]). More precisely, if we denote
by Gn,n−1 the Grassmann manifold of unoriented (n− 1)-dimensional planes in Rn, then for H n−1-a.e.
x ∈ Σ there exists a plane TxΣ ∈ Gn,n−1 such that

lim
r↓0

1

rn−1

∫
∂0Ω

φ
(y − x

r

)
dµsing(y) = θ(x)

∫
TxΣ

φ(y) dH n−1(y)

for all φ ∈ C0
c (Rn).

6.2. Stationarity defect and generalized varifolds. In this subsection we assume that n > 2, and our dis-
cussion departs from Theorem 6.1. In this theorem, we point out that the limiting (Sm−1, ∂0Ω)-boundary
harmonic map u∗ is a priori only weakly harmonic, and might not be stationary, i.e., it might not sat-
isfy (4.8). On the other hand, u∗ arises as a weak limit of (smooth) critical points of the boundary
Ginzburg-Landau energy Eε, so that the lack of stationarity of u∗ should be quantified. For the clas-
sical Ginzburg-Landau system, the analoguous question is treated by LIN & WANG in [44] where they
show that the possible stationarity defect is related to the defect measure through an explicit formula.
The main objective in this subsection is to prove that a similar formula holds in the Ginzburg-Landau
boundary context, and this is the object of the following theorem.

Theorem 6.4. Assume that n > 2. In Theorem 6.1, the limiting (Sm−1, ∂0Ω)-boundary harmonic map u∗ and
the defect measure µsing represented in (6.13) satisfy∫

Ω

(
|∇u∗|2divX− 2

n+1∑
i,j=1

(∂iu∗ · ∂ju∗)∂jXi

)
dx+

∫
Σ

θ divΣX dH n−1 = 0

for all vector fields X = (X1, . . . ,Xn+1) ∈ C1(Ω;Rn+1) compactly supported in Ω ∪ ∂0Ω and satisfying
Xn+1 = 0 on ∂0Ω.
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In the spirit of [44], the proof of Theorem 6.4 relies on the notion of generalized varifold introduced by
AMBROSIO-SONER [4]. To simplify the proof of Theorem 6.4, we shall assume that the admissible open
set Ω ⊆ Rn+1

+ satisfies Ω = Ω̃∩Rn+1
+ for some Lipschitz bounded open set Ω̃ ⊆ Rn+1 which is symmetric

with respect to the hyperplane Rn = {xn+1 = 0}. Since all the arguments are local in nature, the general
case can be handled in a similar way with minor modifications. According to this symmetry assumption,
we introduce some notations. For B ⊆ Rn+1, we write B+ := B ∩ Rn+1

+ and B− := B ∩ Rn+1
− , where

Rn+1
− := Rn × (−∞, 0). For a map u ∈ H1(Ω;Rm), we denote by ũ ∈ H1(Ω̃;Rm) the extension of u to Ω̃

obtained by even reflection across ∂0Ω, i.e.,

ũ(x′, xn+1) :=

u(x′, xn+1) for x = (x′, xn+1) ∈ Ω ,

u(x′,−xn+1) for x = (x′, xn+1) ∈ Ω− := Ω̃− ,

and we write u− := ũ|Ω− .

To recall from [4] the concept of generalized varifolds, we need to introduce the following (compact
and convex) set of matrices

An−1 :=
{
A ∈ R(n+1)×(n+1) : A is symmetric, trace(A) = n− 1 , − (n+ 1)In+1 6 A 6 In+1

}
,

where In+1 denotes the identity square matrix of size n+ 1.

Definition 6.5. A (n − 1)-dimensional generalized varifold V on Ω̃ is a nonnegative Radon measure
on Ω̃ × An−1. The class of all generalized (n − 1)-varifolds on Ω̃ is denoted by V∗n−1(Ω̃). For V ∈
V∗n−1(Ω̃) we denote by ‖V ‖ the weight of V defined as the first marginal of V , i.e., ‖V ‖ := π]V where
π : Ω̃ × An−1 → Ω̃ is the canonical projection. (Notice that ‖V ‖ is a Radon measure on Ω̃.) The first
variation δV of a generalized varifold V ∈ V∗n−1(Ω̃) is the element of (C1

c (Ω̃;Rn+1))∗ defined by

〈δV,X〉 := −
∫

Ω̃×An−1

A : ∇X dV for all X ∈ C1
c (Ω̃;Rn+1) .

If δV = 0, then V is said to be stationary.

Remark 6.6 (Weak convergence of varifolds). The convergence in V∗n−1(Ω̃) is understood as weak*
convergence of Radon measures on Ω̃ × An−1. In particular, if Vk ⇀ V in V∗n−1(Ω̃), then δVk ⇀ δV

weakly* in (C1
c (Ω̃;Rn+1))∗.

Remark 6.7 (Disintegration and barycenter). Given V ∈ V∗n−1(Ω̃), we denote by {Vx}x∈Ω̃ a disintegra-
tion of V , i.e., {Vx}x∈Ω̃ is a family of probability measures on An−1 such that x 7→ Vx is ‖V ‖-measurable,
and ∫

Ω̃×An−1

f(x,A) dV =

∫
Ω̃

(∫
An−1

f(x,A) dVx

)
d‖V ‖ (6.16)

for any bounded Borel function f : Ω̃×An−1 → R. The measurability condition on {Vx}x∈Ω̃ means that
x 7→ Vx(B) is ‖V ‖-measurable for every Borel set B ⊆ An−1. This fact ensures that the inner integral in
the right hand side of (6.16) is ‖V ‖-measurable, so that its integral is well defined. We refer to [3] for the
existence and the uniqueness of {Vx}x∈Ω̃ modulo ‖V ‖-null sets. Throughout the subsection, we may use
the disintegrated notation V = Vx‖V ‖. We also denote by ĀV (x) the barycenter of V at x defined by

ĀV (x) :=

∫
An−1

AdVx .

Then x 7→ ĀV (x) is ‖V ‖-measurable, and ĀV (x) ∈ An−1 since Vx is a probability measure. Moreover,
we can rewrite the action of the first variation δV as

〈δV,X〉 := −
∫

Ω̃

ĀV (x) : ∇X d‖V ‖

for all X ∈ C1
c (Ω̃;Rn+1).

We may now present the way to relate our problem to generalized varifolds. We start with the con-
struction of a generalized varifold starting from a Sobolev map. For u ∈ H1(Ω̃;Rm), we denote by
Vu ∈ V∗n−1(Ω̃) the generalized varifold given by

Vu :=
1

2
δAu |∇u|

2L n+1 Ω̃ ,
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where δAu(x) is the Dirac mass concentrated at the matrix Au(x) defined by

Au(x) :=


In+1 − 2

(∇u(x))T (∇u(x))

|∇u(x)|2 if |∇u(x)| 6= 0 ,

In−1 otherwise ,

and In−1 is the matrix of the orthogonal projection on Rn−1 ' Rn−1×{(0, 0)}. One may easily check that
Au(x) ∈ An−1, so that Vu indeed belongs to V∗n−1(Ω̃). Next we add the Ginzburg-Landau potential in
the construction above to build generalized varifolds based on the Ginzburg-Landau boundary energy.
More precisely, for ε > 0 and an arbitrary map u ∈ H1(Ω̃;Rm) ∩ L4(∂0Ω), we set

V εu := Vu +
1

2ε
δIn−1(1− |u|2)2H n ∂0Ω ∈ V∗n−1(Ω̃) ,

so that

‖V εu ‖(B) =
1

2

∫
B

|∇u|2 dx+
1

2ε

∫
B∩∂0Ω

(1− |u|2)2 dH n

for any open subset B ⊆ Ω̃. The first variation of V εu is then given by

〈δV εu ,X〉 = −1

2

∫
Ω̃

(
|∇u|2divX− 2

n+1∑
i,j=1

(∂iu · ∂ju)∂jXi

)
dx− 1

2ε

∫
∂0Ω

(1− |u|2)2divRn−1X dH n

for all X ∈ C1
c (Ω̃;Rn+1). In the case where u = ũε and uε is a critical point of the Ginzburg-Landau

boundary energy Eε, the first variation reduces to the following expression.

Lemma 6.8. Given ε > 0, if uε ∈ H1(Ω;Rm) ∩ L∞(Ω) is a critical point of Eε in Ω, then

〈δV εũε ,X〉 =
1

2ε

∫
∂0Ω

(1− |uε|2)2∂nXn dH n

for all X ∈ C1
c (Ω̃;Rn+1).

Proof. If uε ∈ H1(Ω;Rm)∩L∞(Ω) is a critical point of Eε in Ω, then uε ∈ C∞(Ω∪ ∂0Ω) by Theorem 3.2.
It obviously implies u−ε ∈ C∞(Ω− ∪ ∂0Ω), and

∆u−ε = 0 in Ω− ,

∂u−ε
∂ν

=
1

ε
(1− |uε|2)uε on ∂0Ω .

(6.17)

Let us now consider a vector field X = (X1, . . . ,Xn+1) ∈ C1
c (Ω̃;Rn+1). Arguing as in the proof of

Lemma 5.2, we integrate by parts to find

∫
Ω

(
|∇uε|2divX− 2

n+1∑
i,j=1

(∂iuε · ∂juε)∂jXi

)
dx

= − 1

2ε

∫
∂0Ω

(1− |uε|2)2divRnX dH n −
∫
∂0Ω

|∇uε|2Xn+1 dH n

+
2

ε2

∫
∂0Ω

(1− |uε|2)2|uε|2Xn+1 dH n .

Similarly, (6.17) yields

∫
Ω−

(
|∇u−ε |2divX− 2

n+1∑
i,j=1

(∂iu
−
ε · ∂ju−ε )∂jXi

)
dx

= − 1

2ε

∫
∂0Ω

(1− |uε|2)2divRnX dH n +

∫
∂0Ω

|∇u−ε |2Xn+1 dH n

− 2

ε2

∫
∂0Ω

(1− |uε|2)2|uε|2Xn+1 dH n .

Therefore,

〈δV εũε ,X〉 =
1

2ε

∫
∂0Ω

(1− |uε|2)2∂nXn dH n +
1

2

∫
∂0Ω

(
|∂n+1uε|2 − |∂n+1u

−
ε |2
)
Xn+1 dH n .

Since ∂n+1u
−
ε = −∂n+1uε by (6.17), the conclusion follows from this last equality. �
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We now relate a weak limit u∗ and its defect measure µsing to the weak limit of the generalized vari-
folds V εũε , which has to be stationary by Lemma 6.8 and the vanishing property of the Ginzburg-Landau
potential as ε→ 0.

Corollary 6.9. Let {uk}k∈N be the subsequence given by Theorem 6.1, and let µsing be the defect measure repre-
sented in (6.13). Up to a further subsequence (not relabeled), V εkũk ⇀ V∗ for some stationary V∗ ∈ V∗n−1(Ω̃). In
addition,

V∗ = Vũ∗ + Vsing , (6.18)

where Vsing ∈ V∗n−1(Ω̃) is supported by Σ×An−1, and ‖Vsing‖ = µsing.

Proof. Step 1. By symmetry with respect to {xn+1 = 0}, we have ‖V εkũk ‖(Ω̃) = 2Eεk (uk,Ω), and thus

sup
k∈N
‖V εkũk ‖(Ω̃) <∞ .

Hence we can find a (not relabeled) further subsequence such that V εkũk ⇀ V∗ for some V∗ ∈ V∗n−1(Ω̃).
Then δV εkũk ⇀ δV∗ as distributions. We claim that δV∗ = 0. Indeed, for an arbitrary X ∈ C1

c (Ω̃;Rn+1), we
deduce from item (ii) in Theorem 6.1 and Lemma 6.8 that

〈δV∗,X〉 = lim
k→∞

1

2εk

∫
∂0Ω

(1− |uk|2)2∂nXn dH n = 0 .

Step 2. For Φ ∈ C0
c (Ω̃), we denote by Φ̂ the reflection of Φ with respect to the hyperplane {xn+1 = 0},

i.e., Φ̂(x′, xn+1) := Φ(x′,−xn+1) for x ∈ Ω̃. Noticing that∫
Ω̃

Φ d‖V εkũk ‖ =
1

2

∫
Ω

|∇uk|2(Φ + Φ̂) dx+
1

2εk

∫
∂0Ω

(1− |uk|2)2Φ dH n ,

we infer from Theorem 6.1 that

lim
k→∞

∫
Ω̃

Φ d‖V εkũk ‖ =
1

2

∫
Ω

|∇u∗|2(Φ + Φ̂) dx+

∫
Σ

Φ dµsing =
1

2

∫
Ω̃

|∇ũ∗|2Φ dx+

∫
Σ

Φ dµsing .

On the other hand, ‖V εkũk ‖⇀ ‖V∗‖weakly* as Radon measures on Ω̃, and hence

‖V∗‖ = ‖Vũ∗‖+ µsing . (6.19)

Next consider Ψ ∈ C0
c (Ω̃×An−1) with compact support in (Ω̃ \ Σ)×An−1. Then,∫

Ω̃×An−1

Ψ dV
εk
ũk

=
1

2

∫
Ω̃

Ψ
(
x,Aũk (x)

)
|∇ũk|2 dx+

1

4εk

∫
∂0Ω

Ψ(x, In−1)(1− |uk|2)2 dH n .

From the convergences established in items (ii) & (iv) of Theorem 6.1, we deduce that∫
Ω̃×An−1

Ψ dV∗ = lim
k→∞

∫
Ω̃×An−1

Ψ dV
εk
ũk

= lim
k→∞

1

2

∫
Ω̃∩{|∇ũ∗|6=0}

Ψ
(
x,Aũk (x)

)
|∇ũk|2 dx

=
1

2

∫
Ω̃

Ψ
(
x,Aũ∗(x)

)
|∇ũ∗|2 dx =

∫
Ω̃×An−1

Ψ dVũ∗ .

As a consequence, V∗(K) = Vũ∗(K) for every compact set K ⊆ (Ω̃ \ Σ) ×An−1. By inner regularity, it
implies

V∗
(
B \ (Σ×An−1)

)
= Vũ∗

(
B \ (Σ×An−1)

)
= Vũ∗(B)

for all Borel sets B ⊆ Ω̃ × An−1 (in the last equality, we have used the fact that ‖Vũ∗‖ is absolutely
continuous with respect to L n+1). Therefore,

V∗
(
(Ω̃ \ Σ)×An−1

)
= Vũ∗ .

Finally, setting

Vsing := V∗ (Σ×An−1) ,

we clearly have (6.18), and ‖Vsing‖ = µsing holds by (6.19). �

The last main step to establish Theorem 6.4 is the following geometrical property on the singular part
of the limiting varifold.
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Lemma 6.10. In Corollary 6.9, the barycenter of generalized varifold Vsing satisfies

ĀVsing (x) = ATxΣ for H n−1-a.e. x ∈ Σ ,

where ATxΣ is the matrix of the orthogonal projection on the approximate tangent plane TxΣ of Σ at x according
to Remark 6.3.

Proof. Let x0 ∈ Σ be such that Σ admits an approximate tangent plane Tx0Σ at x0 with multiplicity θ(x0),
x0 is a Lebesgue point ofAVsing with respect to µsing, and (6.14) holds at x0. Those properties are satisfied
H n−1-a.e. on Σ.

Next consider an arbitrary X ∈ C1
c (Rn+1;Rn+1), and set Xr(x) := rX(x−x0

r
). From Corollary 6.9 and

the choice of x0, we infer that

0 = lim
r↓0

1

rn−1
〈δV∗,Xr〉 = lim

r↓0

1

rn−1
〈δVsing,Xr〉

= lim
r↓0

1

rn−1

∫
∂0Ω

ĀVsing (x) : ∇X
(x− x0

r

)
dµsing

= θ(x0)

∫
Tx0Σ

ĀVsing (x0) : ∇X dH n−1 .

Since θ(x0) > 0 and X is arbitrary, we deduce that

ĀVsing (x0)

∫
Tx0Σ

∇φ dH n−1 = 0 for all φ ∈ C1
c (Rn+1) . (6.20)

We claim that

F :=

{∫
Tx0Σ

∇φ dH n−1 : φ ∈ C1
c (Rn+1)

}
= KerATx0Σ . (6.21)

Before proving (6.21) we complete the argument. From the last two identities we derive that at least two
eigenvalues of ĀVsing (x0) vanish. On the other hand, ĀVsing (x0) ∈ An−1 so that trace(ĀVsing (x0)) = n−1

and ĀVsing (x0) 6 In+1. It implies that the remaining eigenvalues are actually equal to one. Hence
ĀVsing (x0) is a matrix of an orthogonal projection over an (n − 1)-dimensional plane. Now (6.20) and
(6.21) show that ĀVsing (x0) and ATx0Σ have the same kernel, whence ĀVsing (x0) = ATx0Σ.

To prove (6.21), we argue as follows. First notice that we may assume without loss of generality that
Tx0Σ = Rn−1 × {(0, 0)}. Since the admissible φ’s are compactly supported, we obtain∫

Tx0Σ

∂jφ dH n−1 = 0 for all j ∈ {1, . . . , n− 1} ,

and the inclusion F ⊆ KerATx0Σ follows. To prove the reverse inclusion it suffices to use admissible
functions of the form φ(x) = χ(xn)ψ(x′′) or φ(x) = χ(xn+1)ψ(x′′) where we write x = (x′′, xn, xn+1),
χ ∈ C1

c (R) satisfies χ′(0) = 1, and ψ ∈ C1
c (Rn−1) is such that

∫
Rn−1 ψ = 1. �

Remark 6.11. In view of Proposition 6.2 and Lemma 6.10, the generalized varifold

V̄sing := δĀVsing
µsing

is actually a real (n− 1)-rectifiable varifold in the classical sense, see [61].

Proof of Theorem 6.4. We first infer from Corollary 6.9, Lemma 6.10, and (6.13) that

〈δV∗,X〉 = −1

2

∫
Ω̃

(
|∇ũ∗|2divX− 2

n+1∑
i,j=1

(∂iũ∗ · ∂j ũ∗)∂jXi

)
dx−

∫
Σ

ATxΣ : ∇X dµsing

= −1

2

∫
Ω̃

(
|∇ũ∗|2divX− 2

n+1∑
i,j=1

(∂iũ∗ · ∂j ũ∗)∂jXi

)
dx−

∫
Σ

θ divΣX dH n−1 = 0 , (6.22)

for all X ∈ C1
c (Ω̃;Rn+1) (we recall that divΣX(x) := ATxΣ : ∇X(x)).

Let us now consider an arbitrary vector field X = (X1, . . . ,Xn+1) ∈ C1(Ω;Rn+1) compactly sup-
ported in Ω ∪ ∂0Ω and satisfying Xn+1 = 0 on ∂0Ω. We then extend X to Ω̃ by setting

X̂(x) := (X̃1(x), . . . , X̃n(x),−X̃n+1(x)) ,

where we recall that X̃j is the extension of Xj to Ω̃ obtained by even reflection accross ∂0Ω. Then
X̂ is Lipschitz continuous and compactly supported in Ω̃. Notice also that ∂iX̂j is continuous in Ω̃
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for all indices i, j ∈ {1, . . . , n}. Then, by a standard mollification argument, we can find a sequence
{Xk}k∈N ⊆ C1

c (Ω̃;Rn+1) such that Xk → X̂ uniformly on Ω̃, ∂iXk
j → ∂iX̂j uniformly on Ω̃ for all

i, j ∈ {1, . . . , n}, ∇Xk → ∇X̂ a.e. on Ω̃ with ‖∇Xk‖L∞(Ω̃) 6 ‖∇X̂‖L∞(Ω̃). Applying (6.22) to each Xk

and letting k →∞, we derive by dominated convergence that

1

2

∫
Ω̃

(
|∇ũ∗|2divX̂− 2

n+1∑
i,j=1

(∂iũ∗ · ∂j ũ∗)∂iX̂j

)
dx+

∫
Σ

θ divΣX̂ dH n−1 = 0 .

Finally, by symmetry of ũ∗ and X̂, we have

1

2

∫
Ω̃

(
|∇ũ∗|2divX̂− 2

n+1∑
i,j=1

(∂iũ∗ · ∂j ũ∗)∂jX̂i

)
dx =

∫
Ω

(
|∇u∗|2divX− 2

n+1∑
i,j=1

(∂iu∗ · ∂ju∗)∂jXi

)
dx ,

and ∫
Σ

θ divΣX̂ dH n−1 =

∫
Σ

θ divΣX dH n−1 ,

and the conclusion follows. �

7. ASYMPTOTICS FOR THE FRACTIONAL GINZBURG-LANDAU EQUATION

The purpose of this section is to apply our previous results on the Ginzburg-Landau boundary equa-
tion to the asymptotic analysis, as ε ↓ 0, of solutions of the fractional Ginzburg-Landau equation. We
start with the analogue of Theorem 6.1 and Theorem 6.4 in the fractional setting when no exterior con-
dition is imposed. We then prove Theorem 1.1. We conclude this section with the particular case of
minimizers of the Ginzburg-Landau 1/2-energy under a Dirichlet exterior condition.

7.1. Asymptotics without exterior Dirichlet condition. We start in this subsection with a general case
where no exterior condition is imposed. We obtain here the most important convergence results.

Theorem 7.1. Let ω ⊆ Rn be a bounded open set with Lipschitz boundary. Let εk ↓ 0 be an arbitrary sequence,
and let {vk}k∈N ⊆ Ĥ1/2(ω;Rm) ∩ L∞(Rn) be such that for every k ∈ N, |vk| 6 1, and vk weakly solves

(−∆)
1
2 vk =

1

εk
(1− |vk|2)vk in ω . (7.1)

If supk Eεk (vk, ω) < ∞, then there exist a (not relabeled) subsequence and v∗ ∈ Ĥ1/2(ω;Rm) a bounded weak
1/2-harmonic map into Sm−1 in ω such that vk ⇀ v∗ weakly in H1/2(ω) ∩ L2

loc(Rn) as k → ∞. In addition,
there exist a nonnegative Radon measure µsing on ω, a countably H n−1-rectifiable relatively closed set Σ ⊆ ω of
locally finite (n− 1)-dimensional Hausdorff measure in ω, and a Borel function θ : Σ→ (0,∞) such that

(i) |∇ve
k|2L n+1 Rn+1

+
∗
⇀ |∇ve

∗|2L n+1 Rn+1
+ + µsing locally weakly* as Radon measures on Rn+1

+ ∪ ω;

(ii)
(1− |vk|2)2

εk
→ 0 in L1

loc(ω);

(iii) µsing = θH n−1 Σ;

(iv) v∗ ∈ C∞(ω \ Σ) and vk → v∗ in C2,α
loc (ω \ Σ) for every 0 < α < 1;

(v) if n > 2, the limiting 1/2-harmonic map v∗ and the defect measure µsing satisfy[
d

dt
E
(
v∗ ◦ φt, ω

)]
t=0

=
1

2

∫
Σ

divΣX dµsing

for all vector fields X ∈ C1(Rn;Rn) compactly supported in ω, where {φt}t∈R denotes the flow on Rn

generated by X ;

(vi) if n = 1, the set Σ is locally finite in ω and v∗ ∈ C∞(ω).

Proof. Step 1. From the assumptions |vk| 6 1 and supk Eεk (vk, ω) <∞, we first deduce from Lemma 2.1
that the sequence {vk} is bounded in L2(Rn,m), where the measure m is defined in (2.10). Therefore,
we can find a subsequence and v∗ ∈ L2(Rn,m) such that vk ⇀ v∗ weakly in L2(Rn,m). In particular,
vk ⇀ v∗ weakly in L2

loc(Rn). On the other hand, the uniform energy bound also shows that |vk|2 → 1

in L2(ω), and {vk} is bounded in H1/2(ω). Hence vk ⇀ v∗ weakly in H1/2(ω), and from the compact
embedding H1/2(ω) ↪→ L2(ω), it implies that vk → v∗ strongly in L2(ω). In particular, |v∗| = 1 a.e. in ω.
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We now claim that v∗ ∈ Ĥ1/2(ω;Rm), and more precisely that

E(v∗, ω) 6 lim inf
k→∞

E(vk, ω) <∞ .

In view of the weak convergence of {vk} in H1/2(ω), it remains to show that∫∫
ω×ωc

|v∗(x)− v∗(y)|2

|x− y|n+1
dxdy 6 lim inf

k→∞

∫∫
ω×ωc

|vk(x)− vk(y)|2

|x− y|n+1
dxdy . (7.2)

We fix R > 0 and 0 < δ < R/2 such that ω ⊆ DR/2. Set ωδ := {x ∈ Rn : dist(x, ω) < δ}, and write∫∫
ω×(ωδ)c∩DR

|vk(x)− vk(y)|2

|x− y|n+1
dxdy =

∫
ω

|vk(x)|2w1(x) dx

+

∫
(ωδ)c∩DR

|vk(x)|2w2(x) dx− 2

∫
(ωδ)c∩DR

vk(x) · fk(x) dx =: Ik + IIk + IIIk , (7.3)

where

w1(x) :=

∫
(ωδ)c∩DR

dy

|x− y|n+1
, w2(x) :=

∫
ω

dy

|x− y|n+1
, fk(x) :=

∫
ω

vk(y) dy

|x− y|n+1
.

By the strongL2(ω)-convergence of vk toward v∗, fk converges strongly inL2((ωδ)
c∩DR) to the function

f∗(x) :=
∫
ω

v∗(y) dy

|x−y|n+1 . From the weak L2
loc(Rn)-convergence of vk, we deduce that∫

ω

|v∗(x)|2w1(x) dx 6 lim inf
k→∞

Ik ,

∫
(ωδ)c∩DR

|v∗(x)|2w2(x) dx 6 lim inf
k→∞

IIk ,

and

lim
k→∞

IIIk = −2

∫
(ωδ)c∩DR

v∗(x) · f∗(x) dx .

Therefore, ∫∫
ω×(ωδ)c∩DR

|v∗(x)− v∗(y)|2

|x− y|n+1
dxdy 6 lim inf

k→∞

∫∫
ω×ωc

|vk(x)− vk(y)|2

|x− y|n+1
dxdy ,

and (7.2) follows letting R→∞ and δ → 0.

We end this first step showing that ve
n ⇀ ve

∗ weakly in H1
loc(Rn+1

+ ∪ ω). Indeed, we start deducing
from Lemma 2.4 that ve

n ⇀ ve
∗ weakly in L2

loc(Rn+1
+ ). On the other hand, the uniform energy bound

together with Lemma 2.6 and standard estimates on harmonic functions, shows that {ve
k} is bounded in

H1
loc(Rn+1

+ ∪ ω), whence the announced weak convergence.

Step 2. Let us now consider an increasing sequence {Ωl}l∈N of bounded admissible open sets such that
∂0Ωl ⊆ ω for every l ∈ N, ∪lΩl = Rn+1

+ , and ∪l∂0Ωl = ω. By (2.11), Step 1, and the results in Section 3,
ve
k ∈ H1(Ωl;Rm) ∩ L∞(Ωl) satisfies |ve

k| 6 1 and solves
∆ve

k = 0 in Ωl ,

∂ve
k

∂ν
=

1

εk
(1− |ve

k|2)ve
k on ∂0Ωl ,

for every l ∈ N. In addition, we have proved in Step 1 that supk Eεk (ve
k,Ωl) < ∞ for every l ∈ N.

Therefore, we can find a further subsequence such that the conclusions of Theorems 6.1 & 6.4 hold in
every Ωl, and ve

∗ is the limiting (Sm−1, ∂0Ωl)-boundary harmonic map in each Ωl by Step 1. This yields
the announced conclusions on the defect measure µsing and on the concentration set Σ stated in (i), (ii),
(iii), and (iv). The stationarity relation stated in (v) between v∗ and µsing is in turn a direct consequence
of Theorem 6.4 and Lemma 4.16. Then it only remains to prove that v∗ is a weak 1/2-harmonic map into
Sm−1 in ω. By Proposition 4.2, it is enough to check that 〈(−∆)

1
2 v∗, ϕ〉ω = 0 for every ϕ ∈ H1/2

00 (ω;Rm)∩
L∞(ω) compactly supported in ω satisfying v∗ ·ϕ = 0 a.e. in ω. Given such a test function ϕ, we consider
an arbitrary extension Φ ∈ H1(Rn+1

+ ;Rm) ∩ L∞(Rn+1
+ ) of ϕ which is compactly supported in Rn+1

+ ∪ ω.
Then supp Φ ⊆ Ωl ∪ ∂0Ωl for l large enough. Since ve

∗ is a weak (Sm−1, ∂0Ωl)-boundary harmonic map
in Ωl, we infer from Lemma 2.8 that

〈(−∆)
1
2 v∗, ϕ〉ω =

∫
Ωl

∇ve
∗ · ∇Φ dx = 0 ,

and the proof is complete. �
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Remark 7.2. We notice that Theorem 6.1 actually implies that ve
k → ve

∗ in C2,α
loc

(
Rn+1

+ ∪ (ω \Σ)
)

for every
α ∈ (0, 1). In view of Lemma 2.8, it shows that (−∆)

1
2 vk → (−∆)

1
2 v∗ in C1,α

loc (ω \Σ) for every α ∈ (0, 1).

7.2. Asymptotics with Dirichlet exterior condition. This section is devoted to proof of Theorem 1.1. To
this aim, we consider for the rest of this subsection a smooth bounded open set ω ⊆ Rn, and a smooth
exterior Dirichlet condition g : Rn → Rm satisfying |g| = 1 in Rn \ ω.

Given an arbitrary sequence εk ↓ 0, we consider {vk}k∈N ⊆ H
1/2
g (ω;Rm) ∩ L4(ω) such that for each

k ∈ N, vk weakly solves (7.1), and supk Eεk (vk, ω) <∞. We recall that under such assumptions, we have
proved in Section 3 that vk ∈ C0,α

loc (Rn) ∩ C∞(Rn \ ∂ω) for every 0 < α < 1/2, and that |vk| 6 1 in Rn.
Therefore, we can apply Theorem 7.1 to find a (not relabeled) subsequence such that vk ⇀ v∗ weakly
in H1/2(ω) ∩ L2

loc(Rn) for some map v∗ ∈ Ĥ1/2(ω;Rm) which is a bounded weak 1/2-harmonic map
into Sm−1 in ω, and such that all the conclusions of Theorem 7.1 hold. Since vk is constantly equal to g
outside ω, we also infer that v∗ ∈ H1/2

g (ω;Rm).
It now remains to prove that

(a) vk − v∗ ⇀ 0 weakly in H1/2
00 (ω);

(b) µsing is a finite measure on ω, H n−1(Σ) <∞, and statements (i) and (iii) in Theorem 1.1 hold.

Proof of (a). We first notice that vk − v∗ ∈ H1/2
00 (ω;Rm) for every k ∈ N by (2.4). Hence,

[vk − v∗]2H1/2(Rn) = E(vk − v∗, ω) 6 2
(
E(vk, ω) + E(v∗, ω)

)
,

so that {vk − v∗} in bounded in H1/2
00 (ω). Since vk − v∗ ⇀ 0 weakly in H1/2(ω), it remains to show that∫∫
ω×ωc

(vk(x)− v∗(x)) · ϕ(x)

|x− y|n+1
dxdy → 0

for every ϕ ∈ H
1/2
00 (ω;Rm). First notice that vk → v∗ strongly in L2(ω) by the compact embedding

H1/2(ω) ↪→ L2(ω). Then, by density of smooth maps compactly supported in ω, it suffices to consider
the case where ϕ ∈ D(ω). For such a test function ϕ, the assertion is easily proved using the dominated
convergence Theorem and the fact that vk → v∗ a.e. in ω (up to a further subsequence if necessary). �

Proof of (b). From the uniform energy bound, we may find a further subsequence such that

e(vk, ω) L n ω
∗
⇀ e(v∗, ω) L n ω + µdef

weakly* as Radon measures on ω for some finite nonnegative measure µdef . We thus have to prove that
µdef ≡ µsing. It will then show that µsing is finite, and that H n−1(Σ) <∞ (since H n−1(Σ) is controlled
by the total variation of µsing, see (6.8)).

Let us now fix ϕ ∈ D(ω) arbitrary. We notice that∫
ω

e(vk, ω)ϕdx = 〈(−∆)
1
2 vk, ϕvk〉ω −

γn
2

∫∫
ω×ω

(vk(x)− vk(y)) · vk(y)(ϕ(x)− ϕ(y))

|x− y|n+1
dxdy

− γn
∫∫

ω×ωc

(vk(x)− g(y)) · g(y)ϕ(x)

|x− y|n+1
dxdy

=: Ik − IIk − IIIk .

We consider a function Φ ∈ C∞(Rn+1
+ ) compactly supported in Rn+1

+ ∪ ω such that Φ|Rn = ϕ, and set
K := supp(Φ). We observe that Φve

k is a smooth function compactly supported by K, so that Lemma 2.8
yields

〈(−∆)
1
2 vk, ϕvk〉ω =

∫
Rk+1
+

∇ve
k · ∇(Φve

k) dx =

∫
Rn+1
+

|∇ve
k|2Φ dx+

∫
K

∇ve
k · (ve

k∇Φ) dx .

From (a) we deduce that ve
k ⇀ ve

∗ weakly in H1
loc(Rn+1

+ ), so that ∇ve
n ⇀ ∇ve

∗ weakly in L2(K) and
ve
k → ve

∗ strongly in L2(K). Together with item (i) in Theorem 7.1, it yields

〈(−∆)
1
2 vk, ϕvk〉ω −→

k→∞

∫
Rn+1
+

|∇ve
∗|2Φ dx+

∫
ω

ϕdµsing +

∫
K

∇ve
∗ · (ve

∗∇Φ) dx

=

∫
Rn+1
+

∇ve
∗ · ∇(Φve

∗) dx+

∫
ω

ϕ dµsing .
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By Lemma 2.8 again, we have thus proved that

〈(−∆)
1
2 vk, ϕvk〉ω −→

k→∞
〈(−∆)

1
2 v∗, ϕv∗〉ω +

∫
ω

ϕ dµsing , (7.4)

where we have used the (elementary) fact that ϕv∗ ∈ H1/2
00 (ω;Rm).

On the other hand, we have that vk → v∗ a.e. on Rn, eventually after the extraction of a further
subsequence. Using that ϕ ∈ D(ω), we deduce by dominated convergence that

IIk →
γn
2

∫∫
ω×ω

(v∗(x)− v∗(y)) · v∗(y)(ϕ(x)− ϕ(y))

|x− y|n+1
dxdy (7.5)

and

IIIk → γn

∫∫
ω×ωc

(v∗(x)− g(y)) · g(y)ϕ(x)

|x− y|n+1
dxdy (7.6)

as k →∞. Gathering (7.4), (7.5), and (7.6) leads to∫
ω

e(vk, ω)ϕdx −→
k→∞

∫
ω

e(v∗, ω)ϕdx+

∫
ω

ϕ dµsing ,

and thus µdef = µsing by the arbitrariness of ϕ.
To derive item (iii), we just notice that∫

ω

(1− |vk|2)

εk
ϕ dx =

∫
ω

(1− |vk|2)2

εk
ϕ dx+

1

εk

∫
ω

(1− |vk|2)vk · (ϕvk) dx

=

∫
ω

(1− |vk|2)2

εk
ϕ dx+ 〈(−∆)

1
2 vk, ϕvk〉ω ,

so that the announced convergence follows from item (ii), (7.4), and Remark 4.3. �

Remark 7.3. In view of Remarks 4.3 & 7.2, we have

1− |vk(x)|2

εk
→ γn

2

∫
Rn

|v∗(x)− v∗(y)|2

|x− y|n+1
dy in C1,α

loc (ω \ Σ)

for every α ∈ (0, 1).

7.3. Asymptotics for Dirichlet minimizers. We finally consider solutions of the minimization prob-
lem (3.2), and we show that, in this case, no concentration occurs by minimality.

Theorem 7.4. Let ω ⊆ Rn be a smooth bounded open set, and let g : Rn → Rm be a smooth map satisfying
|g| = 1 in Rn \ ω, and such that

H1/2
g (ω; Sm−1) :=

{
v ∈ H1/2

g (ω;Rm) : |v| = 1 a.e. in ω
}
6= ∅ . (7.7)

Let εk ↓ 0 be an arbitrary sequence, and let {vk}k∈N ⊆ H1/2
g (ω;Rm) ∩ L4(ω) be such that for each k ∈ N,

vk ∈ argmin
{
Eεk (v, ω) : v ∈ H1/2

g (ω;Rm) ∩ L4(ω)
}
. (7.8)

Then there exist a (not relabeled) subsequence and v∗ ∈ H1/2
g (ω;Rm) a minimizing 1/2-harmonic map into Sm−1

in ω such that vk − v∗ → 0 strongly in H1/2
00 (ω). In addition,

(i) Eεk (vk, ω)→ E(v∗, ω);

(ii)
1− |vk(x)|2

εk
⇀

γn
2

∫
Rn

|v∗(x)− v∗(y)|2

|x− y|n+1
dy in D ′(ω);

(iii) vn → v∗ in C2,α
loc (ω \ sing(v∗)) for every 0 < α < 1;

(iv) if n = 1, then ω ∩ sing(v∗) = ∅, while dimH

(
sing(v∗) ∩ ω

)
6 n − 2 for n > 3, and sing(v∗) ∩ ω is

discrete for n = 2.

Proof. By assumption (7.7) there exists g̃ ∈ H1/2
g (ω;Rm) such that |g̃| = 1 a.e. in ω. Then we infer from

(7.8) that for all k ∈ N,

Eεk (vk, ω) 6 Eεk (g̃, ω) = E(g̃, ω) .

Therefore supk Eεk (vk, ω) < ∞, and we can extract a (not relabeled) subsequence such that the conclu-
sions of Theorem 1.1 do hold for a map v∗ ∈ Ĥ1/2

g (ω;Rm) which is a bounded weak 1/2-harmonic map
into Sm−1 in ω, and a finite measure µsing on ω. By the compact embedding H1/2(ω) ↪→ L2(ω), we may
assume that vk → v∗ strongly in L2(ω). Since vk = v∗ = g outside ω, we deduce that vk → v∗ a.e.
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in Rn, eventually up to a further subsequence. By (7.7) and the lower semicontinuity of the 1/2-Dirichlet
energy with respect to a.e. pointwise convergence, we have

E(v, ω) > lim inf
k→∞

Eεk (vk, ω) > lim inf
k→∞

E(vk, ω) > E(v∗, ω)

for all v ∈ H1/2
g (ω; Sm−1). Hence v∗ is a minimizing 1/2-harmonic map into Sm−1 in ω, and item (iv)

follows from Theorem 1.2. On the other hand, the minimality of vk yields

Eεk (vk, ω) 6 Eεk (v∗, ω) = E(v∗, ω) .

Combining the two previous inequalities leads to item (i). In turn, it implies that µsing = 0, and then
yields item (ii). The conclusion in item (iii) is a straightforward consequence of Theorem 6.1 - item (iii) -
together with the fact that µsing = 0. It now only remains to prove the strong convergence of vk − v∗ to 0

in H1/2
00 (ω). To this purpose, we have to prove that

lim
k→∞

〈
(−∆)

1
2 vk, v∗

〉
ω

=
〈
(−∆)

1
2 v∗, v∗

〉
ω

= 2E(v∗, ω) . (7.9)

Indeed, if (7.9) holds, then item (i) yields

[vk − v∗]2H1/2(Rn) = E(vk − v∗, ω) = E(vk, ω) + E(v∗, ω)−
〈
(−∆)

1
2 vk, v∗

〉
ω
−→
k→∞

0 .

To show (7.9) we first write

〈
(−∆)

1
2 vk, v∗

〉
ω

=
γn
2

∫∫
ω×ω

(vk(x)− vk(y)) · (v∗(x)− v∗(y))

|x− y|n+1
dxdy

+ γn

∫∫
ω×ωc

(vk(x)− v∗(y)) · (v∗(x)− v∗(y))

|x− y|n+1
dxdy =: Ik + IIk .

Since vk ⇀ v∗ weakly in H1/2(ω), we have

Ik −→
k→∞

γn
2

∫∫
ω×ω

|v∗(x)− v∗(y)|2

|x− y|n+1
dxdy .

Next we set Vk(x, y) := (vk(x) − v∗(y)) = (vk(x) − vk(y)). Then {Vk} is bounded in L2(ω × ωc,Λ) for
the weighted measure Λ := |x − y|−n−1L n

x ⊗L n
y . Extracting a further subsequence if necessary, Vk is

thus weakly converging in L2(ω × ωc,Λ) to some function V . Using the strong convergence in L2(ω)

of vk, we can argue as in the proof of Lemma 8.2 in Appendix A to show that V (x, y) = (v∗(x)− v∗(y)).
As a consequence,

lim
k→∞

γn

∫∫
ω×ωc

(vk(x)− v∗(y)) · (v∗(x)− v∗(y))

|x− y|n+1
dxdy = γn

∫∫
ω×ωc

|v∗(x)− v∗(y)|2

|x− y|n+1
dxdy ,

and (7.9) is proved. �

8. APPENDIX A

The purpose of this first appendix is to give detailed proofs of the different auxiliary results stated in
Section 2.

Proof of Lemma 2.1. Let ω ⊆ Rn be a bounded open set, and v ∈ Ĥ1/2(ω;Rm). Let us fix x0 ∈ ω and ρ > 0

such that D2ρ(x0) ⊆ ω. Then,∫∫
Dc2ρ(x0)×Dρ(x0)

|v(x)− v(y)|2

|x− y|n+1
dxdy 6 CE

(
v,D2ρ(x0)

)
.

Next we estimate∫∫
Dc2ρ(x0)×Dρ(x0)

|v(x)− v(y)|2

|x− y|n+1
dxdy >

∫∫
Dc2ρ(x0)×Dρ(x0)

∣∣|v(x)| − |v(y)|
∣∣2

(|x− x0|+ |y − x0|)n+1
dxdy

> Cρ

∫∫
Dc2ρ(x0)×Dρ(x0)

|v(x)|2 − 2|v(y)|2

(|x− x0|+ 1)n+1
dxdy ,

which yields ∫
Dc2ρ(x0)

|v(x)|2

(|x− x0|+ 1)n+1
dx 6 Cρ

(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(Dρ(x0))

)
.
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Hence, ∫
Rn

|v(x)|2

(|x− x0|+ 1)n+1
dx 6 Cρ

(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
,

and the proof is complete. �

Proof of Lemma 2.6, Part 1. We prove in this first part that ve ∈ L2
loc(Rn+1

+ ). We fix R > 0 arbitrary, x0 ∈ ω
and ρ > 0 such thatD2ρ(x0) ⊆ ω. We claim that ve ∈ L2(B+

R(x0)). Using Jensen’s inequality we estimate
for x = (x′, xn+1) ∈ B+

R(x0),

|ve(x)|2 6 γn
∫
Rn

xn+1|v(z)|2

(|x′ − z|2 + x2
n+1)

n+1
2

dz

6 γn

∫
Dc

5R
(x0)

xn+1|v(z)|2

(|z − x0|2 − 2R|z − x0|)
n+1
2

dz + γn

∫
D5R(x0)

xn+1|v(z)|2

(|x′ − z|2 + x2
n+1)

N+1
2

dz

6 CR

∫
Rn

|v(z)|2

(|z − x0|+ 1)n+1
dz + γn

∫
D5R(x0)

xn+1|v(z)|2

(|x′ − z|2 + x2
n+1)

n+1
2

dz . (8.1)

Then we estimate for 0 < xn+1 < R,∫
DR(x0)

(∫
D5R(x0)

xn+1|v(z)|2

(|x′ − z|2 + x2
n+1)

n+1
2

dz

)
dx′

=

∫
DR(x0)

(∫
D5R(x′)

xn+1|v(x′ − y + x0)|2

(|y − x0|2 + x2
n+1)

n+1
2

dy

)
dx′

6
∫
D6R(x0)

(∫
DR(x0)

xn+1|v(y + x0 − x′)|2

(|y − x0|2 + x2
n+1)

n+1
2

dx′
)

dy

6

(∫
D6R(x0)

xn+1

(|y − x0|2 + x2
n+1)

n+1
2

dy

)(∫
D7R(x0)

|v(z)|2 dz

)

6 C
∫
D7R(x0)

|v(z)|2 dz . (8.2)

Combining (8.1) and (8.2) we deduce from Lemma 2.1 that∫
B+
R

(x0)

|ve(x)|2 dx 6 CR

∫
Rn

|v(z)|2

(|z − x0|+ 1)n+1
dz 6 CR,ρ

(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
, (8.3)

which ends this first part. �

Remark 8.1 (Proof of Lemma 2.4). Notice that the first inequality in (8.3) shows the continuity of the
linear operator PR defined in (2.13).

To complete the proof of Lemma 2.6, we shall need the following smooth approximation result.

Lemma 8.2. Let ω ⊆ Rn be a bounded open set, and let v ∈ Ĥ1/2(ω;Rm). There exists a sequence {vk}k∈N of
smooth functions such that vk → v strongly in L2

loc(Rn), and such that for any relatively compact open subset
ω′ ⊆ ω with Lipschitz boundary,

(i) vk ∈ Ĥ1/2(ω′;Rm) for k large enough;

(ii) E(vk − v, ω′)→ 0 as k →∞;

(iii) ve
k → ve in L2

loc(Rn+1
+ ) as k →∞.

Proof. Let us fix a sequence εk ↓ 0, and a nonnegative function % ∈ C∞c (Rn) compactly supported in D1

satisfying
∫
D1
% dx = 1. Setting %k(x) := ε−nk %(x/εk), we define

vk(x) :=

∫
Dεk

%k(z)v(x+ z) dz .

Then vk ∈ C∞(Rn;Rm), vk → v strongly in L2
loc(Rn). Extracting a subsequence if necessary, we may

assume that vk → v a.e. in Rn.
Let us now consider a relatively compact open subset ω′ ⊆ ω with Lipschitz boundary. Set

δ0 := min

{
dist(ω′, ∂ω), sup

x∈ω′
dist(x, ∂ω′)

}
,
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and define for 0 < δ < δ0,

ωδ := {x ∈ ω : dist(x, ω′) < δ} , ω−δ := {x ∈ ω′ : dist(x, ∂ω′) > δ} .

For 0 < εk < δ < δ0, we estimate through Jensen’s inequality,∫∫
ω′×ω′

|vk(x)− vk(y)|2

|x− y|n+1
dxdy 6

∫∫
ω′×ω′

(∫
Dεk

%k(z)
|v(x+ z)− v(y + z)|2

|x− y|n+1
dxdy

)
dz

6
∫
Dεk

%k(z)

(∫∫
(z+ω′)×(z+ω′)

|v(x)− v(y)|2

|x− y|n+1
dxdy

)
dz

6
∫∫

ωδ×ωδ

|v(x)− v(y)|2

|x− y|n+1
dxdy . (8.4)

Hence {vk} is bounded in H1/2(ω′;Rm), and since vk → v in L2(ω′) we deduce that vk ⇀ v weakly in
H1/2(ω′;Rm). Now we infer from (8.4) and Fatou’s lemma that∫∫

ω′×ω′

|v(x)− v(y)|2

|x− y|n+1
dxdy 6 lim inf

k→+∞

∫∫
ω′×ω′

|vk(x)− vk(y)|2

|x− y|n+1
dxdy

6 lim sup
k→+∞

∫∫
ω′×ω′

|vk(x)− vk(y)|2

|x− y|n+1
dxdy 6

∫∫
ωδ×ωδ

|v(x)− v(y)|2

|x− y|n+1
dxdy .

Since [v]2
H1/2(ωδ)

→ [v]2
H1/2(ω′) as δ ↓ 0 by monotone convergence, we conclude from this last inequality

and the arbitrariness of δ that [vk]2
H1/2(ω′) → [v]2

H1/2(ω′). Therefore vk → v strongly in H1/2(ω′).
Similarly to (8.4), we estimate∫∫

ω′×(ω′)c

|vk(x)− vk(y)|2

|x− y|n+1
dxdy 6

∫∫
ωδ×ωc−δ

|v(x)− v(y)|2

|x− y|n+1
dxdy .

Arguing as above, we apply Fatou’s lemma as k → ∞, and then the monotone convergence theorem as
δ ↓ 0 to deduce that∫∫

ω′×(ω′)c

|vk(x)− vk(y)|2

|x− y|n+1
dxdy −→

k→∞

∫∫
ω′×(ω′)c

|v(x)− v(y)|2

|x− y|n+1
dxdy . (8.5)

We have thus proved that

E(vk, ω
′) −→
k→∞

E(v, ω′) .

In particular, vk ∈ Ĥ1/2(ω′;Rm) for k large enough.
Setting Vk(x, y) := (vk(x)−vk(y)), (8.5) implies that the sequence {Vk} is bounded inL2(ω′×(ω′)c,Λ)

for the weighted measure Λ := |x − y|−n−1L n
x ⊗ L n

y . Hence we can extract a subsequence such that
Vk ⇀ w weakly L2(ω′ × (ω′)c,Λ). On the other hand, from the convergence of vk to v in L2

loc(Rn) we
deduce that for all F ∈ L2(ω′ × (ω′)c,Λ) compactly supported in ω′ ×

(
ω′
)c,∫∫

ω′×(ω′)c

V (x, y) · F (x, y)

|x− y|n+1
dxdy = lim

k→∞

∫∫
ω′×(ω′)c

Vk(x, y) · F (x, y)

|x− y|n+1
dxdy

=

∫∫
ω′×(ω′)c

(v(x)− v(y)) · F (x, y)

|x− y|n+1
dxdy .

Functions with compact support in ω′ ×
(
ω′
)c being dense in L2(ω′ × (ω′)c,Λ), we conclude that∫∫

ω′×(ω′)c

V (x, y) · F (x, y)

|x− y|n+1
dxdy =

∫∫
ω′×(ω′)c

(v(x)− v(y)) · F (x, y)

|x− y|n+1
dxdy

for all F ∈ L2(ω′ × (ω′)c,Λ). The Riesz Representation Theorem then yields V (x, y) = (v(x)− v(y)). As
a consequence,∫∫

ω′×(ω′)c

(vk(x)− vk(y)) · (v(x)− v(y))

|x− y|n+1
dxdy −→

k→∞

∫∫
ω′×(ω′)c

|v(x)− v(y)|2

|x− y|n+1
dxdy . (8.6)

Combing (8.6) with the convergence of vn in H1/2(ω′;RM ), we infer that〈
(−∆)

1
2 vk, v

〉
ω′
−→
k→∞

〈
(−∆)

1
2 v, v

〉
ω′

= 2E(v, ω′) ,

and we finally conclude

E(vk − v, ω′) = E(v, ω′)−
〈
(−∆)

1
2 vk, v

〉
ω′

+ E(vk, ω
′) −→
k→∞

0 ,
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which proves (ii).

It now remains to show (iii). We consider an arbitrary radius R > 0, x0 ∈ ω′ and ρ > 0 such that
D2ρ(x0) ⊆ ω′. Noticing that (vk − v)e = ve

k − ve, we deduce from (8.3) that∫
B+
R

(x0)

|ve
k − ve|2 dx 6 CR,ρ

(
E
(
vk − v,D2ρ(x0)

)
+ ‖vk − v‖2L2(D2ρ(x0))

)
6 CR,ρ

(
E(vk − v, ω′) + ‖vk − v‖2L2(D2ρ(x0))

)
→ 0 ,

and the proof is complete. �

Proof of Lemma 2.6, Part 2. Step 1. Let us first consider the case where v ∈ Ĥ1/2(ω;Rm) ∩ C∞(Rn). Then
ve is smooth in Rn+1

+ . Let x0 ∈ ω and ρ > 0 such that D2ρ(x0) ⊆ ω. We consider a cut-off function
χ ∈ C∞(Rn+1; [0, 1]) satisfying χ = 1 in Bρ(x0), and χ = 0 in Rn+1 \ B2ρ(x0). We set Φ := χ2ve and
ϕ := Φ|Rn = χ2v. From the harmonicity of ve in Rn+1

+ we infer that∫
Rn+1
+

∇ve · ∇Φ dx =

∫
Rn

∂ve

∂ν
· ϕdx = lim

δ↓0

∫
Rn

(
v(x)− ve(x, δ)

)
· ϕ(x)

δ
dx .

On the other hand, applying formula (2.9) to represent ve yields∫
Rn

(
v(x)− ve(x, δ)

)
· ϕ(x)

δ
dx = γn

∫∫
Rn×Rn

(v(x)− v(y)) · ϕ(x)

(|x− y|2 + δ2)
n+1
2

dxdy

=
γn
2

∫∫
D2ρ(x0)×D2ρ(x0)

(v(x)− v(y)) · (ϕ(x)− ϕ(y))

(|x− y|2 + δ2)
n+1
2

dxdy

+ γn

∫∫
D2ρ(x0)×Dc2ρ(x0)

(v(x)− v(y)) · (ϕ(x)− ϕ(y))

(|x− y|2 + δ2)
n+1
2

dxdy .

Using the fact that v ∈ Ĥ1/2(D2ρ(x0);RM ) and ϕ ∈ H1/2
00 (D2ρ(x0);RM ), we derive by dominated con-

vergence that

lim
δ↓0

∫
Rn

(
v(x)− ve(x, δ)

)
· ϕ(x)

δ
dx =

〈
(−∆)

1
2 v, ϕ

〉
D2ρ(x0)

.

As in (2.7), it then follows from Cauchy-Schwarz Inequality that∫
Rn+1
+

∇ve · ∇Φ dx 6
√
E(v,D2ρ(x0))

√
E(ϕ,D2ρ(x0)) 6

1

2

(
E(v,D2ρ(x0)) + E(ϕ,D2ρ(x0))

)
. (8.7)

Now we estimate∫
Rn+1
+

∇ve · ∇Φ dx >
∫
B+

2ρ(x0)

χ2|∇ve|2 dx− 2

∫
B+

2ρ(x0)

χ|ve| |∇ve| |∇χ|dx

>
1

2

∫
B+

2ρ(x0)

χ2|∇ve|2 dx− 2

∫
B+

2ρ(x0)

|ve|2|∇χ|2 dx

>
1

2

∫
B+
ρ (x0)

|∇ve|2 dx− Cρ‖ve‖2
L2(B+

2ρ(x0))
, (8.8)

for a constant Cρ > 0 independent of v. Then (8.7) and (8.8) yield∫
B+
ρ (x0)

|∇ve|2 dx 6 E(v,D2ρ(x0)) + E(ϕ,D2ρ(x0)) + Cρ‖ve‖2
L2(B+

2ρ(x0))
, (8.9)

and it remains to estimate the second term in the right handside of this inequality. A straightforward
computation yields

E(ϕ,D2ρ(x0)) 6 2E(v,D2ρ(x0)) + 4

∫
D4ρ(x0)

(∫
D2ρ(x0)

|χ2(x)− χ2(y)|2

|x− y|n+1
dx

)
|v(y)|2 dy

+ 4

∫
Dc4ρ(x0)

(∫
D2ρ(x0)

1

|x− y|n+1
dx

)
|v(y)|2 dy .

Noticing that for y ∈ D4ρ(x0),∫
D2ρ(x0)

|χ2(x)− χ2(y)|2

|x− y|n+1
dx 6 Cρ

∫
D2ρ(x0)

1

|x− y|n−1
dx 6 Cρ ,
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and that for y ∈ Dc
4ρ(x0), ∫

D2ρ(x0)

1

|x− y|n+1
dx 6

Cρ
(|y − x0|+ 1)n+1

,

we deduce that

E
(
ϕ,D2ρ(x0)

)
6 2E(v,D2ρ(x0)) + Cρ

∫
RN

|v(z)|2

(|z − x0|+ 1)n+1
dz . (8.10)

Finally, gathering (8.9) with (8.3) and (8.10), we infer that∫
B+
ρ (x0)

|∇ve|2 dx 6 3E(v,D2ρ(x0)) + Cρ

∫
RN

|v(z)|2

(|z − x0|+ 1)n+1
dz .

In view of Lemma 2.1, we have thus proved that∫
B+
ρ (x0)

|∇ve|2 dx 6 Cρ
(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
.

Step 2. Let us now consider an arbitrary v ∈ Ĥ1/2(ω;Rm), and a sequence {vk} ⊆ C∞(Rn;Rm)

given by Lemma 8.2. Let x0 ∈ ω and ρ > 0 such that D3ρ(x0) ⊆ ω. Then, for k large enough,
vk ∈ Ĥ1/2(D2ρ(x0);Rm). Appying Step 1 to vk we infer that for k large enough,∫

B+
ρ (x0)

|∇ve
k|2 dx 6 Cρ

(
E(vk, D2ρ(x0)) + ‖vk‖2L2(D2ρ(x0))

)
.

By Lemma 8.2, the right hand side of this inequality is uniformly bounded with respect to k. Since
ve
k → ve in L2(B+

ρ (x0)) (still by Lemma 8.2), we deduce that ve
k ⇀ ve weakly in H1(B+

ρ (x0)). By lower
semicontinuity and (ii) in Lemma 8.2, we obtain∫

B+
ρ (x0)

|∇ve|2 dx 6 lim inf
k→∞

∫
B+
ρ (x0)

|∇ve
k|2 dx 6 Cρ

(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
.

Moreover, in view of the arbitrariness of x0, we conclude that

ve ∈ H1(B+
ρ (x);Rm) for all x ∈ ω and ρ > 0 such that D3ρ(x) ⊆ ω . (8.11)

Finally, the conclusion ve ∈ H1
loc(Rn+1

+ ∪ω;Rm) follows from (8.11) together with a standard covering
argument. �

Proof of Lemma 2.8. By the density of compactly supported smooth funtions in (2.2), we may assume
without loss of generality that ϕ ∈ D(ω;Rm). Let Ω ⊆ Rn+1

+ be an admissible bounded open set such
that suppϕ ⊆ ∂0Ω, and ∂0Ω ⊆ ω. We then consider a smooth extension Φ of ϕ to Rn+1

+ which is
compactly supported in Ω ∪ ∂0Ω. Let {vk} ⊆ C∞(Rn;Rm) be a sequence given by Lemma 8.2. Then,
vk ∈ Ĥ1/2(∂0Ω;Rm) for k large enough. Arguing as in the proof of Lemma 2.6 (Part 2, Step 1), we show
that 〈

∂ve
k

∂ν
, ϕ

〉
:=

∫
Rn+1
+

∇ve
k · ∇Φ dx =

∫
Rn

∂ve
k

∂ν
· ϕ dx =

〈
(−∆)

1
2 vk, ϕ

〉
∂0Ω

.

By the proof of Lemma 2.6 (Part 2, Step 2), ve
k ⇀ ve weakly in H1(Ω). Therefore,〈

∂ve
k

∂ν
, ϕ

〉
=

∫
Ω

∇ve
k · ∇Φ dx −→

k→∞

∫
Ω

∇ve · ∇Φ dx =

〈
∂ve

∂ν
, ϕ

〉
.

On the other hand, by (2.7) and Lemma 8.2 we have∣∣∣〈(−∆)
1
2 (vk − v), ϕ

〉
∂0Ω

∣∣∣ 6 ‖ϕ‖
H

1/2
00 (∂0Ω)

√
E(vk − v, ∂0Ω) −→

k→∞
0 .

Consequently,〈
∂ve

∂ν
, ϕ

〉
= lim
k→∞

〈
∂ve

k

∂ν
, ϕ

〉
= lim
k→∞

〈
(−∆)

1
2 vk, ϕ

〉
∂0Ω

=
〈
(−∆)

1
2 v, ϕ

〉
∂0Ω

=
〈
(−∆)

1
2 v, ϕ

〉
ω
,

and the lemma is proved. �
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9. APPENDIX B

This purpose of this last appendix is to provide the elliptic regularity results we have been using
during the proof of Lemma 5.6.

Lemma 9.1. For ε > 0, let uε ∈ H1(B+
1 ) be the unique (variational) solution of
−∆uε = 1 in B+

1 ,

uε = 1 on ∂+B1 ,

ε
∂uε
∂ν

+ uε = 0 on D1 .

Then uε ∈ C0,α(B
+
1 ) ∩ C∞(B

+
1 \ ∂D1) for some 0 < α < 1, uε > 0 in B+

1 , and

uε 6 Cε on D1/2 ,

for some constant C > 0 which only depends on the dimension.

Proof. The Hölder continuity of uε follows from the general results of STAMPACCHIA [63, 64] (see also
[19]), while higher order regularity away from ∂D1 follows from standard elliptic regularity theory. The
fact that u > 0 in B

+
1 is an easy consequence of the maximum principle and the Hopf boundary Lemma.

Indeed, assume that x0 be a minimum point of uε such that u(x0) 6 0. By the maximum principle
x0 ∈ ∂B+

1 , and thus x0 ∈ D1 since u = 1 on ∂+B1. By the Hopf boundary Lemma we have ∂νu(x0) < 0,
so that ε∂νu(x0) + u(x0) < 0 which contradicts the equation on D1.

Let us now consider the unique solution w ∈ H1(B+
1 ) of−∆w = 1 in B+

1 ,

w = 0 on ∂B+
1 .

It is well known thatw ∈ C0,1(B
+
1 )∩C∞(B

+
1 \∂D1) by convexity ofB+

1 (see e.g. [29]). We set vε := uε−w,
so that vε ∈ C0,α(B

+
1 ) ∩ C∞(B

+
1 \ ∂D1) solves

∆vε = 0 in B+
1 ,

vε = 1 on ∂+B1 ,

ε
∂vε
∂ν

+ vε = −ε∂w
∂ν

on D1 .

Setting

κ :=

∥∥∥∥∂w∂ν
∥∥∥∥
L∞(D1)

,

we observe that κ only depends on the dimension. Next we define ūε ∈ H1(B+
1 ) as the unique (varia-

tional) solution of 
∆ūε = 0 in B+

1 ,

ūε = 1 on ∂+B1 ,

ε
∂ūε
∂ν

+ ūε = 0 on D1 .

As previously, ūε ∈ C0,β(B
+
1 )∩C∞(B

+
1 \ ∂D1) for some 0 < β < 1, and by the maximum principle and

the Hopf boundary Lemma, we have

0 6 ūε 6 1 in B
+
1 . (9.1)

Observe that

vε 6 ūε + κε in B
+
1 . (9.2)

Indeed, consider the function h := ūε + κε− vε. Then h satisfies
∆h = 0 in B+

1 ,

h > 0 on ∂+B1 ,

ε
∂h

∂ν
+ h > 0 on D1 ,
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so that h > 0 in B
+
1 , still by the maximum principle and the Hopf boundary Lemma.

Finally, in view of (9.1) and according to [31, Theorem 6.26],

‖∇ūε‖L∞(B+
1/2

)
6 C ,

for a constant C > 0 which only depends on the dimension. In particular |∂ν ūε| 6 C on D1/2, and thus

ūε 6 Cε on D1/2 . (9.3)

Since vε = uε on D1, the conclusion now follows from (9.2) and (9.3). �

We conclude this appendix with a standard elliptic boundary estimate for a linear Neumann prob-
lem. As showed in [16], such estimate can be easily obtained by considering the auxiliary function
v(x′, xn+1) :=

∫ xn+1

0
u(x′, t) dt which satisfies an homogeneous Dirichlet problem.

Lemma 9.2. Given 0 < α < 1, let f ∈ C0,α(B+
1 ), g ∈ C0,α(D1), and u ∈ C2

loc(B+
1 ) ∩ C1,α(B+

1 ) solving
−∆u = f in B+

1 ,

∂u

∂ν
= g on D1 .

Then,
‖u‖

C1,α(B+
r )
6 Cr,α(‖f‖

C0,α(B+
1 )

+ ‖g‖C0,α(D1) + ‖u‖
L∞(B+

1 )
)

for every 0 < r < 1 and a constant Cr,α > 0 which only depends on n, α, r.
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[15] X. CABRÉ, Y. SIRE : Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions,
to appear in Trans. Amer. Math. Soc.
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[45] A.-V. MILOVANOV, J.-J. RASMUSSEN : Fractional generalization of the Ginzburg-Landau equation: an unconventional approach
to critical phenomena in complex media, Physics Letters A 337(2005), 75–80.

[46] P. MIRONESCU, A. PISANTE : A variational problem with lack of compactness for H1/2(S1;S1) maps of prescribed degree, J.
Funct. Anal. 217 (2004), 249–279.

[47] L. MODICA : The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal. 98 (1987),
123–142.

[48] R. MOSER : Intrinsic semiharmonic maps, J. Geom. Anal. 21 (2011), 588–598.

[49] G. PALATUCCI, O. SAVIN, E. VALDINOCI : Local and global minimizers for a variational energy involving a fractional norm, to
appear in Ann. Mat. Pura Appl.

[50] D. PREISS : Geometry of measures in Rn: distributions, rectifiability, and densities, Ann. of Math. 125 (1987), 537–643.
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