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Abstract

A recently developed coarse-grained model (J. Phys. Chem. B, 2010, 114, 12629-12631), pre-

viously validated against experimental data for a number of bulk properties, is used in molecular

dynamics simulations of two different interfaces involving the ionic liquid [BMI][PF6]. First, sim-

ulations of the liquid-vapor interface demonstrate that the model is able to predict the surface

tension of the fluid (for which we obtain a value of 39.4 mN.m−1 at 400 K). Second, simulations

were performed at constant potential differences applied between two graphite electrodes. From

simulations with different applied potentials, the differential capacitances of the positive and neg-

ative electrodes can be calculated. It appears that both capacitances (C+ = 3.9 µF.cm−2 for

the positive electrode and C− = 4.8 µF.cm−2 for the negative electrode) agree very well with

simulations results obtained with an all-atom model. The coarse-grained model also reproduces

accurately the two-dimensional structure observed at the graphite-ionic liquid interface, namely a

defective hexagonal lattice with a lattice spacing of approximately 10 Å.
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I. INTRODUCTION

Ionic liquids are currently under intense examination as potential electrolytes for future

capacitors [1, 2, 3] as they present a number of highly appropriate properties such as low

vapor pressure, low combustibility, high thermal stability, good ionic conductivity and wide

electrochemical windows. Moreover, their properties are in principle tunable thanks to the

wide variety of cations and anions that can be mixed. Nevertheless, synthesizing, purifying

and characterizing new ionic liquids remains expensive and systematic procedures to evalu-

ate new materials are out of reach. Furthermore, a number of experimental observations are

not understood, mainly because they are the result of microscopic phenomena which cannot

be probed experimentally. Thus, simulation appears as an essential tool to explain what is

observed in experiments and to design new materials with improved performances.

One particular experimental result that still suffers from a lack of explanation is the

anomalously high value of the capacitance at nanoporous carbon electrodes [2, 4, 5, 6, 7]. Un-

derstanding this increase could lead to the design of new materials for future capacitors with

improved performances. Furthermore, there is an issue about the shape of the capacitance

curve when the external potential is varied. Some experimental [8, 9] and theoretical [10, 11]

results suggest camel-shaped and bell-shaped variations for the capacitance but others tend

to show that the capacitance is constant [12]. The capacitance curve can depend on several

processes with different time constants as seen at the interface between Au(111) and 1-ethyl-

3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate [13]. Thus, a representation

of the processes happening at the atomic scale in these systems is needed.

Nowadays, ionic liquids are commonly studied by molecular dynamics and Monte Carlo

simulations, and most of the structural, thermodynamic and dynamical bulk properties of

these systems are well reproduced by recent force fields [14, 15, 16]. Interfaces involving

ionic liquids are also well represented in the literature and molecular dynamics have already

proven efficient in giving insights on liquid-solid interfaces and the capacitive behaviors of

systems with simple electrodes [17, 18, 19]. Most of the liquid-electrode interfaces are stud-

ied with the electrode potential generated by holding the electrode at a constant charge [20]

which is assigned equal values on equivalent sites. This may well be a reasonable approxi-

mation for planar electrodes but will become problematic for more complex geometries for

which it is necessary to obtain charges which are consistent with the applied potential and
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the shape and dielectric properties of the electrode and the charge distribution of the ions

across the interface [21].

To explain the capacitance behavior for nanoporous carbons, it is necessary to find a

model sufficiently accurate to reproduce structural, dynamical and capacitive properties but

simple enough to allow for calculations on complex systems with nanoporous electrodes. A

recently developed four-site model for the ionic liquid [BMI][PF6] [22] is examined in this

work as a candidate for use in molecular dynamics simulations in complex systems. To deal

with the problem of developing a consistent description of the charge on the roughly-shaped

electrodes, we examine the use of a method which allows the electrodes to be treated as

polarizable and maintained at a constant electrical potential, with the charges being deter-

mined self-consistently [23].

The remainder of this article is organized as follows. In section 2 we introduce the model

chosen to describe the ionic liquid and the carbon electrodes. In section 3 we show that the

model is able to predict liquid-vapor interfacial properties accurately. In sections 4 and 5 we

demonstrate that the model is also efficient for the prediction of capacitive and structural

properties of the interface between planar graphite electrodes and the ionic liquid.

II. MODEL AND SIMULATION METHODS

The ionic liquid is represented by a coarse-grained model developed by Roy and Maroncelli

which accurately predicts a number of bulk properties [22] such as molar volume, isothermal

compressibility, viscosity and diffusion. This model is actually an improvement of a previ-

ous one published by the same authors which showed poorer dynamical properties [24]. The

most important difference between the two models is the use of reduced charges, i.e. all

the charges of the first coarse-grained model were scaled by a same factor. This approach

was also used successfully in other systems [14, 25, 26, 27] and it is thought that reducing

charges compensates for the missing polarization term in an average way in these force fields.

Going beyond the topic of ionic liquids, the Molecular Dynamics in Electronic Continuum

model provides a theoretical framework for systematic accounting of the effects of elec-

tronic polarization through the use of rescaled charges [28]. A recent publication describes

a methodology to calculate the scaling factor from DFT calculations of the electrostatic

potential in liquid phase configurations [29]. Van der Waals attraction and repulsion are
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Figure 1: Schematic representation of the coarse-grained model of [BMI][PF6].

Site x y z M σi εi qi

(Å) (Å) (Å) (g.mol−1) (Å) (kJ.mol−1) (e)

C1 0 -0.527 1.365 67.07 4.38 2.56 0.4374

C2 0 1.641 2.987 15.04 3.41 0.36 0.1578

C3 0 0.187 -2.389 57.12 5.04 1.83 0.1848

A 0 0 0 144.96 5.06 4.71 -0.7800

Table I: Force-field parameters of the coarse-grained model of [BMI][PF6] [22]. Site-site interaction

energies are given by the sum of a Lennard-Jones potential and coulombic interactions uij(rij) =

4εij [(
σij

rij
)12 − (σij

rij
)6] + qiqj

4πε0rij
where rij is the distance between sites, ε0 is the permittivity of free

space and crossed parameters are calculated by Lorentz-Berthelot mixing rules. The parameters

for the carbon atoms of the graphite electrodes are σC = 3.37 Å and εC = 0.23 kJ.mol−1 [30].

described using pairwise additive Lennard-Jones interactions. The parameters of the coarse-

grained model developed by Roy and Maroncelli [22] to represent [BMI][PF6] are recalled in

table I and a schematic representation of the ionic liquid is given in figure 1. For the graphite

electrodes, potential parameters for carbon atoms were set equal to σC = 3.37 Å and εC =

0.23 kJ.mol−1 following Cole and Klein [30]. All the cross parameters were obtained using

the Lorentz-Berthelot mixing rules.

The electrodes are modelled following a method developed by Reed et al. [23], following

a proposal by Siepmann and Sprik [31], which consists in determining the charge on each
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electrode atom at each MD step by requiring that the potential on this atom is constant

and equal to a specified value. This condition therefore means that the electrode polarizes

in the same way as a metal, where the potential inside the metal is a constant. The results

obtained with this construction will be contrasted with results obtained by assigning con-

stant charges to the electrode atoms. In the constant potential method, the electrode atom

charges, represented by gaussian distributions centered on the carbon atoms, are obtained

by minimizing the expression:

U =
∑

i

qi(t)

[
Ψi({qj(t)})

2
+

qi(t)κ√
2π

−Ψ0

]
, (1)

where qi is the charge on electrode atom i, κ is the width of the gaussian distributions (κ

= 0.5055 Å in this work), Ψi({qj}) is the potential at position i due to all the ions in the

electrolyte and the other electrode atoms, the second term originates from the interaction

of the gaussian distribution with itself and Ψ0 is the externally applied potential. Instead

of minimizing this expression using a conjugate gradient method only, we use a two-step

procedure where the first step is a prediction of the charges by a polynomial expansion,

using the previous steps [32, 33], and the second step is a conjugate gradient minimization.

This allows a speed-up by a factor of 2 compared to conjugate-gradient minimization only.

This representation of the electrodes has been successfully applied to the interface between

the molten salt LiCl and aluminium electrodes [34, 35].

All the simulations were conducted with a time step of 2 fs and by applying a Nosé-Hoover

thermostat with a weak relaxation time constant of 10 ps to maintain a temperature of 400 K.

All the simulation cells are orthorhombic with cell lengths such that Lx ∼ Ly < Lz The elec-

trostatic interactions are treated according to the periodic boundary conditions adopted (3D

for liquid-vapor simulations, 2D for liquid-graphite simulations). The 2D Ewald summation

is done as described in reference [23] and following recommendations of reference [36].

III. LIQUID-VAPOR INTERFACE: SURFACE TENSION

The coarse-grained model developed by Roy and Maroncelli has proven to be reliable

for a number of bulk properties but has not yet been tested for interfacial properties. The

simplest interface is the one between the ionic liquid and vacuum. The surface tension is

a good test of the accuracy of the model for liquid-vapor interfaces as this property has
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been well studied by experiments [37, 38] and simulations [14, 39]. From simulations of an

interface between [BMI][PF6] and vacuum, it is possible to calculate the surface tension of

the ionic liquid using the pressure tensor components [40, 41]:

γ =
Lz

2

(
< Πzz > −< Πxx + Πyy >

2

)
. (2)

The system consists in a slab (parallel to the xy plane) of ionic liquid sandwiched be-

tween two vacuum regions simulated with 3D periodic boundary conditions for 1 ns. The

simulations were conducted with an orthorhombic cell with lengths such that Lx ∼ Ly 6=

Lz. The system contains 320 ion pairs for the first simulations when varying Lz and 1280

ion pairs for the last simulation when Lx and Ly are changed.

In a first step, we analyze the effect of 3D periodic boundary conditions on the surface

tension. In particular, there is a need to verify that the periodic slabs of ionic liquid do not

interact with each other. In practice, when calculating the surface tension with different

lengths in the z direction, it appears that there is a minimum length from which interac-

tions can be considered negligible. Simulations were done with three different lengths Lz,

i.e. increasing the vacuum region size and keeping Lx and Ly constant. The resulting surface

tensions are 14.6 mN.m−1, 26.0 mN.m−1 and 26.0 mN.m−1 for Lz equal to 300 Å, 400 Å

and 500 Å respectively. It can thus be concluded that 500 Å is a sufficient length to avoid

interactions between the slabs in the z direction.

In a second step, we analyze the finite-size effect in our system. Calculations of interfacial

properties of fluids are subject to potential errors due to finite-size effects. The capillary wave

theory suggests that the surface tension converges to the macroscopic value following [42]:

γ(Lx) = γ∞ +
C

L2
x

, (3)

where C is a constant and γ∞ is the macroscopic observable (when Lx = Ly). This pre-

diction, first established for van der Waals fluids, is also applicable to simple molten salts

as demonstrated for KI [43]. Recent studies show that for some liquids, the surface tension

behaves somewhat differently [44]:

γ(Lx) = A0 + A1
exp(−αcLx)

Lx

cos(A2Lx + A3), (4)

where αc is a decay length and Ai are constants. In both cases, when the interface area is

larger than a threshold value, finite-size effects can be neglected. According to González-

Melchor et al. [44], the minimum length one has to consider is approximately equal to
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10σ± with σ± being the diameter of cations and anions. For the model used in this work,

the diameter of the ions is around 5 Å which means that the lengths, Lx = 32.2 Å and

Ly = 34.4 Å which were used in the previous simulations are too small to avoid finite-

size dependency. The surface tension was thus evaluated for a system with a four times

larger interface area (72.0 Å × 77.0 Å) and with a 500 Å length in the z direction. We

then obtained a value of 39.4 mN.m−1 which is in very good agreement with experimental

data (40.8 mN.m−1 at 393 K [37], 41.07 mN.m−1 at 343.15 K [38]). The coarse-grained

model performs even better than previously described all-atom models which overestimate

(47 mN.m−1 [14], 74 mN.m−1 [45]), or underestimate (37.3 mN.m−1 [39]) the surface tension

of [BMI][PF6] at room temperature.

IV. DIFFERENTIAL CAPACITANCE

The [BMI][PF6]-graphite interface has now been well characterized in various studies.

It therefore provides us a good test of the ability of the coarse-grained model to predict

capacitive and interfacial properties before tackling more complex interfaces, such as the

ones involving nanoporous electrodes. Simulations were conducted with BMI+ and PF−6

ions confined between planar graphite electrodes using the following conditions. A typical

simulation cell contains a slice of liquid [BMI][PF6] (320 ion pairs) between two graphite

electrodes (see figure 2). The graphite electrodes are made of three planes of 416 atoms

each with a constant distance between atoms equal to dCC = 1.43 Å. The simulation cell is

orthorhombic with dimensions 32.2 Å × 34.4 Å × 123.2 Å.

Figure 2: Snapshot of the simulation system: ionic liquid confined between graphite walls.

We perform simulations with nine potential differences ranging from 0.0 V to 4.0 V. When

a new potential difference is set between the electrodes, the system is allowed to equilibrate

for 200 ps before collecting data during 1 ns. For all the simulations, the potential difference
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is applied so that the potential applied to the positive electrode Ψ+ is equal to the opposite

of the negative electrode Ψ−, i.e.:

Ψ+ = −Ψ− =
∆Ψ0

2
. (5)

The highest considered potential difference was chosen to match with the experimental

electrochemical stability window of [BMI][PF6] [1].

The differential capacitance of the two liquid-graphite interfaces can then be determined

from the mean surface charges on the electrodes and the electrostatic potential profile across

the cell which is given by Poisson’s equation:

Ψ(z) = Ψq(z)

= Ψq(z0)−
1

ε0

∫ z

z0

dz′
∫ z′

−∞
dz′′ρq(z

′′), (6)

where z0 is a reference point inside the left-hand electrode with Ψq(z0) = Ψ+ and ρq(z) is

the charge density across the cell, which includes the contributions from the electrode atoms

as well as from the charges on the sites of the ionic liquid molecules. The profiles obtained

(see figure 3) are consistent with the ones obtained from other simulations of this type with

molten salts [34]. The potential of the bulk Ψbulk, is given by the plateau in the bulk liquid

region, and the potential drop across each interface ∆Ψ± = Ψ± - Ψbulk can be extracted

from such profiles and used to characterize the interfaces.
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Figure 3: Poisson potential profiles across the simulation for three of the nine potential differences

applied. The potential in the bulk region is constant and noted Ψbulk.
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The differential capacitances of the positive and negative electrodes are obtained by

differentiation of the surface charge with respect to the potential drop across the interface

(see figure 4):

Cdiff =
∂σ

∂∆Ψ
. (7)

It can be noted that the variation of the surface charge as a function of the potential
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Figure 4: Surface charge as a function of the potential drop across the interface ∆Ψ = Ψ± −

Ψbulk. Two linear régimes are observed and differential capacitances for the positive and negative

electrode are given by the corresponding slopes. Linear regressions are extrapolated to show that

the simulated points for ∆Ψ0 = 6.0 V do not lie on these lines. Points obtained with a constant

charge of ± 4.5 µC.cm−2 compare well with constant potential results.

drop across the interface shows two régimes which are clearly linear, indicating that the

differential capacitance is constant there, as currently observed in experiments with super-

capacitors [4, 6]. Another quantity that can be determined from this plot is the potential

of zero charge (PZC) which is zero for this system, in agreement with previous simulations

on [BMI][PF6] [19, 46]. Non-trivial values of the PZC were obtained in molten salt simula-

tions of this type where the cations and anions differed in size [35]. This value, which is an

absolute potential, cannot be compared directly with experimentally measured PZC as the

experimental quantity is always given with respect to a reference electrode.

The differential capacitances obtained to the positive (C+) and negative (C−) sides of

the PZC are summarized in table II. The difference between these values is linked to the

different shapes of the ions and can also be noted in a plot of the ionic densities at the
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positive and negative electrodes (see figure 5). The differential capacitances calculated in

Source C+ (µF.cm−2) C− (µF.cm−2)

This work 3.9 4.8

Kislenko et al. [17] 3.7 4.6

Feng et al. [19] 4.40 4.09

Table II: Comparison of differential capacitances obtained by different simulations. In this work,

the molecular dynamics are conducted with a coarse-grained model at constant potential difference

with polarizable electrodes whereas in the other publications cited, the simulations use an all-atom

model and constant charge electrodes.

this work are in excellent agreement with the ones obtained by Kislenko et al. [17] with

an all-atom model and a constant charge of ± 8.2 µC.cm−2 but differ from the results of

Feng et al. [19] which correspond to a constant charge of ± 11.2 µC.cm−2. In particular,

C− is greater than C+ for this work but the results of reference [19] show the contrary. We

underline here the fact that, for the present system, the highest potential difference, ∆Ψ0

= 4.0 V, induces a mean surface charge of ± 9.4 µC.cm−2. Because this potential differ-

ence corresponds to the electrochemical stability window of [BMI][PF6] [1], it appears that

a surface charge of ± 8.2 µC.cm−2 is realistic, while ± 11.2 µC.cm−2 might be too large to

evaluate the differential capacitance of the system. To test this assumption, we performed a

simulation in which a potential difference of 6.0 V was applied between the electrodes. This

potential difference induces a surface charge of 11.9 µC.cm−2 on the graphite electrodes.

Points for this simulation are also reported in figure 4 demonstrating that they are outside

the linear régimes. The high surface charge applied in the simulations of Feng et al. is thus

the explanation of the contradictory results.

The good agreement between our results obtained with polarizable electrodes and previ-

ous results derived from constant charge simulations suggest that, for this system, constant

charge simulations are sufficiently accurate to reproduce the capacitive behavior of the ionic

liquid-planar graphite interface. To directly test, we performed a simulation with a constant

charge of ± 4.5µC.cm−2 on each electrode, the charge being distributed uniformly on all

the atoms of the graphite plane closest to the interface. From the very similar value of the

differential capacitance obtained in these calculations (figure 4), we confirm that, for planar
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electrodes, the constant charge simulations compare well with constant potential simulations

(see figure 4). We recall here that the present work is directed at validating techniques for a

coarse-grained model for [BMI][PF6] for future use in simulations with porous electrodes, in

the latter the constant potential treatment, which allows the electrode charges to be deter-

mined self-consistently, is crucial [21]. We can thus conclude, in view of the present results,

that the constant potential method has not introduced any new aspects to the results ob-

tained at a planar electrode, despite the fact that it implicitly treats the graphite electrode

as metallic.

V. STRUCTURAL PROPERTIES AT THE LIQUID-GRAPHITE INTERFACE

We showed in the previous section that the four-site model of Roy and Maroncelli [22] is

able to reproduce accurately the differential capacitance of the [BMI][PF6]-graphite system.

Moreover, the ionic densities predicted by this model (see figure 5) have the same charac-

teristics as the ones obtained by all-atom simulations [17, 19]. Specifically, high density

peaks are observed near the planar graphite electrodes and layers can be defined, centered

at approximately 5 Å, 10 Å and 15 Å from the surface at ∆Ψ0 = 0.0 V. When the poten-

tial difference increases, the layering is modified, and an alternation of anionic and cationic

layers appears, which corresponds to an overscreening effect [10].

Kislenko et al. report on a two-dimensional structure present at the interface between

the uncharged graphite electrodes and the ionic liquid [17]. This type of ordering in the first

layer is confirmed experimentally for [BMI][PF6] on mica [47] and was also demonstrated at

the interface between LiCl and aluminium electrodes [34, 35]. A two-dimensional ordering

in the first layer should be reflected by a sharp-peak in the in-plane partial anion-anion and

cation-cation structure factors.

The PF−6 -PF−6 and BMI+-BMI+ (for BMI+, the central site is considered, which corre-

sponds to the imidazolium ring) partial structure factors calculated for the ions in the first

adsorbed layer and corresponding snapshots are given in figure 6. When there is no potential

difference, it is clear from the partial structure factors that there is a two-dimensional order-

ing at the interface, not present in the bulk. The first layer is organized in the same defective

hexagonal lattice as for the all-atom model [17], with a lattice spacing of approximately 10 Å.

According to the snapshots and partial structure factors, the first layer becomes disordered
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Figure 5: Ionic densities of anions and mass centers of cations for ∆Ψ0 = 0.0 V and ∆Ψ0 = 4.0 V.

When the potential difference is not equal to 0.0 V, an asymmetry can be seen for the positive and

negative electrodes.

when a potential difference is applied between the electrodes.

VI. CONCLUSION

A coarse-grained model developed by Roy and Maroncelli [22] to represent the ionic liquid

[BMI][PF6] has been tested for the prediction of interfacial properties. It appears that the

model is able to reproduce accurately the liquid-vapor interface as demonstrated by the

good agreement between the calculated surface tension (39.4 mN.m−1 at 400 K) and the

experimental one (40.8 mN.m−1 at 393 K [37], 41.07 mN.m−1 at 343.15 K [38]). The model
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Figure 6: Upper panel: PF−6 -PF−6 and BMI+-BMI+ partial structure factors for the ions in the

first layer. For BMI+, the site considered in the calculation is the central site corresponding to

the imidazolium ring. Lower panel: Corresponding representative snapshots, anions are in green,

cations are in red and the graphite electrode is represented in blue. Black lines are added in the

free potential snapshot to ease the visualization of the hexagonal lattice.

also gives qualitative and quantitative properties in agreement with all-atom simulations

for liquid-graphite interfaces. In particular, the differential capacitances determined in this

work (3.9 µF.cm−2 for the positive electrode and 4.8 µF.cm−2 for the negative electrode)

agree very well with all-atom simulations of Kislenko et al. (3.7 µF.cm−2 for the positive

electrode and 4.6 µF.cm−2 for the negative electrode). In light of the satisfying results

obtained in this work, the coarse-grained model for [BMI][PF6] tested here appears as a

suitable model for the study of the interface between [BMI][PF6] and porous electrodes by

simulations. Molecular dynamics simulations with polarizable nanoporous carbon electrodes

will provide information to go beyond mean-field approaches [48] and recent simulations [49]

which propose theories to explain the anomalous capacitance increase in these materials.
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