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Cyclo-Static DataFlow Graphs (CSDFG in short) is a formalism commonly used to model parallel applications composed by actors communicating through buffers. The liveness of a CSDFG ensures that all actors can be executed infinitely often. This property is clearly fundamental for the design of embedded applications.

This paper aims to present first an original sufficient condition of liveness for a CSDFG. Two algorithms of polynomial-time for checking the liveness are then derived and compared to a symbolic execution of the graph. An original method to compute close-tooptimal buffer capacities ensuring liveness is also presented and experimentaly tested. The performance of our methods are comparable to those existing in the literature for industrial applications. However, they are far more effective on randomly generated instances, ensuring their scalability for future more complex applications and their possible implementation in a compiler.

INTRODUCTION

Synchronous Dataflow Graphs [START_REF] Lee | Synchronous dataflow[END_REF] (SDFG in short) have been used for many years in the field of embedded system design such as Digital Signal Processing (DSP in short). They are used to model a large amount of applications [START_REF] Pino | A hierarchical multiprocessor scheduling framework for synchronous dataflow graphs[END_REF][START_REF] Sriram | Embedded multiprocessors: Scheduling and synchronization[END_REF] and many academic results were devoted to them [START_REF] Ghamarian | Throughput Analysis of Synchronous Data Flow Graphs[END_REF][START_REF] Khasawneh | Static Scheduling for synchronous data flow graphs[END_REF][START_REF] Pino | A hierarchical multiprocessor scheduling framework for synchronous dataflow graphs[END_REF][START_REF] Stuijk | Throughput-Buffering Trade-Off Exploration for Cyclo-Static and Synchronous Dataflow Graphs[END_REF]. However, this model is inadequate in many applications for modeling the communication between actors. Bilsen et al. [START_REF] Bilsen | Cycle-static data flow[END_REF] introduced Cyclo-Static Dataflow Graphs which is a more accurate model to address this problem. Actors' exchanges are more detailed and this new model corresponds better to the description of applications. Analysis results are thus more pertinent. Besides, a CSDF live application may deadlock when modeled by a SDF [START_REF] Bilsen | Cycle-static data flow[END_REF].

CSDFGs were considered more recently in many areas to model data exchanges between applications processes. Those graphs are automatically extracted from a suitable description of the applications. In the field of synchronous languages, Mandel et al. improved the expressivity of Lustre [START_REF] Caspi | LUSTRE: a declarative language for real-time programming[END_REF] to handle processes of different rates communicating through buffers [START_REF] Mandel | Lucy-n: a n-synchronous extension of Lustre[END_REF]. The intermediate representation of this extended language, Lucy-n, is then comparable to a CSDFG. CSDFGs are also considered to model embedded applications for its mapping on a parallel architecture. Several studies were performed in an academic context [START_REF] Akesson | Virtual platforms for mixed time-criticality applications: The CoMPSoC architecture and SDF3 design flow[END_REF][START_REF] Bamakhrama | A methodology for automated design of hard-real-time embedded streaming systems[END_REF][START_REF] Thies | StreamIt: A language for streaming applications[END_REF]. Another example is the dataflow compiler designed to map a CSDFG on the Massively Parallel Processor Array (MPPA in short) developed by Kalray company [START_REF] Kalray | Manycore processors for embedded computing[END_REF] that embeds 256 processors on a 28nm chip.

The popularity of CSDFGs comes from the fact that it is a decidable model. Its behavior is completely predictable, and its performances can be analysed. The aim of this paper is to provide an efficient method to evaluate the liveness of a CSDFG. A CSDFG is said to be live if all its actors can be executed with no deadlock. This property is clearly essential for applications. The main problem is that all algorithms developed to check it are of exponential time complexity and thus they cannot be integrated in an iterative compilation context [START_REF] Anapalli | Static Scheduling for Cyclo Static Data Flow Graphs[END_REF][START_REF] Bilsen | Cycle-static data flow[END_REF]. A detailed bibliography can be found in Subsection 2.2.

The main result of our study is to prove the first sufficient polynomial condition of liveness for CSDFGs. We deduce several polynomial time algorithms to ensure the liveness of a CSDFG and to compute the minimum buffer sizes. All of them were tested on industrial and academic benchmarks and compared to existing solutions.

Section 2 is dedicated to the presentation of CSDFGs and some behavioural properties. Section 3 describes the extension to CSD-FGs of a polynomial transformation called normalization. It was previously introduced for SDFG by [START_REF] Marchetti | Cyclic Scheduling for the Synthesis of Embedded Systems[END_REF] and allowed to get a sufficient condition of liveness for SDFG. This sufficient condition is extended to CSDFG in Section 4 and two polynomial time algorithms for ensuring the liveness of CSDFG are deduced. Section 5 presents our experiments. Section 6 is our conclusion.

CYCLO-STATIC DATAFLOW GRAPHS

This section introduces Cyclo-Static Dataflow Graphs and some important basic definitions and properties. Basic notations are first introduced in Subsection 2.1. The liveness of a CSDF is introduced in Subsection 2.2 followed by a short bibliography on the methods developed to check it. Subsection 2.3 introduces the consistency of a CSDFG, that can be seen as a necessary condition on the liveness. As mentioned above, the complexity of the liveness of a CSDFG is a fundamental open problem and all the exact algorithms are of exponential time-complexity.

Notations for CSDFGs

A Cyclo-Static DataFlow Graph G = (T, A) is a directed graph; the set of nodes T models tasks (or actors); the set of arcs A corresponds to buffers (or channels).

Actors

Every actor t ∈ T is decomposed into ϕ(t) ∈ N -{0} distinct phases that constitute a periodic execution sequence t1, • • • , t ϕ(t)
where t k denotes the k th phase of t for k ∈ {1, • • • , ϕ(t)}. Moreover, two phases or two successive executions of an actor are supposed to not overlap.

We denote by t, n , n ∈ N -{0}, the n th execution of t. Similarly, for every phase k ∈ {1, • • • , ϕ(t)}, t k , n denotes the n th execution of the k th phase of t.

For every couple (k, n) ∈ {1, • • • , ϕ(t)}×N-{0}, P red t k , n is the preceding execution phase of t k , n . More formally,

P red t k , n = t k-1 , n if k > 1 t ϕ(t) , n -1 if k = 1.
The execution t ϕ(t) , 0 is fictitious and is only introduced to simplify the definition of P red.

Buffers

Every arc a = (t, t ) ∈ A represents a buffer b(a) from the actor t to the actor t . ∀k ∈ {1, • • • , ϕ(t)}, wa(k) ≥ 0 data are produced in b(a) at the end of an execution of t k . To enable the execution of the phase t k , ∀k ∈ {1, • • • , ϕ(t )}, va(k ) ≥ 0 data are needed to be available in b(a). They are consumed before t k starts its execution. Moreover, a buffer associated with an arc a contains initially M0(a) data (or tokens).

The cumulative number of data produced on b(a) by one execution of the actor t equals wa • 1 = ϕ(t) k=1 wa(k). Similarly, the cumulative number of data consumed from b(a) by one execution of the actor t is va

• 1 = ϕ(t )
k=1 va(k). While it is allowed that a phase does not produce (resp. consume) data, the cumulative number of data produced (resp. consumed) must be not null, i.e. wa •1 > 0 (resp. va •1 > 0).

For any value n ∈ N-{0} and k ∈ {1, • • • , ϕ(t)}, let D + a t k , n denote the total number of tokens produced on the arc a by executions of t until the end of t k , n . Similarly, for any value k ∈ {1, • • • , ϕ(t )}, let D - a t k , n denote the total number of tokens consumed from the arc a from the beginning for the execution of t k , n .

The total number of tokens contained in a buffer must remain non negative, that is to say any execution t k , n can be done at the completion of Figure 1 shows a buffer b(a) from t to t that is modeled by an arc a = (t, t ). t (resp. t ) has three (resp. two) phases i.e., ϕ(t) = 3 (resp. ϕ(t ) = 2). The arc is labeled by vectors of production/consumption rates wa = [2, 3, 1] and va = [START_REF] Anapalli | Static Scheduling for Cyclo Static Data Flow Graphs[END_REF][START_REF] Bilsen | Cycle-static data flow[END_REF]. The total number of data produced in a until the completion of t2, 2 is D + a t2, 2 = 6 + 5 = 11. Similarly, the total number of tokens consumed for execution t 1 , 2 equals D - a t 1 , 2 = 7 + 2 = 9. As M0(a) + D + a t2, 2 -D - a t 1 , 2 = 0 + 11 -9 ≥ 0, t 1 , 2 can be executed at the completion of t2, 2 .

t k , n if M0(a)+D + a t k , n -D - a t k , n ≥ 0. [2,3,1] [2,5]
An arc a = (t, t ) models data-dependencies introduced by a buffer b(a) between the actors t and t . However, in most reallife embedded systems, the overall amount of memory is bounded, which implies that the capacity of the buffers cannot be considered as infinite. The bounded capacity of a buffer b(a) is simply modeled by adding a feedback arc a = (t , t) 

with ∀k ∈ {1, • • • , ϕ(t)}, v a (k) = wa(k) and ∀k ∈ {1, • • • , ϕ(t )}, w a (k ) = va(k ).
2,3,1] [2,3,1] [2,5] [2,5] a' a M0(a) t t' M0(a')

Particular classes of CSDFG

Synchronous DataFlow Graphs (SDFGs in short) [START_REF] Lee | Synchronous dataflow[END_REF] are a particular class of CSDFGs where each actor has only one phase, i.e. ∀t ∈ T, ϕ(t) = 1. Also note that any CSDFG G = (T, A) can be associated with an SDFG denoted by SDF G(G) = (T, A ) where each arc a = (t, t

) ∈ A is associated with an arc a = (t, t ) in A with w a = wa •1, v a = va •1 and M0(a ) = M0(a).
Homogeneous Synchronous DataFlow Graphs (HSDFGs in short) [START_REF] Sriram | Embedded multiprocessors: Scheduling and synchronization[END_REF] are a particular class of SDFGs where wa = va = 1 for any arc a ∈ A.

These two classes of graphs were intensively studied in the literature. Main results concerning their liveness are reviewed subsequently.

Related work on the liveness of a CSDFG

A CSDFG is said to be live if each actor can be fired infinitely often. The liveness of a CSDFG is an important basic property: finding efficient algorithms to check the liveness of such system is of great importance in an industrial context.

The complexity of the liveness of an SDFG or a CSDFG is an open problem. Up to now, all the exact algorithms for checking the liveness are of exponential time. Their main defect is that they cannot be used within a reasonable time for complex applications.

They can be grouped into two main classes: the first one is transforming an original SDFG or CSDFG into an equivalent HS-DFG by replicating the actors a certain (non-polynomial) number of times [START_REF] Bilsen | Cycle-static data flow[END_REF][START_REF] Sriram | Embedded multiprocessors: Scheduling and synchronization[END_REF]. The liveness is then checked directly on the HS-DFG, which is possible using a polynomial-time algorithm (recall that a HSDFG is live iff every circuit has at least one token). The problem is that the size of the HSDFG may be of exponential size [START_REF] Marchetti | Cyclic Scheduling for the Synthesis of Embedded Systems[END_REF], which drastically limits the efficiency of this class of methods.

Another way consists in constructing if possible a static schedule for an SDFG [START_REF] Ghamarian | Liveness and boundedness of synchronous data flow graphs[END_REF][START_REF] Khasawneh | Static Scheduling for synchronous data flow graphs[END_REF] or a CSDFG [START_REF] Anapalli | Static Scheduling for Cyclo Static Data Flow Graphs[END_REF]. If such a schedule exists, the graph is live; otherwise a deadlock is highlighted. The main drawback of this method is that the size of the static schedule may be quite large and so it cannot be computed in polynomial time.

A well-known necessary condition for the liveness of a CSDFG (or an SDFG) with bounded buffers is the consistency, as described in [START_REF] Lee | Synchronous dataflow[END_REF][START_REF] Bilsen | Cycle-static data flow[END_REF]. This condition is recalled in the next subsection, and is supposed to be fulfilled by the SDFG and CSDFG considered here. A simple polynomial sufficient condition was found by [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] for normalized SDFG. This condition is proved to be not necessary, but allows to ensure quickly that the system is live. This paper aims to prove first that any consistent CSDFG may be normalized, and that several sufficient conditions of liveness may be obtained by expressing deadlock conditions.

Consistency of a CSDFG

Consistency is a necessary (non sufficient) condition for the existence of a valid schedule within bounded memory that was established first for SDFGs [START_REF] Lee | Synchronous dataflow[END_REF]. Bilsen et al. [START_REF] Bilsen | Cycle-static data flow[END_REF] extended this condition to CSDFG by considering the cumulative number of tokens produced/consumed by one execution of its actors. It is none other than the one proposed by Lee [START_REF] Lee | Synchronous dataflow[END_REF] applied to the associated SDFG of a CSDFG. This point is motivated by the fact that a CSDFG is simply obtained by refining the modeling of the data exchanges between actors of the underlying SDFG.

Let us consider the pre-post |A| × |T | matrix Γ associated with a CSDFG G defined by

Γat = wa •1 if a = (t, t ), t ∈ T -va •1 if a = (t , t), t ∈ T 0
Otherwise.

The CSDFG is said to be consistent if the rank of Γ is |T | -1.

In the following, we restrict our study to consistent strongly connected CSDFGs as not consistent graphs will either deadlock or need unbounded buffers.

NORMALIZATION OF A CSDFG

The normalization of a consistent SDFG is an operation introduced in [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] which simplifies the arc values without any influence on the data dependencies. This transformation can be simply extended to any as long as its underlying SDFG is consistent. The normalization of an SDFG and a CSDFG are introduced and illustrated using a simple example in this section.

For any actor t ∈ T , let us denote by A + (t) = {a = (t, t ) ∈ A, t ∈ T } the set of output arcs of t and A -(t) = {a = (t , t) ∈ A, t ∈ T } the set of input arcs.

An actor t is said to be normalized if there exists Zt ∈ N -{0} such that ∀a ∈ A + (t), wa •1 = Zt, and ∀a ∈ A -(t), va •1 = Zt.

A CSDFG is normalized if all of its actors are normalized. The normalization of a CSDFG consists in building an equivalent CSDFG such that all actors are normalized. The idea here is to find two vectors Z = (Z1,

• • • , Z |T | ) and ∆ = (δ1, • • • , δ |A| ) of positive values such that ∀t ∈ T, ∀a ∈ A + (t), δa × (wa •1) = Zt and ∀t ∈ T, ∀a ∈ A -(t), δa × (va •1) = Zt.
It has been proved in [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] that every consistent SDFG can be normalized (i.e. the previous system has a solution). Now, if a CSDFG G is consistent, then so is SDF G(G) which is normalizable; let Z and ∆ be a solution of the corresponding previous system. Vectors associated with any arc a ∈ A and the initial markings are then replaced respectively by δ a × wa, δ a × va and δ a × M0(a) in order to get an equivalent normalized CSDFG. Next theorem follows:

THEOREM 1. Let G be a strongly connected CSDFG. G is normalizable iff G is consistent. Let us consider as example the CSDFG pictured in left side of Figure 3. The corresponding system is:

Z1 = δ3 × 5 = δ4 × 5 = δ1 × 2 Z3 = δ2 × 2 = δ3 × 3 Z2 = δ1 × 3 = δ5 × 5 = δ2 × 5 Z4 = δ4 × 6 = δ5 × 4
A minimum solution is given by ∆ = (5, 3, 2, 2, 3) and Z = [START_REF] Kalray | Manycore processors for embedded computing[END_REF][START_REF] Marchetti | Cyclic Scheduling for the Synthesis of Embedded Systems[END_REF][START_REF] Caspi | LUSTRE: a declarative language for real-time programming[END_REF][START_REF] Lee | Synchronous dataflow[END_REF]. Initial markings obtained are M0(a1) = 15, M0(a2) = 3, M0(a3) = 4, M0(a4) = 0, M0(a5) = 21. The associated equivalent normalized CSDFG is pictured in Figure 3. 

[1,2] [1,4,0] [0,0,2] [5] [5] [1,1]

LIVENESS CHECKING ALGORITHMS

This section aims to present two original algorithms for checking a sufficient condition for the liveness of a CSDFG. The first subsection recalls that relevant values of initial markings may be limited. A first sufficient condition of liveness is then expressed, followed by a polynomial-time algorithm whose complexity depends on the total number of phases. A second condition is expressed obtained by merging the phases of the same actor in order to reduce the complexity of the corresponding algorithm. The equivalence of the two sufficient conditions of liveness is then proved as well as the fact that these conditions are not necessary. Finally, the complexity of these algorithms is expressed.

Useful tokens

It is observed that the initial markings of any buffer of an SDFG may be reduced to functions depending on the values of the arcs [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF]. This result was extended to CSDFG [START_REF] Benazouz | Buffer Sizing for Stream Processing Applications[END_REF][START_REF] Stuijk | Throughput-Buffering Trade-Off Exploration for Cyclo-Static and Synchronous Dataflow Graphs[END_REF] as follows: let us denote for every arc a = (t, t ) ∈ A, stepa = gcd(wa(1), • • • , wa(ϕ(t)), va [START_REF] Akesson | Virtual platforms for mixed time-criticality applications: The CoMPSoC architecture and SDF3 design flow[END_REF]

, • • • , va(ϕ(t ))),
where gcd is the greatest common divisor of a given list of non negative integers. For every integer α ∈ Z, we also set

α stepa = α stepa • stepa.

LEMMA 1 ([4]

). The initial marking M0(a) of any arc a = (t, t ) can be replaced by M0(a) stepa without any influence on the data dependencies induced by a between the successive executions of actors t and t .

In the rest of this paper, it is assumed that the initial marking of any arc a is a multiple of stepa.

A first sufficient condition SC1

The following theorem expresses a first sufficient condition of liveness for a normalized CSDFG: THEOREM 2. Let G be a normalized CSDFG. If G is not live, then there exists a circuit c = (t 1 , a1, t 2 , a2, • • • , t m , am, t 1 ) and the values

k i ∈ {1, • • • , ϕ(t i )} for i ∈ {1, • • • , m} such that m i=1 M0(ai) ≤ m i=1 D - a i-1 t i k i , 1 -D + a i P red t i k i , 1 - m i=1 stepa i with a0 = am.
The following corollary is an immediate consequence of Theorem 2: COROLLARY 1 (SC1). Let G be a normalized CSDFG. G is live if for any circuit c = (t 1 , a1, t 2 , a2, • • • , t m , am, t 1 ) of G and any values

k i ∈ {1, • • • , ϕ(t i )} for i ∈ {1, • • • , m}, m i=1 M0(ai) > m i=1 D - a i-1 t i k i , 1 -D + a i P red t i k i , 1 - m i=1 stepa i with a0 = am.
A polynomial-time algorithm is expressed subsequently to check this first necessary sufficient condition denoted by SC1.

Checking the liveness using condition SC1

The aim of this section is to express a polynomial time-algorithm for checking the sufficient condition of liveness SC1 on a CSDFG G = (T, A). For that purpose, let us consider the valued oriented graph H1 = (N1, E1) defined as follows:

• N1 is the set of the phases of actors from T , i.e. N1 =

t i k , i ∈ {1, • • • , |T |}, k ∈ {1, • • • , ϕ(t i )} .
• Any arc a = (t i , t j ) ∈ A corresponding to a buffer is associated with

ϕ(t i ) × ϕ(t j ) arcs u = (t i k i , t j k j ) ∈ E1 for k i ∈ {1, • • • , ϕ(t i )} and k j ∈ {1, • • • , ϕ(t j )} valued by W1(u) = D - a t j k j , 1 -D + a P red t i k i , 1 -stepa -M0(a). The cycle-mean of a circuit c = (t 1 k 1 , u1, t 2 k 2 , • • • , t m k m , um, t 1 k 1 ) equals W1(c) = m i=1 W 1 (u i ) m
. Now, let W 1 be the maximum cycle-mean value of a circuit from H1. SC1 is equivalent to W 1 < 0. Several polynomial-time algorithms for computing W 1 are detailed and compared experimentally in [START_REF] Dasdan | Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems[END_REF].

Figure 4 pictures the graph H1 associated with the normalized CSDFG presented in Figure 3. The maximum cycle-mean value is

W 1 = -1
4 and is reached for the circuit passing through t 1 2 , t 4 2 , t 2 1 , t 3 2 ,t 1 2 . As W 1 < 0, SC1 holds for any circuit of H1, G is thus live. The size of H1 may grow quickly with the number of phases. Another sufficient condition may be expressed to significantly reduce the size of the underlying graph.

A second sufficient condition SC2

The number of phases for each actor may be too large to get an efficient algorithm for checking the liveness using SC1. The idea here is to express another condition SC2 and to prove that SC1 and SC2 are equivalent.

Let us consider that a CSDFG G verifies condition SC2 if, for any cycle c = (t 1 , a1, t 2 , a2,

• • • , t m , am, t 1 ) of G, m i=1 M0(ai) > - m i=1 stepa i + m i=1 max k i ∈{1,••• ,ϕ(t i )} D - a i-1 t i k i , 1 -D + a i P red t i k i , 1 .
THEOREM 3. Let G be a normalized CSDFG. Conditions SC1 and SC2 are equivalent.

A sufficient condition of liveness follows from Corollary 1 and Theorem 3:

COROLLARY 2 (SC2). Let G be a normalized CSDFG. G is live if for any cycle c = (t 1 , a1, t 2 , a2, • • • , t m , am, t 1 ) of G, m i=1 M0(ai) > - m i=1 stepa i + m i=1 max k i ∈{1,••• ,ϕ(t i )} D - a i-1 t i k i , 1 -D + a i P red t i k i , 1 .
Let H2 = (N2, E2) be a valued graph built as follows for checking SC2 on a CSDFG G = (T, A):

• N2 is the set of buffers, i.e. N2 = A.

• Each arc e = (a, a ) ∈ E2 is associated with a actor t such that a ∈ A -(t), a ∈ A + (t) and is valued by

W2(e) = -stepa -M0(a) + max k∈{1,••• ,ϕ(t)} D - a t k , 1 -D + a P red t k , 1 .
As seen before, satisfying the condition SC2 is equivalent to checking that the maximum cycle-mean W 2 of H2 is strictly negative. The graph H2 corresponding to the normalized CSDFG G pictured in Figure 3 is presented in Figure 5. 

SC1 and SC2 are not necessary

These two conditions can be seen as a generalization of a result proved by Marchetti et al. [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] for SDFG expressed as follows: THEOREM 4 ( [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF]). Let G be a normalized SDFG. Then, G is live if for any cycle c = (t 1 , a1, t 2 , a2,

• • • , t m , am, t 1 ) of G m i=1 M0(ai) > m i=1 (Zi -stepa i ).
Marchetti et al. in [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF] proved that the condition of Theorem 4 is not necessary for the liveness of an SDFG. The consequence is that conditions SC1 and SC2 are also not necessary.

Worst-case complexity of these algorithms

For any actor t ∈ T , we denote by deg + (t) = |A + (t)| the output degree of t and deg -(t) = |A -(t)| the input degree of t. We also denote by R = (R1, • • • , Rn) the repetition vector of G: it can be defined as the smallest positive integer vector such that, for any couple of actors (t, t ) ∈ T 2 , ZtRt = Z t R t [START_REF] Marchetti | Cyclic Scheduling for the Synthesis of Embedded Systems[END_REF].

For each considered algorithm, we then define the complexity as follows.

Algorithm SE : This algorithm, developed by [START_REF] Anapalli | Static Scheduling for Cyclo Static Data Flow Graphs[END_REF] consists of a symbolic execution. Its worst-case case complexity bounded by O(|A| × t∈T Rt) is proved to be exponential [START_REF] Marchetti | Cyclic Scheduling for the Synthesis of Embedded Systems[END_REF].

Algorithm SC1 : It consists of checking the condition SC1 using the determination of a maximum cycle-mean in H1.

Its complexity is Θ(|N1| × |E1|) corresponding to Θ( t∈T ϕ(t) × (t i ,t j )∈A ϕ(ti) × ϕ(tj)).
Algorithm SC2 : It checks SC2 using the determination of a maximum cycle-mean in H2. Its complexity is bounded by

Θ(|A| × t∈T (deg + (t) × deg -(t))).
These complexities can be evaluated before executing the corresponding algorithms. A simple heuristic can then choose between these three algorithms by minimizing the theoretical complexity.

EXPERIMENTS

This part is focused on the actual applications of our methods and their practical interest. Benchmarks are presented, followed by the experimentations of the liveness algorithms. The last subsection is dedicated to the presentation and the experimentations of an efficient algorithm to compute the minimum buffer capacity ensuring liveness.

Benchmarks

Two different benchmarks reported in Table 1 were considered to experimentally evaluate our method. The former will focus on real-life industrial applications (JPEG2000, H264, . . .). The latter is generated using different generation tools: the size and the complexity of the CSDFG are higher, and can be seen as possible future instances. The first column of Table 1 reports the name of the benchmarks. The second and third ones correspond respectively to the number of actors and buffers. The last one reports the size of a schedule issued from a symbolic execution, which is exactly equal to t∈T (Rt × ϕ(t)). In summary, the BlackScholes application is a financial tool, JPEG2000, Echo and H264 are three multimedia applications and Pdetect is an application specialized in the detection of people.

For applications that deadlock, the computation time of algorithms SC1 and SC2 will not vary, but SE will probably be faster. However, SE reaches its maximum complexity when the instances that it processes are live, that is the reason all the benchmarks we considered are live.

Experimentations on the liveness

Table 2 reports the computation times of the three algorithms (namely SE, SC1 and SC2) on our benchmark. The tests were carried out on a standard workstation based on an Intel CORE i3 processor. Framed results are those selected by our heuristic, which choose the best algorithm following the evaluation of their theorical complexity.

In most cases, the framed results correspond to the lowest computation time. We first note the complementarity between algorithms SC1 and SC2. SC2 is often faster than SC1. However, if the actors degrees are high, such as in H264, SC1 is a better choice.

In the industrial benchmarks, the computation time of the symbolic method SE remains competitive versus the SC1 and SC2 algorithms. This is not longer true for the generated one's, for which the repetition vectors are higher. This kind of instance will be of importance with the arrival of new programming tools. In this case, the computation times of SE are clearly too long to be used in an industrial context. 

Application

Computation of minimum buffer capacities ensuring liveness

Condition SC1 may be considered to evaluate minimum buffer capacities of a fixed CSDFG. Indeed, let us suppose that each buffer b(a) associated with an arc a = (t, t ) is bounded. This can be modeled using a feedback arc a = (t , t) as shown in Subsection 2.1. Now, let G = (T, A ) be the graph obtained by adding these feedback arcs and H 1 = (N 1 , E1) its corresponding oriented valued graph associated to SC1. W 1 denotes the valuation of H 1 .

The capacity of the buffer b(a) equals M0(a) + M0(a ). The overall capacity of buffers of G is thus a∈A M0(a). Now, initial values M0(a), a ∈ A must be computed such that condition SC1 is fulfilled. Integer values γa, a ∈ N 1 must be computed such that, for any arc e = (u, u ) ∈ E1, we get γuγ u > W 1 (e).

APPENDIX

This appendix provides the proofs for Theorems 2 through 4.

Proof of Theorem 2

PROOF. Let us suppose that G is not live. Then, there exists a circuit c = (t 1 , a1, t 2 , a2, • • • , t m , am, t 1 ), and values

n i ∈ N - {0} and k i ∈ {1, • • • , ϕ(t i )} for i ∈ {1, • • • , m} such that: • Executions P red t i k i , n i with i ∈ {1, • • • , m} can be per- formed;
• the amount of data is not sufficient to execute any execution

t i k i , n i , for i ∈ {1, • • • , m}.
Let us first consider the arc a1 = (t 

Proof of Theorem 4

PROOF. Any normalized SDFG G = (T, A) is a CSDFG for which each actor has a unique phase, thus ∀t ∈ T , ϕ(t) = 1. Since G is normalized, for any arc a = (t, t ), D - a t1, 1 = Zt and D + a P red t1, 1 = D + a t1, 0 = 0. Thus, SC2 is equivalent to the condition expressed by the theorem.

Figure 1 :

 1 Figure 1: A buffer b(a) represented by an arc a = (t, t ). The arc is labeled by two vectors wa = [2, 3, 1], va = [2, 5] and by the initial number of data M0(a) = 0.

  The initial marking M0(a ) corresponds to the number of empty containers initially in b(a). The capacity of the buffer b(a) equals the sum M0(a) + M0(a ) (see Figure2).

[

  

Figure 2 :

 2 Figure 2: A bounded buffer b(a) modeled by a couple of arcs a = (t, t ) and a = (t , t). The capacity of the buffer b(a) equals M0(a) + M0(a ).

Figure 3 :

 3 Figure 3: (Left) A CSDFG of four actors and five buffers. Initial tokens are represented by surrounded values. (Right) Its normalized version.

Figure 4 :, t 4 2 , t 2 1 , t 3 2 and t 1 2

 44232 Figure 4: Graph H1 associated with the normalized CSDFG pictured in Figure 3. The circuit passing through t 1 2 , t 4 2 , t 2 1 , t 3 2

Figure 5 :

 5 Figure 5: Graph H2 associated with the normalized CSDFG G pictured in Figure 3. A circuit of maximum mean-cycle value is highlighted.

Table 1 :

 1 Benchmarks

	Application	Actors Buffers Sched. size
	BlackScholes	41	40	2379
	JPEG2000	240	703	29595
	Echo	38	82	42003
	Pdetect	58	76	4045
	H264	665	3128	1471
	autogen1	90	617	250992
	autogen2	70	473	41331062
	autogen3	154	671 308818852
	autogen4	2426	2900	51301
	autogen5	2767	4894	312485

Table 2 :

 2 Complexity of SC1, SC2 and SE as defined in Subsection 4.6 with their actual computation time. Surrounded results correspond to the method selected by our heuristic.

  1 , t 2 ). Since the phase t 2 k 2 , n 2 cannot be executed even if P red t 1 k 1 , n1 is, the number of tokens on a1 must verifyM0(a1) + D + a 1 P red t 1 k 1 , n 1 -D - a 1 t 2 k 2 , n 2 < 0. By definition of D + a 1 and D - a 1 , D + a 1 P red t 1 k 1 , n 1 = D + a 1 t 1 ϕ(t 1 ) , n 1 -1 + D + a 1 P red t 1 k 1 , 1andD - a 1 t 2 k 2 , n 2 = D - a 1 t 2 ϕ(t 2 ) , n 2 -1 + D - a 1 t 2 k 2 , 1 .The previous inequality thus becomesM0(a1) + D + a 1 t 1 ϕ(t 1 ) , n 1 -1 + D + a 1 P red t 1 k 1 , 1 -D - a 1 t 2 ϕ(t 2 ) , n 2 -1 -D - a 1 t 2 k 2 , 1 < 0. Now, by Lemma 1, this sum is divisible by stepa 1 , so we get M0(a1) + D + a 1 t 1 ϕ(t 1 ) , n 1 -1 + D + a 1 P red t 1 k 1 , 1 -D - a 1 t 2 ϕ(t 2 ) , n 2 -1 -D - a 1 t 2 k 2 , 1 ≤ -stepa 1 .Similarly, by setting t m+1 = t 1 , we get for any value i ∈ {1, • • • , m},M0(ai) + D + a i t i ϕ(t i ) , n i -1 + D + a i P red t i k i , 1 -D - a i t i+1 ϕ(t i+1 ) , n i+1 -1 -D - a i t i+1 k i+1 , 1 ≤ -stepa i . Since G is normalized, ∀i ∈ {1, • • • , m -1}, By summing all the previous inequalities, we then obtain that PROOF. Let us suppose that G verifies SC2 and let c = (t 1 , a1, t 2 , a2, • • • , t m , am, t 1 ) be a circuit of G. Then, for any valuesk i ∈ {1, • • • , ϕ(t i )}, i ∈ {1, • • • , m}, we get that max k i ∈{1,••• ,ϕ(t i )} D - a i-1 t i k i , 1 -D + a i P red t i k i , 1 ≥ D - a i-1 t i k i , 1 -D + a i P red t i k i , 1 . , 1 -D + a i P red t i k i , 1 .and G verifies SC1. Conversely, if SC1 is true, then, for any cycle c = (t 1 , a1, t 2 , a2, • • • , t m , am, t 1 ) and any phases k i of ti maximizing D - a i-1 t i k i , 1 -D + a i P red t i k i , 1 , the inequality is true. SC2 is thus verified, which concludes the proof.

			Thus,
			m	m
			M0(ai) > -	stepa i
			i=1	i=1
				m
			+	D -a i-1 t i k i
				i=1
	D -a i-1 t i ϕ(t m	m	m
	M0(ai) +	D + a i P red t i k i , 1 -D -a i-1 t i k i , 1 ≤ -	stepa i
	i=1	i=1	i=1
	which concludes the proof.	
	Proof of Theorem 3	

i ) , n i -1 = D + a i t i ϕ(t i ) , n i -1 = (n i -1) • Z t i .

The linear system is thus:

An equivalent linear program can be expressed based on SC2. Our algorithm will choose between SC1 and SC2, whichever has the lowest theoretical complexity. We use GLPK to solve a continuous version of the linear program. The buffer capacities are computed using a rounding method.

Our experimental results are compared with a greedy algorithm based on SE and inspired by [START_REF] Sriram | Embedded multiprocessors: Scheduling and synchronization[END_REF]. Actors are executed so that the buffer sizes are minimized. Our experiments are reported in Table 3. The first column is the benchmark's names. Second and third columns report the computation time and the overall buffer size computed by SC1 or SC2 (following the theoretical evaluation of the complexity). Fourth and fifth one's report the computation time and the overall buffer size obtained using the greedy algorithm.

SC1/SC2

Greedy Judging by the data in Table 3, the quality is comparable, but the running time of the greedy algorithm is much higher in more complex applications.

CONCLUSION

This paper presents significant advances in both fundamental and applicative point of views for evaluating the liveness of a CSDFG.

The normalization of a CSDFG is first introduced and should be used to effectively address other CSDFG problems such as the minimization of buffer considering throughput [START_REF] Stuijk | Throughput-Buffering Trade-Off Exploration for Cyclo-Static and Synchronous Dataflow Graphs[END_REF]. In addition, two sufficient equivalent conditions of liveness are proved. Efficient original polynomial-time algorithms for checking the liveness of a CSDFG and computing its minimal buffer sizes (ensuring liveness) are deduced.

These algorithms are the first polynomial ones to solve approximatively these two problems. They were successfully tested on industrial and academic benchmarks. The experiments highlighted that they are well suited for real-life applications and more robust than the existing methods for complex applications. Their low complexity ensures that these algorithms can safely be integrated in a compiler.