
HAL Id: hal-00861992
https://hal.sorbonne-universite.fr/hal-00861992v1

Submitted on 13 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Liveness evaluation of a cyclo-static DataFlow graph
Mohamed Benazouz, Alix Munier-Kordon, Thomas Hujsa, Bruno Bodin

To cite this version:
Mohamed Benazouz, Alix Munier-Kordon, Thomas Hujsa, Bruno Bodin. Liveness evaluation of a
cyclo-static DataFlow graph. The 50th Annual Design Automation Conference, DAC 2013, Jun 2013,
Austin, United States. pp.3:1-3:7, �10.1145/2463209.2488736�. �hal-00861992�

https://hal.sorbonne-universite.fr/hal-00861992v1
https://hal.archives-ouvertes.fr

Liveness Evaluation of a Cyclo-Static DataFlow Graph

Mohamed Benazouz
CEA, LIST,

P.C. 172, 91191
Gif-Sur-Yvette, France.

mohamed.benazouz@cea.fr

Alix Munier-Kordon
LIP6, UPMC,

Place Jussieu, 75005
Paris, France.

alix.munier@lip6.fr

Thomas Hujsa
LIP6, UPMC,

Place Jussieu, 75005
Paris, France.

thomas.hujsa@lip6.fr

Bruno Bodin
KALRAY SA,

86 Rue de Paris, 91400
Orsay, France.

bruno.bodin@kalray.eu

ABSTRACT
Cyclo-Static DataFlow Graphs (CSDFG in short) is a formalism
commonly used to model parallel applications composed by actors
communicating through buffers. The liveness of a CSDFG ensures
that all actors can be executed infinitely often. This property is
clearly fundamental for the design of embedded applications.

This paper aims to present first an original sufficient condition
of liveness for a CSDFG. Two algorithms of polynomial-time for
checking the liveness are then derived and compared to a symbolic
execution of the graph. An original method to compute close-to-
optimal buffer capacities ensuring liveness is also presented and
experimentaly tested. The performance of our methods are compa-
rable to those existing in the literature for industrial applications.
However, they are far more effective on randomly generated in-
stances, ensuring their scalability for future more complex applica-
tions and their possible implementation in a compiler.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; D.2.2 [Software Engineering]: Design
Tools and Techniques

General Terms
Algorithms, Design, Experimentations, Theory

Keywords
Cyclo-Static Dataflow Graphs, liveness, buffer sizing

1. INTRODUCTION
Synchronous Dataflow Graphs [12] (SDFG in short) have been

used for many years in the field of embedded system design such as
Digital Signal Processing (DSP in short). They are used to model
a large amount of applications [16, 17] and many academic results
were devoted to them [9, 11, 16, 18]. However, this model is inad-
equate in many applications for modeling the communication be-
tween actors. Bilsen et al. [5] introduced Cyclo-Static Dataflow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

Graphs which is a more accurate model to address this problem.
Actors’ exchanges are more detailed and this new model corre-
sponds better to the description of applications. Analysis results
are thus more pertinent. Besides, a CSDF live application may
deadlock when modeled by a SDF[5].

CSDFGs were considered more recently in many areas to model
data exchanges between applications processes. Those graphs are
automatically extracted from a suitable description of the applica-
tions. In the field of synchronous languages, Mandel et al. im-
proved the expressivity of Lustre [6] to handle processes of differ-
ent rates communicating through buffers [13]. The intermediate
representation of this extended language, Lucy-n, is then compa-
rable to a CSDFG. CSDFGs are also considered to model embed-
ded applications for its mapping on a parallel architecture. Several
studies were performed in an academic context [1, 3, 19]. Another
example is the dataflow compiler designed to map a CSDFG on the
Massively Parallel Processor Array (MPPA in short) developed by
Kalray company [10] that embeds 256 processors on a 28nm chip.

The popularity of CSDFGs comes from the fact that it is a de-
cidable model. Its behavior is completely predictable, and its per-
formances can be analysed. The aim of this paper is to provide an
efficient method to evaluate the liveness of a CSDFG. A CSDFG
is said to be live if all its actors can be executed with no deadlock.
This property is clearly essential for applications. The main prob-
lem is that all algorithms developed to check it are of exponential
time complexity and thus they cannot be integrated in an iterative
compilation context [2, 5]. A detailed bibliography can be found in
Subsection 2.2.

The main result of our study is to prove the first sufficient poly-
nomial condition of liveness for CSDFGs. We deduce several poly-
nomial time algorithms to ensure the liveness of a CSDFG and to
compute the minimum buffer sizes. All of them were tested on
industrial and academic benchmarks and compared to existing so-
lutions.

Section 2 is dedicated to the presentation of CSDFGs and some
behavioural properties. Section 3 describes the extension to CSD-
FGs of a polynomial transformation called normalization. It was
previously introduced for SDFG by [15] and allowed to get a suf-
ficient condition of liveness for SDFG. This sufficient condition is
extended to CSDFG in Section 4 and two polynomial time algo-
rithms for ensuring the liveness of CSDFG are deduced. Section 5
presents our experiments. Section 6 is our conclusion.

2. CYCLO-STATIC DATAFLOW GRAPHS
This section introduces Cyclo-Static Dataflow Graphs and some

important basic definitions and properties. Basic notations are first
introduced in Subsection 2.1. The liveness of a CSDF is introduced
in Subsection 2.2 followed by a short bibliography on the methods

developed to check it. Subsection 2.3 introduces the consistency of
a CSDFG, that can be seen as a necessary condition on the liveness.
As mentioned above, the complexity of the liveness of a CSDFG is
a fundamental open problem and all the exact algorithms are of
exponential time-complexity.

2.1 Notations for CSDFGs
A Cyclo-Static DataFlow Graph G = (T,A) is a directed graph;

the set of nodes T models tasks (or actors); the set of arcs A corre-
sponds to buffers (or channels).

2.1.1 Actors
Every actor t ∈ T is decomposed into ϕ(t) ∈ N− {0} distinct

phases that constitute a periodic execution sequence t1, · · · , tϕ(t)

where tk denotes the kth phase of t for k ∈ {1, · · · , ϕ(t)}. More-
over, two phases or two successive executions of an actor are sup-
posed to not overlap.

We denote by 〈t, n〉, n ∈ N− {0}, the nth execution of t. Sim-
ilarly, for every phase k ∈ {1, · · · , ϕ(t)}, 〈tk, n〉 denotes the nth

execution of the kth phase of t.
For every couple (k, n) ∈ {1, · · · , ϕ(t)}×N−{0}, Pred〈tk, n〉

is the preceding execution phase of 〈tk, n〉. More formally,

Pred〈tk, n〉 =
{
〈tk−1, n〉 if k > 1
〈tϕ(t), n− 1〉 if k = 1.

The execution 〈tϕ(t), 0〉 is fictitious and is only introduced to sim-
plify the definition of Pred.

2.1.2 Buffers
Every arc a = (t, t′) ∈ A represents a buffer b(a) from the

actor t to the actor t′. ∀k ∈ {1, · · · , ϕ(t)}, wa(k) ≥ 0 data are
produced in b(a) at the end of an execution of tk. To enable the
execution of the phase t′k′ , ∀k′ ∈ {1, · · · , ϕ(t′)}, va(k′) ≥ 0
data are needed to be available in b(a). They are consumed before
t′k′ starts its execution. Moreover, a buffer associated with an arc a
contains initially M0(a) data (or tokens).

The cumulative number of data produced on b(a) by one exe-
cution of the actor t equals wa ·1 =

∑ϕ(t)
k=1 wa(k). Similarly,

the cumulative number of data consumed from b(a) by one execu-
tion of the actor t′ is va ·1 =

∑ϕ(t′)
k=1 va(k). While it is allowed

that a phase does not produce (resp. consume) data, the cumula-
tive number of data produced (resp. consumed) must be not null,
i.e. wa ·1 > 0 (resp. va ·1 > 0).

For any value n ∈ N−{0} and k ∈ {1, · · · , ϕ(t)}, letD+
a 〈tk, n〉

denote the total number of tokens produced on the arc a by ex-
ecutions of t until the end of 〈tk, n〉. Similarly, for any value
k′ ∈ {1, · · · , ϕ(t′)}, let D−a 〈t′k′ , n〉 denote the total number of
tokens consumed from the arc a from the beginning for the execu-
tion of 〈t′k′ , n〉.

The total number of tokens contained in a buffer must remain
non negative, that is to say any execution 〈t′k′ , n′〉 can be done at
the completion of 〈tk, n〉 ifM0(a)+D+

a 〈tk, n〉−D−a 〈t′k′ , n′〉 ≥ 0.

[2,3,1] [2,5]

t t'
a

0

Figure 1: A buffer b(a) represented by an arc a = (t, t′). The
arc is labeled by two vectors wa = [2, 3, 1], va = [2, 5] and by
the initial number of data M0(a) = 0.

Figure 1 shows a buffer b(a) from t to t′ that is modeled by
an arc a = (t, t′). t (resp. t′) has three (resp. two) phases i.e.,

ϕ(t) = 3 (resp. ϕ(t′) = 2). The arc is labeled by vectors of
production/consumption rates wa = [2, 3, 1] and va = [2, 5]. The
total number of data produced in a until the completion of 〈t2, 2〉
is D+

a 〈t2, 2〉 = 6 + 5 = 11. Similarly, the total number of tokens
consumed for execution 〈t′1, 2〉 equals D−a 〈t′1, 2〉 = 7 + 2 = 9. As
M0(a) + D+

a 〈t2, 2〉 −D−a 〈t′1, 2〉 = 0 + 11 − 9 ≥ 0, 〈t′1, 2〉 can
be executed at the completion of 〈t2, 2〉.

An arc a = (t, t′) models data-dependencies introduced by a
buffer b(a) between the actors t and t′. However, in most real-
life embedded systems, the overall amount of memory is bounded,
which implies that the capacity of the buffers cannot be consid-
ered as infinite. The bounded capacity of a buffer b(a) is sim-
ply modeled by adding a feedback arc a′ = (t′, t) with ∀k ∈
{1, · · · , ϕ(t)}, va′(k) = wa(k) and ∀k′ ∈ {1, · · · , ϕ(t′)},
wa′(k′) = va(k′). The initial marking M0(a′) corresponds to
the number of empty containers initially in b(a). The capacity of
the buffer b(a) equals the sum M0(a) +M0(a′) (see Figure 2).

[2,3,1]

[2,3,1]

[2,5]

[2,5]
a'

a
M0(a)

t t'
M0(a')

Figure 2: A bounded buffer b(a) modeled by a couple of arcs
a = (t, t′) and a′ = (t′, t). The capacity of the buffer b(a)
equals M0(a) +M0(a′).

2.1.3 Particular classes of CSDFG
Synchronous DataFlow Graphs (SDFGs in short) [12] are a par-

ticular class of CSDFGs where each actor has only one phase,
i.e. ∀t ∈ T, ϕ(t) = 1. Also note that any CSDFG G = (T,A)
can be associated with an SDFG denoted by SDFG(G) = (T,A′)
where each arc a = (t, t′) ∈ A is associated with an arc a′ =
(t, t′) in A′ with w′a = wa ·1, v′a = va ·1 and M0(a′) = M0(a).

Homogeneous Synchronous DataFlow Graphs (HSDFGs in short)
[17] are a particular class of SDFGs where wa = va = 1 for any
arc a ∈ A.

These two classes of graphs were intensively studied in the lit-
erature. Main results concerning their liveness are reviewed subse-
quently.

2.2 Related work on the liveness of a CSDFG
A CSDFG is said to be live if each actor can be fired infinitely

often. The liveness of a CSDFG is an important basic property:
finding efficient algorithms to check the liveness of such system is
of great importance in an industrial context.

The complexity of the liveness of an SDFG or a CSDFG is an
open problem. Up to now, all the exact algorithms for checking
the liveness are of exponential time. Their main defect is that they
cannot be used within a reasonable time for complex applications.

They can be grouped into two main classes: the first one is
transforming an original SDFG or CSDFG into an equivalent HS-
DFG by replicating the actors a certain (non-polynomial) number
of times [5, 17]. The liveness is then checked directly on the HS-
DFG, which is possible using a polynomial-time algorithm (recall
that a HSDFG is live iff every circuit has at least one token). The
problem is that the size of the HSDFG may be of exponential size
[15], which drastically limits the efficiency of this class of methods.

Another way consists in constructing if possible a static schedule
for an SDFG [8, 11] or a CSDFG [2]. If such a schedule exists,
the graph is live; otherwise a deadlock is highlighted. The main
drawback of this method is that the size of the static schedule may
be quite large and so it cannot be computed in polynomial time.

A well-known necessary condition for the liveness of a CSDFG
(or an SDFG) with bounded buffers is the consistency, as described
in [12, 5]. This condition is recalled in the next subsection, and
is supposed to be fulfilled by the SDFG and CSDFG considered
here. A simple polynomial sufficient condition was found by [14]
for normalized SDFG. This condition is proved to be not necessary,
but allows to ensure quickly that the system is live. This paper aims
to prove first that any consistent CSDFG may be normalized, and
that several sufficient conditions of liveness may be obtained by
expressing deadlock conditions.

2.3 Consistency of a CSDFG
Consistency is a necessary (non sufficient) condition for the ex-

istence of a valid schedule within bounded memory that was estab-
lished first for SDFGs [12]. Bilsen et al. [5] extended this con-
dition to CSDFG by considering the cumulative number of tokens
produced/consumed by one execution of its actors. It is none other
than the one proposed by Lee [12] applied to the associated SDFG
of a CSDFG. This point is motivated by the fact that a CSDFG
is simply obtained by refining the modeling of the data exchanges
between actors of the underlying SDFG.

Let us consider the pre-post |A| × |T | matrix Γ associated with
a CSDFG G defined by

Γat =

{
wa ·1 if a = (t, t′), t′ ∈ T
−va ·1 if a = (t′, t), t′ ∈ T
0 Otherwise.

The CSDFG is said to be consistent if the rank of Γ is |T | − 1.
In the following, we restrict our study to consistent strongly con-

nected CSDFGs as not consistent graphs will either deadlock or
need unbounded buffers.

3. NORMALIZATION OF A CSDFG
The normalization of a consistent SDFG is an operation intro-

duced in [14] which simplifies the arc values without any influence
on the data dependencies. This transformation can be simply ex-
tended to any CSDFG as long as its underlying SDFG is consistent.
The normalization of an SDFG and a CSDFG are introduced and
illustrated using a simple example in this section.

For any actor t ∈ T , let us denote by A+(t) = {a = (t, t′) ∈
A, t′ ∈ T} the set of output arcs of t and A−(t) = {a = (t′, t) ∈
A, t′ ∈ T} the set of input arcs.

An actor t is said to be normalized if there exists Zt ∈ N− {0}
such that ∀a ∈ A+(t), wa ·1 = Zt, and ∀a ∈ A−(t), va ·1 = Zt.

A CSDFG is normalized if all of its actors are normalized.
The normalization of a CSDFG consists in building an equiva-

lent CSDFG such that all actors are normalized. The idea here is to
find two vectors Z = (Z1, · · · , Z|T |) and ∆ = (δ1, · · · , δ|A|) of
positive values such that

∀t ∈ T,∀a ∈ A+(t), δa × (wa ·1) = Zt
and

∀t ∈ T,∀a ∈ A−(t), δa × (va ·1) = Zt.

It has been proved in [14] that every consistent SDFG can be nor-
malized (i.e. the previous system has a solution). Now, if a CSDFG
G is consistent, then so is SDFG(G) which is normalizable; letZ?

and ∆? be a solution of the corresponding previous system. Vec-
tors associated with any arc a ∈ A and the initial markings are then
replaced respectively by δ?

a×wa, δ?
a×va and δ?

a×M0(a) in order
to get an equivalent normalized CSDFG. Next theorem follows:

THEOREM 1. LetG be a strongly connected CSDFG.G is nor-
malizable iff G is consistent.

Let us consider as example the CSDFG pictured in left side of
Figure 3. The corresponding system is:

Z1 = δ3 × 5 = δ4 × 5 = δ1 × 2 Z3 = δ2 × 2 = δ3 × 3
Z2 = δ1 × 3 = δ5 × 5 = δ2 × 5 Z4 = δ4 × 6 = δ5 × 4

A minimum solution is given by ∆? = (5, 3, 2, 2, 3) and Z? =
(10, 15, 6, 12). Initial markings obtained are M0(a1) = 15,
M0(a2) = 3, M0(a3) = 4, M0(a4) = 0, M0(a5) = 21. The
associated equivalent normalized CSDFG is pictured in Figure 3.

[1,2]

[1,4,0]

[0,0,2]

[5][5]

[1,1]

a3

a1

a2

2

3

1

[3]

[2,3,0]

7

0

a5

a4

[3,3]

[0,4]

t1

t2

t3
t4

[2,4]

[2,8,0]

[0,0,10]

[15][15]

[3,3]

a3

a1

a2

4

15

3

[15]

[4,6,0]

21

0

a5

a4

[6,6]

[0,12]

t1

t2

t3
t4

Figure 3: (Left) A CSDFG of four actors and five buffers. Ini-
tial tokens are represented by surrounded values. (Right) Its
normalized version.

4. LIVENESS CHECKING ALGORITHMS
This section aims to present two original algorithms for checking

a sufficient condition for the liveness of a CSDFG. The first subsec-
tion recalls that relevant values of initial markings may be limited.
A first sufficient condition of liveness is then expressed, followed
by a polynomial-time algorithm whose complexity depends on the
total number of phases. A second condition is expressed obtained
by merging the phases of the same actor in order to reduce the com-
plexity of the corresponding algorithm. The equivalence of the two
sufficient conditions of liveness is then proved as well as the fact
that these conditions are not necessary. Finally, the complexity of
these algorithms is expressed.

4.1 Useful tokens
It is observed that the initial markings of any buffer of an SDFG

may be reduced to functions depending on the values of the arcs
[14]. This result was extended to CSDFG [4, 18] as follows: let us
denote for every arc a = (t, t′) ∈ A,

stepa = gcd(wa(1), · · · , wa(ϕ(t)), va(1), · · · , va(ϕ(t′))),

where gcd is the greatest common divisor of a given list of non
negative integers. For every integer α ∈ Z, we also set

bαcstepa =
⌊

α

stepa

⌋
· stepa.

LEMMA 1 ([4]). The initial marking M0(a) of any arc a =
(t, t′) can be replaced by bM0(a)cstepa without any influence on
the data dependencies induced by a between the successive execu-
tions of actors t and t′.

In the rest of this paper, it is assumed that the initial marking of any
arc a is a multiple of stepa.

4.2 A first sufficient condition SC1
The following theorem expresses a first sufficient condition of

liveness for a normalized CSDFG:

THEOREM 2. Let G be a normalized CSDFG. If G is not live,
then there exists a circuit c = (t1, a1, t

2, a2, · · · , tm, am, t
1) and

the values ki ∈ {1, · · · , ϕ(ti)} for i ∈ {1, · · · ,m} such that

m∑
i=1

M0(ai) ≤
m∑

i=1

[
D−ai−1〈t

i
ki , 1〉 −D+

ai
Pred〈tiki , 1〉

]
−

m∑
i=1

stepai

with a0 = am.

The following corollary is an immediate consequence of Theo-
rem 2:

COROLLARY 1 (SC1). Let G be a normalized CSDFG. G is
live if for any circuit c = (t1, a1, t

2, a2, · · · , tm, am, t
1) of G and

any values ki ∈ {1, · · · , ϕ(ti)} for i ∈ {1, · · · ,m},
m∑

i=1

M0(ai) >
m∑

i=1

[
D−ai−1〈t

i
ki , 1〉 −D+

ai
Pred〈tiki , 1〉

]
−

m∑
i=1

stepai

with a0 = am.

A polynomial-time algorithm is expressed subsequently to check
this first necessary sufficient condition denoted by SC1.

4.3 Checking the liveness using condition SC1
The aim of this section is to express a polynomial time-algorithm

for checking the sufficient condition of liveness SC1 on a CSDFG
G = (T,A). For that purpose, let us consider the valued oriented
graph H1 = (N1, E1) defined as follows:

• N1 is the set of the phases of actors from T , i.e. N1 ={
tik, i ∈ {1, · · · , |T |}, k ∈ {1, · · · , ϕ(ti)}

}
.

• Any arc a = (ti, tj) ∈ A corresponding to a buffer is as-
sociated with ϕ(ti) × ϕ(tj) arcs u = (tiki , t

j

kj) ∈ E1 for
ki ∈ {1, · · · , ϕ(ti)} and kj ∈ {1, · · · , ϕ(tj)} valued by
W1(u) = D−a 〈tjkj , 1〉−D+

a Pred〈tiki , 1〉−stepa−M0(a).

The cycle-mean of a circuit c = (t1k1 , u1, t
2
k2 , · · · , tmkm , um, t

1
k1)

equals W1(c) =
∑m

i=1
W1(ui)

m
. Now, let W ?

1 be the maximum
cycle-mean value of a circuit from H1. SC1 is equivalent to W ?

1 <
0. Several polynomial-time algorithms for computing W ?

1 are de-
tailed and compared experimentally in [7].

Figure 4 pictures the graph H1 associated with the normalized
CSDFG presented in Figure 3. The maximum cycle-mean value is
W ?

1 = − 1
4 and is reached for the circuit passing through t12, t42, t21,

t32,t12. As W ?
1 <0, SC1 holds for any circuit of H1, G is thus live.

6

0

2

-9

-5
-5

-5

4

10
0

-6

0

-3

4

4

-6

2

-9

-4

t21

t13

t12

t11

t42

t41

t32

t31

Figure 4: Graph H1 associated with the normalized CSDFG
pictured in Figure 3. The circuit passing through t12, t42, t21, t32
and t12 has a maximum cycle-mean equal to − 1

4 .

The size of H1 may grow quickly with the number of phases.
Another sufficient condition may be expressed to significantly re-
duce the size of the underlying graph.

4.4 A second sufficient condition SC2
The number of phases for each actor may be too large to get an

efficient algorithm for checking the liveness using SC1. The idea

here is to express another condition SC2 and to prove that SC1 and
SC2 are equivalent.

Let us consider that a CSDFG G verifies condition SC2 if, for
any cycle c = (t1, a1, t

2, a2, · · · , tm, am, t
1) of G,

m∑
i=1

M0(ai) > −
m∑

i=1

stepai

+
m∑

i=1

maxki∈{1,··· ,ϕ(ti)}
[
D−ai−1〈t

i
ki , 1〉 −D+

ai
Pred〈tiki , 1〉

]
.

THEOREM 3. Let G be a normalized CSDFG. Conditions SC1
and SC2 are equivalent.

A sufficient condition of liveness follows from Corollary 1 and
Theorem 3:

COROLLARY 2 (SC2). Let G be a normalized CSDFG. G is
live if for any cycle c = (t1, a1, t

2, a2, · · · , tm, am, t
1) of G,

m∑
i=1

M0(ai) > −
m∑

i=1

stepai

+
m∑

i=1

maxki∈{1,··· ,ϕ(ti)}
[
D−ai−1〈t

i
ki , 1〉 −D+

ai
Pred〈tiki , 1〉

]
.

LetH2 = (N2, E2) be a valued graph built as follows for check-
ing SC2 on a CSDFG G = (T,A):

• N2 is the set of buffers, i.e. N2 = A.

• Each arc e = (a, a′) ∈ E2 is associated with a actor t such
that a ∈ A−(t), a′ ∈ A+(t) and is valued by

W2(e) = −stepa −M0(a)
+ maxk∈{1,··· ,ϕ(t)}

[
D−a 〈tk, 1〉 −D+

a′Pred〈tk, 1〉
]
.

As seen before, satisfying the condition SC2 is equivalent to check-
ing that the maximum cycle-mean W ?

2 of H2 is strictly negative.
The graph H2 corresponding to the normalized CSDFG G pictured
in Figure 3 is presented in Figure 5.

9

-10

4

9

-2

-12

a1 a2

a3

a5a4

Figure 5: Graph H2 associated with the normalized CSDFG G
pictured in Figure 3. A circuit of maximum mean-cycle value
is highlighted.

4.5 SC1 and SC2 are not necessary
These two conditions can be seen as a generalization of a result

proved by Marchetti et al. [14] for SDFG expressed as follows:

THEOREM 4 ([14]). Let G be a normalized SDFG. Then, G
is live if for any cycle c = (t1, a1, t

2, a2, · · · , tm, am, t
1) of G

m∑
i=1

M0(ai) >
m∑

i=1

(Zi − stepai).

Marchetti et al. in [14] proved that the condition of Theorem 4
is not necessary for the liveness of an SDFG. The consequence is
that conditions SC1 and SC2 are also not necessary.

4.6 Worst-case complexity of these algorithms
For any actor t ∈ T , we denote by deg+(t) = |A+(t)| the

output degree of t and deg−(t) = |A−(t)| the input degree of t.
We also denote by R = (R1, · · · , Rn) the repetition vector of G:
it can be defined as the smallest positive integer vector such that,
for any couple of actors (t, t′) ∈ T 2, ZtRt = Zt′Rt′ [15].

For each considered algorithm, we then define the complexity as
follows.

Algorithm SE : This algorithm, developed by [2] consists of a
symbolic execution. Its worst-case case complexity bounded by
O(|A| ×

∑
t∈T

Rt) is proved to be exponential [15].

Algorithm SC1 : It consists of checking the condition SC1
using the determination of a maximum cycle-mean in H1.
Its complexity is Θ(|N1| × |E1|) corresponding to
Θ(
∑

t∈T
ϕ(t)×

∑
(ti,tj)∈A

ϕ(ti)× ϕ(tj)).

Algorithm SC2 : It checks SC2 using the determination of a max-
imum cycle-mean in H2. Its complexity is bounded by Θ(|A| ×∑

t∈T
(deg+(t)× deg−(t))).

These complexities can be evaluated before executing the corre-
sponding algorithms. A simple heuristic can then choose between
these three algorithms by minimizing the theoretical complexity.

5. EXPERIMENTS
This part is focused on the actual applications of our methods

and their practical interest. Benchmarks are presented, followed
by the experimentations of the liveness algorithms. The last sub-
section is dedicated to the presentation and the experimentations
of an efficient algorithm to compute the minimum buffer capacity
ensuring liveness.

5.1 Benchmarks
Two different benchmarks reported in Table 1 were considered

to experimentally evaluate our method. The former will focus on
real-life industrial applications (JPEG2000, H264, . . .). The lat-
ter is generated using different generation tools: the size and the
complexity of the CSDFG are higher, and can be seen as possible
future instances. The first column of Table 1 reports the name of the
benchmarks. The second and third ones correspond respectively to
the number of actors and buffers. The last one reports the size of a
schedule issued from a symbolic execution, which is exactly equal
to
∑

t∈T
(Rt × ϕ(t)).

Application Actors Buffers Sched. size
BlackScholes 41 40 2379
JPEG2000 240 703 29595
Echo 38 82 42003
Pdetect 58 76 4045
H264 665 3128 1471
autogen1 90 617 250992
autogen2 70 473 41331062
autogen3 154 671 308818852
autogen4 2426 2900 51301
autogen5 2767 4894 312485

Table 1: Benchmarks

In summary, the BlackScholes application is a financial tool,
JPEG2000, Echo and H264 are three multimedia applications and
Pdetect is an application specialized in the detection of people.

For applications that deadlock, the computation time of algo-
rithms SC1 and SC2 will not vary, but SE will probably be faster.
However, SE reaches its maximum complexity when the instances
that it processes are live, that is the reason all the benchmarks we
considered are live.

5.2 Experimentations on the liveness
Table 2 reports the computation times of the three algorithms

(namely SE, SC1 and SC2) on our benchmark. The tests were car-
ried out on a standard workstation based on an Intel CORE i3 pro-
cessor. Framed results are those selected by our heuristic, which
choose the best algorithm following the evaluation of their theori-
cal complexity.

In most cases, the framed results correspond to the lowest com-
putation time. We first note the complementarity between algo-
rithms SC1 and SC2. SC2 is often faster than SC1. However, if the
actors degrees are high, such as in H264, SC1 is a better choice.

In the industrial benchmarks, the computation time of the sym-
bolic method SE remains competitive versus the SC1 and SC2 al-
gorithms. This is not longer true for the generated one’s, for which
the repetition vectors are higher. This kind of instance will be of
importance with the arrival of new programming tools. In this case,
the computation times of SE are clearly too long to be used in an
industrial context.

Application SC1 SC2 SE[2]
BlackScholes 2.105 / 14ms 1.103 / 0ms 2.105 / 1ms
JPEG2000 8.106 / 114ms 2.106 / 18ms 4.107 / 113ms
Echo 6.103 / 1ms 1.104 / 0ms 6.106 / 95ms
Pdetect 1.109 / 2500ms 8.103 / 4ms 6.105 / 5ms
H264 3.107 / 504ms 5.107 / 936ms 9.106 / 114ms
autogen1 1.105 / 13ms 2.106 / 55ms 3.108 / 1544ms
autogen2 7.105 / 41ms 1.106 / 37ms 3.1010 / 4min
autogen3 1.106 / 55ms 1.106 / 55ms 4.1011 / 21min
autogen4 7.107 / 217ms 1.107 / 71ms 2.108 / 132ms
autogen5 5.107 / 787ms 4.107 / 708ms 3.109 / 1442ms

Table 2: Complexity of SC1, SC2 and SE as defined in Subsec-
tion 4.6 with their actual computation time. Surrounded results
correspond to the method selected by our heuristic.

5.3 Computation of minimum buffer capaci-
ties ensuring liveness

Condition SC1 may be considered to evaluate minimum buffer
capacities of a fixed CSDFG. Indeed, let us suppose that each buffer
b(a) associated with an arc a = (t, t′) is bounded. This can be
modeled using a feedback arc a′ = (t′, t) as shown in Subsection
2.1. Now, let G′ = (T,A′) be the graph obtained by adding these
feedback arcs and H ′1 = (N ′1, E1) its corresponding oriented val-
ued graph associated to SC1. W ′1 denotes the valuation of H ′1.

The capacity of the buffer b(a) equals M0(a) + M0(a′). The
overall capacity of buffers of G is thus

∑
a∈A′M0(a).

Now, initial values M0(a), a ∈ A′ must be computed such that
condition SC1 is fulfilled. Integer values γa, a ∈ N ′1 must be
computed such that, for any arc e = (u, u′) ∈ E1, we get γu −
γu′ > W ′1(e).

The linear system is thus:

Minimize
∑

a∈A′M0(a) with{
γu − γu′ > W ′1(e), ∀e = (u, u′) ∈ E2
M0(a) ∈ N, ∀a ∈ A′
γtk ∈ R, ∀t ∈ T,∀k ∈ {1, · · · , ϕ(t)}

An equivalent linear program can be expressed based on SC2.
Our algorithm will choose between SC1 and SC2, whichever has
the lowest theoretical complexity. We use GLPK to solve a con-
tinuous version of the linear program. The buffer capacities are
computed using a rounding method.

Our experimental results are compared with a greedy algorithm
based on SE and inspired by [17]. Actors are executed so that the
buffer sizes are minimized. Our experiments are reported in Table
3. The first column is the benchmark’s names. Second and third
columns report the computation time and the overall buffer size
computed by SC1 or SC2 (following the theoretical evaluation of
the complexity). Fourth and fifth one’s report the computation time
and the overall buffer size obtained using the greedy algorithm.

SC1/SC2 Greedy algorithm
Application time buf. size time buf. size
BlackScholes 8 ms 16 KB 9 ms 16 KB
JPEG2000 3089 ms 3807 KB 2055 ms 3651 KB
Echo 5 ms 28 KB 315 ms 52 KB
Pdetect 26 ms 3959 KB 61 ms 3959 KB
H264 4808 ms 1368 KB 937 ms 1368 KB
autogen1 169 ms 1849 KB 3043 ms 2009 KB
autogen2 1704 ms 227 MB 7 min 244 MB
autogen3 2407 ms 1080 MB 36 min 1296 MB
autogen4 16605 ms 47 KB 20522 ms 34 KB
autogen5 2 min 1555 KB 3 min 3069 KB

Table 3: Computed buffer sizes of the different algorithms for
each CSDF.

Judging by the data in Table 3, the quality is comparable, but
the running time of the greedy algorithm is much higher in more
complex applications.

6. CONCLUSION
This paper presents significant advances in both fundamental and

applicative point of views for evaluating the liveness of a CSDFG.
The normalization of a CSDFG is first introduced and should be

used to effectively address other CSDFG problems such as the min-
imization of buffer considering throughput [18]. In addition, two
sufficient equivalent conditions of liveness are proved. Efficient
original polynomial-time algorithms for checking the liveness of a
CSDFG and computing its minimal buffer sizes (ensuring liveness)
are deduced.

These algorithms are the first polynomial ones to solve approx-
imatively these two problems. They were successfully tested on
industrial and academic benchmarks. The experiments highlighted
that they are well suited for real-life applications and more robust
than the existing methods for complex applications. Their low
complexity ensures that these algorithms can safely be integrated
in a compiler.

7. REFERENCES
[1] B. Akesson, S. Stuijk, A. Molnos, M. Koedam, R. Stefan,

A. Andrew Nelson and Beyranvand Nejad, and K. Goossens.
Virtual platforms for mixed time-criticality applications: The

CoMPSoC architecture and SDF3 design flow. In Quo Vadis,
Virtual Platforms?(QVVP), pages 1–2, 2012.

[2] S. R. Anapalli, K. C. Chakilam, and T. W. O’Neil. Static
Scheduling for Cyclo Static Data Flow Graphs. In Parallel
and Distributed Processing Techniques and Applications,
PDPTA 2009, pages 302–306. CSREA Press, 2009.

[3] M. Bamakhrama and J. Zhai. A methodology for automated
design of hard-real-time embedded streaming systems.
Design, Automation & Test in Europe (DATE), 2012.

[4] M. Benazouz. Buffer Sizing for Stream Processing
Applications. PhD thesis, Université P. et M. Curie, Paris,
France, 2012.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete.
Cycle-static data flow. IEEE Transactions on Signal
Processing, pages 3255–3258, 1995.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice.
LUSTRE: a declarative language for real-time programming.
In Symposium on Principles of programming languages -
POPL ’87, pages 178–188. ACM Press, 1987.

[7] A. Dasdan, S. S. Irani, and R. K. Gupta. Efficient algorithms
for optimum cycle mean and optimum cost to time ratio
problems. Design Automation Conference (DAC’99), pages
37–42, 1999.

[8] A. Ghamarian and M. Geilen. Liveness and boundedness of
synchronous data flow graphs. Formal Methods in Computer
Aided Design (FMCAD’06), 2006.

[9] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. Theelen,
M. Mousavi, A. Moonen, and M. Bekooij. Throughput
Analysis of Synchronous Data Flow Graphs. In International
Conference on Application of Concurrency to System Design
(ACSD’06), pages 25–36, 2006.

[10] Kalray. Manycore processors for embedded computing.
www.kalray.eu.

[11] S. F. Khasawneh, M. E. Ritcher, and T. W. O’Neil. Static
Scheduling for synchronous data flow graphs. Computers
and Their Applications, 1:38–43, 2007.

[12] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[13] L. Mandel, F. Plateau, and M. Pouzet. Lucy-n: a
n-synchronous extension of Lustre. Mathematics of Program
Construction, 2010.

[14] O. Marchetti and A. Munier-Kordon. A sufficient condition
for the liveness of weighted event graphs. European Journal
of Operational Research, 197(2):532–540, Sept. 2009.

[15] O. Marchetti and A. Munier Kordon. Cyclic Scheduling for
the Synthesis of Embedded Systems. In Y. Vivien and
R. Frederic, editors, Introduction to scheduling, chapter 6,
pages 135–164. Chapman and Hall/CRC Press, 2009.

[16] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. A hierarchical
multiprocessor scheduling framework for synchronous
dataflow graphs. Technical report, University of California,
Berkeley, 1995.

[17] S. Sriram and S. Bhattacharyya. Embedded multiprocessors:
Scheduling and synchronization. CRC, 2009.

[18] S. Stuijk, M. Geilen, and T. Basten. Throughput-Buffering
Trade-Off Exploration for Cyclo-Static and Synchronous
Dataflow Graphs. IEEE Transactions on Computers,
57(10):1331–1345, 2008.

[19] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
language for streaming applications. Compiler Construction,
pages 179–196, 2002.

APPENDIX
This appendix provides the proofs for Theorems 2 through 4.

Proof of Theorem 2
PROOF. Let us suppose that G is not live. Then, there exists a

circuit c = (t1, a1, t
2, a2, · · · , tm, am, t

1), and values ni ∈ N −
{0} and ki ∈ {1, · · · , ϕ(ti)} for i ∈ {1, · · · ,m} such that:

• Executions Pred〈tiki , n
i〉 with i ∈ {1, · · · ,m} can be per-

formed;

• the amount of data is not sufficient to execute any execution
〈tiki , n

i〉, for i ∈ {1, · · · ,m}.

Let us first consider the arc a1 = (t1, t2). Since the phase 〈t2k2 , n
2〉

cannot be executed even if Pred〈t1k1 , n
1〉 is, the number of tokens

on a1 must verify

M0(a1) +D+
a1Pred〈t

1
k1 , n

1〉 −D−a1〈t
2
k2 , n

2〉 < 0.

By definition of D+
a1 and D−a1 ,

D+
a1Pred〈t

1
k1 , n

1〉 = D+
a1〈t

1
ϕ(t1), n

1 − 1〉+D+
a1Pred〈t

1
k1 , 1〉

and

D−a1〈t
2
k2 , n

2〉 = D−a1〈t
2
ϕ(t2), n

2 − 1〉+D−a1〈t
2
k2 , 1〉.

The previous inequality thus becomes

M0(a1) +D+
a1〈t

1
ϕ(t1), n

1 − 1〉+D+
a1Pred〈t

1
k1 , 1〉

−D−a1〈t
2
ϕ(t2), n

2 − 1〉 −D−a1〈t
2
k2 , 1〉 < 0.

Now, by Lemma 1, this sum is divisible by stepa1 , so we get

M0(a1) +D+
a1〈t

1
ϕ(t1), n

1 − 1〉+D+
a1Pred〈t

1
k1 , 1〉

−D−a1〈t
2
ϕ(t2), n

2 − 1〉 −D−a1〈t
2
k2 , 1〉 ≤ −stepa1 .

Similarly, by setting tm+1 = t1, we get for any value i ∈
{1, · · · ,m},

M0(ai) +D+
ai
〈tiϕ(ti), n

i − 1〉+D+
ai
Pred〈tiki , 1〉

−D−ai
〈ti+1

ϕ(ti+1), n
i+1 − 1〉 −D−ai

〈ti+1
ki+1 , 1〉 ≤ −stepai .

Since G is normalized,
∀i ∈ {1, · · · ,m− 1},

D−ai−1〈t
i
ϕ(ti), n

i − 1〉 = D+
ai
〈tiϕ(ti), n

i − 1〉 = (ni − 1) · Zti .

By summing all the previous inequalities, we then obtain that
m∑

i=1

M0(ai) +
m∑

i=1

[
D+

ai
Pred〈tiki , 1〉 −D−ai−1〈t

i
ki , 1〉

]
≤ −

m∑
i=1

stepai

which concludes the proof.

Proof of Theorem 3
PROOF. Let us suppose that G verifies SC2 and let

c = (t1, a1, t
2, a2, · · · , tm, am, t

1) be a circuit of G. Then, for
any values ki ∈ {1, · · · , ϕ(ti)}, i ∈ {1, · · · ,m}, we get that

maxki∈{1,··· ,ϕ(ti)}
[
D−ai−1〈t

i
ki , 1〉 −D+

ai
Pred〈tiki , 1〉

]
≥

D−ai−1〈t
i
ki , 1〉 −D+

ai
Pred〈tiki , 1〉.

Thus,

m∑
i=1

M0(ai) > −
m∑

i=1

stepai

+
m∑

i=1

[
D−ai−1〈t

i
ki , 1〉 −D+

ai
Pred〈tiki , 1〉

]
.

and G verifies SC1. Conversely, if SC1 is true, then, for any cycle
c = (t1, a1, t

2, a2, · · · , tm, am, t
1) and any phases k?

i of ti max-
imizing D−ai−1〈t

i
ki , 1〉 − D+

ai
Pred〈tiki , 1〉, the inequality is true.

SC2 is thus verified, which concludes the proof.

Proof of Theorem 4

PROOF. Any normalized SDFG G = (T,A) is a CSDFG for
which each actor has a unique phase, thus ∀t ∈ T , ϕ(t) = 1.
Since G is normalized, for any arc a = (t, t′),D−a 〈t1, 1〉 = Zt and
D+

a Pred〈t1, 1〉 = D+
a 〈t1, 0〉 = 0. Thus, SC2 is equivalent to the

condition expressed by the theorem.

