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Abstract—Join-Free Petri nets, whose transitions have at
most one input place, model systems without synchroniza-
tions while Choice-Free Petri nets, whose places have at
most one output transition, model systems without conflicts.
These classes respectively encompass the state machines (or
S-systems) and the marked graphs (or T-systems).

Whereas a structurally bounded and structurally live Petri
net graph is said to be “well-formed”, a bounded and live
Petri net is said to be “well-behaved”. Necessary and sufficient
conditions for the well-formedness of Join-Free and Choice-
Free nets have been known for some time, yet the behavioral
properties of these classes are still not well understood. In
particular efficient sufficient conditions for liveness have not
been found until now.

In this paper, we extend results on weighted T-systems to
the class of weighted Petri nets and present transformations
which preserve the feasible sequences of transitions and reduce
the initial marking. We introduce a notion of “balancing” that
makes possible the transformation of conservative systems into
so-called “1-conservative systems” while retaining the feasible
transition sequences. This transformation leads to polynomial
sufficient conditions of liveness for well-formed Join-Free and
Choice-Free nets.

Keywords-Join-Free; Choice-Free; S-system; State Machine;
T-system; Petri net; weighted net; liveness; boundedness; well-
formedness; well-behavedness; balancing; polynomial sufficient
condition; Synchronous Data Flow.

INTRODUCTION

A. Models and Analysis

Petri nets have proved useful to model discrete event
systems possibly with conflicts, synchronization and con-
currency [1]. However, their expressiveness, although not
Turing-complete [1], [2], comes at the cost of a high analysis
complexity. The reachability and liveness problems, among
others, are both EXPSPACE-hard while the k-boundedness
problem is NP-hard [3].

Synchronous Data Flow (SDF) were introduced by Lee
and Messerschmitt [4] while Cyclo-Static Data Flow (CSDF,
extending SDF with phases) were studied by Bilsen et
al. [5]. They are special data flow models for concurrent

† The work of this author was supported by the 2011 Digiteo project
TATAMI.

applications to be executed on parallel architectures and
have been used in many—often multimedia—applications,
such as a MP3 playback [6]. Weighted T-systems [7], [8]
are Petri nets having the same modeling power as the SDF,
thus the methods developed for one model can be used for
the other. However, as programs become more complex, the
expressiveness of models has to be extended. An objective is
thus to generalize results common to SDF and T-systems in
order to treat more complex applications involving choices.

Petri nets allow to model complex applications but funda-
mental properties are hard to analyze for this class. In order
to reduce this complexity, we focus on simpler classes that
are expressive enough to model many real applications and
simple enough to permit efficient analysis methods.

Embedded systems must be well-designed in order to
work properly. They must preserve their functionalities and
use a limited amount of memory over time. The correspond-
ing notion in Petri nets is that of well-formedness, ensuring
the existence of an initial configuration for the system that
lets it work as intended.

Such structural guarantees are fundamental for applica-
tions. They exist for weighted T-systems and can be found
efficiently (in polynomial time) in this case [8]. Well-
formedness is solved for non-weighted Free-Choice nets [9]
and even larger non-weighted classes [10]. In the weighted
case, the problem is solved for the class of the Equal-
Conflict systems with homogeneous weights, i.e. identical
output values for every place [11]. This class contains the
weighted Choice-Free systems, which extend weighted T-
systems. There exist polynomial necessary and sufficient
conditions of well-formedness for weighted Choice-Free
systems [12], [13] as well as weighted Join-Free systems
[12]. Systems belonging to both Choice-Free and Join-Free
classes are named Fork-Attribution (FA) and inherit the
structural properties of both classes. Figure 1 represents the
inclusion relations between the special classes of weighted
Petri nets considered in this paper.

Well-formedness ensures that the structure of the system
will induce a reliable behavior. The next fundamental aim is
to find an initialization of the well-formed system, making it
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Figure 1. Some classes and subclasses of weighted systems.

usable in practice, thus well-behaved. Such a configuration
has thus to be found in polynomial time for any well-
formed system of the considered class. This initial state must
be sufficient for well-behavedness, as sufficiency ensures
that the system will work as intended. One would like it
to approach the necessity threshold in order to minimize
resources. This objective is often hard to reach and suf-
ficient polynomial conditions of well-behavedness already
constitute a key improvement. However, even such sufficient
but not necessary conditions are not easy to discover. One
has been found for T-systems [8]. In weighted Choice-
Free and some larger classes, only exponential conditions
are proposed [11], [12], which cannot be applied to real
systems. Well-behavedness is also not mastered for weighted
Join-Free systems. Existing results encompass polynomial
and non-polynomial characterizations of liveness for sev-
eral ordinary (non-weighted) classes [14]–[16] and non-
polynomial ones for homogeneous classes [17]–[19], as well
as necessary conditions for liveness and boundedness [20].

Our contribution is to provide two polynomial sufficient
conditions of well-behavedness for the weighted Choice-
Free and Join-Free classes. Thus, we extend the expressive-
ness of the models usable in real applications, whose well-
behavedness may be ensured efficiently. Moreover, we show
that conservativeness, induced by well-formedness in these
two classes, is a major property that leads to these sufficient
conditions. Such weighted and conservative systems can be
transformed into 1-conservative [3] systems by modifying
only weights. The key idea consists in finding a sufficient
condition for weighted 1-conservative strongly connected
Join-Free systems, extending the existing condition of T-
systems. This novel condition is then used to construct a
sufficient condition for well-formed Choice-Free systems.

B. Models and Applications

Join-Free, Choice-Free and S-systems are appealing not
only from a theoretical point of view but also because they
allow to model useful applications.

1) S-systems: They are a simple subclass of weighted
Petri nets, in which programs read (resp. write) in a single
memory, while memories can be shared between programs.
They allow to model asynchronous parallel algorithms on
several processors. Asynchronous methods diminish the
synchronization points between processors, eliminating idle
time at the expense of extra computations. However, such
methods perform better than their synchronous counterparts

for several practical problems [21]. Computational models
as well as an associated convergence theory have been
developed [21]. A powerful and simple model reads data
from a shared memory, computes a function and overwrites
data in common memory with the corresponding updated
values. This computational model applies to a wide range
of problems, including solving nonsingular linear systems
[21], and is represented by a Petri net in figure 2.
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Figure 2. The S-net models one shared memory as the place m, in
which four asynchronous parallel processors read and write to compute
an asynchronous iteration. Weights denote amounts of read or written data.

2) Join-Free systems: They are closely related to Pro-
cess Rewrite Systems (PRS) and more specifically to Ba-
sic Parallel Processes (BPP, context-free multiset rewrite
systems, commutative context-free processes). Such sys-
tems allow to model multithreaded programs [22], [23].
Results on Join-Free systems with a weight restriction,
named communication-free, have served to gain insight into
commutative context-free grammars and BPP [24].

3) Choice-Free systems: Flow applications are usually
modeled with weighted T-systems (equivalently with SDFs)
[6]. The weighted Choice-Free model adds the possibility
to write asynchronously in a memory, thus is strictly more
powerful than the T-system model.

This paper is organized as follows. In Section I, we recall
classical definitions, notations and properties. In Section II,
we define the scaling and balancing of systems together with
the trimming down to useful tokens, which are polynomial
time transformations that preserve the set of feasible firing
sequences. Moreover, balancing is compared to the notion of
normalization that was developed for T-systems. In Section
III (resp. IV), we use balancing to present a polynomial suf-
ficient condition of liveness for well-formed balanced Join-
Free nets (resp. well-formed Choice-Free nets). Besides, the
sufficient condition of liveness for these Join-Free nets is
shown to induce a necessary and sufficient condition of
liveness for well-formed ordinary Join-Free nets. Finally,
in Section V, we show that neither one of the sufficient
conditions of liveness is necessary in the weighted case.

I. DEFINITIONS, NOTATIONS AND PROPERTIES

We recall in this section some basic definitions and results
concerning P/T nets, and systems. The first subsection is
devoted to notations about weighted nets. The definitions
of special classes of nets considered by our study, namely
Choice-Free, Join-Free and some of their subclasses, are
then recalled. The third subsection provides some definitions



dealing with markings and firing sequences, and their rela-
tionships. The last one recalls some definitions and results
related to liveness and boundedness.

A. Weighted and ordinary nets

A (weighted) net is a triple N = (P, T,W ) where:
• the sets P and T are finite and disjoint, T contains only

transitions and P only places,
• W : (P × T ) ∪ (T × P ) 7→ N is a positive function.

P ∪ T is the set of the elements of the net.
An arc is present from a place p to a transition t (resp. a

transition t to a place p) if W (p, t) > 0 (resp. W (t, p) > 0).
An ordinary net is a weighted net whose weighting function
W is valued in {0, 1}.

The incidence matrix of a net N = (P, T,W ) is a place-
transition matrix C defined as

∀p ∈ P,∀t ∈ T,C[p, t] =W (t, p)−W (p, t)

where the weight of any non-existing arc is 0.
The pre-set of the element x of P ∪ T is the set

{w|W (w, x) > 0}, denoted by •x. By extension, for any
subset E of P or T , •E =

⋃
x∈E

•x.
The post-set of the element x of P ∪ T is the set

{y|W (x, y) > 0}, denoted by x•. Similarly, E• =
⋃
x∈E x

•.
A P-subnet S = (P ′, T ′,W ′) of a net N = (P, T,W ) is

generated by a subset of places P ′ ⊆ P and is such that
T ′ = •P ′ ∪ P ′•. W ′ is the restriction of W to P ′ and T ′.

We denote by maxNp the maximum output weight of p
in the net N and by gcdNp the greatest common divisor
of all input and output weights of p in the net N . The
simpler notation maxp and gcdp is used when no confusion
is possible. We denote by 1

n the vector of size n whose
components are all equal to 1. Figure 3 presents a weighted
net and its corresponding incidence matrix. Figure 4 pictures
two subnets of the net from Figure 3.

p1

p2

p3

p4

p5

t1

t2

t3 t4
1

1

2

2

1
11

2
1 2

2

1 1 -2 0
0 -1 1 0

-2 0 2 0
0 0 -1 2
0 0 1 -2




p1
p2
p3
p4
p5

t1 t2 t3 t4

Figure 3. A weighted net and the corresponding incidence matrix.
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Figure 4. Two P-subnets of the net pictured by Fig. 3, defined respectively
by the sets of places {p1, p2, p3} and {p4, p5}.

B. Special classes of nets

N = (P, T,W ) is a (weighted) Choice-Free net if any
place has at most one output transition, i.e. ∀p ∈ P , |p•| ≤ 1.
A T-net is a Choice-Free net such that any place has at most
one input transition, i.e. ∀p ∈ P , |•p| ≤ 1.
N = (P, T,W ) is a (weighted) Join-Free net if any

transition has at most one input place, i.e. ∀t ∈ T , |•t| ≤ 1.
An S-net is a Join-Free net such that any transition has at
most one output place, i.e. ∀t ∈ T , |t•| ≤ 1.

A Fork-Attribution net (or FA net) is both a Join-Free and
a Choice-Free net.

Note that a transition of a T-net may have several input
places. Thus, T-nets are not included in FA nets. Similarly,
a place of an S-net may have several output transitions, thus
S-nets also are not included in FA nets. The nets presented
in Figure 3 and Figure 4 are Choice-Free. The net on the
right side of Figure 4 is a T-net.

The dual of a net is defined by reversing the arcs
and swapping places and transitions. This transformation
amounts to transposing the incidence matrix.

Choice-Free and Join-Free classes are dual. S and T
classes are also dual. However transforming a net into its
dual does not necessarily provide a simple way to deduce
behavioral properties of one net from the other.

C. Markings and firing sequences

A marking M of a net N is a mapping M : P → N.
A system is a couple (N,M0) where N is a net and M0 the
initial marking of N .

A marking M of a net N enables a transition t ∈ T if
∀p ∈ •t ,M(p) ≥ W (p, t). A marking M enables a place
p ∈ P if M enables all its output transitions. The marking
M ′ obtained from M by the firing of an enabled transition t
is defined by ∀p ∈ P,M ′(p) =M(p)−W (p, t) +W (t, p).
We note M t−→M ′.

A firing sequence σ of length n ≥ 1 on the set of
transitions T is a mapping {1, . . . , n} → T . A sequence is
infinite if its domain is countably infinite. A firing sequence
σ = t1t2 · · · tn is feasible if the successive markings
obtained M0

t1−→ M1
t2−→ M2 · · ·

tn−→ Mn are such that,
for any i ∈ {1, · · · , n}, Mi−1 enables transition ti. We note
M0

σ−→Mn. A marking M ′ is said to be reachable from the
marking M if there exists a feasible firing sequence σ such
that M σ−→ M ′. The set of reachable markings from M is
denoted by [M〉.

The Parikh vector ~σ : T → N associated with a finite
sequence of transitions σ maps every transition t of T to
the number of occurrences of t in σ.

D. Liveness and boundedness

Liveness and boundedness are two basic properties ensur-
ing that all transitions of a system S = (N,M0) can always
be fired and that the overall number of tokens remains
bounded.



More formally,
• A system S is live if for every marking M in [M0〉

and for every transition t, there exists a marking M ′ in
[M〉 enabling t.

• S is bounded if there exists an integer k such that
the number of tokens in each place never exceeds k.
Formally,

∃k ∈ N ∀M ∈ [M0〉 ∀p ∈ P, M(p) ≤ k .

S is k -bounded if, for any place p ∈ T ,

k ≥ max{M(p)|M ∈ [M0〉} .

• A system S is well-behaved if it is live and bounded.
A marking M is live (resp. bounded) for a net N if the
system (N,M) is live (resp. bounded).

Furthermore, the structure of a net N may be studied
to ensure the existence of an initial marking M0 such that
(N,M0) is live and bounded:
• A net N is structurally live if there exists a marking
M0 such that the system S = (N,M0) is live.

• A net N is structurally bounded if the system
S = (N,M0) is bounded for every M0.

• A net is well-formed if it is structurally live and
structurally bounded.

Our study focuses on well-formed nets. For Choice-
Free and Join-Free nets, these properties are related to the
consistency and the conservativeness properties defined as
follows using the incidence matrix C of a net:
• A net N with incidence matrix C is consistent if there

exists a vector X ∈ N
|T | such that X ≥ 1

|T | and
CX = 0.

• A net N with incidence matrix C is conservative if
there exists a vector Y ∈ N|P | such that Y ≥ 1

|P | and
tY C = 0.

The next theorem expresses a necessary and sufficient condi-
tion of well-formedness for Choice-Free and Join-Free nets.

Theorem 1 ( [12]): Suppose that N is a (weighted) Join-
Free or Choice-Free net. The properties

1) N is consistent and conservative
2) N is well-formed

are equivalent. Moreover, any connected and well-formed
Join-Free or Choice-Free net is strongly connected.

Figure 5 shows a well-formed Choice-Free system.
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Figure 5. The weighted Choice-Free net is both consistent (right vector
t(2, 2, 2, 1)) and conservative (left vector (2, 2, 1, 1, 1)), thus well-formed.

II. TRANSFORMATIONS PRESERVING FIRING SEQUENCES

This section aims at presenting several polynomial trans-
formations that preserve the feasible firing sequences. They
will be used in the sequel to prove the sufficient conditions of
liveness. We first define the scaling of a system by a vector.
The notions of 1 -conservativeness and balancing are then
introduced. We present the useful tokens property allowing
to reduce the initial number of tokens without modifying
the feasible sequences. Normalization of T-systems is finally
recalled and compared to balancing.

A. Scaling of systems

We define the scaling, multiplying weights and initial
markings by strictly positive rational numbers.

Definition 1: The multiplication of all input and output
weights of a marked place p together with its marking by a
strictly positive rational y is the scaling of the place p if the
resulting input and output weights and marking are integers.
If each place p of a system is scaled by the component Y [p]
of a vector Y , the system is said to be scaled by Y.
Figure 6 shows the scaling of a marked place by 2.
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Figure 6. The marked place on the left is scaled by 2, yielding the place
on the right.

Theorem 2: Let S = ((P, T,W ),M0) be a system and Y
a vector of |P | strictly positive rational components. Scaling
S by Y preserves the feasible sequences of firings.

Proof: Let S′ = ((P, T,W ′),M ′0) be the system
obtained by scaling S = ((P, T,W ),M0) with Y . Let
σ = σ1t be a finite sequence of firings. We prove that σ
is equivalently feasible in S and S′, by induction on the
size of σ.

If σ1 is empty, then suppose M0 enables t, meaning that
M0(p) ≥W (p, t) for all input places p of t.
This is equivalent to

∀p ∈ •t ,M ′0(p) = Y [p] ·M0(p) ≥ Y [p] ·W (p, t) =W ′(p, t)

and M ′0 enables t in S′. Now suppose that σ1 is not empty
and is feasible in both S and S′. The firing sequence σ is
feasible in S if and only if

∀p ∈ •t , M0(p) +
∑
ti∈•p

W (ti, p) · ~σ1(ti)

−
∑
ti∈p•

W (p, ti) · ~σ1(ti) ≥W (p, t)



which is equivalent to

∀p ∈ •t , Y [p] ·M0(p) +
∑
ti∈•p

Y [p] ·W (ti, p) · ~σ1(ti)

−
∑
ti∈p•

Y [p] ·W (p, ti) · ~σ1(ti)

≥ Y [p] ·W (p, t)

and

∀p ∈ •t , M ′0(p) +
∑
ti∈•p

W ′(ti, p) · ~σ1(ti)

−
∑
ti∈p•

W ′(p, ti) · ~σ1(ti) ≥W ′(p, t) .

Thus, t is equivalently enabled in S′.

B. Balancing and 1 -conservativeness in weighted Petri Nets

The notion of 1-conservativeness appeared in [3] as a re-
striction of the conservativeness. In the following, balancing
is defined as a scaling that yields 1-conservative systems and
applies to conservative systems.

Definition 2: A transition t is 1-conservative if∑
p∈•t

W (p, t) =
∑
p∈t•

W (t, p) .

If all the transitions of a net are 1-conservative, the net is
said to be 1-conservative.

Lemma 1: 1-conservativeness implies conservativeness.
Proof: Any 1-conservative net N = (P, T,W ) satisfies

∀t ∈ T,
∑
p∈•t

W (p, t) =
∑
p∈t•

W (t, p)

which is equivalent to

∀t ∈ T,
∑
p∈t•

W (t, p) +
∑
p∈•t
−W (p, t) = 0 .

We deduce that t1|P | is a conservativeness vector for N .
Now we define balancing, which transforms a system into a
1-conservative system having the same set of feasible firing
sequences.

Definition 3: Let S be a system. Balancing S consists in
scaling S by a vector Y of strictly positive rational numbers
such that the resulting system is 1-conservative.

This transformation can help gain insight into conservative
systems as shown by the next lemma and theorem.

Lemma 2: A system is conservative if and only if it can
be balanced.

Proof: Consider a conservative system with incidence
matrix C, then by definition there exists a vector Y ≥ 1

|P |

of natural numbers such that tY ·C = 0. Multiplying every
component C[p, t] by Y [p] yields an incidence matrix C ′

satisfying for every transition t, t1|P | · C ′[t] = 0 and the
new system is 1-conservative. Moreover, C ′ and the new
initial marking contain only integers. Now, if the system

can be balanced, there exists a vector Y with only strictly
positive rational numbers that annuls every column of C.
Multiplying the components of Y by the least common
multiple of their denominators gives a conservative vector,
proving the lemma.

Theorem 3: Balancing preserves the feasible sequences.
Proof: Balancing is a scaling that fulfills one more con-

dition over the incidence matrix. Thus, Theorem 2 applies,
proving the claim.

Corollary 1: A conservative system is live if and only if
one of its balancings is live.

Proof: Any conservative system can be balanced by
Lemma 2. The resulting system has the same feasible firing
sequences by Theorem 3. Thus, if for every reachable
marking M and every transition t of one of the systems,
there exists a sequence feasible at M that contains t, then
the whole sequence is feasible in the other system, in which
t can consequently be fired. We deduce that the liveness of
one system is equivalent to the liveness of the other one.

Finding an adequate (conservative) scaling vector for a
well-formed Choice-Free or Join-Free net consists in finding
a solution to tX · C = 0, X ≥ 1

|P |, or tC · X = 0, X ≥
1
|P | where the entries of C are integers and those of X are

naturals [12]. A rational solution X can be found with a
linear program in weakly polynomial time [25]. Multiplying
the components of X by the product of their denominators
leads to a scaling vector solution with a polynomial increase
of the number of bits.

C. Useful Tokens in Weighted Petri Nets

Definition 4: A weighted Petri net is said to satisfy the
useful tokens condition if every place p is initially marked
with a multiple of gcdp.

The following theorem shows that any initial marking can
be modified to satisfy this condition in such a way that the
set of feasible sequences is not modified.

Theorem 4: The marking M0(p) of every place p of a
system S = (N,M0) can be replaced by⌊M0(p)

gcdp

⌋
· gcdp

without modifying the feasible firing sequences of S.
Proof: Let N be a net. Consider two markings M0 and

M ′0 such that

∀p ∈ P, M ′0(p) =
⌊M0(p)

gcdp

⌋
· gcdp .

Let rp be the remainder of the division of M0(p) by gcdp.
We get M0(p) = M ′0(p) + rp. Consider a feasible firing
sequence σ = σ1t such that M0

σ1−→ M and M ′0
σ1−→ M ′.

Denote by vp the integer∑
ti∈•p

W (ti, p) · ~σ1(ti)−
∑
ti∈p•

W (p, ti) · ~σ1(ti) .



Since all input and output weights of p are multiples of gcdp,
vp is a multiple of gcdp. Now suppose that σ is a feasible
firing sequence for M0. This implies that t is enabled by
M , hence the inequality :

∀p ∈ •t ,M0(p) + vp ≥W (p, t)

is equivalent to

∀p ∈ •t ,M ′0(p) + rp + vp ≥W (p, t).

Now, for every place p, M ′0(p), vp and W (p, t) are multiples
of gcdp and rp is strictly smaller than gcdp. Equivalently,

∀p ∈ •t ,M ′0(p) + vp ≥W (p, t)

and t can be fired at M ′, which completes the proof.

D. Normalization and Balancing

Normalization was introduced in the context of weighted
T-systems to obtain a sufficient condition of liveness [8].
This transformation is explicited in a different way here
starting from the consistency of a well-formed T-system.

Definition 5: A transition t is normalized if all the input
and output weights of t are equal. A system is normalized
if all its transitions are normalized.

Normalizing consists in transforming a system into a
normalized one by means of an appropriate system scaling.

The next theorem shows that normalization can be per-
formed on any consistent weighted T-system.

Theorem 5 ( [8]): Every consistent weighted T-system
can be normalized.

Proof: Suppose that S = (N,M0) is a weighted
consistent T-system with incidence matrix C. There exists by
definition a vector X ≥ 1

|T | of integers such that C ·X = 0.
Since the T-system is consistent, its places either have

one input and one output transition or are isolated. Only
non isolated places need be considered for normalization.

Since any place p has exactly one input transition t and
one output transition t′, we observe that

W (t, p) ·X[t] =W (p, t′) ·X[t′] .

Denote by K the least common multiple of the values X[t],
t ∈ T . For any place p with input transition t, we set

αp =
K

X[t] ·W (t, p)
.

Now we prove that the weighted T-system S′ = (N ′,M ′0)
obtained by scaling S with (α1, · · · , α|P |) is normalized.
Indeed, for any place p ∈ •t ′ such that •p = {t},

W ′(p, t′) =W (p, t′) ·αp =
W (t, p) ·X[t] ·K
X[t′] ·X[t] ·W (t, p)

=
K

X[t′]
.

Renaming t′ to t, we get

W ′(p, t) =
K

X[t]
.

Similarly, for any place p ∈ t•,

W ′(t, p) =W (t, p) · αp =
K

X[t]

and S′ is normalized.
Figure 7 illustrates the differences between balanced and

normalized weighted nets. On the left, the Choice-Free net
is balanced but neither normalized nor normalizable. The
net in the middle is a normalized and balanced circuit. The
third one is a normalized but not balanced T-system.
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Figure 7. Possibilities to normalize or balance a net depend on its structure.

III. WELL-BEHAVEDNESS OF JOIN-FREE SYSTEMS

We present in this section a polynomial sufficient condi-
tion for the liveness of a well-formed Join-Free system. This
condition will be used in Section IV to deduce a sufficient
condition for the liveness of Choice-Free systems.

We first note that well-formed Join-Free systems are
necessarily balanceable. The sufficient condition of liveness
is then expressed on a balanced version of the system.
Normalization is compared to balancing for the subclass of
S-systems. Finally we examine the special case of ordinary
Join-Free systems.

A. Well-formedness of Weighted Join-Free Systems

As recalled earlier, our study is restricted to well-formed
Join-Free systems. By Theorem 1, such systems are consis-
tent and conservative. According to Lemma 2 these systems
are also balanceable, which can be done in polynomial
time. In the following, we focus on strongly connected and
balanced Join-Free systems.

B. A sufficient polynomial condition for the liveness of
balanced and weighted Join-Free systems

The following technical lemma expresses a simple suffi-
cient condition for the existence of enabled places.

Lemma 3: Let S = ((P, T,W ),M0) be a balanced
strongly connected Join-Free system fulfilling the useful
tokens condition and the inequality∑

p∈P
M0(p) >

∑
p∈P

(maxp − gcdp) . (1)

Then for every marking M in [M0〉, there exists a place
p ∈ P which is enabled by M .

Proof: As M0 fulfills the useful tokens condition, it
follows that for every place p, M0(p) is a multiple of gcdp.
Moreover, all input and output weights of every place p are



multiples of gcdp. Thus, for every reachable marking M and
every place p, M(p) is a multiple of gcdp.

Now suppose, by contradiction, that M is a fixed reach-
able marking that does not enable any place. Then

∀p ∈ P,M(p) ≤ maxp − gcdp,

thus, ∑
p∈P

M(p) ≤
∑
p∈P

(maxp − gcdp) . (2)

Since S is balanced, every transition firing maintains the
number of tokens in the system, implying that∑

p∈P
M(p) =

∑
p∈P

M0(p) .

Inequality (2) is then equivalent to∑
p∈P

M0(p) ≤
∑
p∈P

(maxp − gcdp),

contradicting inequality (1).
We are now able to prove that the liveness condition given

in the next theorem is sufficient.
Theorem 6: Let S = (N,M0) be a balanced strongly

connected Join-Free system satisfying the useful tokens
condition. S is live if∑

p∈P
M0(p) >

∑
p∈P

maxp − gcdp .

Proof: Let S be a Join-Free system meeting the condi-
tions of the theorem. We show that S is live, i.e. for every
reachable marking M and every transition t, there exists a
finite and feasible firing sequence starting at M and leading
to a marking M ′ enabling t. For that purpose, we prove
that Algorithm 1 computes such a sequence and terminates.
Tokens are arbitrarily numbered to ensure its convergence.

If M(p) ≥ W (p, t) then t is enabled. The algorithm
terminates and σ is the requested firing sequence.

In the other case, p is not enabled. L 6= ∅ by Lemma 3
and thus, p′ exists. Also note that p 6= p′ since p 6∈ L.

At every step of the loop, a firing occurs so as to reduce
the minimal distance between the mobile token with smallest
number and the place p. Notice that a firing can move
several tokens at once on different paths, taking some of
them away from p. Such a firing is always possible when
p is not enabled, as there exists at least one enabled place
at any reachable marking by Lemma 3. In so doing, a new
marking M ′ is reached, inducing the new shortest distances
of dM

′
. We prove that dM >lex d

M ′ , following the lexical
order on N

δ . The firing of t′ ensures that dM
′

i < dMi . At
this step, as the numbers of the other displaced tokens are
greater than i, the inequality dM >lex d

M ′ is true, even if
for any j > i, dMj may increase. Now, as the lexical order is
well-founded over Nδ , the algorithm terminates, σ is finite
and t is enabled.

Data:
• The current reached marking M , which contains δ

tokens numbered 1, . . . , δ;
• The unique input place p of t;
• The δ-tuple dM = (dM1 , . . . , d

M
δ ), which associates

the shortest distance dMi from token i to the place p
according to the marking M .

Result: A finite firing sequence σ such that M σ→M ′

and M ′ enables t.

1 σ := ε, the empty sequence;

2 while M(p) < W (p, t) do

3 Let L be the set of the places enabled by M and
J = {i1 . . . ik} the set of the numbers of the tokens
in the places of L at M ;

4 Let p′ be the place of L containing token i where i
is the smallest value in J ;

5 Let µ = p′, t′, p′′, . . . , p be one shortest path from
p′ to p;

6 Fire t′, send token i to p′′ and sufficiently many
other tokens of p′ to the output places of t′,
according to the output weights of t′;

7 Upgrade M and dM ;

8 σ := σ t′

9 end

Algorithm 1: The algorithm computes a feasible firing
sequence starting at M so as to enable any transition t.

Figure 8 shows the application of this theorem to a
balanced Join-Free system. The pictured system satisfies∑
p(maxp−gcdp) = 1+1+0 = 2. The inequality becomes∑
pM0(p) > 2 and is fulfilled by the marking on the figure.
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Figure 8. The initial marking of this balanced Join-Free system fulfills
the conditions of Theorem 6 and is thus well-behaved.

C. Balancing, Normalization and S-systems

S-systems constitute a subclass of Join-Free systems. As
shown below, the normalization that was developed for T-
systems coincides with balancing for S-systems.



Theorem 7: A strongly connected S-system is balanced if
and only if it is normalized.

Proof: As every transition of the system has one input
and one ouput place, it is balanced if and only if its unique
input weight equals its unique output weight, characterizing
a normalized system.

D. The special case of ordinary Join-Free Systems

We show that the sufficient condition of liveness for well-
formed Join-Free nets becomes a necessary and sufficient
condition of liveness for ordinary well-formed Join-Free
nets, which are S-nets.

Theorem 8: An ordinary strongly connected well-formed
Join-Free net is an S-net.

Proof: By contradiction, suppose that there exists an
ordinary well-formed strongly connected Join-Free net S and
a transition t with |t•| > 1. S is strongly connected, thus
there exists a circuit c = tp1t1p2t2 . . . pktk passing through
t with tk = t. As S is conservative by Theorem 1, there
exists Y ≥ 1

|P | such that tY · C = 0. Since |t•| > 1, there
is at least one other place p′ ∈ t• with p′ 6= p1. Thus

Y [pk] =
∑
pi∈t•

Y [pi] > Y [p1] .

Generalizing over i ∈ {1, . . . , k} with Y [pk+1] = Y [p1],
Y [pi] ≥ Y [pi+1], which contradicts Y [pk] > Y [p1].

The inequality of Theorem 6 induces a necessary and
sufficient condition of liveness for ordinary well-formed
strongly connected S-systems. The following theorem proves
a similar condition of liveness for ordinary strongly
connected Join-Free systems that may not be well-formed.

Theorem 9: An ordinary and strongly connected Join-
Free system (N,M0) having at least one place and one
transition is live if and only if

∑
pM0(p) ≥ 1.

Proof: As the system is strongly connected and Join-
Free, every transition has exactly one input place. As weights
are all 1, one token is necessary and sufficient to fire any
transition. Moreover, every transition has at least one output
place, thus each firing preserves or increases the number of
tokens in the system. Thus, at any reachable marking M ,
a token enables a transition and can reach any other place
following a finite sequence.

IV. WELL-BEHAVEDNESS OF CHOICE-FREE SYSTEMS

In this section, we recall known structural properties of
well-formedness and a property relating the liveness of a
Choice-Free system to the liveness of particular subnets.
Exploiting these properties and the results obtained in pre-
vious sections, we deduce a polynomial sufficient condition
of liveness for well-formed Choice-Free systems. We finally
deduce from these new results a known sufficient condition
of liveness that was developed for T-systems [8].

A. Well-formedness, liveness and FA P-subnets

We recall properties of Choice-Free and Join-Free systems
and present results leading to the sufficient condition.

Theorem 10 ( [12]): Any conservative and strongly
connected Join-Free net is consistent. Any consistent and
strongly connected Choice-Free net is conservative.

A source place is defined as a place with at least one
output transition and without input transition. The liveness of
a Choice-Free system can be stated by observing the liveness
of some of its Fork-Attribution (FA) subsystems.

Theorem 11 ( [12]): Let (N,M0) be a Choice-Free sys-
tem without source places. (N,M0) is live iff for every
strongly connected FA P-subnet of N , noted N ′, the system
(N ′,M0[P

′]) is live.
Figure 4 represents all strongly connected FA P-subnets

of the Choice-Free net shown in Figure 3.
Well-formed Choice-Free nets are consistent. The follow-

ing property shows that consistency propagates to P-subnets.
Lemma 4: All P-subnets of a consistent net are consistent.

Proof: Let N be a consistent net and C its incidence
matrix. By definition of consistency, there exists a vector
X ≥ 1

|T | such that C · X = 0. Thus, X annuls each row
of C. By definition, a P-subnet N ′ of a net N is composed
of a subset of places P ′ and the set of all their input and
output transitions. Thus, the incidence matrix C ′ of N ′ is
the subset of rows from C that correspond to the places of
P ′. Since the vector X annuls all rows of C, it annuls all
rows of C ′ and N ′ is consistent.

Thus, the well-formedness of a Choice-Free net induces
strong structural properties for its P-subnets. Morever, FA
P-subnets conform to balancing.

Lemma 5: All strongly connected FA P-subnets of a well-
formed Choice-Free net are conservative.

Proof: Let N be a well-formed Choice-Free net. By
Theorem 1, N is consistent. All FA P-subnets of a consistent
Choice-Free net are consistent by Lemma 4. According to
Theorem 10, if an FA P-subnet is consistent and strongly
connected, then it is conservative.

The previous section presented a live initial marking for
balanced strongly connected Join-Free nets. This condition
applies to balanced strongly connected FA nets.

Lemma 6: Let S = ((P, T,W ),M0) be a strongly
connected and balanced FA system satisfying the useful
tokens condition. S is live if∑

p∈P
M0(p) >

∑
p∈P

(maxp − gcdp) .

Proof: FA nets form a subclass of Join-Free nets, thus
Theorem 6 applies, which proves the claim.

B. A polynomial sufficient condition for the liveness of well-
formed and weighted Choice-Free systems

The next lemma gives a live initial marking for strongly
connected and conservative FA nets, which are well-formed.



Lemma 7: Let S = ((P, T,W ),M0) be a strongly
connected and conservative FA system. S is live if

∀p ∈ P, M0(p) = maxp .

Proof: Consider the incidence matrix C of N and the
system S = (N,M0). By Lemma 2, there exists a balancing
vector Y ≥ 1

|P | for N such that Y contains only naturals.
Scaling S by Y yields the balanced system Sb = (N b,M b

0).
Consequently,

∀p ∈ P, maxN
b

p = Y [p] ·maxNp , maxN
b

p ∈ N .

We deduce that∑
p∈P

M b
0(p) =

∑
p∈P

maxN
b

p >
∑
p∈P

(maxN
b

p − gcdN
b

p ) .

Moreover, for every place p, maxp is a multiple of gcdp and
M b

0(p) = Y [p] ·maxp. Thus M b
0 fulfills the useful tokens

condition and by Lemma 6 the balanced FA system Sb is
live. According to Corollary 1, balancing a system preserves
the property of liveness, thus S is live.

As a consequence, a live initial marking is determined in
polynomial time for well-formed Choice-Free nets.

Theorem 12: Let S = ((P, T,W ),M0) be a well-formed
Choice-Free system. S is well-behaved if

∀p ∈ P, M0(p) = maxp .

Proof: Let Ns = (P s, T s,W s) be any of the strongly
connected FA P-subnets of N and Ss = (Ns,Ms

0 ) where
Ms

0 is the restriction of M0 to P s. Ns is conservative
(Lemma 5) and Ss is live (Lemma 7). Thus, the marking
M0 makes any strongly connected FA P-subnet live. Ns is
well-formed thus without source place and by Theorem 11
(N,M0) is live.

Figure 9 pictures a well-behaved Choice-Free system.
Indeed, this system is well-formed (see Fig. 5) and the
marking of each place p equals maxp. As the system is
Choice-Free, each place has only one output transition.
Consequently, it is sufficient to initially mark each place
with its output weight.
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Figure 9. The Choice-Free system is well-formed, thus the sufficient
initial marking of Theorem 12 makes the system well-behaved. In order to
construct this live initialization, each place p is marked with maxp tokens.

C. Balancing, Normalization and T-systems
For T-systems, a sufficient condition of liveness was

expressed in [8]. We prove here that this result can be viewed
as a direct consequence of Lemma 6.

Lemma 8: All strongly connected FA P-subnets of a
strongly connected T-net are circuits.

Proof: Let us consider the strongly connected FA P-
subnet N of a strongly connected T-net and suppose by
contradiction that a transition t of N has at least two output
places p1 and p2. Let p be the unique input place of t. Places
p1 and p2 belong to two different paths leading to p as the
net is strongly connected. These paths are not allowed to
merge as two inputs of a place since the net is a T-net. They
cannot be two inputs of a transition either, since the net is
FA thus Join-Free.

We recall a known sufficient condition of liveness for T-
systems that we prove now, differently from [8].

Theorem 13 ( [8]): Let S = ((P, T,W ),M0) a strongly
connected and normalized T-system that fulfills the useful
tokens condition. S is live if every circuit C of S satisfies∑

p∈C∩P
M0(p) >

∑
p∈C∩P

(maxp − gcdp) .

Proof: By definition of the normalization, if N is a
normalized T-net then its circuits are balanced. Moreover,
balanced circuits are strongly connected and balanced FA
nets, thus Lemma 6 applies. T-nets are Choice-Free nets
and S is strongly connected thus without source place. By
Lemma 8 and Theorem 11, the claim is proved.

V. SUFFICIENT CONDITIONS ARE NOT NECESSARY

Both previous sufficient conditions of liveness for Join-
Free and Choice-Free systems are not necessary. This is
shown through a counter example that comes from the T-
system [8] pictured in Figure 10. It consists of a live marked
circuit that does not fulfill the sufficient conditions. Indeed,

∑
p

(maxp − gcdp) = (14− 2) + (21− 7) + (6− 3) = 29 .
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28
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p3
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t3

14

6 21

14 21

6

Figure 10. This circuit is a live Join-Free and Choice-Free system but
does not fulfill their sufficient conditions.

The reachability graph of Figure 11 shows that every
transition can be fired from any reachable marking after a
finite firing sequence, thus the circuit of Figure 10 is live.
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Figure 11. The reachability graph of the circuit shows all its feasible
sequences. From any reachable marking, there exists a finite feasible
sequence that contains every transition, implying liveness.

VI. CONCLUSION AND PERSPECTIVES

We presented a polynomial sufficient condition of liveness
for well-formed Choice-Free systems. Moreover, any well-
formed strongly connected Join-Free net can be balanced
and we gave a polynomial sufficient condition of liveness
for such systems. We unified a set of theoretical results
over subclasses of Petri nets, S and T-systems in particular.
Three transformations that simplify weights or markings
have been investigated. One of them is normalization, which
was introduced in the context of T-systems and presented in
this paper as a particular case of our theory. The second
transformation is balancing, applying to conservative nets.
Finally, the reduction to useful tokens, introduced for T-
systems by [8], has been extended to all Petri nets. The
developed theory provides efficient and simple algorithms
ensuring the well-behavedness of systems. Such methods can
be used in real cases, to design embedded systems. Future
work would extend this theory to larger classes of nets and
consider timed versions of the subclasses studied.

REFERENCES

[1] T. Murata, “Petri nets : Properties, analysis and applications.”
in Proc. IEEE, vol. 77, no. 4, 1989, pp. 541–580.

[2] J. L. Peterson, “Petri nets,” ACM Computer Surveys, vol. 9,
no. 3, pp. 223–252, 1977.

[3] N. D. Jones, L. H. Landweber, and Y. E. Lien, “Complexity of
some problems in Petri nets,” Theoretical Computer Science,
vol. 4, no. 3, pp. 277–299, 1977.

[4] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
vol. 75, no. 9, September 1987.

[5] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete,
“Cycle-static dataflow: model and implementation,” in Sig-
nals, Systems and Computers. Record of the 20th Asilomar
Conference, vol. 1, oct-2 nov 1994, pp. 503 –507.

[6] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit, “Efficient
computation of buffer capacities for cyclo-static real-time
systems with back-pressure,” in 13th IEEE RTAS ’07, pp.
281–292.

[7] E. Teruel, P. Chrzastowski-Wachtel, J. M. Colom, and
M. Silva, “On weighted T-systems,” in Application and
Theory of Petri Nets, 1992, pp. 348–367.

[8] O. Marchetti and A. Munier-Kordon, “A sufficient condition
for the liveness of weighted event graphs,” European Journal
of Operational Research, vol. 197, no. 2, pp. 532–540, 2009.

[9] J. Desel and J. Esparza, Free Choice Petri Nets. Cambridge
Tracts in Theoretical Computer Science 40, 1995.

[10] L. Recalde, E. Teruel, and M. Silva, “On well-formedness
analysis: The case of deterministic systems of sequential
processes.” in STRICT, Berlin, 11-13, J. Desel, Ed., 1995,
pp. 279–293.

[11] E. Teruel and M. Silva, “Structure theory of Equal Conflict
systems,” Theor. C. S., vol. 153, no. 1&2, pp. 271–300, 1996.

[12] E. Teruel, J. M. Colom, and M. Silva, “Choice-Free Petri
nets: a model for deterministic concurrent systems with bulk
services and arrivals,” IEEE Trans. on Syst., Man, and Cyber.,
Part A, vol. 27, no. 1, pp. 73–83, 1997.

[13] C. Amer-Yahia and N. Zerhouni, “Structure theory of Choice-
Free Petri nets based on eigenvalues.” Journal of the Franklin
Institute, vol. 336, no. 5, pp. 833–849, 1999.

[14] K. Barkaoui and M. Minoux, “A polynomial-time graph
algorithm to decide liveness of some basic classes of bounded
Petri nets,” in ATPN ’92, ser. LNCS, K. Jensen, Ed. Springer
Berlin Heidelberg, vol. 616, pp. 62–75.

[15] D. Y. Chao and J. A. Nicdao, “Liveness for Synchronized
Choice Petri nets,” The Computer Journal, vol. 44, no. 2, pp.
124–136, 2001.

[16] P. Alimonti, E. Feuerstein, L. Laura, and U. Nanni, “Linear
time analysis of properties of Conflict-Free and general Petri
nets,” Theor. Comp. Sci., vol. 412, no. 4-5, pp. 320–38, 2011.

[17] K. Barkaoui and J. Pradat-Peyre, “On liveness and controlled
siphons in Petri nets,” vol. 1091, 1996, pp. 57–72, Japan.

[18] Q. Zhen and W. Lu, “On liveness and safeness for weighted
Extended Free Choice nets.” JoS 11(3), pp. 300–307, 2000.

[19] L. Jiao, T.-Y. Cheung, and W. Lu, “On liveness and bound-
edness of Asymmetric Choice nets,” Theoretical Computer
Science, vol. 311, no. 1-3, pp. 165–197, 2004.

[20] C. Amer-Yahia, N. Zerhouni, A. E. Moudni, and M. Ferney,
“Some subclasses of Petri nets and the analysis of their
structural properties: a new approach,” IEEE Trans. Syst.M.C.,
Part A, vol. 29, no. 2, pp. 164–172, 1999.

[21] A. Frommer and D. Szyld, “On asynchronous iterations.”
Journal of Computational and Applied Mathematics, vol. 123,
pp. 201–216, 2000.

[22] R. Mayr, “Process rewrite systems,” Information and Com-
putation, vol. 156, no. 1-2, pp. 264–286, 2000.

[23] A. Bouajjani and T. Touili, “On computing reachability sets
of Process Rewrite Systems,” in RTA, 2005, pp. 484–499.

[24] J. Esparza, “Petri nets, commutative context-free grammars,
and basic parallel processes,” Fundamenta Informaticae,
vol. 31, pp. 13–26, 1997.

[25] N. Megiddo, On the complexity of linear programming, ser.
Advances in economic theory: Fifth world congress, T. Bew-
ley, Ed. Cambridge University Press, 1987.


