
HAL Id: hal-00866048
https://hal.sorbonne-universite.fr/hal-00866048v1

Submitted on 25 Sep 2013 (v1), last revised 20 Feb 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Random Bit Complexity of Mobile Robots
Scattering

Quentin Bramas, Sébastien Tixeuil

To cite this version:
Quentin Bramas, Sébastien Tixeuil. The Random Bit Complexity of Mobile Robots Scattering. 2013.
�hal-00866048v1�

https://hal.sorbonne-universite.fr/hal-00866048v1
https://hal.archives-ouvertes.fr


The Random Bit Complexity

of Mobile Robots Scattering

Quentin Bramas1 and Sébastien Tixeuil1,2
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Abstract

We consider the problem of scattering n robots in a two dimen-
sional continuous space. As this problem is impossible to solve in a
deterministic manner [5], all solutions must be probabilistic. We in-
vestigate the amount of randomness (that is, the number of random
bits used by the robots) that is necessary to achieve scattering.

We first prove that n logn random bits are necessary to scatter
n robots in any setting. Also, we give a sufficient condition for a
scattering algorithm to be random bit optimal. As it turns out that
previous solutions for scattering satisfy our condition, they are hence
proved random bit optimal for the scattering problem.

Then, we investigate the time complexity when strong multiplicity
detection is not available. We prove that such algorithms cannot con-
verge in constant time in the general case and in o(log logn) rounds
for random bits optimal scattering algorithms. However, we present a
family of scattering algorithms that converge as fast as needed without
using multiplicity detection. Also, we put forward a specific protocol
of this family that is random bit optimal (n logn random bits are used)
and time optimal (log logn rounds are used). This improves the time
complexity of previous results in the same setting by a logn factor.

1 Introduction

We consider distributed systems consisting of multiple autonomous robots [6,
8] that can move freely on a 2-dimensional plane, observe their surround-
ings and perform computations. The robots do not communicate explicitly
with other robots and there is no central authority that communicates with
the robots. Such teams of robots can be deployed in areas inaccessible to
humans, to perform collaborative tasks such as search and rescue opera-
tions, data collections, environmental monitoring and even extra-terrestrial
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exploration. From the theoretical point of view, the interest lies in deter-
mining which tasks can be performed by such robot teams and under what
conditions.

One line of research is to determine the minimum capabilities required by
the robots to achieve any given task [6]. A particularly weak model of robots
is assumed and additional capabilities are added whenever it is necessary to
solve the problem. In our model, the robots are assumed to be anonymous
(i.e. indistinguishable from one another), oblivious (i.e. no persistent mem-
ory of the past is available) and disoriented (i.e. they do not agree on a
common coordinate system nor a common chirality). The robots operate in
Look-Compute-Move (LCM) cycles, where in each cycle a robot Looks at its
surroundings and obtains a snapshot containing the locations of all robots
as points on the plane with respect to its own location and ego-centered
coordinate system; Based on this visual information, the robot Computes a
destination location and then Moves towards the computed location. Since
the robots are identical, they all follow the same algorithm. The algorithm
is oblivious if the computed destination in each cycle depends only on the
snapshot obtained in the current cycle (and not on the past history of exe-
cution). The snapshots obtained by the robots are not consistently oriented
in any manner.

When processing a snapshot, a robot can distinguish whether a point is
empty (i.e., not occupied by any robot). However, since robots are viewed
as points, the question arises of how robots occupying the same position at
the same time will be perceived in a snapshot. The answer to this question
is formulated in terms of the capacity of the robots to detect multiplicity of
robots in a point. The robots are said to be capable of multiplicity detection
if they can distinguish if a point is occupied by a one or more than one
robot.

One important task useful in multi-robot coordination is gathering the
robots at a single location, not known beforehand. The dual problem of
gathering is the scattering problem. Scattering requires that, starting from
an arbitrary configuration, eventually no two robots share the same location.
It turns out that neither deterministic gathering [8] nor scattering [5] are
possible without additional assumptions. Most of the work done so far
in order to circumvent the impossibility of gathering focuses on required
minimal additional assumptions with respect to the coordinate system or
multiplicity detection [6, 8] to make the problem solvable. However, the
scattering problem cannot allow deterministic solutions [5].

Related Work. The first probabilistic algorithms to solve mobile robot
scattering without multiplicity detection were given by Dieudonné and Pe-
tit [4, 5]. The algorithms are based on the following simple scheme: after
the Look phase, a robot computes the Voronoi diagram [2] of the observed
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positions, and then tosses a coin (14 [4] or 1
2 [5]) to either remain in position,

or move toward an arbitrary position in its Voronoi cell. The fact that a
robot may only move within its Voronoi cell preserves the fact that initially
distinct robots (that is robots occupying distinct positions) remain distinct
thereafter. This invariant and the positive probability that two robots on
the same point separate implies the eventual scattering of all robots. A
later study [3] shows that the scattering algorithm [5] converges in expected
O(log n log log n) rounds. In the same paper [3], a new probabilistic algo-
rithm was presented, with the assumption that robots are aware of the total
number of robots. This protocol is optimal in time as it scatters any n-
robots configuration in expected O(1) rounds. If the total number of robots
n is known, then robots are able to choose uniformly at random a position
within their Voronoi cell among 2n2 possibilities, inducing an expected O(1)
rounds scattering time. In the limited visibility setting [7] (the visibility ca-
pability of each robot has a constant radius, and visual connectivity has to
be maintained throughout scattering), the time lower bound grows to ex-
pected n rounds for scattering n robots. None of the aforementioned works
investigated the number of random bits used in the scattering process.

Our contribution. We investigate the amount of randomness (that is,
the number of random bits used by the robots) that is necessary to achieve
mobile robots scattering. In more details, we first define a canonical scatter-
ing algorithm, that encompasses all previous solutions, and is tantamount
to selecting the number of possible locations that will be selected uniformly
at random by the robots.

Then, we prove that n log n random bits are necessary to scatter n robots
in any setting for all scattering algorithms (not only canonical algorithm).
Also, we give a sufficient condition for a canonical scattering algorithm to
be random bit optimal (namely, the number of possible locations must be
polynomial in the number of observed positions). As it turns out that pre-
vious solutions for scattering [3, 4, 5] satisfy our condition, they are hence
proved random bit optimal for the scattering problem.

Finally, we investigate the time complexity of scattering algorithms,
when strong multiplicity is not available. We prove that such algorithms
cannot converge in constant time in the general case and in o(log log n)
rounds in the case of random bits optimal algorithms (in this last setting,
the best known upper bound was log n log log n [4, 5]). On the positive
side, we provide a family of scattering algorithms that converge as fast (but
not O(1)) as needed, without using multiplicity detection. Also, we give a
particular protocol among this family that is random bit optimal (n log n
random bits are used) and time optimal (log log n rounds are used). This
improves the time complexity of previous results in the same setting by an
expected log n factor.
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2 Model and Preliminaries

Robot networks. There are n robots modeled as points on a geometric
plane. A robot can observe its environment and determine the location of
other robots in the plane, relative to its own location and coordinate system.
All robots are identical (and thus indistinguishable) and they follow the same
algorithm. Moreover, each robot has its own local coordinates system, which
may be distinct from that of other robots. In this paper, robots are said to
have unlimited visibility, in the sense that they are always able to sense the
position of all other robots, regardless of their proximity.

Multiplicity detection. When several robots share the same location,
this location is called a point of multiplicity. Robots are capable of strong
multiplicity detection when they are aware of the number of robots located
at each point of multiplicity. In contrast, when robots are capable of weak
multiplicity detection, they know which points are points of multiplicity, but
are unable to count how many robots are located there. The multiplicity
detection of a robot is said to be local if the multiplicity detection concern
only the point where robot lies. If robots detect the multiplicity of each
observed point, the multiplicity detection is global. Robots are not aware
of the actual number n of robots unless they are capable of global strong
multiplicity detection. If robots are not able to detect multiplicity, they
never know if the configuration is scattered and thus never stop moving.
Hence, algorithms that do not use multiplicity detection cannot terminate.
With local weak multiplicity detection robots are aware of the situation
at their position, e.g. they can stop executing the algorithm if they sense
they are alone at their location. However, they may not know if the global
configuration is scattered (yet, if the configuration is indeed scattered, all
robots are stopped and the algorithm (implicitly) terminates). With global
weak multiplicity detection, algorithm can explicitly terminates when every
observed position is not a multiplicity point.

System model. Three different scheduling assumptions have been con-
sidered in previous work. The strongest model is the fully synchronous
(FSYNC) model where each phase of each cycle is performed simultaneously
by all robots. On the other hand, the weakest model, called asynchronous
(ASYNC) allows arbitrary delays between the Look, Compute, and Move
phases and the movement itself may take an arbitrary amount of time [6].
The semi-synchronous (SSYNC) model [6, 8] lies somewhere between the
two extreme models. In the SSYNC model, time is discretized and at each
considered step an arbitrary subset of the robots are active. The robots that
are active, perform exactly one atomic Look-Compute-Move cycle. It is as-
sumed that a hypothetical scheduler (seen as an adversary) chooses which
robots should be active at any particular time and the only restriction of the
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scheduler is that it must activate each robot infinitely often in any infinite
execution (that is, the scheduler is fair).

In this paper, for the analysis, we use the FSYNC model. Lower bounds
naturaly extend to SSYNC and ASYNC models and upper bounds (that is,
algorithms) are also valid in SSYNC. Indeed, as in [3], since all the algo-
rithms in this paper ensure that two robots moving at different times nec-
essarily have different destinations, the worst case scenario is when robots
are activated simultaneously. In FSYNC model, robots perform simultane-
ously an atomic computational cycle composed of the following three phases:
Look, Compute, and Move.

• Look. An observation returns a snapshot of the positions of all robots.
All robots observe the exact same environment (according to their
respective coordinate systems).

• Compute. Using the observed environment, a robot executes its algo-
rithm to compute a destination.

• Move. The robot moves towards its destination (by a non-zero distance
but without always reaching it).

Moreover, robots are assumed to be oblivious (i.e., stateless), in the sense
that a robot does not keep any information between two different compu-
tational cycles. We evaluate the time complexity of algorithms using the
number of asynchronous rounds required to scatter all robots. An asyn-
chronous round is defined as the shortest fragment of an execution in which
each robot executes its cycle at least once.

Notations. In the sequel, C denotes a n-robots configuration, that is,
a multi-set containing the position of all robots in the plane. Removing
multiplicity information (that is, multiple entries for the same position)
from C yields the corresponding set U(C). For a multi-set C, |C| denote
its cardinality. For a particular point P ∈ R

2, |P | denote the multiplicity
of P . We denote by C(k, n) the set of 2-tuples (C,P ) where C is a n-robots
configuration that contains a point P of multiplicity k.

Random Bits Complexity. The number of random bits needed by a
robot to choose randomly a destination among k possible locations is at
least log2(k), regardless of the distribution, as long as each destination has
a non-zero probability to be chosen. We note log = log2 the logarithm with

respect to base 2 obtained from the natural logarithm log(x) = ln(x)
ln(2) . Of

course, since there is a probabilistic process involved, starting from the same
initial configuration, the exact number of random bits may not be the same
for two particular executions of a protocol. So, in the sequel, we consider
the expected number of random bits used for scattering.
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Since we are concerned about the scattering problem, we do not take
into accout random bits used by robots that are not located at a point of
multiplicity (i.e, robots that are already scattered). Of, course, all our lower
bound results remain valid without this assumption, but upper bounds we
provide do make use of this hypothesis when robots are not capable of weak
local mutiplicity (as termination cannot be insured in this case). We also
assume that robots cannot use an infinite number of random bits in a single
execution.

For the study of the random bits complexity, we define ZC,P , the random
variable that represent the number of random bits used by an algorithm to
scatter the robots in P starting from the configuration C. Formally, for an
algorithm A, ZC,P is defined over all the possible executions of A (starting
with the configuration C that contains the point P ). For an execution, ZC,P

equals b if and only if the number of random bits used to scatter all robots
that are initially in P is b (ignoring the robots in C that are not initially
located at P ).

For a point P of multiplicity n, we can represent the way robots at P
are divided over k possible destinations with a multi-index α ∈ N

k such
that |α| =

∑k
i=1 αi = n. The resulting maximum multiplicity is denoted by

‖α‖∞ = maxi αi. Consider the random variable X that equals α ∈ N
k if

and only if the robots in P are divided in k points of multiplicity α1, α2, . . .
and αk.

It is known that:

E(ZC,P ) =
∑

α∈Nk , |α|=n

P(X = α)E(ZC,P |X = α) (1)

Then, E(ZC,P |X = α) equals the number of random bits used during the first
round (n log(k)) plus the expected number of random bits used to scatter the
k points p1, p2, . . . and pk, coming from P of multiplicity α1, α2, . . . and αk.
Of course the rest of the configuration may have changed too. But since we
want to bound the expectation, we can have an upper or a lower bound by
taking the worst or the best resulting configuration. For all N ∈ N, n ≤ N ,
let

B(n,N) = min
(C,P )∈C(n,N)

(E(ZC,P )) and W (n,N) = max
(C,P )∈C(n,N)

(E(ZC,P ))

(2)
The existence of such min and max comes from the fact that forN ∈ N

∗, n <
N , the set C(n,N), is finite. This is due to the fact that there exists an initial
configuration from which some (deterministically computed but randomly
chosen) paths have been followed by the robots.

Moreover, if AlgorithmAmakes sure that two robots at distinct locations
in a given configuration remain at distinct locations thereafter, then for two
distinct points P and P ′, ZC,P and ZC,P ′ are independent and their sum is
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exactly the number of random bits used to scatter P and P ′. Then,

B(n,N) ≥ n log(k) +
∑

α∈Nk , |α|=n

P(X = α)

k
∑

i=1

B(αi, N) (3)

W (n,N) ≤ n log(k) +
∑

α∈Nk , |α|=n

P(X = α)

k
∑

i=1

W (αi, N) (4)

The recursive inequality (3) is used in lemma 3.1 to find the lower bound,
and the recursive inequality (4) in Theorem 3.2 to find the upper bound.

A Canonical Scattering Algorithm. Let A be a scattering algorithm.
As A can’t be deterministic [5], the computation of the location to go to
must result from a probabilistic choice (more practically, a robot must ran-
domly choose a destination among a previously computed set of possible
destinations). We note kA(C,P ) the function that returns the number of
possible destinations depending on the current observed (global) configura-
tion C, and the current observed (local) point P (that is, the point where
the robot executing the algorithm lies). Robots located at P may not be
aware of P ’s multiplicity, but they will base their computation of the possible
destinations set on the same observation. We assume an adversarial setting
where symmetry is preserverved unless probabilistic choices are made, so
we expect the local coordinate systems of all robots occupying the same
position P to be identical. Thus, the set of possible destinations is the same
for all robots at P . We now define a canonical scattering algorithm that
generalized previously known scattering algorithm.

Definition 2.1 An algorithm A is a canonical scattering algorithm if it has
the following form:

Algorithm 1: Canonical scattering algorithm, executed by a robot r

1 C ← Observed current configuration.
2 P ← Observed current position of r.
3 Compute a set of kA(C,P ) possible destinations Pos such that every
point in Pos may not be chosen by a robot not curently in P .

4 Move toward a point in Pos chosen uniformly at random.

The function kA that give’s the number of possible destinations depending
on the current configuration and position is called the destination function
of the algorithm A.

Line 3 of Algorithm 1 implies that a canonical algorithm must ensure
that the multilicity of any given point never increases (i.e. robots located
at different locations remain at different locations thereafter). Previous
algorithms [3, 5] are canonical in the SSYNC and FSYNC models. Both
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of them use Voronoi Diagrams [2] to ensure monotonicity of multiplicity
points. The algorithm given in [5] is a canonical scattering algorithm with
line 3 replaced by: Compute a set Pos of 2 points in the Voronoi cell of r.
The algorithm given in [3] is a canonical scattering algorithm with line 3
replaced by: Compute a set Pos of 2|C|2 points in the Voronoi cell of r. This
property holds only if Voronoi cells computations occur at the same time
(that is, in the FSYNC and the SSYNC models). In the ASYNC model, two
robots at different positions, activated at different times, may move towards
the same destination1.

An algorithm that computes a set Pos of k points but does not chose
uniformly the destination from Pos can be seen as a canonical scattering
algorithm if points in Pos can have multiplicity greater than 1, i.e. if Pos
is a multi-set. For example, if an algorithm computes a set Pos = {x1, x2}
and chooses x1 with probability 3

4 , this is equivalent to choosing uniformly
at random from the multi-set{x1, x1, x1, x2}. Of course this scheme cannot
be extended to irrational probability distributions, yet those distributions
induce an infinite number of random bits, which is not allowed in our model.
We can now state our first Theorem:

Theorem 2.1 If A is an algorithm that ensures that the multiplicity of any
point never increases, then A is a canonical scattering algorithm (with Pos
possibly a multiset).

Observe that any deterministic protocol for mobile robot networks (that
ensure monotonicity of multiplicity points) can be seen as a canonical scat-
tering algorithm whose destination function is identically 1. Also, if an al-
gorithm computes a multiset Pos with duplicate positions, it will use more
random bits to select its destination at any given stage of the computation.
As we focus on efficient algorithms (that is, we try to minimize the num-
ber of randm bits), we suppose from now on that Pos is a set (i.e. it has
no duplicate positions). Indeed the uniform distribution is the probability
distribution that have the largest entropy.

3 The Random Bit Complexity of Scattering

In this section we demonstrate that any mobile robots scattering algorithm
must use at least n log(n) random bits. Then we prove a sufficient condition
for a canonical scattering algorithm to effectively use O(n log n) random
bits. As this condition is satisfied by previously known canonical scattering
algorithms [3, 4, 5], a direct consequence of our result is that those algorithms
are random bit optimal.

1To our knowledge, no algorithm exists for scattering mobile robots in the ASYNC
model.
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Lower Bound. In this section we prove that the expected number of ran-
dom bits used by any scattering algorithm is greater than n log(n). Actually,
we implicitly prove that any execution of a scattering algorithm that scat-
ters n robots initially located at the same position uses more than n log(n)
random bits. The proof first considers canonical scattering algorithms, and
later expands to arbitrary scattering algorithms (that is, algorithms that
may not insure that the multiplicity of any point never increases, see Theo-
rem 2.1).

Lemma 3.1 Let A be a canonical scattering algorithm (Algorithm 1). The
expected number of random bits needed to scatter n robots is at least n log(n).

Proof sketch. We prove that any execution of the algorithm uses at least
n log(n) random bits by mathematical induction on the number of robots
located at a particular point. For the base case, we observe that 2 robots
located at the same point and executed simultaneously must both use at
least 1 random bit. So, 2 robots are scattered with more than 2 = 2 log 2
random bits.

To prove the induction step, we observe that the most favourable scenario
is when, at each round, robots are uniformly distributed over all possible
destinations. If we assume that points with multiplicity m < n need more
that m log(m) random bits to be scattered, then if n robots are split among
two points of multiplicity m1 and m2, the number of random bits used to
scatter those two points (which is greater than m1 logm1 + m2 logm2) is
greater than n log(n/2). This result comes from the convexity of funtion
x 7→ x log x.

Proof. Let B(n) be the minimum expected number of random bits to scatter
n robots brought together at a point P . Formally, let (C,P ) ∈ C(n,N),
ZC,P denote the random variable, over all the possible executions of A, that
equal b if the number of random bits used by A to scatter n robots at P is
b (ignoring the random bits used by robots that are not at P ). Let N ∈ N

∗.
The set C(n,N) of 2-tuples (C,P ) where C is a N -robots configuration
that contains a point P of multiplicity n is finite. So that we can consider
B(n) = min(C,P )∈C(n,N)E(ZC,P ). With this definition B(n) may depend on
N but we will see that it actually does not.

During a round, each robot in P choose randomly among a set of k
points. The number k is the same for all the robots because they share
the same location, execute the same algorithm and have the same view of
the world. The n robots are divided into k destinations forming k points
of multiplicity α = (α1, α2, . . . , αk), with |α| =

∑k
i=1 αi = n. Let X be the

random variable that gives the distribution of n robots among k destinations.
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Recall the recursive inequality (3):

B(n) ≥ n log(k) +
∑

α∈Nk , |α|=n

P(X = α)

k
∑

i=1

B(αi) (5)

We assume in the remainder of the proof that A is optimal in terms of
random bits (so that B(n) ≥ B(n− 1)). In order to prove the theorem, it is
sufficient to show that B(n) ≥ n log(n) for that algorithm.

We already know that B(2) ≥ 2 = 2 log(2). Furthermore k ≥ 2. We
suppose now that for all m, with 2 ≤ m < n, we have B(m) ≥ m log(m).

We now bound each right sum of (5):
For the case ‖α‖∞ = n, since A is optimal, we have:

∑k
i=1 B(αi) = B(n) ≥ B(n− 1) ≥ (n− 1) log(n − 1)

≥ n log
(

n
k

)

+ n log
(

k
n(n− 1)

)

− log(n− 1)

= n log
(

n
k

)

+ log
(

k
n
(n−1)n

n−1

)

= n log
(

n
k

)

+ log
(

k
n(n− 1)n−1

)

≥ n log
(

n
k

)

+ log
(

k
n(n− 1)

)

= n log
(

n
k

)

+ log
(

k − k
n

)

≥ n log
(

n
k

)

(6)
The last inequality is true because 2 ≤ k < n =⇒ k − k

n ≥ 1.
Let α ∈ N

k with |α| = n be a possible distribution. If αi0 = n for some
i0, then (6) implies

∑k
i=1 B(αi) = B(n) ≥ n log(nk ). Else, there exists r,

with 1 < r ≤ k, and r integers 1 ≤ j1, j2, . . ., jr ≤ k such that
∑r

i=1 αji = n
and αji 6= 0 for all 1 ≤ i ≤ r. Those are the r indexes of the r non-zero
coordinates of α. We apply the induction hypothesis to each non-zero term
of the sum:

∑k
i=1 B(αi) =

∑r
i=1 B(αji) ≥

∑r
i=1 αji log(αji) = r

∑r
i=1

1
rαji log(αji)

≥ r
(
∑r

i=1
1
rαji

)

log
(
∑r

i=1
1
rαji

)

= n log
(

n
r

)

≥ n log
(

n
k

)

The penultimate inequality results from the convexity of function x 7−→
x log(x). Thus we lower bound each term of the recursive formula (5). This
gives:

B(n) ≥ n log(k) +
∑

α∈Nk, |α|=n P(X = α)n log
(

n
k

)

≥ n log(k) + n log
(

n
k

)

= n log(k) + n log(n)− n log(k) = n log(n)

We have shown B(n) ≥ n log(n) for all n ≥ 2. �

Theorem 3.1 Let A be a scattering algorithm. The expected number of
random bits needed to scatter n robots is greater that n log(n)
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Proof. Let A be a scattering algorithm. If A is a canonical scattering
algorithm, then the previous Lemma implies the Theorem. Else, there exist
some points where robots come from two different origins. But, since ∀αi, βi,
B(αi + βi) ≥ B(αi) +B(βi), we still have the recursive formula (5) applied
for both origins. �

Corollary 3.1 Algorithms defined in [3, 5] (see section 2) are random bit
optimal.

Upper Bound. If an algorithm computes a set of distinct points, and
if each robot chooses randomly a destination in this set, then robots must
scatter. Moreover if the cardinality of the chosen set is bounded, then the
expected number of random bits may be bounded too. We now prove that if
the destination set cardinality is bounded by a polynom in |C|, the random
bit complexity of the algorithm is O(n log(n)) (that is, optimal).

We start with three technical lemmas. Lemma 3.3 helps us bounding the
maximum multiplicity obtained after a round, when n robots are randomly
distributed among k possible destinations. Let Ω be the universe of the
experiment of randomly distributing n robots among k possible destinations.

Lemma 3.2 Let X : Ω 7→ N
k be the random variable that gives the distri-

bution of n robots among k destinations. If k ≥ 2n2, then:

P(‖X‖∞ > 1) ≤
1

2

Proof.
We have:

P(‖X‖∞ = 1) =

(

k − 1

k

)(

k − 2

k

)

. . .

(

k − n

k

)

≥
(

1−
n

k

)n
≥

(

1−
n2

k

)

≥
1

2

�

Lemma 3.3 Let X : Ω 7→ N
k be the random variable that gives the distri-

bution of n robots among k destinations. If k ≤ AnK with A,K ∈ N, then
there exists NA,K ∈ N (that depends only on A and K), such that, for all
n ≥ NA,K :

P

(

‖X‖∞ >
n

k
(1 + kξ)

)

≤
1

2
with ξ = 1−

1

K + 1
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Proof. Recall that:

∀α ∈ N
k, |α| = n P(X = α) =

(

n
α

)(

1

k

)n

Where:
(

n
α

)

=
n!

α1!α2! . . . αk!
=

(

n
α1

)(

n− α1

α2

)

. . .

(

n− α1 − α2 . . .− αk−2

αk−1

)

The main result we use in the sequel is this equality, for r ≤ n:

∑

α ∈ N
k

|α| = n
α1 = r

P(X = α) =
∑

α ∈ N
k

|α| = n
α1 = r

(

n
α

)(

1

k

)n

=

(

n
r

)(

1

k

)n
∑

α ∈ N
k−1

|α| = n− r

(

n− r
α

)

=

(

n
r

)(

1

k

)r (1

k

)n−r

(k − 1)n−r

=

(

n
r

)(

1

k

)r (

1−
1

k

)n−r

= P(Bn, 1
k
= r)

Let ξ = 1− 1
K+1 . The Chernoff bound2 gives:

P(Bn, 1
k
>

n

k
(1 + kξ)) ≤ e

−
k2ξn

(2 + kξ)k = e
−

kξ−1n

2/kξ + 1 ≤ e
−
k

−1
K+1n

3

But since k = O(nK) = o(nK+1/2), there exists N1 from which k < nK+1/2

i.e:

∀n ≥ N1, k
−1

K+1 > n
−(K+1/2)

K+1

So

∀n ≥ N1, P(Bn, 1
k
>

n

k
(1+kξ)) ≤ e

−
k

−1
K+1n

3 ≤ e
−
n

−(K+1/2)
K+1

+1

3 = e
−
n

1/2
K+2

3

2Let X be random variables following a Binomial distribution B(n, p). Then: for any

δ > 0, P(X ≥ np(1 + δ)) ≤ e
−δ2np
2+δ (see [1])
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And then

∀n ≥ N1, P(‖X‖∞ >
n

k
(1 + kξ)) ≤ ke

−
n

1/2
K+1

3

Since k = O(nK) the lemma follows with NA,K ≥ N1.
�

From now on we use, for a canonical scattering algorithm A, the notation
W (n,N) for the largest expected number of random bits used byA to scatter
n robots gathered in a point P in a configuration of N robots (see Equation
(2)).

Lemma 3.4 Let A be a canonical scattering algorithm with a destination
function that satisfies: ∃K ∈ N, kA(C,P ) = O(|C|K). Then, for all N ∈ N

∗,
there exists R ∈ R such that:

∀n ≤ N , ∀N ≥ n, W (n,N) ≤ R log(N)

Proof. Let N ∈ N, and C be a N -robot configuration containing a point
P of multiplicity n. Since kA(C,P ) = O(NK), there exists R0 such that
log(kA(C,P )) ≤ R0 log(N). Moreover there exists p ∈ N such that for all
2 ≤ n ≤ N and for all k ≥ 2, n robots moving randomly toward k possible
destinations are split into at least two points with probability at least 1

p .
In other words, define Yn,k, with n ≤ N , k ∈ N, the random variable that
equals 0 if all robots at the point P of multiplicity n, moving randomly
among k possible destinations, are still gathered, and 1 if not. Let p such
that 1

p ≤ P(YN ,2 = 1). Then we have

∀n ≤ N , ∀k ≥ 2 P(Yn,k = 1) ≥
1

p

So that the expected number of rounds needed to decrease the multiplic-
ity of P by one is p. Then we have:

W (n,N) ≤ pnR0 log(N) +W (n− 1, N)

and recursively we have:

W (n,N) ≤ pn2R0 log(N)

Since n ≤ N , with R = pN 2R0, we have:

W (n,N) ≤W (N , N) ≤ R log(N)

�

13



Theorem 3.2 Let A be a canonical scattering algorithm with a destination
function that satisfies: ∃K ∈ N, kA(C,P ) = O(|C|K). Then A is optimal
in terms of random bits, i.e. the expected number of random bits needed to
scatter n robots is O(n log(n)).

Proof sketch. We use mathematical induction over the global number N of
robots (N = |C|) and the local number n of robots located at position P .
We show that there exist R and R′ such that:

W (n,N) ≤ nR log(n) + nR′ log(N) (7)

Then for a configuration where all n robots are gathered, we haveW (n, n) ≤
n(R + R′) log(n) = O(n log(n)). Lemma 3.4 is used for the base case. In-
deed, for all N ∈ N, we can assign a value to R′ in order to make Equation
(7) true for all n ≤ N and for all N ≥ n. Then, Lemma 3.3 is used in the
inductive step. When n robots are randomly distributed among k possi-
ble destinations, there is a high probability that the distribution is almost
fair, and a low probability that a large number of robots moves toward the
same destination. Lemma 3.3 indicates how fair the distribution can be
with probability greater than 1/2. Overall, two rounds (in expectation) are
sufficient to have this ”almost fair” distribution. We then use the inductive
hypothesis with the new points.

Proof. We show that there exist R and R′ such that:

W (n,N) ≤ nR log(n) + nR′ log(N) (8)

We first have to define R and R′.
Since kA(C,P ) = O(|C|K), there exists R0 ≥ K such that 2 log(kA(C,P )) ≤

R0 log(|C|). Let N = N2,2 defined in Lemma 3.3. By Lemma 3.4, there ex-
ists R1 ∈ R such that: ∀n ≤ N , ∀N ≥ n :

W (n,N) ≤ R1 log(N)

Now, take R ≥ 74, R′ ≥ max(R0, R1), so that the induction hypothesis
(8) is true for n ≤ N and all N ≥ n. We now let n > N and suppose that
(8) is true for m < n:

∀m < n, W (m,N) ≤ mR log(m) +mR′ log(N)

We now have to show that this is true with n.
Let (C,P ) be such that E(ZC,P ) = W (n,N) and k = kA(C,P ) be the

number of possible destinations computed by A. We assume that cases
k = 2, 3, 4, 5, 6, 7 or 8 can be done the same way (see Lemma A.1 in appendix
for the case k = 2) maybe with a greater R. Thereby we suppose k ≥ 9.
Recall the recursive inequality (4):

W (n,N) ≤ n log(k) +
∑

α∈Nk, |α|=n

(

1

k

)n(
n
α

) k
∑

i=1

W (αi, N) (9)
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If k ≥ 2n2. Then P(‖X‖∞ > 1) ≤ 1
2 (Lemma 3.2). So:

W (n,N) ≤ n log(k) +
1

2
W (n,N)

And then:
W (n,N) ≤ 2n log(k) ≤ nR′ log(N)

If k < 2n2. We now split the sum on the right hand of (9). One part, where
the distribution is almost fair, the other part where there is a point that is
the destination of an abnormally large number of robots. The maximum
multiplicity tolerated is Mk =

⌊

n
k (1 + k2/3)

⌋

. If maxi(αi) > Mk, then we

bound the sum
∑k

i=1W (αi, N) by W (n,N). Else, each αi is less than
Mk and the worst distribution happens when there are most points with
multiplicity Mk. Letmk be the maximum number of points with multiplicity
Mk. We have:

k
∑

i=1

W (αi, N) ≤ mkW (Mk, N) +W (n−mkMk, N)

So that the split of (9) gives:

W (n,N) ≤ n log(k)+pW (n,N)+(1−p) (mkW (Mk, N) +W (n−mkMk, N))

With
p = P(‖X‖∞ > Mk)

Since n > N = N2,2, by Lemma 3.3 we have p < 1
2 . So:

W (n,N) ≤ n log(k) +
1

2
W (n,N) +

1

2
(mkW (Mk, N) +W (n−mkMk, N))

recursively we can show:

W (n,N) ≤ 2n log(k) +mkW (Mk, N) +W (n−mkMk, N)

If Mk ≤ 1, then we have W (n,N) ≤ 2n log(2n2) = 4n(log(n) + 1)

• Consider the case Mk > 1 and mkMk ≤ n− 1.
The induction hypothesis implies:

W (n,N) ≤ 2n log(k)+nR′ log(N)+R [mkMk log (Mk) + (n−mkMk) log (n−mkMk)]

By the concavity of x 7→ log(x) we deduce:

W (n,N) ≤ nR′ log(N) + 2n log(k) + nR log

(

mkM
2
k + (n−mkMk)

2

n

)
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Firstly we bound mkMk by n, secondly Mk and n−mkMk by n
k (1 + k2/3):

W (n,N) ≤ nR′ log(N)+2n log(k)+nR log

(

n2

k (1 + k2/3) + n2

k2
(1 + k2/3)2

n

)

W (n,N) ≤ nR′ log(N)+nR log(n)+n

[

2 log(k) +R log

(

k(1 + k2/3) + (1 + k2/3)2

k2

)]

But since R ≥ 74, then for all k ≥ 9:

R ≥
log(k2)

log
(

k2

k(1+k2/3)+(1+k2/3)2

) and log

(

k2

k(1 + k2/3) + (1 + k2/3)2

)

> 0

So that

2 log(k) +R log

(

k(1 + k2/3) + (1 + k2/3)2

k2

)

≤ 0

And we obtain:
W (n,N) ≤ nR′ log(N) + nR log(n)

• There remains the case Mk > 1 and mkMk = n We bound W (n,N)
in the same way:

W (n,N) ≤ 2n log(k) + nR′ log(N) + nR log
(n

k
(1 + k2/3)

)

W (n,N) ≤ nR′ log(N) + nR log (n) + n

[

2 log(k) +R log

(

1 + k2/3

k

)]

But since R ≥ 74, then for all k ≥ 9:

R ≥
log(k2)

log
(

k
1+k2/3

) and log

(

k

1 + k2/3

)

> 0

And again, we have:

W (n,N) ≤ nR′ log(N) + nR log (n)

�

4 Time Complexity without Strong Multiplicity

Detection

In this section, we investigate the time complexity (that is, the expected
scattering time) of scattering algorithms that do not use strong multiplicity
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detection. We already know that global strong multiplicity detection en-
ables O(1) expected scattering time (see the algorithm of Clement et al. in
the previous section). That bound obviously still holds if only local strong
multiplicity detection is available (their scattering algorithm is canonical,
so different multiplicity points are independent). There remains the case of
weaker forms of multiplicity detection (that is, local and global weak mul-
tiplicity, or no multiplicity detection whatsoever). We essentially show that
with respect to time complexity, weak multiplicity detection does not help.
Without strong multiplicity detection, we show that: for any algorithm, the
optimal expected O(1) cannot be achieved; for random bit optimal algo-
rithms, at least Ω(log log n) expected rounds are necessary. On the positive
side, we present a family of scattering algorithms that do not use multiplicity
detection yet can achieve arbitrarily fast (yet not constant) expected time.
Of particular interest in this family is a scattering algorithm that is both
random bit optimal scattering protocol and scatters n robots in O(log log n)
expected rounds.

Theorem 4.1 There exists no scattering algorithm with O(1) expected rounds
complexity that uses only global weak multiplicity detection.

Proof. Suppose that there exists E ∈ N, such that for every n ∈ N, the
expected number of rounds needed by A to scatter n robots is less than E.
Let u ∈ N, and P be a set of u points. Consider the equivalence relation ∽

over the set of configurations C that satisfy U(C) ⊂P such that C ∽ C ′, if
C and C ′ cannot be distinguished with only the weak multiplicity detection.
There is a finite number of equivalence classes, so the image of kA is finite.
So, after E rounds there is a maximum number of points where robots can
lie, and if n is greater than that number, no n-robots configuration can be
scattered in E rounds. A contradiction. �

Lemma 4.1 Let X be the random variable that gives the distribution of m
robots among k destinations. There exists N , such that for all m > N and
k ≤ 8m3:

P(‖X‖∞ >
m

k
(1 + k

3
4 )) ≤

1

2k

Proof. As in Lemma 3.3, with K = 3 and ξ = 3/4, we have:

P(‖X‖∞ >
n

k
(1 + k3/4)) ≤ ke

−
n

1
8

3 ≤
1

k
k2e

−
n

1
8

3

And there exists N such that for all m > N and k ≤ 8m3:

k2e
−
n

1
8

3 <
1

2

�
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Lemma 4.2 Let X be the random variable that gives the distribution of m
robots among k destinations. If k > 8m3, then:

P(‖X‖∞ > 1) ≤
1

2k1/3

Proof. As in Lemma 3.2, we have:

P(‖X‖∞ = 1) ≥
(

1−
m

k

)m
≥

(

1−
m2

k

)

≥

(

1−
1

2k1/3

)

�

Lemma 4.3 Let P a point where lie m robots. For all u ∈ N, x ∈ N we
have: after a random distribution of robots at P among k = max(16x4;u3; 8N 3)
possible destinations, robots are divided into points of multiplicity 1 or less
than m/x with probability at least 1− 1

2u .

Proof.
If k > 8m3, by Lemma 4.2, we have

P(‖X‖∞ > 1) <
1

2k1/3
<

1

2u

Else, k ≤ 8m3 and since k > 8N 3 we have m > N and so by Lemma 4.1:

P(‖X‖∞ >
m

k
(1 + k3/4)) <

1

2k
<

1

2u

But since k > 16x4, we have:

1

k
(1 + k3/4) ≤

1

x

And then:

P(‖X‖∞ >
m

x
) <

1

2k
<

1

2u

�

Lemma 4.4 Let C be a configuration with n robots organized in u points of
multiplicity at most m (that is, U(C) = {P1, P2, . . . , Pu}). Let x ∈ N. If
there exists u disjoint sets of k = max(16x4;u3; 8N 3) points D1, D2, . . . ,Du,
such that all robots in Pi are randomly distributed among points in Di. Then
the maximum multiplicity of the resulting configuration is 1 or less than m/x
with probability at least 1

2 .

Proof. Let U(C) = {P1, P2, . . . , Pu}. We define the indicator random
variable Zi as follows: Zi = 1 if all robots located at the same point Pi are

located after one round on points of multiplicity either 1 or less than
m

x
.
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Zi = 0 otherwise. Notice that {Z1, Z2, . . . , Zu} are mutually independent
because the destinations sets Di are disjoint i.e. no two robots from different
points ever reach the same position.

Since for all i, all robots at Pi are randomly distributed among k possible
destinations, by Lemma 4.3 we have:

P(Zi = 1) ≥ 1−
1

2u

And we get:

P(
u
∧

i=1

Zi = 1) ≥

(

1−
1

2u

)u

≥ 1−
u

2u
=

1

2

�

Let F = {f : N 7→ N | f is increasing and surjective}. Let f ∈ F .
We define f−1 as the maximum of the inverse function: i.e. f−1(y) =
max{x ; f(x) = y}. Since f ∈ F , f is not bounded and f−1 : N 7→ N is well
defined, increasing and diverging. Moreover we have f−1(1) > 0.

Given a function f ∈ F , we now define Algorithm SAf (see Algorithm 2)
that converges in O(f(n)) rounds in expectation (see Theorem 4.2).

Algorithm 2: SAf : Scattering algorithm executed by robot r. No
multiplicity detection

1 Compute the Voronöı diagram of the observed configuration
2 Cell← Voronöı cell where r is located
3 Let u = |U(C)|
4 Let x = f−1(f(u) + 1)
5 Let k = max(8N 3, 16x4, u3) with N given by Lemma 4.1
6 Let Pos be a set of k distinct positions in Cell
7 Move toward a position in Pos chosen uniformly at random.

SAf is a canonical scattering algorithm under the FSYNC and SSYNC
models. To construct the set of possible destinations, it executes the proce-
dure given by the previous lemma with x = f−1(f(u)+1) where u = |U(C)|.
Thus, if m is the maximum multiplicity of a given configuration, then after
one execution of SAf , the maximum multiplicity is either m/f−1(f(u) + 1)
or 1, with probability at least 1/2.

Theorem 4.2 Let f ∈ F . SAf is an canonical scattering algorithm, which
scatters n robots in O(f(n)) rounds in expectation.

Proof sketch. We first show that after 2i rounds in expectation, the
maximum multiplicity of every point is less than n/f−1(i). Indeed we use
Lemma 4.4 with x = f−1(f(n)+1). So that the expected number of rounds
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of an exection is less than 2f(n).

Proof. Given a function f ∈ F , we define the following sequence of states
(that depends on f , but we omit f for clarity): depending on the maximum
multiplicity m we say that a n-robots configuration is in a state i if:
• i = 0 and m > n/f−1(1).
• 1 ≤ i ≤ f(n) and n/f−1(i+ 1) < m ≤ n/f−1(i)
• i > imax = f(n) and m = 1 i.e. the configuration is scattered.

Since SAf is a canonical algorithm, the multiplicity of points never in-
creases. Since f is increasing and diverging, the sequence of configurations of
an executions of the algorithm is an increasing sequence of r states i1 ≤ i2 ≤
. . . ≤ ir, called the states of the execution.

Suppose now that the configuration C is in the state i ( i 6= imax). Let
m be the maximum multiplicity and u = |U(C)|. We have m ≤ n/f−1(i).
Since mu ≥ n and m ≤ n/f−1(i), we have:

f−1(i) ≤
n

m(i)
≤ u

.
Then, by applying f to each member, we have i ≤ f(u) and then:

f−1(i+ 1) ≤ f−1(f(u) + 1)

Such that:
m

f−1(f(u) + 1)
≤

m

f−1(i+ 1)
≤

n

f−1(i+ 1)
(10)

By Lemma 4.4 and with (10): after one execution of Af , the probability

that the maximum multiplicity is 1 or is less than
n

f−1(i+ 1)
is at least 1/2

i.e. the probability that the configuration state changes is at least 1/2. So
that the expecting number of rounds needed for the state to change is at
most 2.

Let Xi be the random variable, over all the possible executions of the
algorithm SAf , that equals the number of rounds the execution stays in the
state i. We have just shown that E(Xi) ≤ 2 for all i. Thus:

E(X1 +X2 + . . .+Ximax) ≤ 2imax = 2f(n)

Moreover, the expecting number of rounds needed to scatter n robots is less
than the sum of the expecting number of rounds that the algorithm stays
at each state. So that 2f(n) is an upper bound of the expecting number of
rounds needed by SAf to scatter n robots.

�
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Theorem 4.3 Let A be a canonical scattering algorithm such that at each
activation, the number of possible destinations computed by each robot is
the same i.e. for every configuration C that contains two points P and
P ′, kA(C,P ) = kA(C,P

′). Let B(n) be the maximum number of random
bits used by a robot among all n-robots configuration. Then the random bit
complexity of A is Θ(n log(n) + nB(n)).

Proof. Firstly, it is clear that the random bit complexity is Ω(n log(n))
(Theorem 3.1). More over if an execution start with the worst configuration,
A will use nB(n) random bits during the first round. So that the random
bit complexity is Ω(n log(n) + nB(n)).

Secondly, by Theorem 3.1, we know that the expecting number of ran-
dom bits, used by all rounds where robots compute less than 2n2 possible
destination is O(n log(n)). Moreover the expecting number of rounds where
robots compute more than 2n2 possible destinations is less than 2, so that
the expecting number of random bits used by all rounds that compute more
than 2n2 possible destinations is O(nB(n)). And the random bit complexity
is O(n log(n) + nB(n)). �

A direct consequence of Theorem 4.3 is the following:

Theorem 4.4 Let f ∈ F . SAf uses Θ(n log(f−1(f(n) + 1))) random bits
in expectation.

Proof. The maximum number of random bits used by robots executing SAf

is B(n) = 4 log(2f−1(f(n − 1) + 1)). That happens when the n robots are
split into n− 1 points. Notice that, since f−1 is an increasing function, we
have log(n) = O(log(f−1(f(n) + 1))).

By Theorem 4.3, the random bit complexity of SAf is Θ(n log(f−1(f(n)+
1))).

�

Note that the hypothesis that f ∈ F is not very restrictive. Indeed, if we
want our algorithm to converge in O(g(n)) with g a function that may not be
increasing nor surjective but such that limn→+∞ g(n) = +∞. We can define
f by : f(0) = 0 and ∀x > 0, f(x) = min (max (g(x), f(x− 1)) , f(x− 1) + 1).
So that f ∈ F and O(f(n)) ⊂ O(g(n)).

Now, our algorithm converges as fast as we want. We can try it with
some convinient functions. For example, with f = log∗, the algorithm
SAlog∗ converge in O(log∗(n)) rounds in expectation. Moreover, since 3

log(f−1(f(n) + 1)) = log((log
∗(n)+1)2) =log∗ n 2 = n, the resulting algorithm

uses O(n2) random bits in expectation. A faster algorithm can be obtained
using the inverse Ackermann function A−1 such that the time complexity of
SAA−1 is in O(A−1(n)) = o(log∗log∗log∗log∗n).

3we use the tetration notation : na = a
a·

·
a

︸ ︷︷ ︸

n

i.e. a exponentiated by itself, n times.
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A Random Bit Optimal Algorithm. If we want our algorithm SAf to
be random bit optimal, f must satisfy: n log(f−1(f(n) + 1)) = O(n log(n)).

With f = log ◦ log, we have: n log(f−1(f(n) + 1)) = n log 22
log log(n)+1

=
2n log(n) = O(n log(n)). So that SAlog ◦ log is random bits optimal and
converge in O(log log n) rounds in expectation. We now show that there
is no random bit optimal algorithm that converge faster than O(log log(n))
rounds in expectation, without using strong multiplicity detection. This
result makes SAlog ◦ log optimal for both time and random bit complexity.

Lemma 4.5 There exists no random bit optimal scattering algorithm with
o(log(log(n))) expected rounds complexity that uses only global weak multi-
plicity detection.

Proof. Let A be a canonical scattering algorithm that uses weak multiplic-
ity detection, and is random bit optimal. Then, there exists K such that
kA(C,P ) = O(|C|K), where C is a configuration containing a point P . Since
A does not know |C|, A might not know whether |C| > 2|U(C)|. Then we
can suppose that K is such that kA(C,P ) = O(|U(C)|K). Since |U(C)| ≥ 1,
this is equivalent to say that there exist B such that kA(C,P ) ≤ B|U(C)|K .
Indeed kA(C,P ) = O(|U(C)|K) implies:

∃B0, C0, ∀|C| > |C0|, kA(C,P ) ≤ B0|U(C)|K

=⇒ ∃B0, C0, ∀C, kA(C,P ) ≤ B0|U(C)|K +max|C|≤|C0| (kA(C,P ))

=⇒ ∃B0, C0, ∀C, kA(C,P ) ≤ |U(C)|K
(

B0 +max|C|≤|C0| (kA(C,P ))
)

=⇒ ∃B, ∀C, kA(C,P ) ≤ B|U(C)|

So the maximum number of points in which at least one robot lies after
one round is n1 = B. After two rounds, robots are split into n2 = BnK

1 =
BK+1 points at most. After 3 rounds : n3 = BnK

2 = BK2+K+1. After r
rounds we have:

nr = BKr−1+Kr−2+...+1 ≤ BKr

Suppose that, for all n ∈ N, the expected number of rounds needed by
A to scatter n robots is less than ϕ(n). If ϕ(n) = o(log(log(n))) we have:

log(log(B)) + log(K)ϕ(n) = o(log(log(n)))

log(B)Kϕ(n) = o(log(n))

BKϕ(n)
= o(n)

Since after ϕ(n) rounds, robots are split into BKϕ(n)
points at most, then,

there exists n0 ∈ N such that BKϕ(n0) < n0. So after ϕ(n0) rounds, n0

robots cannot be scattered and the expected number of rounds cannot be
less than ϕ(n0). �

The following table summarizes the dependency between time complex-
ity and multiplicity detection.

22



Optimal time Optimal time complexity
Multiplicity detection complexity for random bit

optimal algorithm

Strong global or local O(1) O(1)

Weak global or local ∀f, O(f(n)) O(log log(n))

No multiplicity detection ∀f, O(f(n)) O(log log(n))

5 Concluding Remarks

We investigated the random bit complexity of mobile robot scattering and
gave necessary and sufficient conditions for both (expected) random bit com-
plexity and time complexity. It turns out that multiplicity detection plays
an important role in the expected time complexity (O(1) expected time can
be achieved with strong multiplicity detection, while Θ(log log n) expected
time complexity is optimal in the case of weak or no multiplicity detection)
for the class of random bit optimal algorithms.

We also found out that without strong multiplicity detection, even if the
time complexity O(1) is not reachable, there exist scattering algorithms that
converge as fast as needed (yet not in expected constant time). Indeed our
algorithms can have a time complexity of O(f(n)), for every increasing and
surjective f , and expect Θ(n log(f−1(f(n) + 1))) random bits in return.

An interesting remaining open question would be to prove whether our
algorithms can be extended to the ASYNC model.

References

[1] Dana Angluin and Leslie G Valiant. Fast probabilistic algorithms for
hamiltonian circuits and matchings. Journal of Computer and system
Sciences, 18(2):155–193, 1979.

[2] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental
geometric data structure. ACM Computing Surveys (CSUR), 23(3):345–
405, 1991.
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Taisuke Izumi, and Stéphane Messika. The cost of probabilistic agree-
ment in oblivious robot networks. Inf. Process. Lett., 110(11):431–438,
2010.
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A The Case k = 2

Lemma A.1 Let A be a canonical scattering algorithm. Let n ∈ N. Let
(C,P ) be such that E(ZC,P ) = W (n,N) and k = kA(C,P ) be the number of
possible destinations computed by A. If k = 2 and if there exist R ≥ 17 and
R′ such that:

∀m < n, ∀N ≥ m, W (m,N) ≤ mR log(m) +mR′ log(N)

Then:
∀N ≥ n, W (n,N) ≤ nR log(n) + nR′ log(N)

Proof.
If n gathered robots split up, they form two groups of multiplicity m

and n−m with probability Cm
n
2n . Hence we have the recursion formula:

W (n,N) = n+ 1
2n
∑n

m=0C
m
n (W (m,N) +W (n−m,N))

W (n,N) = n+







⌊ 3n4 ⌋
∑

m=⌈n4 ⌉

Cm
n

2n
(W (m,N) +W (n−m,N))







+2







n
∑

m=⌊ 3n4 ⌋+1

Cm
n

2n
(W (m,N) +W (n−m,N))







W (n,N) ≤ n+

(

W

(⌊

3n

4

⌋

, N

)

+W
(⌈n

4

⌉

, N
)

)







⌊ 3n4 ⌋
∑

m=⌈n4 ⌉

Cm
n

2n






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+2W (n,N)







n
∑

m=⌊ 3n4 ⌋+1

Cm
n

2n







According to the Chernoff bound, since n > 16, we have P (Bn, 1
2
≥

3n

4
) ≤ e−n/12 ≤ e−17/8 <

1

4
, so that:

W (n,N) ≤ 2n+W

(⌊

3n

4

⌋

, N

)

+W
(⌈n

4

⌉

, N
)

The induction hypothesis implies:

W (n,N) ≤ 2n+ nR′ log(N) +R

⌊

3n

4

⌋

log

(⌊

3n

4

⌋)

+R
⌈n

4

⌉

log
(⌈n

4

⌉)

W (n,N) ≤ 2n+ nR′ log(N) +Rn(

⌊

3n
4

⌋

n
log

(⌊

3n

4

⌋)

+

⌈

n
4

⌉

n
log
(⌈n

4

⌉)

W (n,N) ≤ 2n + nR′ log(N) +Rn

(

log

(

⌊

3n
4

⌋

n

⌊

3n

4

⌋

+

⌈

n
4

⌉

n

⌈n

4

⌉

))

W (n,N) ≤ 2n + nR′ log(N) +Rn log

(

n

(

9

16
+

1

16
+

1

2n
+

1

n2

))

W (n,N) ≤ nR log(n) + nR′ log(N) + 2n+Rn log

(

12

16

)

And since R ≥ 17 > 2
log( 16

12)
, we have:

W (n,N) ≤ nR log(n) + nR′ log(N)

�
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