Network Monitoring Architecture based on Home Gateways

Claudio Casetti¹, Yan Grunenberger², Frank den Hartog³, Anukool Lakhina⁴, Henrik Lundgren⁵, Marco Milanesio⁶, Anna-Kaisa Pietilainen⁷, Shuang Zhang³, Renata Teixeira⁷

¹Politecnico di Torino (Italy), ²Telefonica (Spain), ³TNO (Netherlands), ⁴Guavus (India), ⁵Technicolor (France), ⁶Eurecom (France), ⁷UPMC (France)

FIGARO is a novel network architecture centered around home gateways. The use cases of FIGARO require active and passive monitoring tools that can run continuously and online inside a large number of home gateways.

Why home gateways?

- interconnects home network to internet
- natural control point
- gateways in different homes can collaborate

Use cases

- home automation
- distributed content delivery
- content delivery optimizations
- network performance troubleshooting

CHALLENGES

Low-cost gateway hardware

·limited CPU, memory, storage

Online monitoring and troubleshooting

must not interfere with gateway's normal operations

Data storage

summarize data without loss of essential information

Large scale monitoring

 collect and store aggregated data from a large number of gateways

VANTAGE POINTS

SYSTEM DESIGN

Monitoring Framework Functional Architecture

Incoming data processing at the gateway Collector

- subsample or filter
- → merge different streams
- bin over time
- aggregation

Data storage

- gateway: circular buffer
- ·central collector: cloud backend

Data Export

- publish/subscribe to data streams
- ▶SQL interface

http://www.ict-figaro.eu

