Network Monitoring Architecture based on Home Gateways Claudio Casetti¹, Yan Grunenberger², Frank den Hartog³, Anukool Lakhina⁴, Henrik Lundgren⁵, Marco Milanesio⁶, Anna-Kaisa Pietilainen⁷, Shuang Zhang³, Renata Teixeira⁷ ¹Politecnico di Torino (Italy), ²Telefonica (Spain), ³TNO (Netherlands), ⁴Guavus (India), ⁵Technicolor (France), ⁶Eurecom (France), ⁷UPMC (France) FIGARO is a novel network architecture centered around home gateways. The use cases of FIGARO require active and passive monitoring tools that can run continuously and online inside a large number of home gateways. ## Why home gateways? - interconnects home network to internet - natural control point - gateways in different homes can collaborate ## Use cases - home automation - distributed content delivery - content delivery optimizations - network performance troubleshooting ## **CHALLENGES** # Low-cost gateway hardware ·limited CPU, memory, storage Online monitoring and troubleshooting must not interfere with gateway's normal operations ## Data storage summarize data without loss of essential information # Large scale monitoring collect and store aggregated data from a large number of gateways ## **VANTAGE POINTS** ### SYSTEM DESIGN Monitoring Framework Functional Architecture Incoming data processing at the gateway Collector - subsample or filter - → merge different streams - bin over time - aggregation ### Data storage - gateway: circular buffer - ·central collector: cloud backend # **Data Export** - publish/subscribe to data streams - ▶SQL interface http://www.ict-figaro.eu