L. F. Abbott and C. V. Vreeswijk, Asynchronous states in networks of pulse-coupled oscillators, Physical Review E, vol.48, issue.2, pp.1483-1490, 1993.
DOI : 10.1103/PhysRevE.48.1483

R. Brette and W. Gerstner, Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity, Journal of Neurophysiology, vol.94, issue.5, pp.3637-3642, 2005.
DOI : 10.1152/jn.00686.2005

N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking networks, Journal of Computational Neuroscience, vol.8, issue.3, pp.183-208, 2000.
DOI : 10.1023/A:1008925309027

N. Brunel and V. Hakim, Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates, Neural Computation, vol.15, issue.7, pp.1621-1671, 1999.
DOI : 10.1038/373612a0

M. J. Cáceres, J. A. Carrillo, and B. Perthame, Analysis of Nonlinear Noisy Integrate&Fire Neuron Models: blow-up and steady states, The Journal of Mathematical Neuroscience, vol.1, issue.1, pp.1-7, 2011.
DOI : 10.1007/s11118-008-9093-5

M. J. Cáceres, J. A. Carrillo, and L. Tao, A numerical solver for a nonlinear Fokker???Planck equation representation of neuronal network dynamics, Journal of Computational Physics, vol.230, issue.4, pp.1084-1099, 2011.
DOI : 10.1016/j.jcp.2010.10.027

J. A. Carrillo, M. D. González, M. P. Gualdani, and M. E. Schonbek, Classical Solutions for a Nonlinear Fokker-Planck Equation Arising in Computational Neuroscience, Communications in Partial Differential Equations, vol.8, issue.3, pp.385-409, 2013.
DOI : 10.1080/09548980500421154

F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Global solvability of a networked integrate-and-fire model of McKean???Vlasov type, The Annals of Applied Probability, vol.25, issue.4, 2012.
DOI : 10.1214/14-AAP1044

URL : https://hal.archives-ouvertes.fr/hal-00747565

G. Dumont and J. Henry, Population density models of integrate-and-fire neurons with jumps: well-posedness, Journal of Mathematical Biology, vol.17, issue.4, 2012.
DOI : 10.1007/s00285-012-0554-5

URL : https://hal.archives-ouvertes.fr/hal-00711492

W. Gerstner and W. Kistler, Spiking neuron models, 2002.
DOI : 10.1017/cbo9780511815706

T. Guillamon, An introduction to the mathematics of neural activity, Butl. Soc. Catalana Mat, vol.19, pp.25-45, 2004.

P. Michel, S. Mischler, and B. Perthame, General relative entropy inequality: an illustration on growth models, Journal de Math??matiques Pures et Appliqu??es, vol.84, issue.9, pp.1235-1260, 2005.
DOI : 10.1016/j.matpur.2005.04.001

K. Newhall, G. Kova?i?, P. Kramer, A. V. Rangan, and D. Cai, Cascade-induced synchrony in stochastically driven neuronal networks, Physical Review E, vol.82, issue.4, pp.82-041903, 2010.
DOI : 10.1103/PhysRevE.82.041903

K. Newhall, G. Kova?i?, P. Kramer, D. Zhou, A. V. Rangan et al., Dynamics of current-based, poisson driven, integrate-and-fire neuronal networks, Comm. in Math. Sci, vol.8, pp.541-600, 2010.

. Top-right-figure, the initial data is the profile (12) with N = 3 and R(0) = 3 ? . Bottom left figure: Evolution of N (t) for different initial data: p 0 1 is the profile (12) with N = 3 and R(0) = N ? , p 0 2 is the profile (12) with N = 2, where c is a constant such that (3) is satisfied. Bottom right figure: Evolution of R(t) for the three initial data as in the left figure, the four plots the other parameters are: V F = 2, p.3

K. Pakdaman, B. Perthame, and D. Salort, Relaxation and Self-Sustained Oscillations in the Time Elapsed Neuron Network Model, SIAM Journal on Applied Mathematics, vol.73, issue.3
DOI : 10.1137/110847962

K. Pakdaman, M. Thieullen, and G. Wainrib, Fluid limit theorems for stochastic hybrid systems with application to neuron models, Advances in Applied Probability, vol.46, issue.03, pp.761-794, 2010.
DOI : 10.1073/pnas.0236032100

URL : https://hal.archives-ouvertes.fr/hal-00555398

B. Perthame, Transport equations in biology, Frontiers in Mathematics, 2007.

A. V. Rangan, G. Kova?-ci?-c, and D. Cai, Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train, Physical Review E, vol.77, issue.4, pp.77-78, 2008.
DOI : 10.1103/PhysRevE.77.041915

A. Renart, N. Brunel, and X. Wang, Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks, in Computational Neuroscience: A comprehensive approach, J. Feng, 2004.

C. Rossant, D. F. Goodman, B. Fontaine, J. Platkiewicz, A. K. Magnusson et al., Fitting Neuron Models to Spike Trains, Frontiers in Neuroscience, vol.5, pp.1-8, 2011.
DOI : 10.3389/fnins.2011.00009

URL : http://doi.org/10.3389/fnins.2011.00009