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In this paper, we provide a first full a posteriori error analysis for variational approximations of the

ground state eigenvector of a non-linear elliptic problems of the Gross-Pitaevskii type, more precisely of

the form −∆u+Vu+u3 = λu, ‖u‖L2 = 1, with periodic boundary conditions in one dimension. Denoting

by (uN ,λN) the variational approximation of the ground state eigenpair (u,λ ) based on a Fourier spectral

approximation and (uk
N ,λ k

N) the approximate solution at the kth iteration of an algorithm used to solve

the non-linear problem, we first provide a precised a priori analysis of the convergence rates of ‖u−
uN‖H1 , ‖u− uN‖L2 , |λ − λN | and then present original a posteriori estimates in the convergence rates

of ‖u−uk
N‖H1 when N and k go to infinity. We introduce a residue standing for the global error Rk

N =
−∆uk

N +Vuk
N +(uk

N)3−λ k
Nuk

N and we divide it into two residues characterizing respectively the error due

to the discretization of the space and the finite number of iterations when solving the problem numerically.

We show that the numerical results are coherent with this a posteriori analysis.

Keywords: a posteriori analysis, non-linear eigenvalue problem, iterative solution algorithm, plane wave

approximation, stopping criteria.

1. Introduction

Non-linear eigenvalue problems are involved in many application fields such as non-linear mechanics,

theoretical physics and electronic structure calculations. The numerical simulation of these problems

demands a lot of computational resources both due to the accuracy that is generally required in the

applications which implies the use of a large number of degrees of freedom and also due to the non-

linear nature of the models that leads to iterative solution techniques that necessitate a large number

of steps. The tuning of the two above ingredients involved in the approximation methods (number of
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degrees of freedom and number of iterations) is, most of the times, guided in the best cases both by

empirical reasons and by the available volume of computing resources. From the mathematical point of

view, these questions are related to the numerical analysis of the discretization approaches that allow to

state in a rigorous way the link from the discretization and solution parameters to the error between the

approximate solution(s) and the exact one(s). In the range of the numerical analysis, and related to error

bounds, we can distinguish between two types of contributions: the a priori analysis and the a posteriori

analysis. The a priori version allows to qualify the tendency of the approximation properties as a

function of the number of degrees of freedom and/or the amount of work necessary for the computation

of the discrete solution. This is generally done by upper bounding the error by a constant times the best

approximation given by the projection of the exact solution onto the discrete space. The above constant

that appears in the a priori analysis is generally not fully known, nor actually the distance between the

solution and its projection. Most of the times, the latter is evaluated from the regularity property of

the solution that is at best only roughly estimated. On the contrary, the a posteriori analysis provides

a (more or less) precise upper bound of the actual error after a computation has been performed. This

bound involves only quantities that are or can easily be evaluated at the same cost as the computation

of the discrete solution. Note that a posteriori analysis, thanks to the notion of indicators, may tell you

what to do to improve the accuracy, but will not tell you what to do to diminish the current error by e.g.

a factor 2. On the contrary, a posteriori analysis provides a stopping criteria when the desired accuracy

is reached, an a priori estimator fails to do so.

The (a priori) numerical analysis of such non-linear eigenvalue problems is quite recent and relies

in the papers (2), (3), (7), (8), (16), (12) and the references therein. These papers only consider the

discretization error due to the use of a given number of degrees of freedom in order to approximate the

problem of interest. For an analysis of the convergence of the iterative algorithms to solve the non-

linear eigenvalue problem (or the associated non-linear minimization problem), the papers issued from

(5), (1), (11) provide a priori convergence results and allow to understand the basics for the failure of

some classical approaches and how to remedy.

As is standard, all these a priori approaches allow to state that, provided that you put enough com-

puting resources, the approximation will be good. Such results are classically insufficient because the

amount of required computing resources for large problems is very often out of the possibility that you

can afford. This is the reason why a posteriori approaches (estimators and indicators) have been de-

signed. As far as we know, the first paper in the direction of a posteriori estimates is (13), where the

analysis of the Hartree Fock problem was performed and error bounds (i.e. upper and lower bounds) for

the ground state energy was proposed. We refer also to the more recent contributions (10), (9).

The present paper is the first of a series that aims at providing precise information on the accuracy

of the approximation as a function of the number of degrees of freedom that are used and the number

of iterations at which we stop the numerical process. For the sake of clarity in the tools that we use, the

analysis is explained on a non-linear equation that enters in the class of Gross-Pitaevskii equations ((14))

and we focus on a one dimensional example to present both the theory and the numerical simulation that

illustrate it. This allows us to propose a posteriori estimates and indicators based on residual techniques

that discriminate the effect of the discretization parameter (the number of degrees of freedom) from the

parameters attached to the solution procedure (i.e. the number of iterations). The generalization of these

tools for the more difficult problem of the Kohn Sham problem involves a series of technical difficulties

and is on its way. We refer to (4) for a general presentation of the mathematical models and approaches

for their simulations in computational quantum chemistry.
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In this paper, we focus on the following non-linear eigenvalue problems arising in the study of

variational models of the form

I = inf

{
E(v), v ∈ X ,

∫

Ω
v2 = 1

}
(1.1)

where Ω is here simply the unit cell (0,1) of a periodic lattice R of R , the energy functional E is of

the form

E(v) =
1

2

∫

Ω
|∇v|2 +

1

2

∫

Ω
V v2 +

1

4

∫

Ω
v4,

and X = H1
# (Ω) is the Sobolev space, defined in the more general settings for any s ∈ R,

Hs
#(Ω) = {v|Ω , v ∈ Hs

loc(R) | v is 1-periodic} ,

provided with the norm denoted as ‖.‖Hs and for any k ∈ N,

Ck
#(Ω) =

{
v|Ω , v ∈Ck(R) | v is 1-periodic

}
.

For p ∈ [1,∞], let us denote by Cp the Sobolev constant such that for any v ∈ X , ‖v‖Lp 6 Cp‖v‖H1 . In

addition, we remind the following Gagliardo Nirenberg inequality1

∀v ∈ H1
# (Ω), ‖v‖2

L∞(Ω) 6
√

5‖v‖L2(Ω)‖v‖H1(Ω). (1.2)

In what follows, we shall assume that V ∈ Lp(Ω) for some p > 1. It was shown in (2) that (1.1) has

exactly two solutions: u and −u in X with u > 0 in Ω . From the embedding of H1(Ω) into C0(Ω) (valid

because we are in one dimension) u ∈C0(Ω). Moreover, E is Gâteaux differentiable on X and for any

v ∈ X , E ′(v) = Avv where

Av = −∆ +V + v2. (1.3)

Under the previous assumptions E is twice differentiable at any v∈ X and, by denoting E ′′(v) the second

derivative of E at v, we have for any v,w,z ∈ X

〈E ′′(v)w,z〉X ′,X = 〈Avw,z〉X ′,X +2

∫

Ω
v2wz =

∫

Ω
∇w.∇z+

∫

Ω
V wz+3

∫

Ω
v2wz. (1.4)

Note that Av defines a self-adjoint operator on L2(Ω), with form domain X (see e.g. (15)). The function

u therefore is solution to the Euler equation

∀v ∈ X , 〈Auu−λu,v〉X ′,X = 0 (1.5)

1For any v ∈ H1(Ω) we can indeed write

∀x,y ∈ Ω , v2(x) 6 v2(y)+2

√∫

Ω
v2

√∫

Ω
v′2.

from which we deduce, after integration in the y variable that

∀x ∈ Ω , v2(x) 6

∫

Ω
v2 +2

√∫

Ω
v2

√∫

Ω
v′2 6

√
5

√∫

Ω
v2

√∫

Ω
v2 +

∫

Ω
v′2
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for some λ ∈ R (the Lagrange multiplier associated with the constraint ‖u‖2
L2 = 1) and equation (1.5),

complemented with the constraint ‖u‖L2 = 1, takes the form of the following non-linear eigenvalue

problem {
Auu = λu

‖u‖L2 = 1,
or again

{
−∆u+Vu+u3 = λu

‖u‖L2 = 1,
(1.6)

which can be rewritten in a weak form as




∀v ∈ X ,
∫

Ω
∇u ·∇v+

∫

Ω
Vuv+

∫

Ω
u3v = λ

∫

Ω
uv

∫

Ω
u2 = 1.

(1.7)

Let us remark that for any v ∈ X ,

〈E ′′(u)u−λu,v〉X ′,X = 2

∫

Ω
u3v. (1.8)

In should be noted in addition,that λ is the ground state eigenvalue of the linear operator Au. An

important result is that λ is a simple eigenvalue of Au (see e.g. the Appendix of (2)).

A natural discretization in the periodic settings consists in using a Fourier basis. We denote by

(XN)N>0 the family of finite-dimensional subspaces of X defined by

XN = Span
{

ek : x 7→ e2ikπx, |k| 6 N,k ∈ Z

}
.

Remind now that, for any v ∈ L2(Ω),

v(x) = ∑
k∈Z

v̂kek(x),

where v̂k is the kth Fourier coefficient of v:

v̂k :=
∫

Ω
v(x)ek(x)dx =

∫

Ω
v(x)e−2ikπx dx.

For any real number s, we now endow the Sobolev space Hs
#(Ω) with the equivalent norm expressed in

Fourier modes as follows

‖v‖Hs =

(

∑
k∈Z

(
1+ |k|2

)s |v̂k|2
)1/2

.

We obtain that for any r ∈ R, and all v ∈ Hr
#(Ω), the best approximation of v in Hs

#(Ω) for any s 6 r is

ΠNv = ∑
k∈Z,|k|6N

v̂kek.

The more regular v (the regularity being measured in terms of the Sobolev norms Hr), the faster the

convergence of this truncated series to v: for any real numbers r and s with s 6 r, we have (see e.g. (6))

∀v ∈ Hr
#(Ω), ‖v−ΠNv‖Hs 6

1

Ns−r
‖v‖Hr . (1.9)
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and in particular for the solution u :

min{‖u− vN‖H1 , vN ∈ XN} −→
N→+∞

0. (1.10)

Let us now consider the variational approximation of (1.1) consisting in solving

IN = inf

{
E(vN), vN ∈ XN ,

∫

Ω
v2

N = 1

}
. (1.11)

Problem (1.11) has at least one minimizer uN , which satisfies for some λN ∈ R

∀vN ∈ XN , 〈AuN
uN −λNuN ,vN〉X ′,X = 0 (1.12)

that is

∀vN ∈ XN ,
∫

Ω
∇uN ·∇vN +

∫

Ω
VuNvN +

∫

Ω
u3

NvN −λN

∫

Ω
uNvN = 0. (1.13)

A possible algorithm used to solve the equation numerically in the space XN is the following : starting

from a given pair (u0
N ,λ 0

N), we solve at each step the linear equation

ΠN

(
−∆uk∗

N +Vuk∗
N +(uk−1

N )2uk∗
N

)
= λ k−1

N uk−1
N . (1.14)

The discrete solution uk∗
N is completely determined by the knowledge of (λ k−1

N ,uk−1
N ). Since uk∗

N is a

priori a non-normalized vector, we normalize it and define uk
N by

uk
N =

uk∗
N

‖uk∗
N ‖L2

. (1.15)

Finally, we define the approximation of the eigenvalue λ k
N as a Rayleigh quotient being

λ k
N =

∫

Ω
(∇uk∗

N )2 +
∫

Ω
V (uk∗

N )2 +
∫

Ω
(uk∗

N )4

∫

Ω
(uk∗

N )2
=
∫

Ω
(∇uk

N)2 +
∫

Ω
V (uk

N)2 +
∫

Ω
(uk

N)4. (1.16)

It should be noticed that the above algorithm corresponds to an extension of the inverse power method to

this non-linear eigenvalue problem. We can check numerically that such an algorithm converges (at least

in all the simulations we have performed, eventually with a relaxation parameter — see the numerical

results below). Moreover we can derive that the limit (λN ,uN) is a good approximation of the solution

to problem (1.5). More precisely we can prove the following lemma.

Lemma 1 Let us assume that there exists u∗N ∈ H1
# with

∫
Ω [u∗N ]2 = 1, such that the sequence (uk∗

N )k>1

converges to u∗N in H1-norm when k goes to infinity, then

• the sequence (λ k
N)k>1 converges to λ ∗

N =
∫

Ω
(∇u∗N)2 +

∫

Ω
V (u∗N)2 +

∫

Ω
(u∗N)4

• the sequence (uk
N)k>1 converges to u∗N in H1-norm

• the limit (u∗N ,λ ∗
N) verifies the non-linear eigenvalue equation (1.13).
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Proof. The strong convergence of uk∗
N to u∗N implies that the limit of the L2-norm of uk∗

N is 1 and thus

the sequence (uk
N ,λ k

N) converges to (u∗N ,λ ∗
N) in H1-norm. Then, for any ε > 0, there exists k0 ∈ N such

that for any k > k0, k ∈ N, the following assertions hold:

|λ k
N −λ ∗

N | 6 ε,

‖uk
N −u∗N‖H1 6 ε,

‖uk
N −uk−1

N ‖H1 6 ε. (1.17)

For any k > k0, using (1.2), we deduce that ‖uk
N‖L∞ 6

4
√

5
√

ε +‖u∗N‖H1 . Let us now take vN ∈ XN , we

have:
∫

Ω
∇u∗N∇vN +

∫

Ω
Vu∗NvN +

∫

Ω
(u∗N)3vN −λ ∗

N

∫

Ω
u∗NvN

=
∫

Ω
∇uk

N∇vN +
∫

Ω
Vuk

NvN +
∫

Ω
(uk−1

N )2uk
NvN −λ k−1

N

∫

Ω
uk−1

N vN

+
∫

Ω
∇(u∗N −uk

N)∇vN +
∫

Ω
V (u∗N −uk

N)vN +
∫

Ω
((u∗N)3 − (uk

N)3)vN

+
∫

Ω
((uk

N)3 − (uk−1
N )2uk

N)vN +λ k−1
N

∫

Ω
uk−1

N vN −λ ∗
N

∫

Ω
u∗NvN

From (1.14) the second line is zero so we are left with

∫

Ω
∇u∗N∇vN +

∫

Ω
Vu∗NvN +

∫

Ω
(u∗N)3vN −λ ∗

N

∫

Ω
u∗NvN

=
∫

Ω
∇(u∗N −uk

N)∇vN +
∫

Ω
V (u∗N −uk

N)vN +
∫

Ω
((u∗N)2 +u∗Nuk

N +(uk
N)2)(u∗N −uk

N)vN

+
∫

Ω
uk

N(uk
N +uk−1

N )(uk
N −uk−1

N )vN +(λ k−1
N −λ ∗

N)
∫

Ω
uk−1

N vN +λ ∗
N

∫

Ω
(uk−1

N −u∗N)vN .

Hence
∣∣∣∣
∫

Ω
∇u∗N∇vN +

∫

Ω
Vu∗NvN +

∫

Ω
(u∗N)3vN −λ ∗

N

∫

Ω
u∗NvN

∣∣∣∣

6 ‖∇(u∗N −uk
N)‖L2‖∇vN‖L2 +‖V‖Lp‖u∗N −uk

N‖L∞‖vN‖L2

+(‖u∗N‖2
L∞ +‖u∗N‖L∞‖uk

N‖L∞ +‖uk
N‖2

L∞)‖u∗N −uk
N‖L2‖vN‖L2

+‖uk
N‖L∞(‖uk

N‖L∞ +‖uk−1
N ‖L∞)‖uk

N −uk−1
N ‖L2‖vN‖L2

+ |λ k−1
N −λ ∗

N |‖uk−1
N ‖L2‖vN‖L2 + |λ ∗

N |‖uk−1
N −u∗N‖L2‖vN‖L2 .

Then from (1.17) and (1.2) we derive

∣∣∣∣
∫

Ω
∇u∗N∇vN +

∫

Ω
Vu∗NvN +

∫

Ω
(u∗N)3vN −λ ∗

N

∫

Ω
u∗NvN

∣∣∣∣

6 ε‖∇vN‖L2 + ε

(
4
√

5 ‖V‖Lp +‖u∗N‖2
L∞ +

4
√

5 ‖u∗N‖L∞

√
ε +‖u∗N‖H1

+
√

5(ε +‖u∗N‖H1)+2
√

5(ε +‖u∗N‖H1)+1+ |λ ∗
N |
)
‖vN‖L2 .
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We then easily deduce that the limit (u∗N ,λ ∗
N) verifies the non-linear eigenvalue equation (1.13). This

concludes the proof of the lemma 1. �

The following property will be used several times in the analysis:

Lemma 2 For any v,w ∈ X such that

∫

Ω
v2 =

∫

Ω
w2 = 1,

∫

Ω
v(v−w) = 1−

∫

Ω
vw =

1

2
‖v−w‖2

L2 . (1.18)

Proof. From the L2-normalization of v and w we write
∫

Ω
v(v−w) = 1−

∫

Ω
vw =

1

2

∫

Ω
v2 −

∫

Ω
vw+

1

2

∫

Ω
w2

=
1

2
‖v−w‖2

L2

which concludes the proof of the lemma. �

In the remainder of this paper, we denote by u the unique positive solution of (1.1) and by uN a

minimizer of the discretized problem (1.11) such that (uN ,u)L2 > 0.

2. A priori analysis

The purpose of this section is to provide a precised a priori analysis for the approximation of problem

(1.1) by (1.13), more precisely establish error bounds on ‖uN −u‖H1 , ‖uN −u‖L2 , |λN −λ | and E(uN)−
E(u). Actually, we follow step by step the paper (2) where the a priori analysis was done in a more

general framework.

We provide this a priori analysis of (1.1) for two reasons. Firstly the particular form of the energy

functional and the fact that the problem in one-dimensional allows to simplify the proofs and understand

better the basic ingredients that will be used in the next section. Secondly, and more importantly, we

need to be as precise as possible in order to provide an accurate evaluation of the various constants that

are involved in the error bounds of the a posteriori analysis.

Lemma 3 (precise version of Lemma 1 of (2)) There exist β > 0, M1,M3 ∈ R+ and γ > 0 such that

for any v ∈ X and any N ∈ N,

0 6 〈(Au −λ )v,v〉X ′,X 6 M1‖v‖2
H1 (2.1)

β‖v‖2
H1 6 〈(E ′′(u)−λ )v,v〉X ′,X 6 M3‖v‖2

H1 . (2.2)

γ‖uN −u‖2
H1 6 〈(Au −λ )(uN −u),(uN −u)〉X ′,X . (2.3)

Moreover the constants are

Mm = 1+‖V‖LpC2
2p′ +m‖u‖2

L∞ + |λ | (2.4)

β =
1

2

η

η + χ
, η = min(λ2 −λ ,2), χ = |λ |+1+

5‖V‖2
Lp

2
(2.5)

γ =
1

2

η

η +2χ
(2.6)
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where λ2 > λ is the the second smallest eigenvalue of the equation (1.5) and p′ = (1− p−1)−1.

Proof. From (1.3), we have for every v ∈ X ,

|〈(Au −λ )v,v〉X ′,X | 6 ‖∇v‖2
L2 +‖V‖Lp‖v‖2

L2p′ +‖u2‖L∞‖v‖2
L2 + |λ |‖v‖2

L2

6

(
1+‖V‖LpC2

2p′ +‖u2‖L∞ + |λ |
)
‖v‖2

H1 ,

where p′ = (1− p−1)−1. Moreover, from (1.4)

|〈(E ′′(u)−λ )v,v〉X ′,X | 6 |〈(Au −λ )v,v〉X ′,X |+2‖u2‖L∞‖v‖2
L2

6

(
1+‖V‖LpC2

2p′ +3‖u2‖L∞ + |λ |
)
‖v‖2

H1 ,

hence the upper bounds in (2.1) and (2.2) with constants M1 and M3 defined in (2.4).

The fact that λ , the lowest eigenvalue of Au, is simple (see the Appendix of (2)) provides the lower

bound in (2.1). Indeed, the operator Au −λ is positive over the set u⊥ defined as

u⊥ =

{
v ∈ X |

∫

Ω
uv = 0

}
, (2.7)

more precisely we have, for any v ∈ X ,

〈(Au −λ )v,v〉X ′,X > (λ2 −λ )(‖v‖2
L2 −|(u,v)L2 |2) > η(‖v‖2

L2 −|(u,v)L2 |2) > 0, (2.8)

with η = min(λ2 −λ ,2). On the one hand for any v ∈ X ,

〈(E ′′(u)−λ )v,v〉X ′,X = 〈(Au −λ )v,v〉X ′,X +2

∫

Ω
u2v2

> η(‖v‖2
L2 −|(u,v)L2 |2)+2

∫

Ω
u2v2

> η‖v‖2
L2 +2

∫

Ω
u2v2 −η

(∫

Ω
uv

)2

> η‖v‖2
L2 +(2−η)

(∫

Ω
uv

)2

> η‖v‖2
L2 (2.9)

On the other hand for any v ∈ X ,

〈(Au −λ )v,v〉X ′,X > ‖∇v‖2
L2 −‖V‖Lp‖v‖2

L∞ −|λ |‖v‖2
L2

> ‖v‖2
H1 −

√
5‖V‖Lp‖v‖L2‖v‖H1 − (|λ |+1)‖v‖2

L2 ,

by using the Gagliardo-Nirenberg inequality (1.2). Thanks to the inequality between arithmetic and

geometric means applied to ‖v‖H1 and ‖V‖Lp‖v‖L2 , we deduce that

〈(Au −λ )v,v〉X ′,X >
1

2
‖v‖2

H1 −
(
|λ |+1+

5‖V‖2
Lp

2

)
‖v‖2

L2 . (2.10)
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Combining (2.9) with (2.10) we get the lower bound in (2.2) with the constant β defined in (2.5).

To prove (2.3) we notice from (1.18) and the positivity of (u,uN)L2 that

‖uN‖2
L2 −|(u,uN)L2 |2 > 1− (u,uN)L2 =

1

2
‖uN −u‖2

L2 .

It therefore readily follows from (1.5) and (2.8) that

〈(Au −λ )(uN −u),(uN −u)〉X ′,X = 〈(Au −λ )(uN),(uN)〉X ′,X >
η

2
‖uN −u‖2

L2 . (2.11)

We also have from (2.10) that

〈(Au −λ )(uN −u),(uN −u)〉X ′,X >
1

2
‖uN −u‖2

H1 −χ‖uN −u‖2
L2 (2.12)

with χ defined in (2.5). From (2.11) and (2.12) we can write

〈(Au −λ )(uN −u),(uN −u)〉X ′,X >
1

2

η/2

η/2+ χ
‖uN −u‖2

H1

Hence (2.3) with γ defined in (2.6). �

For w ∈ X ′, we denote by ψw in u⊥ defined in (2.7) the unique solution to the adjoint problem

{
find ψw ∈ u⊥ such that

∀v ∈ u⊥, 〈(E ′′(u)−λ )ψw,v〉X ′,X = 〈w,v〉X ′,X ,
(2.13)

The existence and uniqueness of the solution to (2.13) is a straightforward consequence of (2.2) and the

Lax-Milgram lemma that also provides the estimate,

∀w ∈ L2(Ω), ‖ψw‖H1 6 β−1‖w‖X ′ 6 β−1‖w‖L2 . (2.14)

Besides this existence and stability result, the (very) simple elliptic regularity result follows

Lemma 4 Assume V ∈ Lp(Ω) then, there exists a constant C̃ = 3
4√

5
β

(‖V‖Lp +1)+ λ
β

+1 such that

If p > 2, ‖ψw‖H2 6 C̃‖w‖L2 . (2.15)

If p < 2, ‖ψw‖W 2,p 6 C̃‖w‖L2 . (2.16)

Let us now state the first a priori result of this section.

Theorem 1 Under the previous assumptions,

uN converges strongly to u in H1(Ω) for N → +∞ (2.17)

In addition, there exists CE ∈ R+ such that for any N ∈ N,

γ

2
‖uN −u‖2

H1 6 E(uN)−E(u) 6 CE‖uN −u‖2
H1 , (2.18)
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there exists Cλ ∈ R+ such that for any N ∈ N,

|λN −λ | 6 Cλ
(
‖uN −u‖2

H1 +‖uN −u‖L2

)
, (2.19)

there exists N0 ∈ N and CH1 ∈ R+ such that for any N > N0,N ∈ N,

‖uN −u‖H1 6 CH1 min
vN∈XN

‖vN −u‖H1 , (2.20)

and there exists N1 ∈ N and CL2 ∈ R+ such that for any N > N1,N ∈ N,

‖uN −u‖2
L2 6 CL2‖uN −u‖H1 min

ψN∈XN

‖ψuN−u −ψN‖H1 . (2.21)

REMARK 2.1 It should be noticed at this level that, even if the constants above Cλ , CH1 and CL2 can be

estimated quite accurately, they involve u so as does minvN∈XN
‖vN −u‖H1 : it results that these estimates

are not constructive.

Proof. We have

E(uN)−E(u) =
1

2
〈AuuN ,uN〉X ′,X − 1

2
〈Auu,u〉X ′,X +

1

2

∫

Ω

(
u4

N

2
− u4

2
−u2(u2

N −u2)

)

=
1

2
〈(Au −λ )(uN −u),(uN −u)〉X ′,X +

1

4

∫

Ω
(u2

N −u2)2.

(2.22)

Using (2.3) and the fact that the second term on the right hand side is positive we get

E(uN)−E(u) >
γ

2
‖uN −u‖2

H1 .

From the definition of ΠNu the H1-projector of u on XN , (ΠNu)N>0 converges to u in X when N goes to

infinity. Denoting by ũN = ‖ΠNu‖−1
L2 ΠNu (which is well defined, since u > 0 means that it is not with

zero average, hence ΠNu is never null), we also have

lim
N→+∞

‖ũN −u‖H1 = 0.

The functional E being strongly continuous on X , we obtain from (2.3)

‖uN −u‖2
H1 6

2

γ
(E(uN)−E(u)) 6

2

γ
(E(ũN)−E(u)) −→

N→+∞
0

that is (2.17). It follows that there exists N1 ∈ N such that

∀N > N1,N ∈ N, ‖uN −u‖H1 6
1

2
and ‖uN‖H1 6 2‖u‖H1 . (2.23)

Moreover

E(uN)−E(u) =
1

2
〈(Au −λ )(uN −u),(uN −u)〉X ′,X +

1

4

∫

Ω
(u2

N −u2)2

6
M1

2
‖uN −u‖2

H1 +
1

4
‖uN −u‖2

L∞‖uN +u‖2
L2 (from (2.1))

6

(
M1

2
+
√

5

)
‖uN −u‖2

H1 (from (1.2) using ‖u‖L2(Ω) = ‖uN‖L2(Ω) = 1).
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Hence the upper bound in (2.18) with CE = M1
2

+
√

5.

From (1.13) with vN = uN and (1.7) with v = uN −u, we remark that

λN −λ = λN

∫

Ω
u2

N −λ

∫

Ω
u2

=
∫

Ω
(∇uN)2 +

∫

Ω
Vu2

N +
∫

Ω
u4

N −
(∫

Ω
(∇u)2 +

∫

Ω
Vu2 +

∫

Ω
u4

)

=
∫

Ω
∇(uN −u)2 +

∫

Ω
V (uN −u)2 +2

∫

Ω
∇u ·∇(uN −u)+2

∫

Ω
Vu(uN −u)+

∫

Ω
u4

N −u4

= 〈Au(uN −u),(uN −u)〉X ′,X −
∫

Ω
u2(uN −u)2 +2λ

∫

Ω
u(uN −u)−2

∫

Ω
u3(uN −u)+

∫

Ω
u4

N −u4

= 〈(Au −λ )(uN −u),(uN −u)〉X ′,X +
∫

Ω
u2

N(uN +u)(uN −u) (from (1.18)) (2.24)

we also obtain

∣∣∣∣
∫

Ω
u2

N(uN +u)(uN −u)

∣∣∣∣ 6 ‖u2
N(uN +u)‖L2‖uN −u‖L2

6 ‖uN‖2
L∞‖uN +u‖L2‖uN −u‖L2

6
√

5‖uN‖L2‖uN‖H1‖uN +u‖L2‖uN −u‖L2 (from (1.2))

6 4
√

5‖u‖H1‖uN −u‖L2 (from (2.23) ),

and from (2.1)

|λN −λ | 6 M1‖uN −u‖2
H1 +4

√
5‖u‖H1‖uN −u‖L2

6 Cλ
(
‖uN −u‖2

H1 +‖uN −u‖L2

)
(2.25)

with Cλ = max
(

M1,4
√

5‖u‖H1

)
.

In order to evaluate the H1-norm of the error uN −u, we first notice that

∀vN ∈ XN , ‖uN −u‖H1 6 ‖uN − vN‖H1 +‖vN −u‖H1 , (2.26)

and from (2.2) that

‖uN − vN‖2
H1 6 β−1 〈(E ′′(u)−λ )(uN − vN),(uN − vN)〉X ′,X

= β−1

(
〈(E ′′(u)−λ )(uN −u),(uN − vN)〉X ′,X

+〈(E ′′(u)−λ )(u− vN),(uN − vN)〉X ′,X

)
. (2.27)
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For any wN ∈ XN , using (1.4), (1.5) and (1.13)

〈(E ′′(u)−λ )(uN −u),wN〉X ′,X = 〈(Au −λ )(uN −u),wN〉X ′,X +2

∫

Ω
u2(uN −u)wN

= 〈(Au −λ )uN ,wN〉X ′,X +2

∫

Ω
u2(uN −u)wN

= 〈(Au −AuN
)uN ,wN〉X ′,X +(λN −λ )

∫

Ω
uNwN +2

∫

Ω
u2(uN −u)wN

= (λN −λ )
∫

Ω
uNwN +

∫

Ω

(
u2uN −u3

N +2u2(uN −u)
)

wN

= (λN −λ )
∫

Ω
uNwN −

∫

Ω
(uN −u)2(uN +2u)wN . (2.28)

By using (1.18) with v = uN and w = vN , (2.19) and (2.23), we obtain that for any N > N1,N ∈ N and

all vN ∈ XN such that ‖vN‖L2 = 1,

∣∣〈(E ′′(u)−λ )(uN −u),(uN − vN)〉X ′,X
∣∣ =

∣∣∣∣(λN −λ )〈uN ,uN − vN〉X ′,X −
∫

Ω
(uN −u)2(uN +2u)(uN − vN)

∣∣∣∣

6
1

2
|λN −λ |‖uN − vN‖2

L2 +‖uN − vN‖L∞‖uN −u‖L2‖uN −u‖L∞‖uN +2u‖L2

6
1

2
Cλ
(
‖uN −u‖2

H1 +‖uN −u‖L2

)
‖uN − vN‖2

L2

+3
√

5‖uN − vN‖H1‖uN −u‖L2‖uN −u‖H1 (2.29)

It then follows from (2.2) that for any N > N1,N ∈ N and all vN ∈ XN such that ‖vN‖L2 = 1,

‖uN − vN‖2
H1 6 β−1(

1

2
Cλ (‖uN −u‖2

H1 +‖uN −u‖L2)‖uN − vN‖2
L2

+3
√

5‖uN − vN‖H1‖uN −u‖L2‖uN −u‖H1 +M3‖u− vN‖H1‖uN − vN‖H1).

So

‖uN − vN‖H1 6 β−1

(
Cλ

2

(
‖uN −u‖2

H1 +‖uN −u‖L2

)
‖uN − vN‖H1

+3
√

5‖uN −u‖L2‖uN −u‖H1 +M3‖u− vN‖H1

)
,

that is

‖uN − vN‖H1

(
1−β−1 Cλ

2
(‖uN −u‖2

H1 +‖uN −u‖L2)

)

6 3
√

5‖uN −u‖L2‖uN −u‖H1 +M3‖u− vN‖H1 . (2.30)

Since ‖uN −u‖H1 −→
N→+∞

0, there exists N2 ∈ N such that ∀N > N2,

β−1 Cλ

2
(‖uN −u‖2

H1 +‖uN −u‖L2) 6
1

2
,
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i.e.

‖uN − vN‖H1 6 6
√

5‖uN −u‖L2‖uN −u‖H1 +2M3‖u− vN‖H1 .

Then

‖uN −u‖H1 6 ‖uN − vN‖H1 +‖vN −u‖H1

6 6
√

5‖uN −u‖L2‖uN −u‖H1 +(2M3 +1)‖u− vN‖H1 ,

hence

‖uN −u‖H1

(
1−6

√
5‖uN −u‖L2

)
6 (2M3 +1)‖u− vN‖H1 (2.31)

Thus, there exists N3 ∈ N such that ∀N > N3,

6
√

5‖uN −u‖L2 6
1

2

Then ∀N > N3, ‖uN −u‖H1 6 CM‖u−vN‖H1 where CM 6 2(2M3 +1) (and CM ≡CM(N)→ 2M3 +1 as

N → ∞). Hence for any N > N3, ‖uN −u‖H1 6 CMJN where JN = min
vN∈XN ,‖vN‖L2 =1

‖vN −u‖H1 .

We now denote by

J̃N = min
vN∈XN

‖vN −u‖H1 ,

and by u0
N a minimizer of the above minimization problem. We know from (1.10) that u0

N converges to

u in H1 when N goes to infinity. Besides,

JN 6 ‖u0
N/‖u0

N‖L2 −u‖H1

6 ‖u0
N −u‖H1 +

‖u0
N‖H1

‖u0
N‖L2

∣∣1−‖u0
N‖L2

∣∣

6 ‖u0
N −u‖H1 +

‖u0
N‖H1

‖u0
N‖L2

‖u−u0
N‖L2 (from the triangle inequality)

6

(
1+

‖u0
N‖H1

‖u0
N‖L2

)
J̃N .

From the definition of u0
N , we have ‖u0

N −u‖H1 6 ‖uN −u‖H1 , hence using (2.23) we have, for any

N > N1 ‖u0
N − u‖H1 6 1/2, and therefore ‖u0

N‖H1 6 ‖u‖H1 + 1/2 and ‖u0
N‖L2 > 1/2, yielding JN 6

2(‖u‖H1 +1)J̃N . Thus

‖uN −u‖H1 6 2CM(‖u‖H1 +1) min
vN∈XN

‖vN −u‖H1

and (2.20) is proven with CH1 6 4(2M3 + 1)(‖u‖H1 + 1) (and CH1 ≡ CH1(N) → (2M3 + 1)‖u‖H1 as

N → ∞).

Let ũN be the orthogonal projection, for the L2 inner product, of uN on the affine space S =
{

v ∈ L2(Ω) | ∫Ω uv = 1
}

.

One has

ũN ∈ X ,
∫

Ω
uũN = 1, uN − ũN ∈ S⊥ i.e. uN − ũN is colinear to u.
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As

∫

Ω
(ũN −u)u = 0, we have ũN −u ∈ u⊥. Moreover

∫

Ω
(ũN −uN)u = 1−

∫

Ω
uNu

=
1

2

∫

Ω
u2

N −
∫

Ω
uNu+

1

2

∫

Ω
u2

=
1

2

∫

Ω
(uN −u)2,

hence

ũN −uN =
1

2
‖uN −u‖2

L2 u (2.32)

We can write the following

‖uN −u‖2
L2 =

∫

Ω
(uN −u)(ũN −u)+

∫

Ω
(uN −u)(uN − ũN)

=
∫

Ω
(uN −u)(ũN −u)− 1

2
‖uN −u‖2

L2

∫

Ω
(uN −u)u (from (2.32))

=
∫

Ω
(uN −u)(ũN −u)+

1

2
‖uN −u‖2

L2

(
1−

∫

Ω
uNu

)

=
∫

Ω
(uN −u)(ũN −u)+

1

4
‖uN −u‖4

L2 (from (1.18))

= 〈(E ′′(u)−λ )ψuN−u, ũN −u〉X ′,X +
1

4
‖uN −u‖4

L2 (from (2.13))

= 〈(E ′′(u)−λ )ψuN−u,uN −u〉X ′,X + 〈(E ′′(u)−λ )ψuN−u, ũN −uN〉X ′,X +
1

4
‖uN −u‖4

L2

= 〈(E ′′(u)−λ )(uN −u),ψuN−u〉X ′,X

+
1

2
‖uN −u‖2

L2〈(E ′′(u)−λ )u,ψuN−u〉X ′,X +
1

4
‖uN −u‖4

L2 (from (2.32))

= 〈(E ′′(u)−λ )(uN −u),ψuN−u〉X ′,X

+‖uN −u‖2
L2

∫

Ω
u3ψuN−u +

1

4
‖uN −u‖4

L2 (from (1.8)).

For any ψN ∈ XN , it therefore holds

‖uN −u‖2
L2 = 〈(E ′′(u)−λ )(uN −u),ψN〉X ′,X + 〈(E ′′(u)−λ )(uN −u),ψuN−u −ψN〉X ′,X

+‖uN −u‖2
L2

∫

Ω
u3ψuN−u +

1

4
‖uN −u‖4

L2 . (2.33)
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From (2.28) with wN = ψN , from (2.19) and (2.23), we obtain that for any ψN ∈ XN ∩u⊥,

∣∣〈(E ′′(u)−λ )(uN −u),ψN〉X ′,X
∣∣ = (λN −λ )

∫

Ω
(uN −u)ψN −

∫

Ω
(uN −u)2(uN +2u)ψN

6 Cλ
(
‖uN −u‖2

H1 +‖uN −u‖L2

)
‖uN −u‖L2‖ψN‖L2

+‖uN −u‖2
L∞‖uN +2u‖L2‖ψN‖L2

6

(
3+Cλ

)(
‖uN −u‖2

L∞

+(‖uN −u‖2
H1 +‖uN −u‖L2)‖uN −u‖L2

)
‖ψN‖H1 (2.34)

Let ψ0
N ∈ XN ∩u⊥ be such that

‖ψuN−u −ψ0
N‖H1 = min

ψN∈XN∩u⊥
‖ψuN−u −ψN‖H1 .

We deduce that ‖ψ0
N‖H1 6 2‖ψuN−u‖H1 6 2β−1‖uN −u‖L2 , then we obtain from (2.2), (2.23) (2.33) and

(2.34) that for any N > N1, N ∈ N,

‖uN −u‖2
L2 6 2β−1

(
3+Cλ

)(√
5‖uN −u‖H1 +‖uN −u‖2

H1 +‖uN −u‖L2

)
‖uN −u‖2

L2

+M3‖uN −u‖H1‖ψuN−u −ψ0
N‖H1 +2β−1‖u‖3

L3‖uN −u‖3
L2 +

1

4
‖uN −u‖4

L2 ,

hence

‖uN −u‖2
L2(1−2β−1

(
3+Cλ

)(√
5‖uN −u‖H1 +‖uN −u‖2

H1 +‖uN −u‖L2

)

−2β−1‖u‖3
L3‖uN −u‖L2 − 1

4
‖uN −u‖2

L2) 6 M3‖uN −u‖H1‖ψuN−u −ψ0
N‖H1

There exists N4 ∈ N such that for any N > N4, N ∈ N

2β−1
(

3+Cλ
)(√

5‖uN −u‖H1 +‖uN −u‖2
H1 +‖uN −u‖L2

)

+2β−1‖u‖3
L3‖uN −u‖L2 +

1

4
‖uN −u‖2

L2 6
1

2
.

Then we have for any N > N4, N ∈ N,

‖uN −u‖2
L2 6 2M3‖uN −u‖H1‖ψuN−u −ψ0

N‖H1 . (2.35)

Lastly, we denote by Π 1
XN

the orthogonal projector on XN for the H1-inner product; the operator Π⊥
XN

v =

Π 1
XN

v−
(u,Π 1

XN
v)L2

(u,Π 1
XN

u)L2

Π 1
XN

u is such that Π⊥
XN

v ∈ u⊥ and we have that

min
vN∈XN∩u⊥

‖vN − v‖H1 6 ‖Π⊥
XN

v− v‖H1

6

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
min

vN∈XN

‖vN − v‖H1 , (2.36)



16 of 28 G. DUSSON AND Y. MADAY

hence (2.21) with CL2 = 2M3

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
, which concludes the proof of theorem 1.

�

3. A posteriori analysis

In this section we derive a posteriori estimates for the approximation of the problem (1.6), in order to

quantify the error done during the iterative resolution (1.14), (1.15), (1.16) of the non-linear eigenvalue

problem; we introduce a residue measuring how close the approximate solution, obtained after — say

— k iterations (uk
N ,λ k

N) is to the exact one (u,λ ).

We are in particular interested in an upper bound for the quantity

∥∥∥u−uk
N

∥∥∥
H1

= max
v∈H1

#

∫

Ω
∇(u−uk

N) ·∇v+
∫

Ω
(u−uk

N)v

‖v‖H1

(3.1)

where — of course — the direct knowledge of u is not available : an alternative argument that is

classically used then is the indirect knowledge that we have on (u,λ ) which is problem (1.6) that (u,λ )
satisfies. This naturally leads to the definition of the residue :

Rk
N = −∆uk

N +Vuk
N +(uk

N)3 −λ k
Nuk

N , (3.2)

that evaluates in which sense the snapshot (uk
N ,λ k

N) obtained after iteration k of the algorithm (1.14),

(1.15), (1.16) in XN fails to solve the problem (1.6) we look for.

As was said in the introduction to this paper, this global error between the exact and the approximated

solutions stems from two main sources : (i) one is the finite dimension 2N +1 of the Fourier space XN ,

i.e. the discretization of the space X , (ii) the other one is the finite number of iterations k.

In order to identify each source of errors, between the discretization parameter N and the number

of iterations k, we separate the global error into two components, each of them depending mainly on

one parameter associated with the above sources of error. The discretization residue is based on the

numerical scheme and hence can be naturally defined as

Rdisc = −∆uk
N +Vuk

N +(uk−1
N )2uk

N −‖uk∗
N ‖−1

L2 λ k−1
N uk−1

N , (3.3)

the quantity ‖Rdisc‖H−1 then measures the discretization error and depends on the finite dimension (2N +
1) of the Fourier space XN on which we solve the problem.

The iteration residue is then defined such that Rk
N = Rdisc +Riter. Hence

Riter = (uk
N)3 − (uk−1

N )2uk
N −λ k

Nuk
N +‖uk∗

N ‖−1
L2 λ k−1

N uk−1
N (3.4)

the quantity ‖Riter‖H−1 is then the iteration error and depends mainly on the finite number of iterations

k.

We now relate the error on the functional space X — which is here ‖u− uk
N‖H1 — to the error of

this specific problem expressed by an upper bound of the global residue defined previously. Besides the

bounds have to be a posteriori computable.
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First we express the term

∫

Ω
∇(u−uk

N) ·∇v that appears in the right-hand side of (3.1) with a max-

imum of a posteriori computable terms (i.e. contributions involving uk
N and λ k

N and not u nor λ ). Then

we deal with the remaining terms. Finally we gather everything and get the a posteriori estimates. From

(1.7), we can write the following equalities, at least in the distributional sense if the functions are not

smooth enough.

−∆(u−uk
N) = λu−Vu−u3 +∆uk

N

= ∆uk
N −Vuk

N − (uk
N)3 +λ k

Nuk
N

+λu−λ k
Nuk

N

+V (uk
N −u)

+(uk
N)3 −u3

= −Rk
N

+(λ −λ k
N)u

+λ k
N(u−uk

N)

+V (uk
N −u)

+(uk
N −u)((uk

N)2 +uuk
N +u2).

Hence

∥∥∥u−uk
N

∥∥∥
H1

= max
v∈H1

#

∫

Ω
∇(u−uk

N) ·∇v+
∫

Ω
(u−uk

N)v

‖v‖H1

= max
v∈H1

#

1

‖v‖H1

[
−〈Rk

N ,v〉X ′,X

+
∫

Ω
(λ −λ k

N)uv

+(λ k
N +1)

∫

Ω
(u−uk

N)v+
∫

Ω
V (uk

N −u)v

+
∫

Ω
(uk

N −u)((uk
N)2 +uuk

N +u2)v

]
.

Let us now remark that the maximum in the first line above is achieved for v = u−uk
N . This allows

us to notice that

∫

Ω
(uk

N −u)((uk
N)2 +uuk

N +u2)v is negative so that

∥∥∥u−uk
N

∥∥∥
H1

6 max
v∈H1

#

1

‖v‖H1

[
−〈Rk

N ,v〉X ′,X

+
∫

Ω
(λ −λ k

N)uv

+(λ k
N +1)

∫

Ω
(u−uk

N)v+
∫

Ω
V (uk

N −u)v

]
. (3.5)
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The only other terms on the right-hand side above which are not a posteriori expressible are λ − λ k
N

and u−uk
N . Following the same lines as in the a priori analysis (see (2.24)) and using (1.16) instead of

(1.13) we can write

λ k
N −λ = 〈(Au −λ )(uk

N −u),(uk
N −u)〉X ′,X +

∫

Ω
(uk

N)2(uk
N +u)(uk

N −u)

= 〈(Au −λ )(uk
N −u),(uk

N −u)〉X ′,X +
∫

Ω
2(uk

N)3(uk
N −u)−

∫

Ω
(uk

N)2(uk
N −u)2.

From (2.1) we get

|λ −λ k
N | 6 M1‖u−uk

N‖2
H1 +2‖(uk

N)3‖L2‖u−uk
N‖L2 +‖uk

N‖2
L∞‖u−uk

N‖2
L2 . (3.6)

We now deal with ‖u−uk
N‖L2 . Let us define ũk

N as the orthogonal projection, for the L2 inner product,

of uk
N on the affine space S =

{
v ∈ L2(Ω) | ∫Ω uv = 1

}
. Using the fact that ‖uk

N‖L2 = 1 for any k,N ∈ N

and following the a priori analysis, we show that (2.32) and (2.33) hold with uk
N instead of uN and ũk

N

instead of ũN .

Therefore, for any ψN ∈ XN ,

‖uk
N −u‖2

L2 = 〈(E ′′(u)−λ )(uk
N −u),ψN〉X ′,X

+〈(E ′′(u)−λ )(uk
N −u),ψ

uk
N−u

−ψN〉X ′,X

+‖uk
N −u‖2

L2

∫

Ω
u3ψ

uk
N−u

+
1

4
‖uk

N −u‖4
L2 .

At this step the a posteriori proof differs from the a priori one : For any ψN ∈ XN ∩u⊥,

〈(E ′′(u)−λ )(uk
N −u),ψN〉X ′,X = 〈(−∆ +V +u2 −λ )(uk

N −u),ψN〉X ′,X +2〈u2(uk
N −u),ψN〉X ′,X

= 〈(−∆ +V +u2 −λ )uk
N ,ψN〉X ′,X +2〈u2(uk

N −u),ψN〉X ′,X

= 〈(−∆ +V +(uk
N)2 −λ k

N)uk
N ,ψN〉X ′,X

+〈(u2 − (uk
N)2)uk

N ,ψN〉X ′,X +(λ k
N −λ )〈uk

N ,ψN〉X ′,X +2〈u2(uk
N −u),ψN〉X ′,X

= 〈Rk
N ,ψN〉X ′,X +(λ k

N −λ )〈uk
N ,ψN〉X ′,X −〈(u−uk

N)2(2u+uk
N),ψN〉X ′,X

= 〈ΠNRk
N ,ψN〉X ′,X +(λ k

N −λ )〈uk
N −u,ψN〉X ′,X −〈(u−uk

N)2(2u+uk
N),ψN〉X ′,X

where, for this last line, we have used that ψN ∈ u⊥. Hence
∣∣∣〈(E ′′(u)−λ )(uk

N −u),ψN〉X ′,X

∣∣∣ 6 ‖ΠNRk
N‖H−1‖ψN‖H1 + |λ −λ k

N |‖uk
N −u‖L2‖ψN‖L2

+‖uk
N −u‖2

L∞‖uk
N +2u‖L2‖ψN‖L2 . (3.7)

Then from (2.2) for any ψN ∈ XN ∩u⊥,

‖uk
N −u‖2

L2 6 ‖ΠNRk
N‖H−1‖ψN‖H1 + |λ −λ k

N |‖uk
N −u‖L2‖ψN‖L2

+‖uk
N −u‖2

L∞‖uk
N +2u‖L2‖ψN‖L2 +M3‖uk

N −u‖H1‖ψ
uk

N−u
−ψN‖H1

+‖uk
N −u‖2

L2‖u3‖L2‖ψ
uk

N−u
‖L2 +

1

4
‖uk

N −u‖4
L2 . (3.8)
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Let ψ0
N ∈ XN ∩u⊥ be such that

‖ψ
uk

N−u
−ψ0

N‖H1 = min
ψN∈XN∩u⊥

‖ψ
uk

N−u
−ψN‖H1 6 ‖ψ

uk
N−u

‖H1 .

We remark from the definition of ψ0
N and (2.14) that ‖ψ0

N‖H1 6 2‖ψ
uk

N−u
‖H1 6 2β−1‖uk

N −u‖L2 .

From (3.8) applied to ψ0
N we get

‖uk
N −u‖2

L2 6
2

β
‖ΠNRk

N‖H−1‖uk
N −u‖L2 +

2

β
‖λ −λ k

N |‖uk
N −u‖2

L2

+
2

β
‖uk

N −u‖2
L∞‖uk

N +2u‖L2‖uk
N −u‖L2

+M3‖uk
N −u‖H1‖ψ

uk
N−u

−ψ0
N‖H1 +

2

β
‖uk

N −u‖3
L2‖u3‖L2 +

1

4
‖uk

N −u‖4
L2 .

Moreover from (2.36), (at least if p > 2)

‖ψ
uk

N−u
−ψ0

N‖H1 6

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
min

ψN∈XN

‖ψ
uk

N−u
−ψN‖H1

6

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
1

N
‖ψ

uk
N−u

‖H2

6
C̃

N

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
‖uk

N −u‖L2 (from (2.15)), (3.9)

(note that, if p < 2 we get ‖ψ
uk

N−u
−ψ0

N‖H1 6 C̃√
N

(
1+

‖Π1
XN

u‖
H1

(u,Π1
XN

u)
L2

)
‖uk

N −u‖L2 instead of (3.9) and what

follows can be adjusted accordingly)

From (3.6), (3.9) and (1.2) we have

‖uk
N −u‖2

L2 6
1

β
‖ΠNRk

N‖H−1‖uk
N −u‖L2

+
1

β

(
M1‖u−uk

N‖2
H1 +2‖(uk

N)3‖L2‖u−uk
N‖L2 +‖uk

N‖2
L∞‖u−uk

N‖2
L2

)
‖uk

N −u‖2
L2

+

√
5

β
‖uk

N −u‖H1‖uk
N +2u‖L2‖uk

N −u‖2
L2

+
C̃M3

N

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
‖uk

N −u‖H1‖uk
N −u‖L2

+
1

β
‖uk

N −u‖3
L2‖u3‖L2 +

1

4
‖uk

N −u‖4
L2 . (3.10)
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Simplifying by ‖uk
N −u‖L2 we get

‖uk
N −u‖L2

(
1− 1

β

(
M1‖u−uk

N‖2
H1 +2‖(uk

N)3‖L2‖u−uk
N‖L2 +‖uk

N‖2
L∞‖u−uk

N‖2
L2

)

−
√

5

β
‖uk

N −u‖H1‖uk
N +2u‖L2 − 1

β
‖uk

N −u‖L2‖u3‖L2 − 1

4
‖uk

N −u‖2
L2

)

6
1

β
‖ΠNRk

N‖H−1 +
C̃M3

N

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
‖uk

N −u‖H1 . (3.11)

Since ‖u−uk
N‖H1 →

N,k→∞
0, for any α1 > 1 there exists Nα1

∈ N and kα1
∈ N such that for any N > Nα1

,

for any k > kα1
,

1

β

(
M1‖u−uk

N‖2
H1 +2‖(uk

N)3‖L2‖u−uk
N‖L2 +‖(uk

N)2‖L∞‖u−uk
N‖2

L2

)

+

√
5

β
‖uk

N −u‖H1‖uk
N +2u‖L2 +

1

β
‖uk

N −u‖L2‖u3‖L2 +
1

4
‖uk

N −u‖2
L2 6 1− 1

α1
, (3.12)

so that we are left with

‖uk
N −u‖L2 6

α1

β
‖ΠNRk

N‖H−1 +
α1C̃M3

N

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
‖uk

N −u‖H1 . (3.13)

Final step: From (3.5) ( where we use the fact that the element that maximizes the expression is e.g.

v = u−uk
N) and (3.6), we can write that

‖u−uk
N‖H1 6 ‖Rk

N‖H−1

+M1‖u−uk
N‖2

H1

+2‖(uk
N)3‖L2‖u−uk

N‖L2

+‖(uk
N)2‖L∞‖u−uk

N‖2
L2

+
(
|λ k

N +1|+‖V‖L1

)
‖u−uk

N‖L2

and from (3.13) we write

‖u−uk
N‖H1 6 ‖Rk

N‖H−1

+M1‖u−uk
N‖2

H1 +‖uk
N‖2

L∞‖u−uk
N‖2

L2

+
(

2‖(uk
N)3‖L2 + |λ k

N +1|+‖V‖L1

)

(
α1

β
‖ΠNRk

N‖H−1

+
α1C̃M3

N

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
‖uk

N −u‖H1

)
.
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Hence

‖u−uk
N‖H1

(
1−M1‖u−uk

N‖H1 −‖uk
N‖2

L∞‖u−uk
N‖L2

−
(

2‖(uk
N)3‖L2 + |λ k

N +1|+‖V‖L1

) α1C̃M3

N

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

))

6 ‖Rk
N‖H−1 +

(
2‖(uk

N)3‖L2 + |λ k
N +1|+‖V‖L1

) α1

β
‖ΠNRk

N‖H−1 .

Since ‖u−uk
N‖H1 →

N,k→∞
0, for any α2 > 1 there exists Nα2

∈ N and kα2
∈ N such that for any N > Nα2

,

for any k > kα2
,

M1‖u−uk
N‖H1 +‖(uk

N)2‖L∞‖u−uk
N‖L2

+
1

N

(
2‖(uk

N)3‖L2 + |λ k
N +1|+‖V‖L1

) α1C̃M3

β

(
1+

‖Π 1
XN

u‖H1

(u,Π 1
XN

u)L2

)
6 1− 1

α2

Then we have for N > Nα2
and k > kα2

1

α2
‖u−uk

N‖H1 6 ‖Rk
N‖H−1

+
(

2‖(uk
N)3‖L2 + |λ k

N +1|+‖V‖L1

) α1

β
‖ΠNRk

N‖H−1

Let us now notice that, in the limit we have α1 →
N,k→∞

1 and α2 →
N,k→∞

1, so that we have

Theorem 2 We have the following a posteriori error bound

‖u−uk
N‖H1 6 θ

(
‖Rk

N‖H−1 +
(

2‖(uk
N)3‖L2 + |λ k

N +1|+‖V‖L1

) 1

β
‖ΠNRk

N‖H−1

)
(3.14)

with a constant 0 < θ 6 1 and as close to 1 as we wish as the error goes to zero.

This expression traduces the a posteriori relation between the error in H1-norm and the global

residue Rk
N . Let us now split the global residue into its two components in order to make the iteration

and discretization errors explicit. From the definition of the discretization and iteration residues (3.3)

and (3.4) we write

‖u−uk
N‖H1 6 θ

(
‖Rdisc +Riter‖H−1 +

(
2‖uk

N‖3
L6 + |λ k

N +1|+‖V‖L1

) 1

β
‖ΠN(Rdisc +Riter)‖H−1

)

As the discretization residue Rdisc has been defined from the numerical scheme described in the intro-

duction, the projection of the residue on XN is zero, that is ΠN(Rdisc) = 0. Then, for any θ > 0, as close

to 1 as we wish when the convergence is acknowledged, we have the following decoupled upper bound

‖u−uk
N‖H1 6 θ

(
‖Rdisc‖H−1 +

(
1+
(

2‖uk
N‖3

L6 + |λ k
N +1|+‖V‖L1

) 1

β

)
‖Riter‖H−1

)
. (3.15)
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Thus the H1-error can be a posteriori bounded by fully computable terms : indeed (i) in dimension 1 the

Sobolev constants are known, (ii) for planewave discretization the norm H−1 is computable, (iii) more-

over the constant β has been explicitly expressed in the a priori analysis and can be, if not computed

directly, at least bounded by a computable term.

4. Numerical results

In this section we gather some numerical results that illustrate the results proven so far, in particular

the a posteriori analysis of the non-linear eigenvalue problem (1.7). First we provide some results on

the properties of the “inverse power” method (1.14), (1.15), (1.16). Then we show that the numerical

results are coherent with the a posteriori analysis and that the separation of the error components is

relevant. We also study the influence of the potential regularity on the H1-convergence and the effect of

the variation of the non-linearity on the convergence of the algorithm used to solve the problem.

In the next subsections 4.2, 4.3 and 4.4, we evaluate the a posteriori estimators found in the previous

section and perform numerical simulations with a potential V given by its Fourier coefficients

V̂k = − 1√
2π

1

|k|4 − 1
4

, (4.1)

from which we deduce that V ∈ Lp for any p > 1. The approximate potential we consider is calculated

with 801 coefficients i.e. k 6 400.

4.1 General framework

We first verify the convergence of the “inverse power” method (1.14), (1.15), (1.16) for different

“strength” of the non-linear contribution. Let us define α ∈R
+ the coefficient of non-linearity. Equation

(1.7) becomes 



∀v ∈ X ,
∫

Ω
∇u ·∇v+

∫

Ω
Vuv+α

∫

Ω
u3v = λ

∫

Ω
uv

∫

Ω
u2 = 1.

(4.2)

Taking this coefficient into account, the algorithm we use to solve the equation in the space XN is similar

to (1.14, 1.15, 1.16)

This algorithm converges numerically for small values of α . However for large values of α the

algorithm does not converge anymore. This non-convergence starts for α in the range of 10. In order

to avoid this problem, two solutions have been considered. First the convergence is improved for larger

dimension of the space XN . Hence we can increase the dimension in the numerical ”exact” space and

in the approximate spaces XN . Another solution is to introduce a relaxation coefficient η , 0 < η 6 1,

such that for each k a relaxation step is added in the algorithm as we define ũk
N = ηuk

N +(1−η)uk−1
N .

This improves the convergence of the algorithm. For example for N = 80 and η = 0.3 the algorithm

converges in less than 100 iterations for α up to 15 and the number of iterations required to verify the

condition ‖uk
N −uk−1

N ‖H1 < 10−12 increases from 27 to 80 when α increases from 4 to 15.

In all what follows, α is fixed equal to 1. The numerical “exact solution” is computed in the space

X300 = Span{ek, |k| 6 300}, and the number of iterations is pushed so that the global residue defined
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above for this numerical “exact solution” is:

‖R
kmax
N ‖H−1 = ‖−∆u

kmax
N +Vu

kmax
N +(ukmax

N )3 −λ kmax
N u

kmax
N ‖H−1 = 1.7283.10−12

which is achieved with kmax = 32.

The total error is given by the a posteriori bound (3.14), that is

errtotal = ‖Rk
N‖H−1 +

(
2‖uk

N‖3
L6 + |λ k

N +1|+‖V‖L1

) 1

β
‖ΠNRk

N‖H−1 (4.3)

Two error components are defined from the bound (3.15): the k-error and the N-error which depend

respectively mainly on k and N. More precisely we define the k-error by

errk =

(
1+
(

2‖uk
N‖3

L6 + |λ k
N +1|+‖V‖L1

) 1

β

)
‖Riter‖H−1 (4.4)

and the N-error by

errN = ‖Rdisc‖H−1 (4.5)

Let us notice that the total error is not exactly the sum of the two error components. Indeed

errtotal < errk + errN ,

hence errtotal is a sharper estimate than the sum of the two contributions errk + errN .

4.2 With a large number of iterations

In this subsection, we compute different approximate solutions using a given large number of iterations

and varying the dimension of the Fourier space XN (see table 1). The number of iterations is kmax = 32

in our case for N between 15 and 100. Recall that this value of kmax corresponds to the minimum of

iterations required to complete the condition the residual is less than 10−12 for N = 300.

Let us first remark that the total error (4.3) (with θ chosen equal to 1) is larger than ‖uexact −uk
N‖H1

which confirms the fact that the convergence of θ to 1 is very fast, since then the total error is an upper

bound for ‖uexact −uk
N‖H1 ). Secondly the k-error obtained is close to 10−12 and almost constant which

depicts the fact that the k-error is independent of N and almost zero when the algorithm has converged.

The N-error is then the main component of the total error and decreases from 10−6 to 10−10.

The total error is very close to ‖uexact −uk
N‖H1 which shows that the a posteriori bounds found in

the previous analysis seem to be close to optimal when the algorithm has converged.

4.3 In large dimension for the discretization space

In this subsection, we compute the approximate solution using a large dimension for the discretization

space (N = 100) and varying the number of iterations. The number of iterations varies from 1 to 32.

As in the previous subsection we remark that the total error is larger than ‖uexact −uk
N‖H1 .
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N k N-error k-error Total error ‖uexact −uk
N‖H1

15 32 1.291758e-06 1.759282e-12 1.291759e-06 1.090845e-06

20 32 3.636445e-07 1.748157e-12 3.636463e-07 3.109467e-07

25 32 1.354259e-07 1.738445e-12 1.354277e-07 1.166171e-07

30 32 6.028068e-08 1.722262e-12 6.028240e-08 5.214103e-08

35 32 3.036443e-08 1.726690e-12 3.036616e-08 2.634541e-08

40 32 1.674949e-08 1.716547e-12 1.675121e-08 1.456524e-08

45 32 9.904824e-09 1.714087e-12 9.906538e-09 8.627907e-09

50 32 6.188268e-09 1.710524e-12 6.189979e-09 5.397729e-09

55 32 4.042411e-09 1.707464e-12 4.044119e-09 3.529819e-09

60 32 2.739745e-09 1.706193e-12 2.741451e-09 2.394466e-09

65 32 1.915264e-09 1.702199e-12 1.916966e-09 1.675139e-09

70 32 1.374711e-09 1.708393e-12 1.376420e-09 1.203118e-09

75 32 1.009446e-09 1.701410e-12 1.011148e-09 8.839268e-10

80 32 7.560881e-10 1.699141e-12 7.577872e-10 6.623852e-10

85 32 5.762858e-10 1.707072e-12 5.779929e-10 5.050752e-10

90 32 4.460840e-10 1.704587e-12 4.477886e-10 3.911054e-10

95 32 3.500942e-10 1.704633e-12 3.517989e-10 3.070460e-10

100 32 2.781826e-10 1.693670e-12 2.798763e-10 2.440477e-10

Table 1. Error components evolution with large number of iterations

We observe that k has an influence on the N-error so the N-error is not independent of k even

though it depends mainly on N. and is much smaller than the k-error during the first iterations (up to

a multiplicative factor equal to 10−4) and becomes constant from k = 20 : the N-error decreases up to

2.10−10 for k > 20.

The k-error decreases regularly from 102 to 10−12. The main error component is at first the k-error

and then the N-error for k between 29 and 32.

The factor between the total error and ‖uexact −uk
N‖H1 decreases from 102 to 1.2. The large constant

for the first iterations can be explained by some inequalities used in the a posteriori analysis verified

uniquely for k and N large enough and simulated here starting from k = 1. Another possibility is that the

negative term deleted in the a posteriori analysis which is of the form −
∫

Ω
(uk

N −u)2((uk
N)2 +uuk

N +u2)

is not small for small k and therefore leads to a big difference between the value of the upper bound and

the value of the real error. Taking this term into account in the a posteriori analysis could lead to better

numerical results. This is one of the things we try to incorporate in the extension of this paper to the full

Density Functional Theory framework.

This illustrates the fact that the k-error estimator can be used as a stopping criterion for the conver-

gence of the “inverse power” iterative technique (1.14), (1.15), (1.16).
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N k N-error k-error Total error ‖uexact −uk
N‖H1

100 1 4.493523e-02 1.355092e+02 1.355542e+02 1.740224e+00

100 3 1.025217e-02 7.378567e+00 7.388819e+00 5.747210e-01

100 5 2.054271e-03 7.888511e-01 7.909053e-01 9.440197e-02

100 7 2.137739e-04 9.629828e-02 9.651205e-02 1.423893e-02

100 9 2.696019e-05 1.369212e-02 1.371908e-02 2.059918e-03

100 11 3.684329e-06 1.943385e-03 1.947069e-03 2.936097e-04

100 13 5.170146e-07 2.756909e-04 2.762079e-04 4.170375e-05

100 15 7.312565e-08 3.911323e-05 3.918636e-05 5.918803e-06

100 17 1.036984e-08 5.549499e-06 5.559869e-06 8.398648e-07

100 19 1.496524e-09 7.873990e-07 7.888955e-07 1.191691e-07

100 21 3.477196e-10 1.117222e-07 1.120699e-07 1.691028e-08

100 23 2.797530e-10 1.585204e-08 1.613179e-08 2.411285e-09

100 25 2.782143e-10 2.249220e-09 2.527435e-09 4.186479e-10

100 27 2.781833e-10 3.191342e-10 5.973175e-10 2.487320e-10

100 29 2.781826e-10 4.527943e-11 3.234621e-10 2.441369e-10

100 31 2.781826e-10 6.421043e-12 2.846037e-10 2.440488e-10

100 32 2.781826e-10 2.420327e-12 2.806030e-10 2.440478e-10

Table 2. Error components evolution in large dimensional space

4.4 Error balance

We would now like to minimize the computational cost necessary to reach a given acceptable total error.

So given a small number ε , we want to find N and k as small as possible such that the total error is not

larger than ε . As the total error is less than the sum of two error components depending respectively

mainly on k or N, we try to balance the two error components.

Let ε be the total acceptable error. The aim is to find (N,k) such that errtotal < ε . The algorithm

used is the following:

1. Set N = 10 and k = 1. Choose an initial pair (u0
N ,λ 0

N).

2. From (uk−1
N ,λ k−1

N ), find (uk
N ,λ k

N) solution of (1.14) and (1.16).

3. Compute errtotal

• If errtotal < ε , then return (N,k)

• Else compute errN and errk

– If errk > errN then back to 2 with k = k +1.

– Else back to 1 with N = N +2.

The table 3 shows the results of this study. Both the number of iterations and the dimension necessary

to achieve a given accuracy increase when the accuracy increases.



26 of 28 G. DUSSON AND Y. MADAY

N k k-error N-error Total error ‖uexact −uk
N‖H1

10 6 1.871314e-01 3.929046e-03 2.504778e-01 2.734769e-02

10 7 7.079140e-02 1.424871e-03 9.616493e-02 1.058219e-02

10 9 1.011118e-02 1.934565e-04 1.377042e-02 1.526087e-03

10 10 3.811613e-03 7.247742e-05 5.190456e-03 5.760686e-04

10 11 1.436084e-03 2.804418e-05 1.955458e-03 2.172673e-04

10 12 5.409683e-04 1.266597e-05 7.367374e-04 8.207722e-05

10 13 2.037707e-04 8.496406e-06 2.779414e-04 3.145792e-05

10 15 2.891183e-05 7.612298e-06 4.223632e-05 7.619566e-06

10 16 1.089043e-05 7.595828e-06 1.940165e-05 6.452118e-06

12 17 4.068677e-06 3.433588e-06 7.753818e-06 2.926068e-06

16 18 1.516084e-06 9.728359e-07 2.652929e-06 8.553814e-07

20 19 5.671734e-07 3.636831e-07 9.944701e-07 3.225775e-07

26 21 7.994209e-08 1.138046e-07 1.931176e-07 9.884332e-08

32 22 2.998194e-08 4.524367e-08 7.477359e-08 3.944923e-08

42 23 1.124065e-08 1.347480e-08 2.509457e-08 1.184888e-08

54 24 4.219241e-09 4.387882e-09 8.857335e-09 3.883516e-09

68 26 5.970657e-10 1.565134e-09 2.073886e-09 1.372402e-09

88 27 2.243446e-10 4.933429e-10 6.974298e-10 4.337893e-10

Table 3. Error balance

It is interesting to note that the way k and N increase as the error decreases in the following manner

k = −2.27log(errk)+4.45 while log(N) = −0.224log(errN)−0.144, the figure 1 illustrates this point.

Note that N is 10 at the beginning of the error balance which explains the left part of the right figure.

5. Conclusions

In this paper we have proposed a completely new a posteriori analysis for the solution technique applied

to a simple nonlinear eigenvalue problem. The estimator is indeed cut into two pieces, each one dedi-

cated to characterize the error due to the number of degrees of freedom used to discretize the problem

and the number of iteration for the fixed point approach allowing to solve the non-linear problem. The

numerical simulations that have been provided show that the very precise analysis that can be done on

this one dimensional example is optimal since the ratio between the error estimate and the exact error

appears close to 1. The extension of these ideas and techniques to a more complex framework of the

Kohn-Sham problem is under consideration, following the techniques presented in (3).
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E. CANCÈS (2001) SCF algorithms for Kohn-Sham models with fractional occupation numbers. J. Chem. Phys.

114 10616–10623.
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FIG. 1. Left: k evolution as errk decreases (linear fit in log-scale for errk). Right: N evolution as errN decreases (linear fit in

loglog-scale)


