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Insensitizing controls for the Navier-Stokes equations

In this paper, we deal with the existence of insensitizing controls for the Navier-Stokes equations in a bounded domain with Dirichlet boundary conditions. We prove that there exist controls insensitizing the L 2 -norm of the observation of the solution in an open subset O of the domain, under suitable assumptions on the data. This problem is equivalent to an exact controllability result for a cascade system. First we prove a global Carleman inequality for the linearized Navier-Stokes system with right-hand side, which leads to the null controllability at any time T > 0. Then, we deduce a local null controllability result for the cascade system.

Introduction

Let Ω ⊂ R N (N = 2 or 3) be a bounded connected open set whose boundary ∂Ω is regular enough (for instance of class C 2 ). Let ω and O be two open and nonempty subsets of Ω (resp. the control domain and the observatory) and let T > 0. We will use the notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). C stands for a generic constant which depends only on Ω, ω, O and T . The Navier-Stokes equations describe the motion of an incompressible fluid such as water, air, oil... They appear in the study of many phenomena, either alone or coupled with other equations. For instance, they are used in theoretical studies in meteorology, in aeronautical sciences, in environmental sciences, in plasma physics, in the petroleum industry, etc. First let us recall some usual spaces in the context of Navier-Stokes equations:

V = y ∈ H 1 0 (Ω) N ; ∇ • y = 0 in Ω ,
and H = y ∈ L 2 (Ω) N ; ∇ • y = 0 in Ω, y • n = 0 on ∂Ω .

To be more specific about the investigated problem, we introduce the following control system with incomplete data        y t -∆y + (y, ∇)y

+ ∇p = f + v1 ω in Q, ∇ • y = 0 in Q, y = 0 on Σ, y |t=0 = y 0 + τ y 0 in Ω. (1) 
Here, y(x, t) = (y i (x, t)) 1≤i≤N is the velocity of the particles of an incompressible fluid, v is a distributed control localized in ω, f (x, t) = (f i (x, t)) 1≤i≤N ∈ L 2 (Q) N is a given, externally applied force, and the initial state y |t=0 is partially unknown. We suppose that y 0 ∈ H, y 0 ∈ H is unknown with y 0 L 2 (Ω) N = 1 and that τ is a small unknown real number. The aim of this paper is to prove the existence of controls that insensitize some functional J τ (the sentinel) depending on the velocity field y. That is to say, we have to find a control v such that the influence of the unknown data τ y 0 is not perceptible for our sentinel:

∂J τ (y) ∂τ τ =0 = 0 ∀ y 0 ∈ L 2 (Ω) N such that y 0 L 2 (Ω) N = 1. (2) 1 
In the pioneering work [START_REF] Lions | Sentinelles pour les systèmes distribué à données incomplètes (Sentinelles for Distributed System with Incomplete Data[END_REF], J.-L. Lions considers this kind of problem and introduces many related questions.

One of these questions, in non-classical terms, was the existence of insensitizing controls for the Navier-Stokes equations (see [START_REF] Lions | Sentinelles pour les systèmes distribué à données incomplètes (Sentinelles for Distributed System with Incomplete Data[END_REF], page 56).

In the literature the usual sentinel is given by the square of the local L 2 -norm of the state variable y (see [START_REF] Bodart | Controls insensitizing the norm of the solution of a semilinear heat equation[END_REF], [START_REF] Lions | Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes (Somes notions in the analysis and control of system with icomplete data)[END_REF], [START_REF] Tebou | Some results on the controllability of coupled semilinear wave equations: the desensitizing control case[END_REF]), on which we will be interested here:

J τ (y) = 1 2
O×(0,T )

|y| 2 dxdt. (3) 
However, in [START_REF] Guerrero | Null controllability of some systems of two parabolic equation with one control force[END_REF], the author considers the gradient of the state for a linear heat system with potentials and more recently in [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF] the same author treats the case of the curl of the solution for a Stokes system. Here we will focus on the nonlinear control problem of insensitizing the Navier-Stokes equations.

The special form of the sentinel J τ allows us to reformulate our insensitizing problem as a controllability problem of a cascade system (for more details, see [START_REF] Bodart | Controls insensitizing the norm of the solution of a semilinear heat equation[END_REF], for instance). In particular, condition (2) is equivalent to z |t=0 = 0 in Ω, where z together with w solves the following coupled system:

       w t -∆w + (w, ∇)w + ∇p 0 = f + v1 ω , ∇ • w = 0 in Q, -z t -∆z + (z, ∇ t )w -(w, ∇)z + ∇q = w1 O , ∇ • z = 0 in Q, w = z = 0 on Σ, w |t=0 = y 0 , z |t=T = 0 in Ω. (4) 
Here, (w, p 0 ) is the solution of system (1) for τ = 0, the equation of z corresponds to a formal adjoint of the equation satisfied by the derivative of y with respect to τ at τ = 0 (see [START_REF] Dáger | Insensitizing controls for the 1-D wave equation[END_REF] below) and we have denoted

((z, ∇ t )w) i = N j=1 z j ∂ i w j i = 1, . . . , N.
Indeed, differentiating y solution of (1) with respect to τ and evaluating it at τ = 0, condition (2) reads O×(0,T )

wy τ dxdt = 0 ∀ y 0 ∈ L 2 (Ω) N such that y 0 L 2 (Ω) N = 1, (5) 
where y τ is the derivative of y solution of (1) at τ = 0. Then,

y τ solves        y τ,t -∆y τ + (y τ , ∇)y + (y, ∇)y τ + ∇p τ = 0 in Q, ∇ • y τ = 0 in Q, y τ = 0 on Σ, y τ |t=0 = y 0 in Ω. (6) 
Hence, substituting w1 O by the left-hand side of the equation of z in (4) and integrating by parts we obtain

Ω z |t=0 y 0 dx = O×(0,T ) wy τ dxdt ∀ y 0 ∈ L 2 (Ω) N such that y 0 L 2 (Ω) N = 1. (7) 
We will prove the following controllability result for system (4):

Theorem 1.1. Let m > 5 be a real number and y 0 = 0. Assume that ω ∩ O = ∅. Then, there exist δ > 0 and C ⋆ > 0 depending on ω, Ω, O and T such that for any

f ∈ L 2 (Q) N satisfying e C ⋆ /t m f L 2 (Q) N < δ, there exists a control v ∈ L 2 (ω × (0, T )) N and a corresponding solution (w, z) to (4) satisfying z |t=0 = 0 in Ω.
Remark 1.1. Furthermore, in addition to insensitizing the functional J τ one can steer the state w to 0 at time t = T just by paying an extra condition on f at time

t = T e C⋆/t m (T -t) m f L 2 (Q) N < +∞, ( 8 
)
for a constant C ⋆ that maybe different to the one given in Theorem 1.1.

Remark 1.2. The condition y 0 = 0 in the main theorem is due to the fact that the first equation in ( 4) is forward and the second one is backward in time. Most of the insensitizing works in the parabolic case, even for linear equations, assume this condition on the initial data. A study of the possible initial conditions which can be insensitized is made for the heat equation in [START_REF] De Teresa | Identification of the class of initial data for the insensitizing control of the heat equation[END_REF]. This work suggests that the answer is not obvious.

As announced, we have the following result.

Corollary 1. There exists insensitizing controls v for the functional J τ given by (3).

Before going further, let us recall some of the results avalaible in the literature. Most known results concerning insensitizing controls are for parabolic systems. Nevertheless, one can cite the results in [START_REF] Dáger | Insensitizing controls for the 1-D wave equation[END_REF] for the 1-D wave equation. In [START_REF] Tebou | Some results on the controllability of coupled semilinear wave equations: the desensitizing control case[END_REF], the controllability of more general coupled wave equations is studied. In order to get rid of the condition y 0 = 0, in [START_REF] Bodart | Controls insensitizing the norm of the solution of a semilinear heat equation[END_REF], the authors consider ǫ-insensitizing controls (i.e., v such that |∂ τ J τ (y) |τ =0 | ≤ ǫ for all ǫ > 0 ) for the semilinear heat system, with C 1 and globally Lipschitz nonlinearities, and prove that this condition is equivalent to an approximate controllability result for a cascade system which is established therein. In [START_REF] De Teresa | Identification of the class of initial data for the insensitizing control of the heat equation[END_REF], condition y 0 = 0 has been removed for the linear heat equation when O ⊂ ω and when O = Ω, if this is not the case, some negative results are also given. In [START_REF] Teresa | Insensitizing controls for a semilinear heat equation[END_REF], the author proves the existence of insensitizing controls for the same semilinear heat system. This last result is extended in [START_REF] Bodart | Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity[END_REF] to super-linear nonlinearities. For parabolic systems arising from fluids dynamics the first attempt to treat the insensitizing problem is [START_REF] Fernández-Cara | Insensitizing controls for a large scale Ocean circulation model[END_REF] for a large scale ocean circulation model (linear). In [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF], as we have already mentioned, the author treats both the case of a sentinel given by L 2 -norm of the state and L 2 -norm of the curl of the state of a linear Stokes system.

As long as insensitizing controls have been considered the condition ω ∩ O = ∅ has always been imposed. But, from [START_REF] De Teresa | Unique continuation principle for systems of parabolic equations[END_REF] and [START_REF] Micu | An example of ǫ-insensitizing controls for the heat equation with no intersecting observation and control regions[END_REF], we see that this is not a necessary condition for ǫ-insensitizing controls. For instance, the authors have proved in [START_REF] Micu | An example of ǫ-insensitizing controls for the heat equation with no intersecting observation and control regions[END_REF] that there exists ǫ-insensitizing controls of J τ for linear heat equations with no intersecting observation and control regions in one space dimension using the spectral theory. Furthermore, the insensitizing problem, as we have seen in this special case, is directly related to control problems for coupled systems. In particular, one could ask whether it is possible to control both states of a coupled system just by acting on one equation. In this spirit, the authors in [START_REF] Coron | Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component[END_REF] show some controllability results for the Navier-Stokes equations with controls having a vanishing component. In [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF] and [START_REF] Guerrero | Null controllability of some systems of two parabolic equation with one control force[END_REF], as well as some insensitizing problems, the author studied this problem respectively for Stokes and heat systems in a more general framework. Also, for more general coupled parabolic systems with only one control force, some results are available in [START_REF] González-Burgos | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF] and [START_REF] Khodja | Null-controllability of some systems of parabolic type by one control force[END_REF]. Finally, recently in [START_REF] Yan | Insensitizing controls for a forward stochastic heat equation[END_REF] the existence of insensitizing controls for a forward stochastic heat equation was proved by means of some global Carleman estimates. The rest of the paper is organized as follows. In Section 2 we give some results which will be useful for our purpose. In Section 3 we prove the Carleman estimate. In Section 4 we treat the linear case. Finally, in Section 5 we prove Theorem 1.1.

Technical results

In the context of the null controllability analysis of parabolic systems, Carleman estimates are a very powerful tool (see [START_REF] Fursikov | Controllability of Evolution Equations[END_REF], [START_REF] Imanuvilov | Remarks on exact controllability for the Navier-Stokes equation[END_REF], [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF],...). In order to state our Carleman estimate we need to define some weight functions. Let ω 0 be a nonempty open subset of ω ∩ O, and set :

α m (x, t) = exp(λk m+1 m η 0 ∞ ) -exp λ(k η 0 ∞ + η 0 (x)) t m (T -t) m , ξ m (x, t) = exp λ(k η 0 ∞ + η 0 (x)) t m (T -t) m , (9) 
for some parameter λ > 0. Here, m > 4 and k > m are fixed and η 0 ∈ C 2 (Ω) stands for a function that satisfies :

|∇η 0 | ≥ K > 0 in Ω\ω 0 , η 0 > 0 in Ω and η 0 = 0 on ∂Ω. ( 10 
)
The proof of the existence of such a function η 0 can be found in [START_REF] Fursikov | Controllability of Evolution Equations[END_REF]. This kind of weight functions was also used in [START_REF] Imanuvilov | Remarks on exact controllability for the Navier-Stokes equation[END_REF]. In the sequel, for convenience, we will fix m = 5 and k = 10. Thus, our weight functions read

α(x, t) = exp(12λ η 0 ∞ ) -exp λ(10 η 0 ∞ + η 0 (x)) t 5 (T -t) 5 , ξ(x, t) = exp λ(10 η 0 ∞ + η 0 (x)) t 5 (T -t) 5 (11) 
and we shall use the notation

α ⋆ (t) = max x∈Ω α(x, t), α(t) = min x∈Ω α(x, t), ξ ⋆ (t) = min x∈Ω ξ(x, t), ξ(t) = max x∈Ω ξ(x, t). ( 12 
)
We also introduce the following quantities:

I 0 (s, λ; u) = s 3 λ 4 Q e -2sα ξ 3 |u| 2 dxdt + sλ 2 Q e -2sα ξ|∇u| 2 dxdt, (13) 
I 1 (s, λ; u) = s 3 λ 4 Q e -5sα ξ 3 |u| 2 dxdt + sλ 2 Q e -5sα ξ|∇u| 2 dxdt + s -1 Q e -5sα (ξ) -1 |∆u| 2 dxdt, (14) 
I(s, λ; u) = s 3 λ 4 Q e -2sα e -2sα ⋆ ξ 3 |u| 2 dxdt + sλ 2 Q e -2sα e -2sα ⋆ ξ|∇u| 2 dxdt, (15) 
for some parameter s > 0.

First we state a Carleman-type estimate which holds for energy solutions of heat equations with nonhomogeneous Neumann boundary conditions:

Lemma 2.1. Let us assume that u 0 ∈ L 2 (Ω), f 1 ∈ L 2 (Q), f 2 ∈ L 2 (Q) N , f 3 ∈ L 2 (Σ). Then, there exists a constant C(Ω, ω 0 ) > 0 such that the (weak) solution of        u t -∆u = f 1 + ∇ • f 2 in Q, ∂u ∂n + f 2 • n = f 3 on Σ, u |t=0 = u 0 in Ω, (16) 
satisfies

I 0 (s, λ; u) ≤ C   s 3 λ 4 ω0×(0,T ) e -2sα ξ 3 |u| 2 dxdt + Q e -2sα |f 1 | 2 dxdt +s 2 λ 2 Q e -2sα ξ 2 |f 2 | 2 dxdt + sλ Σ e -2sα ⋆ ξ ⋆ |f 3 | 2 dσdt   , (17) 
for any λ ≥ C and s ≥ C(T 9 + T 10 ).

In a similar form, this lemma was proved in [START_REF] Fernández-Cara | Null controllability of the heat equation with boundary Fourier conditions: the linear case[END_REF], but with the weight defined in ( 9) for m = 1. In order to prove Lemma 2.1, one can follow the steps of the proof in [START_REF] Fernández-Cara | Null controllability of the heat equation with boundary Fourier conditions: the linear case[END_REF], just taking into account that

|α t | ≤ KT ξ 6/5 , |α ⋆ t | ≤ KT (ξ ⋆ ) 6/5 , |α tt | ≤ KT 2 ξ 7/5 , and |α ⋆ tt | ≤ KT 2 (ξ ⋆ ) 7/5 , (18) 
for some constant K independent of s, λ and T .

The second estimate we give here holds for solutions of Stokes systems with homogeneous Dirichlet boundary conditions:

Lemma 2.2. Let us assume that u 0 ∈ V , f 4 ∈ L 2 (Q) N . Then, there exists a constant C(Ω, ω 0 ) > 0 such that the solution (u, p) ∈ (L 2 (0, T ; H 2 (Ω) N ∩ V ) ∩ L ∞ (0, T ; V ) × L 2 (0, T ; H 1 (Ω)), with ω0 p(t, x)dx = 0, of      u t -∆u + ∇p = f 4 , ∇ • u = 0 in Q, u = 0 on Σ, u |t=0 = u 0 in Ω, (19) 
satisfies

I 0 (s, λ; u) ≤ C   s 16 λ 40 ω0×(0,T ) e -8s α+6sα ⋆ ( ξ) 16 |u| 2 dxdt + s 15/2 λ 20 Q e -4s α+2sα ⋆ ( ξ) 15/2 |f 4 | 2 dxdt    , (20) 
for any λ ≥ C and s ≥ C(T 5 + T 10 ).

This lemma, for the weight defined in ( 9) with m = 4, is the main result in [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF]. Again, in order to prove it one can follow the steps of the proof in [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF], keeping in mind estimates [START_REF] Imanuvilov | Remarks on exact controllability for the Navier-Stokes equation[END_REF].

The next result concerns the regularity of the solutions to the Stokes system which can be found in [START_REF] Ladyzenskaya | The mathematical Theory of Viscous Incompressible Flow, Translated from the Russian[END_REF] (see also [START_REF] Temam | Naviers-Stokes equation. Theory and Numerical Analysis[END_REF]): Lemma 2.3. For every T > 0 and every f ∈ L 2 (Q) N , there exists a unique solution

u ∈ L 2 (0, T ; H 2 (Ω) N ) ∩ L ∞ (0, T ; V ) ∩ H 1 (0, T ; H) to the Stokes system        u t -∆u + ∇p = f in Q, ∇ • u = 0 in Q, u = 0 on Σ, u(0) = 0 in Ω, (21) 
for some p ∈ L 2 (0, T ; H 1 (Ω)), and there exists a constant C > 0 depending only on Ω such that

u 2 L 2 (0,T ;H 2 (Ω) N ) + u 2 L ∞ (0,T ;V ) + u 2 H 1 (0,T ;L 2 (Ω) N ) ≤ C f 2 L 2 (Q) N . (22) 
To finish, we give further regularity result which will be very useful for our purpose.

Lemma 2.4. Let a ∈ R and B ∈ R N be constant and let us assume that f ∈ L 2 (0, T ; V ). Then, there exists a unique solution u ∈ L 2 (0, T ;

H 3 (Ω) N ∩ V ) ∩ H 1 (0, T ; V ), together with some p, to the Stokes system      u t -∆u + au + B • ∇u + ∇p = f, ∇ • u = 0 in Q, u = 0 on Σ, u |t=0 = 0 in Ω, (23) 
and there exists a constant C > 0 such that

u L 2 (0,T ;H 3 (Ω) N ) + u H 1 (0,T ;H 1 (Ω) N ) ≤ C f L 2 (0,T ;H 1 (Ω) N ) . (24) 
This result can be found in [START_REF] Ladyzenskaya | The mathematical Theory of Viscous Incompressible Flow, Translated from the Russian[END_REF]. A proof is also given in [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF].

Carleman Estimate

In this section, we will prove a Carleman estimate which leads to an observability inequality, which in turn implies the null controllability of a linear system, similar to the linearized system associated to (4). This inequality will be the main tool in the proof of Theorem 1.1.

Here, we consider the following coupled Stokes system :

         -ϕ t -∆ϕ + ∇π = ψ1 O + g 0 , ∇ • ϕ = 0 in Q, ψ t -∆ψ + ∇κ = g 1 , ∇ • ψ = 0 in Q, ϕ = ψ = 0 on Σ, ϕ |t=T = ϕ 0 , ψ |t=0 = ψ 0 in Ω, (25) 
where g 0 , g 1 ∈ L 2 (Q) N and ψ 0 , ϕ 0 ∈ H. System ( 25) is the non-homogeneous formal adjoint of the linearized of ( 4) around (0, 0). We will be led to prove, for an open set ω 0 ⊂ O ∩ ω, the following kind of observability inequality for [START_REF] Yan | Insensitizing controls for a forward stochastic heat equation[END_REF]:

Q e -C1/t m (|ϕ| 2 + |ψ| 2 )dxdt ≤ C    ω0×(0,T ) |ϕ| 2 dxdt + Q e -C2/t m (|g 0 | 2 + |g 1 | 2 )dxdt    , (26) 
for some m > 0 and certain positive constants C, C 1 , C 2 depending on Ω, ω 0 and T but independent of ψ 0 and ϕ 0 . To prove such an inequality, usually, we use a combination of observability inequalities for both ϕ and ψ and try to eliminate the local term in ψ. Even in the simpler situation of the Stokes system (g 0 ≡ g 1 ≡ 0), due to the pressure term, one cannot expect to achieve such an objective this way (see [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF], for an explanation of this fact). We will prove the following result:

Theorem 3.1. Assume that ω ∩ O = ∅.
Then, there exists a constant C > 0 which depends on Ω, ω, O and T such that

I(s, λ; ∇ × ψ) + I 1 (s, λ; ϕ) ≤ C   s 15 λ 16 ω0×(0,T ) e -4sα ⋆ +sα ξ 15 |ϕ| 2 dxdt +s 5 λ 6 Q e -2sα ⋆ -2sα ξ 5 |g 0 | 2 dxdt + Q e -2sα ⋆ |g 1 | 2 dxdt   , (27) 
for any λ ≥ C, any s ≥ C(T 5 + T 10 ), any ϕ 0 , ψ 0 ∈ H and any g 0 , g 1 ∈ L 2 (Q) N , where (ϕ, ψ) is the corresponding solution to [START_REF] Yan | Insensitizing controls for a forward stochastic heat equation[END_REF]. Recall that I(s, λ; •) and I 1 (s, λ; •) were introduced in ( 15) and ( 14) respectively and ω 0 ⋐ ω ∩ O.

The proof of this theorem is divided in two steps. In the first step we derive a Carleman estimate for (∇ × ψ) with a local term in ω 0 using the fact that, applying the operator (∇ × •) to the second equation of system (25), the resultant system can be viewed as a system of 2N -3 heat equations. In the second one, assuming that ψ is given, we apply the Carleman estimate for Stokes systems given in Lemma 2.2. Finally we combine these two estimates and eliminate the local term in (∇ × ψ) using the fact that ω 0 ⊂ O ∩ ω. Each step will be proved in a separate paragraph.

Carleman estimate for ψ

Observe that the equation of ψ is independent of ϕ:

     ψ t -∆ψ + ∇κ = g 1 , ∇ • ψ = 0 in Q, ψ = 0 on Σ, ψ |t=0 = ψ 0 in Ω. (28) 
A Carleman inequality for (∇ × ψ) has been established in [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF] but for g 1 ≡ 0. The same analysis as in [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF] no longer holds here since (∇ × g 1 ) / ∈ L 2 (Q) 2N -3 . In order to get around this difficulty, we split ψ (up to a weight function) into two solutions of Stokes systems. Then, we apply to the more regular one the same analysis than in [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF] and classical regularity estimates for the Stokes system to the other one.

For system (28), we can prove the following result:

Proposition 3.1. There exists a positive constant C depending on Ω and ω 0 such that

I(s, λ; ∇ × ψ) ≤ C   s 3 λ 4 ω0×(0,T ) e -2sα e -2sα ⋆ ξ 3 |∇ × ψ| 2 dxdt + Q e -2sα ⋆ |g 1 | 2 dxdt    , (29) 
for any λ ≥ C and s ≥ C(T 5 + T 10 ). Recall that I(s, λ; •) was defined in [START_REF] González-Burgos | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF].

Remark 3.1. The jump in the weight functions between the left hand side and the global term in the right hand side is quite important. It can be interesting to reduce this jump. To do so see the proof below.

Proof of Proposition 3.1. Since ψ 0 ∈ H and g 1 ∈ L 2 (Q) N , there exists a unique solution (ψ, κ) ∈ L 2 (0, T ; V ) × D ′ (Q) of system (28). Now, let ρ(t) := e -sα ⋆ (t) ∈ C 1 ([0, T ]). Then, since ρ verifies ρ(0) = 0, (ψ ⋆ , κ ⋆ ) := (ρψ, ρκ) solves the system      ψ ⋆ t -∆ψ ⋆ + ∇κ ⋆ = ρg 1 + ρ t ψ, ∇ • ψ ⋆ = 0 in Q, ψ ⋆ = 0 on Σ, ψ ⋆ |t=0 = 0 in Ω. ( 30 
)
We decompose (ψ ⋆ , κ ⋆ ) as follows : (ψ ⋆ , κ ⋆ ) = ( ψ, κ) + ( ψ, κ), where ( ψ, κ) and ( ψ, κ) solve respectively

     ψ t -∆ ψ + ∇ κ = ρg 1 , ∇ • ψ = 0 in Q, ψ = 0 on Σ, ψ |t=0 = 0 in Ω, (31) 
and

     ψ t -∆ ψ + ∇ κ = ρ t ψ, ∇ • ψ = 0 in Q, ψ = 0 on Σ, ψ |t=0 = 0 in Ω. ( 32 
)
We apply the operator (∇ × •) to the Stokes system satisfied by ψ,

(∇ × ψ) t -∆(∇ × ψ) = ∇ × (ρ t ψ) in Q.
Observe that we do not have any boundary conditions for (∇ × ψ). Nevertheless, we can apply Lemma 2.1:

I 0 (s, λ; ∇ × ψ) ≤ C   s 3 λ 4 ω0×(0,T ) e -2sα ξ 3 |∇ × ψ| 2 dxdt + Q e -2sα (e -sα ⋆ ) 2 t |∇ × ψ| 2 dxdt +sλ Σ e -2sα ⋆ ξ ⋆ ∂(∇ × ψ) ∂n 2 dσdt   , (33) 
for any λ ≥ C and s ≥ C(T 9 + T 10 ). We recall that |α ⋆ t | ≤ CT (ξ ⋆ ) 6/5 (see [START_REF] Imanuvilov | Remarks on exact controllability for the Navier-Stokes equation[END_REF]), so

Q e -2sα ((e -sα ⋆ ) t ) 2 |∇ × ψ| 2 dxdt ≤ Cs 2 T 2 Q e -2sα e -2sα ⋆ (ξ ⋆ ) 12/5 |∇ × ψ| 2 dxdt, (34) 
which will be absorded later on. Now, using that ψ = ψ ⋆ψ and taking into account that (ab) 2 ≥ a 2 2b 2 , we obtain:

I 0 (s, λ; ∇ × ψ) ≥ 1 2 s 3 λ 4 Q e -2sα ξ 3 |∇ × ψ ⋆ | 2 dxdt + 1 2 sλ 2 Q e -2sα ξ|∇(∇ × ψ ⋆ )| 2 dxdt (35) -s 3 λ 4 Q e -2sα ξ 3 |∇ × ψ| 2 dxdt -sλ 2 Q e -2sα ξ|∇(∇ × ψ)| 2 dxdt.
Observe that the first term in the right-hand side of (35) absorbs (34) as long as λ ≥ 1 and s ≥ CT 8 . We turn to the equation satisfied by ψ. Using regularity results for system (31), (see [START_REF] Temam | Naviers-Stokes equation. Theory and Numerical Analysis[END_REF], Proposition 2.2) we deduce that

s 3 λ 4 Q e -2sα ξ 3 |∇ × ψ| 2 dxdt ≤ C Q |∇ × ψ| 2 dxdt ≤ C ψ 2 L 2 (0,T ;H 1 (Ω) N ) ≤ C Q e -2sα ⋆ |g 1 | 2 dxdt, ( 36 
)
and

sλ 2 Q e -2sα ξ|∇(∇ × ψ)| 2 dxdt ≤ C Q |∇(∇ × ψ)| 2 dxdt ≤ C ψ 2 L 2 (0,T ;H 2 (Ω) N ) ≤ C Q e -2sα ⋆ |g 1 | 2 dxdt, (37) 
for λ ≥ C and s ≥ CT 10 , with possibly differents constants C. Indeed, the above constants do not depend on T for λ ≥ C and s ≥ CT 10 . The next step is to estimate the local term which appears in the right-hand side of (33). Again, we put ψ in terms of ψ ⋆ and ψ :

s 3 λ 4 ω0×(0,T ) e -2sα ξ 3 |∇ × (ψ ⋆ -ψ)| 2 dxdt ≤ 2s 3 λ 4 ω0×(0,T ) e -2sα ξ 3 |∇ × ψ ⋆ | 2 dxdt +2s 3 λ 4 ω0×(0,T ) e -2sα ξ 3 |∇ × ψ| 2 dxdt.
Like previously

s 3 λ 4 ω0×(0,T ) e -2sα ξ 3 |∇ × ψ| 2 dxdt ≤ s 3 λ 4 Q e -2sα ξ 3 |∇ × ψ| 2 dxdt ≤ C Q e -2sα ⋆ |g 1 | 2 dxdt. ( 38 
)
At this point combining (33)-(38), we obtain

I(s, λ; ∇ × ψ) ≤ C   s 3 λ 4 ω0×(0,T ) e -2sα ξ 3 |∇ × ψ ⋆ | 2 dxdt + Q e -2sα ⋆ |g 1 | 2 dxdt +sλ Σ e -2sα ⋆ ξ ⋆ ∂(∇ × ψ) ∂n 2 dσdt   , (39) 
for any λ ≥ C and s ≥ C(T 5 + T 10 ).

The last step will be to eliminate the boundary term in the right-hand side of (39). To this end, we introduce a function θ ∈ C 2 (Ω) such that ∂θ ∂n = 1 and θ = constant on ∂Ω.

Integration by parts leads to

sλ T 0 e -2sα ⋆ ξ ⋆   ∂Ω ∂(∇ × ψ) ∂n 2 dσ   dt = sλ T 0 e -2sα ⋆ ξ ⋆   Ω ∆(∇ × ψ)∇(∇ × ψ) • ∇θdx   dt +sλ T 0 e -2sα ⋆ ξ ⋆   Ω (∇∇θ∇(∇ × ψ))∇(∇ × ψ)dx   dt + sλ 2 T 0 e -2sα ⋆ ξ ⋆   Ω ∇|∇(∇ × ψ)| 2 • ∇θdx   dt.
Thus, using Cauchy-Schwarz's inequality, the above integral can be estimate as follows

sλ T 0 e -2sα ⋆ ξ ⋆   ∂Ω ∂(∇ × ψ) ∂n 2 dσ   dt ≤ Csλ T 0 e -2sα ⋆ ξ ⋆ ψ H 3 (Ω) N ψ H 2 (Ω) N dt. ( 41 
)
Thanks to the interpolation inequality

ψ H 2 (Ω) N ≤ ψ 1/2 H 1 (Ω) N ψ 1/2 H 3 (Ω) N , we obtain sλ T 0 e -2sα ⋆ ξ ⋆ ψ H 3 (Ω) N ψ H 2 (Ω) N dt ≤ sλ T 0 e -2sα ⋆ ξ ⋆ ψ 3/2 H 3 (Ω) N ψ 1/2 H 1 (Ω) N dt. ( 42 
)
Finally, using Young's inequality (ab ≤ a p p + b p ′ p ′ with 1 p + 1 p ′ = 1) for p = 4, the task reduces to estimate

s 5/2 λ T 0 e -2sα ⋆ (ξ ⋆ ) 5/2 ψ 2 H 1 (Ω) N dt + s 1/2 λ T 0 e -2sα ⋆ (ξ ⋆ ) 1/2 ψ 2 H 3 (Ω) N dt. (43) 
For the first term, thanks to the fact that ∇ • ψ(t) = 0 in Ω and ψ = ψ *ψ, we have

ψ(t) H 1 (Ω) N ≤ C ∇ × ψ(t) L 2 (Ω) 2N -3 ≤ C ∇ × ψ(t) L 2 (Ω) 2N -3 + ∇ × ψ ⋆ (t) L 2 (Ω) 2N -3 .
The first term in the right-hand side is estimated like in (36) and the second one can be absorbed by the first term in the left-hand side of (39), for λ ≥ C and s ≥ CT 10 . Let us estimate now the second term in (43). To this end, we introduce (ψ • , κ • ) := (η(t) ψ, η(t) κ), where

η(t) = s 1/4 λ 1/2 e -sα ⋆ (ξ ⋆ ) 1/4 in (0, T ). Then, (ψ • , κ • ) fulfills      ψ • t -∆ψ • + ∇κ • = ηρ t ψ + η t ψ, ∇ • ψ • = 0 in Q, ψ • = 0 on Σ, ψ • |t=0 = 0 in Ω. (44) 
Let us prove that the right-hand side of this system belongs to L 2 (0, T ; V ). Then, we will be able to apply Lemma 2.3. For the first term in the right-hand side of (44), we use again that ψ is a divergence-free function and we get

ηρ t ψ L 2 (0,T ;H 1 (Ω) N ) = ηρ t ψ ⋆ ρ L 2 (0,T ;H 1 (Ω) N ) ≤ C ηρ t (∇ × ψ ⋆ ) ρ L 2 (Q) 2N -3
.

Taking into account that ηρ t ρ ≤ CT s 5/4 λ 1/2 e -sα ⋆ (ξ ⋆ ) 6/5+1/4 , for any s ≥ CT 10 , we deduce that

ηρ t ψ L 2 (0,T ;H 1 (Ω) N )) ≤ CT s 5/4 λ 1/2 e -sα ⋆ (ξ ⋆ ) 29/20 (∇ × ψ ⋆ ) L 2 (Q) 2N -3 . (45)
Thus, the square of this last quantity is small with respect to the first term in the left-hand side of (39) by taking λ ≥ 1 and s ≥ CT 6 . We turn to the second term in the right-hand side of (44). Similarly as before, we have

η t ψ L 2 (0,T ;H 1 (Ω) N ) ≤ C η t (∇ × ψ) L 2 (Q) 2N -3 .
Using again that ψ = ψ ⋆ψ, we obtain

η t ψ L 2 (0,T ;H 1 (Ω) N ) ≤ η t (∇ × ψ ⋆ ) L 2 (Q) 2N -3 + η t (∇ × ψ) L 2 (Q) 2N -3 , (46) 
with |η t | ≤ CT s 5/4 λ 1/2 e -sα ⋆ (ξ ⋆ ) 29/20 ,
for any s ≥ CT 10 . Therefore, the first term is estimated like (45) and the second one can be estimated as in (36). Then it follows from Lemma 2.3, that the solution of (44) satisfies ψ • ∈ L 2 (0, T ; H 3 (Ω) N ∩ V ) and for all ε > 0 there exists C ε > 0 such that

ψ • 2 L 2 (0,T ;H 3 (Ω) N ) = s 1/2 λ T 0 e -2sα ⋆ (ξ ⋆ ) 1/2 ψ 2 H 3 (Ω) N dt ≤ ε I(s, λ; ∇ × ψ) + C ε Q e -2sα ⋆ |g 1 | 2 dxdt.
This, combined with (39) and ( 41)-( 43), concludes the proof of Proposition 3.1.

Carleman estimate for ϕ and conclusion

Here we prove Theorem 3.1, combining the results of last section and Lemma 2.2. Assuming that ψ is given, we turn to the solution of

     -ϕ t -∆ϕ + ∇π = ψ1 O + g 0 , ∇ • ϕ = 0 in Q, ϕ = 0 on Σ, ϕ |t=T = ϕ 0 in Ω. ( 47 
)
We choose π such that ω0 π(t, x)dx = 0 and we apply the Carleman estimate given in Lemma 2.2, for the weight function 5α 2 (instead of α). We obtain

I 1 (s, λ; ϕ) ≤ C   s 16 λ 40 ω0×(0,T ) e -20s α+15sα ⋆ ( ξ) 16 |ϕ| 2 dxdt + s 15/2 λ 20 O×(0,T ) e -10s α+5sα ⋆ ( ξ) 15/2 |ψ| 2 dxdt +s 15/2 λ 20 Q e -10s α+5sα ⋆ ( ξ) 15/2 |g 0 | 2 dxdt   , (48) 
for any λ ≥ C and s ≥ C(T 5 + T 10 ), where I 1 (s, λ; •) is given by ( 14). Then, the second integral in the right-hand side of (48) is bounded by I(s, λ; ∇ × ψ) for a suitable choice of λ ≥ C and s ≥ CT 10 . Indeed,

s 15/2 λ 20 O×(0,T ) e -10s α+5sα ⋆ ( ξ) 15/2 |ψ| 2 dxdt ≤ Cs 15/2 λ 20 Q e -10s α+5sα ⋆ ( ξ) 15/2 |∇×ψ| 2 dxdt ≤ ǫ I(s, λ; ∇×ψ),
where we have used the fact that ψ L 2 (Ω) N ≤ C ∇ × ψ L 2 (Ω) 2N -3 and also that for all ǫ > 0 and M ∈ R, there exists C ǫ,M > 0 such that e sα ⋆ ≤ C ǫ,M s M λ M ( ξ) M e s(1+ǫ) α , for any λ ≥ C and any s ≥ CT 10 . Now, combining the obtained inequality with (29) we get:

I(s, λ; ∇ × ψ) + I 1 (s, λ; ϕ) ≤ C   s 16 λ 40 ω0×(0,T ) e -20s α+15sα ⋆ ( ξ) 16 |ϕ| 2 dxdt +s 3 λ 4 ω0×(0,T ) e -2sα e -2sα ⋆ ξ 3 |∇ × ψ| 2 dxdt + Q e -2sα ⋆ |g 1 | 2 dxdt + s 15/2 λ 20 Q e -10s α+5sα ⋆ ( ξ) 15/2 |g 0 | 2 dxdt    , (49 
) for any λ ≥ C and s ≥ C(T 5 + T 10 ). It remains to estimate the local term in (∇ × ψ), in terms of ϕ. In order to do this, we use the first equation of [START_REF] Yan | Insensitizing controls for a forward stochastic heat equation[END_REF], where the coupling term appears. Since ω 0 ⊂ O, we have

∇ × ψ = -(∇ × ϕ) t -∆(∇ × ϕ) -(∇ × g 0 ), in ω 0 × (0, T ). ( 50 
)
Thus, replacing in the second integral in right-hand side of (49), we obtain:

s 3 λ 4 ω0×(0,T ) e -2sα e -2sα ⋆ ξ 3 |∇ × ψ| 2 dxdt = -s 3 λ 4 ω0×(0,T ) e -2sα e -2sα ⋆ ξ 3 (∇ × ψ)(∇ × ϕ) t dxdt -s 3 λ 4 ω0×(0,T ) e -2sα e -2sα ⋆ ξ 3 (∇ × ψ)(∆(∇ × ϕ) + ∇ × g 0 )dxdt.
We introduce an open set ω 1 ⋐ ω such that ω 0 ⋐ ω 1 and a positive function θ ∈ C 2 c (ω 1 ) such that θ ≡ 1 in ω 0 . Then the task turns to estimate

s 3 λ 4 ω1×(0,T ) θe -2sα e -2sα ⋆ ξ 3 (∇ × ψ)(-(∇ × ϕ) t -∆(∇ × ϕ) -∇ × g 0 )dxdt. ( 51 
)
Performing several integration by parts, in order to get out all the derivatives of (∇ × ϕ), we get

s 3 λ 4 ω0×(0,T ) e -2sα e -2sα ⋆ ξ 3 |∇ × ψ| 2 dxdt ≤ s 3 λ 4 ω1×(0,T ) θ(e -2sα e -2sα ⋆ ξ 3 ) t (∇ × ψ)(∇ × ϕ)dxdt + s 3 λ 4 ω1×(0,T ) θe -2sα e -2sα ⋆ ξ 3 (∇ × ϕ)(∇ × g 1 )dxdt -2s 3 λ 4 ω1×(0,T ) ∇(θe -2sα e -2sα ⋆ ξ 3 ) • ∇(∇ × ψ)(∇ × ϕ)dxdt -s 3 λ 4 ω1×(0,T ) ∆(θe -2sα e -2sα ⋆ ξ 3 )(∇ × ψ)(∇ × ϕ)dxdt -s 3 λ 4 ω1×(0,T ) θe -2sα e -2sα ⋆ ξ 3 (∇ × ψ)(∇ × g 0 )dxdt. ( 52 
)
Here, we have used the equation satisfied by (∇ × ψ) and the fact that θ has compact support in ω 1 . We perform another integration by parts and use Young's inequality to obtain:

s 3 λ 4 ω1×(0,T ) θe -2sα e -2sα ⋆ ξ 3 (∇ × ϕ)(∇ × g 1 )dxdt = -s 3 λ 4 ω1×(0,T ) ∇ × (θe -2sα e -2sα ⋆ ξ 3 (∇ × ϕ))g 1 dxdt ≤ C   Q e -2sα ⋆ |g 1 | 2 dxdt + s 6 λ 8 Q e -4sα e -2sα ⋆ ξ 6 (s 2 λ 2 ξ 2 |∇ × ϕ| 2 + |∇(∇ × ϕ)| 2 )dxdt   .
The last term in this inequality is estimated by ǫI 1 (s, λ; ϕ) for λ ≥ C and s ≥ CT 10 . An analogous estimate holds for the term containing (∇ × g 0 ):

s 3 λ 4 ω1×(0,T ) θe -2sα e -2sα ⋆ ξ 3 (∇ × ψ)(∇ × g 0 )dxdt = -s 3 λ 4 ω1×(0,T ) ∇ × (θe -2sα e -2sα ⋆ ξ 3 (∇ ψ))g 0 dxdt ≤ Cs 5 λ 6 Q ξ 5 e -2sα-2sα ⋆ |g 0 | 2 dxdt + ǫ I(s, λ; ∇ × ψ).
On the other hand we have the following estimates for the weight functions:

|(e -2sα e -2sα ⋆ ξ 3 ) t | ≤ CT se -2sα e -2sα ⋆ (ξ) 4+1/5 and |∆(e -2sα e -2sα ⋆ ξ 3 )| ≤ Cs 2 λ 2 e -2sα e -2sα ⋆ ξ 5 ,
for any s ≥ CT 10 . Using these estimates for the first, third and fourth terms in the right-hand side of (52), we deduce that

s 3 λ 4 ω0×(0,T ) e -2sα e -2sα ⋆ ξ 3 |∇ × ψ| 2 dxdt ≤ ǫ( I(s, λ; ∇ × ψ) + I 1 (s, λ; ϕ)) +C ǫ   s 7 λ 8 ω1×(0,T ) e -2sα e -2sα ⋆ ξ 7 |∇ × ϕ| 2 dxdt + ω1×(0,T ) e -2sα ⋆ |g 1 | 2 dxdt + s 5 λ 6 Q e -2sα-sα ⋆ ξ 5 |g 0 | 2 dxdt    , (53 
) for λ ≥ C and s ≥ C(T 5 + T 10 ). Furthermore, considering an open set ω 2 ⋐ ω such that ω 1 ⋐ ω 2 , one can prove that

s 7 λ 8 ω1×(0,T ) e -2sα e -2sα ⋆ ξ 7 |∇×ϕ| 2 dxdt ≤ ǫs -1 Q e -5sα ξ -1 |∆ϕ| 2 dxdt+s 15 λ 16 ω2×(0,T ) e -4sα ⋆ +sα ξ 15 |ϕ| 2 dxdt.
This, combined with (53) and (49), gives the desired inequality (27).

Null controllability of the linear system

In this section we consider a linear coupled Stokes system with right-hand sides. More precisely, we look for a control v ∈ L 2 (ω × (0, T )) N such that, under suitable decreasing properties on f 1 and f 2 , the solution to

       w t -∆w + ∇p = f 1 + v1 ω , ∇ • w = 0 in Q, -z t -∆z + ∇q = f 2 + w1 O , ∇ • z = 0 in Q, w = z = 0 on Σ, w |t=0 = z |t=T = 0 in Ω, (54) 
satisfies

z |t=0 = 0 in Ω. ( 55 
)
As we have already mentioned, an observability inequality for (25) will imply the null controllability of (54) with decreasing properties for the state(s) and the control(s) (see ([13])). Here, we present a null controllability result for (54) where we look for a more regular solution (w, z). This will be done by solving the controllability problem in spaces depending on the previous weight functions. Furthermore, this result will be useful to deduce the local null controllability of the nonlinear problem (4) in the last section. First let us prove a modified Carleman inequality, from (27), with weight functions that do not vanish at t = T . To be more specific, consider

l(t) =    t(T -t), 0 ≤ t ≤ T /2, T 2 4 , T /2 ≤ t ≤ T, (56) 
and the following associated weight functions :

β(x, t) = exp(12λ η 0 ∞ ) -exp λ(k η 0 ∞ + η 0 (x)) l(t) 5 , γ(x, t) = exp λ(10 η 0 ∞ + η 0 (x)) l(t) 5 (57) 
β ⋆ (t) = max x∈Ω β(x, t), β(t) = min x∈Ω β(x, t), γ ⋆ (t) = min x∈Ω γ(x, t), γ(t) = max x∈Ω γ(x, t). (58) 
With this definition we have the following Lemma 4.1. Let s and λ like in Theorem 3.1. Then, there exists a positive constant C depending on Ω, ω, O, T , s and λ such that

Q e -4sβ ⋆ (γ ⋆ ) 3 |ψ| 2 dxdt + Q e -5sβ ⋆ (γ ⋆ ) 3 |ϕ| 2 dxdt ≤ C    ω×(0,T ) e -4sβ ⋆ +sβ γ 15 |ϕ| 2 dxdt (59) 
+ Q e -2sβ-2sβ ⋆ γ 5 |g 0 | 2 dxdt + Q e -2sβ ⋆ |g 1 | 2 dxdt   ,
for any ϕ 0 , ψ 0 ∈ H, where (ϕ, ψ) is the associated solution to [START_REF] Yan | Insensitizing controls for a forward stochastic heat equation[END_REF].

Proof of Lemma 4.1. First by construction α = β and ξ = γ in Ω × (0, T /2), so that

T /2 0 Ω e -4sα ⋆ (ξ ⋆ ) 3 |ψ| 2 dxdt + T /2 0 Ω e -5sα ⋆ (ξ ⋆ ) 3 |ϕ| 2 dxdt = T /2 0 Ω e -4sβ ⋆ (γ ⋆ ) 3 |ψ| 2 dxdt + T /2 0 Ω e -5sβ ⋆ (γ ⋆ ) 3 |ϕ| 2 dxdt.
Therefore, it follows from (27

) (observe that e -4sβ ⋆ (γ ⋆ ) 3 ≤ e -2sβ e -2sβ ⋆ γ 3 , e -5sβ ⋆ (γ ⋆ ) 3 ≤ e -5sβ γ 3 and ψ L 2 (Ω) N ≤ C ∇ × ψ L 2 (Ω) 2N -3 ) T /2 0 Ω e -4sβ ⋆ (γ ⋆ ) 3 |ψ| 2 dxdt + T /2 0 Ω e -5sβ ⋆ (γ ⋆ ) 3 |ϕ| 2 dxdt ≤ C(T, s, λ)    ω×(0,T ) e -4sα ⋆ +sα ξ 15 |ϕ| 2 dxdt + Q e -2sα ⋆ |g 1 | 2 dxdt + Q e -2sα-2sα ⋆ ξ 5 |g 0 | 2 dxdt   ,
for any ψ 0 ∈ H. Thus, by definition of β, β ⋆ , γ and γ ⋆ we have

T /2 0 Ω e -4sβ ⋆ (γ ⋆ ) 3 |ψ| 2 dxdt + T /2 0 Ω e -5sβ ⋆ (γ ⋆ ) 3 |ϕ| 2 dxdt ≤ C(T, s, λ)    ω×(0,T ) e -4sβ ⋆ +sβ γ 15 |ϕ| 2 dxdt + Q e -2sβ ⋆ |g 1 | 2 dxdt + Q e -2sβ-2sβ ⋆ γ 5 |g 0 | 2 dxdt   , (60) 
We turn to the domain Ω × (T /2, T ). Here, we will use well known a priori estimates for the Stokes system. Indeed, let us introduce a function

ζ ∈ C 1 ([0, T ]) such that ζ = 0 in [0, T /4], ζ = 1 in [T /2, T ], |ζ ′ | ≤ C/T.
Using classical energy estimates for both ζϕ and ζψ (see, for instance, [START_REF] Ladyzenskaya | The mathematical Theory of Viscous Incompressible Flow, Translated from the Russian[END_REF]), which solve the Stokes system (25), we obtain

ζϕ 2 L 2 (T /4,T ;H 1 (Ω) N ) + ζϕ 2 L ∞ (T /4,T ;H) ≤ C ζg 0 2 L 2 (T /4,T ;L 2 (Ω) N ) + ζψ 2 L 2 (T /4,T ;L 2 (O) N ) + 1 T 2 ϕ 2 L 2 (T /4,T /2;L 2 (Ω) N )
and

ζψ 2 L 2 (T /4,T ;H 1 (Ω) N ) + ζψ 2 L ∞ (T /4,T ;H) ≤ C ζg 1 2 L 2 (T /4,T ;L 2 (Ω) N ) + 1 T 2 ψ 2 L 2 (T /4,T /2;L 2 (Ω) N ) .
Combining these last two inequalities and keeping in mind the definition of ζ, we obtain

ϕ 2 L 2 (T /2,T ;L 2 (Ω) N ) + ψ 2 L 2 (T /2,T ;L 2 (Ω) N ) ≤ ζg 0 2 L 2 (T /4,T ;L 2 (Ω) N ) + ζg 1 2 L 2 (T /4,T ;L 2 (Ω) N ) + 1 T 2 ψ 2 L 2 (T /4,T ;L 2 (Ω) N ) + 1 T 2 ϕ 2 L 2 (T /4,T /2;L 2 (Ω) N )
Using (60) to estimate the last two terms and taking into account that the weight functions β and γ are bounded in [T /4, T ], we get the following estimate

T T /2 Ω e -4sβ ⋆ (γ ⋆ ) 3 |ψ| 2 dxdt + T T /2 Ω e -5sβ ⋆ (γ ⋆ ) 3 |ϕ| 2 dxdt ≤ C(T, s, λ)    T T /4 Q e -2sβ ⋆ |g 1 | 2 dxdt (61) + T T /4 Q e -2sβ-2sβ ⋆ γ 5 |g 0 | 2 dxdt    .
This, together with (60), gives us the desired inequality (59). Now, we will use this Carleman inequality to deduce a null controllability result for system (54). In the same spirit of [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF], where the local exact controllability of the Navier-Stokes system is proved, we introduce the following weighted space:

E s,λ = (w, z, p, q, v) : e sβ+sβ ⋆ (γ ⋆ ) -5/2 w ∈ L 2 (Q) N , e sβ ⋆ z ∈ L 2 (Q) N , e 2sβ ⋆ -1 2 sβ γ -15/2 v1 ω ∈ L 2 (Q) N , e 3 2 sβ ⋆ ( γ) -15/2 w ∈ L 2 (0, T ; H 2 (Ω) N ) ∩ L ∞ (0, T ; V ), e 1 2 sβ ⋆ ( γ) 7 z ∈ L 2 (0, T ; H 2 (Ω) N ) ∩ L ∞ (0, T ; V ), e 5 2 sβ ⋆ (γ ⋆ ) -3/2 (w t -∆w + ∇p -v1 ω ) ∈ L 2 (Q) N , e 2sβ ⋆ (γ ⋆ ) -3/2 (-z t -∆z + ∇q -w1 O ) ∈ L 2 (Q) N . ( 62 
)
14 Defined as we have seen, E s,λ is a Banach space for the norm (w, z, p, q, v)

E s,λ = e sβ+sβ ⋆ (γ ⋆ ) -5/2 w 2 L 2 (Q) N + e sβ ⋆ z 2 L 2 (Q) N + e 2sβ ⋆ -1 2 sβ γ -15/2 v1 ω 2 L 2 (Q) N e 3 2 sβ ⋆ ( γ) -15/2 w 2 L 2 (0,T ;H 2 (Ω) N ) + e 3 2 sβ ⋆ ( γ) -15/2 w 2 L ∞ (0,T ;V ) + e 1 2 sβ ⋆ ( γ) 7 z 2 L 2 (0,T ;H 2 (Ω) N ) + e 1 2 sβ ⋆ ( γ) 7 z 2 L ∞ (0,T ;V ) + e 5 2 sβ ⋆ (γ ⋆ ) -3/2 (w t -∆w + ∇p -v1 ω ) 2 L 2 (Q) N + e 2sβ ⋆ (γ ⋆ ) -3/2 (-z t -∆z + ∇q -w1 O ) 2 L 2 (Q) N 1/2 .
Remark 4.1. If (w, z, p, q, v) ∈ E s,λ , then z |t=0 = 0. But also notice that w |t=0 = 0. Moreover we have

e 3sβ ⋆ ( γ) -15 (w, ∇)w ∈ L 2 (Q) N , e 2sβ ⋆ (γ ⋆ ) -3/2 (w, ∇)z ∈ L 2 (Q) N , e 2sβ ⋆ (γ ⋆ ) -3/2 (z, ∇ t )w ∈ L 2 (Q) N . ( 63 
)
We will prove the following result : 

(γ ⋆ ) -3/2 f 1 ∈ L 2 (Q) N and e 2sβ ⋆ (γ ⋆ ) -3/2 f 2 ∈ L 2 (Q) N .
Then, there exists v ∈ L 2 (ω ×(0, T )) N such that, if (w, z, p, q) is the solution of (54), one has (w, z, p, q, v) ∈ E s,λ .

Proof of Proposition 4.1. Let us introduce the following constrained extremal problem:

                             inf 1 2    Q e 2sβ+2sβ ⋆ γ -5 |w| 2 dxdt + Q e 2sβ ⋆ |z| 2 dxdt + ω×(0,T ) e 4sβ ⋆ -sβ γ -15 |v| 2 dxdt    subject to v ∈ L 2 (Q) N , supp v ⊂ ω × (0, T ) and          w t -∆w + ∇p = f 1 + v1 ω , ∇ • w = 0 in Q, -z t -∆z + ∇q = f 2 + w1 O , ∇ • z = 0 in Q, w = z = 0 on Σ, w |t=0 = z |t=T = z |t=0 = 0 in Ω. (64) 
Assume that this problem admits a unique solution ( w, z, p, q, v). Then, in virtue of the Lagrange's principle there exists dual variables (w, z, p, q) such that

         w = e -2sβ-2sβ ⋆ γ 5 (-w t -∆w + ∇p -z1 O ) in Q, z = e -2sβ ⋆ (z t -∆z + ∇q) in Q, v = e -4sβ ⋆ +sβ γ 15 w in ω × (0, T ), w = z = 0 on Σ. (65) 
Let us set

P 0 = {(w, z, p, q) ∈ C ∞ (Q) 2N +2 ; ∇ • w = ∇ • z = 0 in Q, w = z = 0 on Σ and ω0 q(x, t)dx = 0}
and a((w, z, p, q), (w, z, p, q)) =

Q e -2sβ-2sβ ⋆ γ 5 (-w t -∆w + ∇p -z1 O )(-w t -∆w + ∇p -z1 O )dxdt (66) + Q e -2sβ ⋆ (z t -∆z + ∇q)(z t -∆z + ∇q)dxdt + ω×(0,T )
e -4sβ ⋆ +sβ γ 15 wwdxdt ∀ (w, z, p, q) ∈ P 0 .

With this definition, one can see that, if the functions w, z and v solve (64), we must have a((w, z, p, q), (w, z, p, q)) = l(w, z, p, q), ∀ (w, z, p, q) ∈ P 0 ,

where

l(w, z, p, q) = Q f 1 wdxdt + Q f 2 zdxdt. (68) 
The main idea is to prove that there exists exactly one (w, z, p, q) satisfying (67). Then we will define ( w, z, p, q, v) using (65) and we will check that it fulfills the desired properties. Indeed, observe that the Carleman inequality (59) holds for (w, z, p, q) ∈ P 0 ,

Q e -4sβ ⋆ (γ ⋆ ) 3 |w| 2 dxdt + Q e -5sβ ⋆ (γ ⋆ ) 3 |z| 2 dxdt ≤ Ca( ( 
w, z, p, q), (w, z, p, q)) ∀ (w, z, p, q) ∈ P 0 . (69)

In the linear space P 0 we consider the bilinear form a(., .) given by (66); from the unique continuation property for Stokes-like systems (see [START_REF] Fabre | Prolongement unique des solutions de l'équation de Stokes[END_REF]) we deduce that a(., .) is a scalar product in P 0 . Let us now consider the space P, given by the completion of P 0 for the norm associated to a(., .). This is a Hilbert space and a(., .) is a continuous and coercive bilinear form on P. We turn to the linear operator l, given by (68) for all (w, z, p, q) ∈ P, a simple computation leads to l(w, z, p, q) ≤ e

5 2 sβ ⋆ (γ ⋆ ) -3/2 f 1 L 2 (Q) N e -5 2 sβ ⋆ (γ ⋆ ) 3/2 w L 2 (Q) N + e 2sβ ⋆ (γ ⋆ ) -3/2 f 2 L 2 (Q) N e -2sβ ⋆ (γ ⋆ ) 3/2 z L 2 (Q) N
Then, using (69) and the density of P 0 in P, we have

l(w, z, p, q) ≤ C e 5 2 sβ ⋆ (γ ⋆ ) -3/2 f 1 L 2 (Q) N + e 2sβ ⋆ (γ ⋆ ) -3/2 f 2 L 2 (Q) N
(w, z, p, q) P ∀ (w, z, p, q) ∈ P.

Consequently l is a bounded linear operator on P. Then, in view of Lax-Milgram's lemma, there exists one and only one (w, z, p, q) satisfying a((w, z, p, q), (w, z, p, q)) = l(w, z, p, q), ∀ (w, z, p, q) ∈ P (w, z, p, q) ∈ P.

We finally get the existence of ( w, z, p, q, v), just setting w = e -2sβ-2sβ ⋆ γ 5 (-w t -∆w + ∇p -z1 O ), z = e -2sβ ⋆ (z t -∆z + ∇q) and v = e -4sβ ⋆ +sβ γ 15 w.

We readily see that ( w, z, p, q, v) verifies

Q e 2sβ+2sβ ⋆ γ -5 | w| 2 dxdt + Q e 2sβ ⋆ | z| 2 dxdt + ω×(0,T ) e 4sβ ⋆ -sβ γ -15 | v| 2 dxdt < +∞
and solves the Stokes system in (64). The first point is easy to check, since (w, z, p, q) ∈ P and

Q e 2sβ+2sβ ⋆ γ -5 | w| 2 dxdt+ Q e 2sβ ⋆ | z| 2 dxdt+ ω×(0,T )
e 4sβ ⋆ -sβ γ -15 | v| 2 dxdt = a((w, z, p, q), (w, z, p, q)) < +∞.

In order to check the second point, we introduce the (weak) solution ( w, z, p, q) to the Stokes system

         w t -∆ w + ∇ p = f 1 + v1 ω , ∇ • w = 0 in Q, -z t -∆ z + ∇ q = f 2 + w1 O , ∇ • z = 0 in Q, w = z = 0 on Σ, w |t=0 = z |t=T = 0 in Ω. ( 71 
)
5 Insensitizing controls for the Navier-Stokes system

In this section we give the proof of Theorem 1.1. Using similar arguments to those employed in [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF], we will see that the result obtained in the previous section allows us to locally invert a nonlinear operator associated to the nonlinear system (77)

       w t -∆w + (w, ∇)w + ∇p = f + v1 ω , ∇ • w = 0 in Q, -z t -∆z + (z, ∇ t
We will use the following form of Lyusternik theorem (see [START_REF] Alekseev | Optimal Control[END_REF]) which is in fact an inverse mapping theorem:

Theorem 5.1. Let E and G be two Banach spaces and let A : E → G satisfies A ∈ C 1 (E; G). Assume that e 0 ∈ E, A(e 0 ) = h 0 and A ′ (e 0 ) : E → G is surjective. Then there exists δ > 0 such that, for every h ∈ G satisfying hh 0 G < δ, there exists a solution of the equation A(e) = h, e ∈ E.

We will be led to use this theorem with the space E = E s,λ , with fixed s and λ like in Theorem 3.1 (so Lemma 4.1 holds),

G = G 1 × G 2 = L 2 (e 5 
2 sβ ⋆ (γ ⋆ ) -3/2 ; L 2 (Ω) N ) × L 2 (e 2sβ ⋆ (γ ⋆ ) -3/2 ; L 2 (Ω) N ) and the operator A(w, z, p, q, v) = (w t -∆w+(w, ∇)w+∇p-v1 ω , -z t -∆z+(z, ∇ t )w-(w, ∇)z+∇q-w1 O ), ∀(w, z, p, q, v) ∈ E.

(78) Since all the terms arising in the definition of A are linear, except for (w, ∇)w and (z, ∇ t )w -(w, ∇)z (which are in fact bilinear), we only have to check that the terms (w, ∇)w and (z, ∇ t )w -(w, ∇)z are well-defined and depend continuously on the data. Proof of Proposition 5.1. We will prove that the bilinear operator ((w 1 , p 1 , z 1 , q 1 , v 1 ), (w 2 , p 2 , z 2 , q 2 , v 2 )) → (w 1 • ∇)w 2 , is continuous from E × E to G 1 . If (w, z, p, q, v) ∈ E, notice that e 3 2 sβ ⋆ ( γ) -15/2 w ∈ L 2 (0, T ; H 2 (Ω) N ) ∩ L ∞ (0, T ; V ).

(79)

Then, we deduce that e 3 2 sβ ⋆ ( γ) -15/2 w 1 ∈ L 2 (0, T ; H 2 (Ω) N ) ⊂ L 2 (0, T ; L ∞ (Ω) N ) and e (80) and (w, ∇)w is bilinear continuous from E × E to G 1 . Arguing as before we are able to prove that ((w 1 , p 1 , z 1 , q 1 , v 1 ), (w 2 , p 2 , z 2 , q 2 , v 2 )) → (w 1 • ∇)z 2 and ((w 1 , p 1 , z 1 , q 1 , v 1 ), (w 2 , p 2 , z 2 , q 2 , v 2 )) → (z 1 • ∇ t )w 2 are continuous from E × E to G 2 . Indeed, for (w, z, p, q, v) ∈ E we have Taking into account the continuous dependence with respect to the data, we have that these terms above are continuous from E × E to G 2 . This ends the proof of Proposition 5.1.

Finally, we can apply Theorem 5.1 for e 0 = 0 ∈ E and h 0 = 0 ∈ G. From the result obtained in Section 4, we deduce that A ′ (0) : E → G, which is given by A ′ (0)(w, z, p, q, v) = (w t -∆w + ∇p -v1 ω , -z t -∆z + ∇q -w1 O ) ∀ (w, z, p, q, v) ∈ E,

is surjective, that is to say Im(A ′ (0)) = G.

In particular, since y 0 = 0, there exists δ > 0 such that, if e C ⋆ /t m f L 2 (Q) N < δ, then we can find a control v and a corresponding solution (w, z, p, q) to (1) satisfying z |t=0 = 0. This concludes the proof of Theorem 1.1.
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  )w -(w, ∇)z + ∇q = w1 O , ∇ • z = 0 in Q, w = z = 0 on Σ, w |t=0 = 0, z |t=T = 0in Ω.
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 51 A ∈ C 1 (E; G).

3 2 5 2 3 2 1 L 2 3 2 2 L

 3531232 sβ ⋆ ( γ) -15/2 ∇w 2 ∈ L ∞ (0, T ; L 2 (Ω) N ×N )thanks to the Sobolev embedding theorem. Consequently, we havee sβ ⋆ (γ ⋆ ) -3/2 (w 1 , ∇)w 2 L 2 (Q) N ≤ C e sβ ⋆ ( γ) -15/2 w (0,T ;L ∞ (Ω) N )e sβ ⋆ ( γ) -15/2 w ∞ (0,T ;H 1 (Ω) N )

e 1 2 1 2 3 2 1 L 2 1 2 2 L 1 2 1 L 2 3 2 2 L

 113121211232 sβ ⋆ ( γ)7 ∇z ∈ L ∞ (0, T ; L 2 (Ω) N ×N ) and e sβ ⋆ ( γ)7 z ∈ L 2 (0, T ; L ∞ (Ω) N ). (81)Therefore,e 2sβ ⋆ (γ ⋆ ) -3/2 (w 1 , ∇)z 2 L 2 (Q) N ≤ C e sβ ⋆ ( γ) -15/2 w (0,T ;L ∞ (Ω) N ) e sβ ⋆ ( γ) 7 z ∞ (0,T ;H 1 (Ω) N )ande 2sβ ⋆ (γ ⋆ ) -3/2 (z 1 , ∇ t )w 2 L 2 (Q) N ≤ C e sβ ⋆ ( γ) 7 z (0,T ;L ∞ (Ω) N ) e sβ ⋆ ( γ) -15/2 w ∞ (0,T ;H 1 (Ω) N ), since (γ ⋆ ) -3/2 ≤ ( γ) -1/2 .

In particular, ( w, z) is the unique solution by transposition of (71), in the following sense ( w, z), (a, b)

where (ϕ, ψ), together with some (π, κ), solves

Here, we have denoted by P ⋆ (x, t; D) the formal adjoint operator of P (x, t; D) given by

From (70) and the definition of ( w, z, v), we see that ( w, z) also satisfies (72). Consequently, ( w, z) = ( w, z) and ( w, z, p, q) is the solution to the Stokes system (64).

It only remains to check that

To this purpose let us introduce ((w ⋆ , p ⋆ ), (z ⋆ , q ⋆ )) = (e

where First we look to the equation satisfied by w ⋆ . We prove that the right-hand side of the first equation in ( 74) is in L 2 (Q) N . Indeed, by the definition of β, β ⋆ , γ and γ ⋆ we have

Here, we have used the fact that e sβ ⋆ ≤ C ǫ e s(1+ǫ) β for all ǫ > 0 and some C ǫ (s, λ) > 0.

Then, we can apply the regularity result for the Stokes system in Lemma 2.3, hence

Now we turn to the equation satisfied by z ⋆ .

Again, we have used the fact that e sβ ⋆ ≤ C ǫ e s(1+ǫ) β for all ǫ > 0 and some C ǫ (s, λ) > 0. We deduce that z ⋆ ∈ L 2 (0, T ; H 2 (Ω) N ) ∩ L ∞ (0, T ; H 1 (Ω) N ).

(76)

This concludes the proof of Proposition 4.1.