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FINITE-TIME BLOWUP FOR A COMPLEX GINZBURG–LANDAU

EQUATION∗

THIERRY CAZENAVE† , FLÁVIO DICKSTEIN‡ , AND FRED B. WEISSLER§

Abstract. We prove that negative energy solutions of the complex Ginzburg–Landau equation
e−iθut = ∆u + |u|αu blow up in finite time, where α > 0 and −π/2 < θ < π/2. For a fixed initial
value u(0), we obtain estimates of the blow-up time T θ

max as θ → ±π/2. It turns out that T θ
max stays

bounded (respectively, goes to infinity) as θ → ±π/2 in the case where the solution of the limiting
nonlinear Schrödinger equation blows up in finite time (respectively, is global).
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1. Introduction. This paper is concerned with the existence of solutions which
blow up in finite time of the Cauchy problem

(GL)

{

e−iθut = ∆u+ |u|αu,
u(0) = u0,

in R
N , where α > 0 and

−π

2
≤ θ ≤ π

2
.

More precisely, we seek conditions on the initial value u0 which guarantee that the
resulting solution is nonglobal. In addition, we wish to obtain estimates on the blow-
up time, for a given initial value u0, as a function of θ.

Equation (GL) with θ = 0 reduces to the well-known nonlinear heat equation
ut − ∆u = |u|αu. For θ = ±π/2, (GL) becomes the equally well-known nonlinear
Schrödinger equation ±iut+∆u+ |u|αu = 0. Thus we see that (GL) is “intermediate”
between the nonlinear heat and Schrödinger equations. Our overall objective is to
understand finite-time blowup of solutions of (GL) from a unified point of view, for
all −π/2 ≤ θ ≤ π/2.

The equation (GL) is a particular case of the more general complex Ginzburg–
Landau equation

(1.1) ut = eiθ∆u+ eiγ |u|αu.

Equation (1.1) has been studied in the context of a wide variety of applications. For
example, the nonlinear Schrödinger equation (i.e., (1.1) with θ = γ = ±π/2) is an
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important model in nonlinear optics and in the study of weakly nonlinear dispersive
waves. We refer the reader to the monograph [31] which has an extensive discussion
of these and other applications. The nonlinear heat equation (i.e., (1.1) with θ =
γ = 0), often with a more general nonlinear term, is also an important model, in
particular, in biology and chemistry. We refer the reader to the monograph [5] for
a sampling of such applications. In the more general case, (1.1) is used to model
such phenomena as superconductivity, chemical turbulence, and various types of fluid
flows; see [3] and the references cited therein. A key feature associated with the
phenomena modeled by (1.1) is the development of singularities. Solutions of (1.1)
may be global in time or may cease to exist at some finite (blow-up) time. The
existence of blowing-up solutions may be interpreted as the appearance of instabilities
in the various applications of (1.1).

Local and global existence of solutions of (1.1), on both R
N and a domain Ω ⊂ R

N ,
are known under various boundary conditions and assumptions on the parameters;
see, e.g., [4, 7, 8, 13, 14, 17, 22, 23, 24, 25]. On the other hand, except for the
nonlinear heat and Schrödinger equations, there are relatively few results concerning
the existence of solutions of (1.1) for which finite-time blowup occurs. In [33], Zaag
proved the existence of blowing-up solutions for (1.1) on R

N , when the equation is
“close” to the nonlinear heat equation ut = ∆u + |u|αu, i.e., when θ = 0 and |γ| is
small. A result in the same spirit was obtained by Rottschäfer [29] when the equation
is “close” to the nonlinear Schrödinger equation iut + ∆u + |u|αu = 0. The result
in [33] was significantly extended by Masmoudi and Zaag [16], where the authors
give a rigorous justification of the numerical and formal arguments of [27, 28]. More
precisely, they consider the equation (1.1) on R

N with −π/2 < θ, γ < π/2 and prove
the existence of blowing-up solutions when tan2 γ + (α+2) tan γ tan θ < α+1. Also,
Snoussi and Tayachi [30], using energy methods, proved the existence of blowing-up
solutions of (1.1) for certain values of the parameters, as we discuss below. Finally,
blowup for an equation similar to (1.1) on a bounded domain with Dirichlet or periodic
boundary conditions, but with the nonlinearity |u|α+1 instead of |u|αu, was proved
to occur by Nasibov [18, 19] and by Ozawa and Yamazaki [26], for various values of
the parameters.

The equation (GL) has certain features not shared by the more general equa-
tion (1.1). First of all, stationary solutions of (GL) satisfy the same elliptic equation
∆u+ |u|αu = 0, independent of the parameter θ. Furthermore, and more significantly
for the present article, it turns out that its solutions satisfy energy identities similar
to those satisfied by the solutions of the nonlinear heat and Schrödinger equations;
see Proposition 2.3 below. Recall the energy functional is defined by

(1.2) E(w) =
1

2

∫

RN

|∇w|2 − 1

α+ 2

∫

RN

|w|α+2

for w ∈ C0(R
N ) ∩ H1(RN ). This property was exploited in [30], where the authors

apply Levine’s argument [15] (see also [1]) and prove finite-time blowup of all negative
energy solutions when N = 1, 2, α = 2, and |θ| < π/4. The calculations of [30] can be
carried out in any space dimension and for more general values of α, and the condition
|θ| < π/4, takes the form cos2 θ > 2

α+2 .
Our first main result is that if the initial value u0 has negative energy and −π/2 <

θ < π/2, then the corresponding solution of (GL) blows up in finite time. We make
no assumption on α > 0. We essentially follow the energy method of [15]. The
improvement with respect to [30], where a condition on α and θ appears, is due to
the use of the identity (2.5) below.
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246 T. CAZENAVE, F. DICKSTEIN, AND F. B. WEISSLER

Theorem 1.1. Suppose

(1.3) − π

2
< θ <

π

2
,

let u0 ∈ C0(R
N ) ∩ H1(RN ), and let u ∈ C([0, Tmax), C0(R

N ) ∩ H1(RN )) be the cor-

responding maximal solution of (GL). If E(u0) < 0, then u blows up in finite time.

More precisely,

(1.4) Tmax ≤ ‖u0‖2L2

α(α + 2)(−E(u0)) cos θ
.

Of course, E(u0) in the statement of Theorem 1.1 refers to the energy functional
defined by (1.2). Theorem 1.1 shows that any solution of (GL) with negative initial
energy blows up in finite time provided (1.3) holds. This raises the question of the
behavior of the blow-up time as θ approaches ±π/2. Indeed, recall that the Cauchy
problem for the nonlinear Schrödinger equation, i.e., the equation (GL) with θ = ±π/2
is locally well-posed in H1(RN ) if α < 4/(N − 2) (see [6, 11]). Moreover, if α < 4/N ,
then all solutions are global (see [6]), while if α ≥ 4/N , then some solutions blow up in
finite time (see [9, 34]). More precisely, if the initial value u0 ∈ H1(RN ) with negative
energy has finite variance (i.e.,

∫

|x|2|u0|2 < ∞), then the solution blows up in finite
time. The same conclusion holds if, instead of assuming that u0 has finite variance,
we assume that either N = 1 and α = 4, or else N ≥ 2, u0 is radially symmetric, and
α ≤ 4; see [20, 21].

Fix an initial value u0 ∈ C0(R
N ) ∩ H1(RN ) such that E(u0) < 0 and, given

θ ∈ (−π/2, π/2), let uθ be the corresponding solution of (GL), so that uθ blows up in
finite time by Theorem 1.1. If α < 4/N , then the solution of (GL) for θ = ±π/2 is
global, so we may expect that the blow-up time of uθ goes to infinity as θ → ±π/2.
This is indeed the case, as the following result shows.

Theorem 1.2. Fix an initial value u0 ∈ C0(R
N ) ∩ H1(RN ) and, for every θ

satisfying (1.3), let uθ ∈ C([0, T θ
max), C0(R

N ) ∩ H1(RN )) denote the corresponding

maximal solution of (GL). If

0 < α <
4

N
,

then there exists a constant c = c(N,α, ‖u0‖L2 , E(u0)) > 0 such that

(1.5) T θ
max ≥ c

cos θ

for all −π
2 < θ < π

2 .

Remark 1.3. Note that, under the assumptions of Theorem 1.2 and if, in addition,
E(u0) < 0, there exist c, C > 0 such that

c

cos θ
≤ T θ

max ≤ C

cos θ

for all −π/2 < θ < π/2. This follows from (1.5) and (1.4).
Global existence for the nonlinear Schrödinger equation with α < 4/N follows

from the conservation of charge and energy and Gagliardo–Nirenberg’s inequality.
Similarly, Theorem 1.2 follows from energy identities and Gagliardo–Nirenberg’s in-
equality.
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Remark 1.4. Theorems 1.1 and 1.2 are equally valid, with essentially the same
proofs, for solutions of (GL) on a smooth domain Ω ⊂ R

N with Dirichlet boundary
conditions. Moreover, in the case of a bounded domain, Ball’s proof of finite-time
blowup [1] works equally well for (GL) with −π/2 < θ < π/2, using the energy
identities in section 2.

As observed above, if α ≥ 4/N , then negative energy, finite-variance solutions of
the nonlinear Schrödinger equation blow up in finite time. Thus we may expect that
the blow-up time of uθ remains bounded as θ → ±π/2. We have the following result.

Theorem 1.5. Suppose

(1.6) N ≥ 2,
4

N
≤ α ≤ 4,

and fix a radially symmetric initial value u0 ∈ H1(RN ) ∩ C0(R
N ). Given any θ

satisfying (1.3), let uθ ∈ C([0, T θ
max), C0(R

N ) ∩ H1(RN )) denote the corresponding

maximal solution of (GL). If E(u0) < 0, then there exists T < ∞ such that T θ
max ≤ T

for all −π
2 < θ < π

2 .

Blowup for the equation (GL) with −π
2 < θ < π

2 (i.e., Theorem 1.1) is proved
by an energy argument. On the other hand, blowup for the nonlinear Schrödin-
ger equation is proved by a variance argument (or a similar argument for a truncated
variance as in [20, 21]). It turns out that for the equation (GL) there is also a variance
identity (and a truncated variance identity as well); see formulas (7.1) and (5.2) below.
By combining the information derived from the truncated variance identity with the
energy identities, we are able to establish the uniform estimate of the blow-up time
of Theorem 1.5. We mention that the conditions that u0 be radially symmetric and
that α ≤ 4 are necessary for the crucial estimate in our proof; see section 6. We do
not know if the conclusion of Theorem 1.5 is true without these hypotheses.

Note that the assumptions on u0 in Theorem 1.5 are precisely those made by
Ogawa and Tsutsumi in [20], where the authors eliminate the finite-variance assump-
tion of [9, 34]. One might expect that, if we were willing to assume that u0 has finite
variance, then we would not need the assumptions that α ≤ 4 and that u0 is radi-
ally symmetric. In this case, the proof would be based on the variance identity (7.1)
rather than on the truncated variance identity (5.2). Unfortunately, in this case as
well, and for apparently different reasons, the same conditions are necessary for the
crucial estimate of this other proof; see section 7.

The rest of this paper is organized as follows. In the next section, we recall
the basic local well-posedness results for the Cauchy problem (GL) and establish the
fundamental energy identities. Theorems 1.1, 1.2, and 1.5 are proved successively in
sections 3, 4, and 5. In section 6 we comment on the obstacles to proving Theorem 1.5
under less restrictive hypotheses. In section 7, we outline the proof which could be
given of Theorem 1.5 under the additional assumption of finite variance and comment
on the related hypotheses.

2. The local Cauchy problem: −π/2 < θ < π/2. The linear equation
associated with (GL) is

ut = eiθ∆u.

It is well known that the operator eiθ∆ with domain H2(RN ) generates a semigroup
of contractions (T θ(t))t≥0 on L2(RN ). Moreover, since (1.3) holds, the semigroup
(T θ(t))t≥0 is analytic. Indeed, the semigroup ez∆ is analytic in the half-plane ℜz > 0.
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In particular, T θ(t)ψ = Gθ(t) ⋆ ψ, where the kernel Gθ(t) is defined by

Gθ(t)(x) ≡ (4πteiθ)−
N
2 e−

|x|2

4teiθ .

Since

|Gθ(t)(x)| = (4πt)−
N
2 e−

|x|2 cos θ

4t ,

it follows that

(2.1) ‖Gθ(t)‖Lσ =

{

σ− N
2σ (4πt)−

N
2 (1− 1

σ
)(cos θ)−

N
2σ if 1 ≤ σ < ∞,

(4πt)−
N
2 if σ = ∞.

We deduce from (2.1) and Young’s inequality that

(2.2) ‖T θ(t)ψ‖Lr ≤ (cos θ)−
N
2 (1− 1

p
+ 1

r
)t−

N
2 ( 1

p
− 1

r
)‖ψ‖Lp,

for 1 ≤ p ≤ r ≤ ∞ and θ satisfying (1.3). It follows easily from (2.2) that (T θ(t))t≥0

is a bounded C0 semigroup on Lp(RN ) for 1 ≤ p < ∞ and on C0(R
N ).

It is immediate by a contraction mapping argument that the Cauchy problem
(GL) is locally well posed in C0(R

N ). Moreover, it is easy to see using the esti-
mates (2.2) that C0(R

N ) ∩ H1(RN ) is preserved under the action of (GL). More
precisely, we have the following result.

Proposition 2.1. Suppose (1.3). Given any u0 ∈ C0(R
N )∩H1(RN ), there exist

T > 0 and a unique function u ∈ C([0, T ], C0(R
N ) ∩H1(RN )) ∩C((0, T ), H2(RN )) ∩

C1((0, T ), L2(RN )) which satisfies (GL) for all t ∈ (0, T ) and such that u(0) = u0.

Moreover, u can be extended to a maximal interval [0, Tmax), and if Tmax < ∞, then

‖u(t)‖L∞ → ∞ as t ↑ Tmax.

Remark 2.2. Let u0 ∈ C0(R
N )∩H1(RN ) and let u be the corresponding solution

of (GL) defined on the maximal interval [0, Tmax), and given by Proposition 2.1. If,
in addition, α < 4/N , then (GL) is locally well posed in L2(RN ) (see [32]). It is not
difficult to show using the estimates (2.2) that the maximal existence times in C0(R

N )
and L2(RN ) are the same; and so if Tmax < ∞, then ‖u(t)‖L2 → ∞ as t ↑ Tmax.

We collect below the energy identities that we use in the next sections.
Proposition 2.3. Suppose (1.3) and let u0 ∈ C0(R

N ) ∩ H1(RN ). If u is the

corresponding solution of (GL) given by Proposition 2.1 and defined on the maximal

interval [0, Tmax), then the following properties hold.

(i) Let the energy functional E be defined by (1.2). It follows that

(2.3) cos θ

∫ t

s

∫

RN

|ut|2 + E(u(t)) = E(u(s)),

for all 0 ≤ s < t < Tmax.

(ii) Set

(2.4) I(w) =

∫

RN

|∇w|2 −
∫

RN

|w|α+2,

for w ∈ C0(R
N ) ∩H1(RN ). It follows that

(2.5)

∣

∣

∣

∣

∫

RN

utu

∣

∣

∣

∣

= |I(u)|
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and

(2.6)
d

dt

∫

RN

|u|2 = −2 cos θI(u)

for all 0 < t < Tmax.

Proof. The identity (2.3) follows by multiplying the equation (GL) by ut, inte-
grating by parts on R

N , and taking the real part. Multiplying the equation (GL) by
eiθu and integrating by parts on R

N , we obtain

(2.7)

∫

RN

utu = −eiθI(u).

Identity (2.5) follows by taking the modulus of both sides of (2.7), while (2.6) follows
by taking the real part.

Remark 2.4. It follows easily from (2.6), (2.4), and (2.3) that

(2.8)
d

dt

∫

RN

|u|2 =
2α

α+ 2
cos θ

∫

RN

|u|α+2 + 4 cos2 θ

∫ t

0

∫

RN

|ut|2 − 4 cos θE(u0)

and

d

dt

∫

RN

|u|2 = α cos θ

∫

RN

|∇u|2(2.9)

+ 2(α+ 2) cos2 θ

∫ t

0

∫

RN

|ut|2 − 2(α+ 2) cos θE(u0).

3. Proof of Theorem 1.1. We use the argument of [10, pp. 185–186]. Note
that, by (2.3), E(u(t)) ≤ E(u0) < 0 for all 0 ≤ t < Tmax, so that

I(u(t)) = (α+ 2)E(u(t))− α

2

∫

RN

|∇u(t)|2

≤ (α+ 2)E(u(t)) ≤ (α+ 2)E(u0) < 0

(3.1)

for all 0 < t < Tmax. Set

f(t) = ‖u(t)‖2L2, e(t) = E(u(t)).

We deduce from (2.3) that

(3.2)
de

dt
= − cos θ‖ut‖2L2 ≤ 0,

and from (2.6) and (3.1) that

(3.3)
df

dt
= −2 cos θI(u(t)) > 0.

It follows from (3.2) and the Cauchy–Schwarz inequality that

(3.4) − f
de

dt
= f cos θ‖ut‖2L2 = cos θ‖u‖2L2‖ut‖2L2 ≥ cos θ

∣

∣

∣

∣

∫

RN

utu

∣

∣

∣

∣

2

.
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Using (2.5) and (3.3), we deduce that

−f
de

dt
≥ cos θ(I(u(t)))2 = (−I(u(t)))(− cos θI(u(t)))

=
1

2
(−I(u(t)))

df

dt
≥ α+ 2

2
(−e)

df

dt
.

This means that

d

dt
(−ef−α+2

2 ) ≥ 0,

so that

(3.5) − e ≥ ηf
α+2
2 ,

where

(3.6) η = (−E(u0))‖u0‖−(α+2)
L2 .

It follows from (3.3), (3.1), and (3.5), that

df

dt
≥ 2(α+ 2)(cos θ)(−e) ≥ 2η(α+ 2)(cos θ)f

α+2
2 ,

so that

(3.7)
d

dt
[ηα(α + 2)(cos θ)t+ f−α

2 ] ≤ 0.

Integrating (3.7) between 0 and t ∈ (0, Tmax), and applying (3.6), we deduce that

t ≤ ‖u0‖2L2

α(α + 2)(−E(u0)) cos θ

for all 0 < t < Tmax. The result follows by letting t ↑ Tmax.

4. Proof of Theorem 1.2. We first note that by Gagliardo–Nirenberg’s in-
equality there exists c = c(N) such that

(4.1)

∫

RN

|u|2+ 4
N ≤ c

∫

RN

|∇u|2
(

∫

RN

|u|2
)

2
N

for all u ∈ H1(RN ). Applying Hölder’s inequality and (4.1), we deduce that

∫

RN

|u|α+2 ≤
(

∫

RN

|u|2+ 4
N

)
Nα
4
(

∫

RN

|u|2
)

4−Nα
4

≤ c
Nα
4 ‖∇u‖

Nα
2

L2 ‖u‖
4−(N−2)α

2

L2 .

(4.2)

We now use Young’s inequality

xy ≤ Nα

4
ε

4
Nαx

4
Nα +

4−Nα

4
ε−

4
4−Nα y

4
4−Nα ,

with

ε =
(α+ 2

Nαc

)
Nα
4

,
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and we obtain

1

α+ 2

∫

RN

|u|α+2 ≤ 1

4
‖∇u‖2L2 +

4−Nα

4(α+ 2)

( Nαc

α+ 2

)
Nα

4−Nα ‖u‖
2[4−(N−2)α]

4−Nα

L2

≤ 1

4
‖∇u‖2L2 + (Nc)

Nα
4−Nα ‖u‖

2[4−(N−2)α]
4−Nα

L2 ,

so that

(4.3)
1

α+ 2

∫

RN

|u|α+2 ≤ 1

4
‖∇u‖2L2 +

[

(Nc)Nα‖u‖2[4−(N−2)α]
L2

]
1

4−Nα .

We now prove (1.5). If T θ
max = ∞, there is nothing to prove. We then assume

T θ
max < ∞, so that

(4.4) ‖uθ(t)‖L2 ↑ ∞ as t ↑ T θ
max

by Remark 2.2. Set

Sθ = sup{t ∈ [0, T θ
max); ‖uθ(s)‖2L2 ≤ 2‖u0‖2L2 for 0 ≤ s ≤ t}.

It follows from (4.4) that Sθ < T θ
max and

(4.5) ‖uθ(Sθ)‖2L2 = 2‖u0‖2L2 .

Since E(uθ(t)) ≤ E(u0) by (2.3) and

(4.6) ‖uθ(t)‖2L2 ≤ 2‖u0‖2L2

for 0 ≤ t ≤ Sθ, it follows from (4.3) that

(4.7) ‖∇uθ(t)‖2L2 ≤ 4E(u0) + 4K
1

4−Nα ,

where

(4.8) K = (Nc)Nα(2‖u0‖2L2)4−(N−2)α.

Furthermore, (4.3), (4.6), and (4.7) imply

‖uθ(t)‖α+2
Lα+2 ≤ (α + 2)E(u0) + 2(α+ 2)K

1
4−Nα ,

so that

|I(uθ(t))| ≤ max
{

‖∇uθ(t)‖2L2 , ‖uθ‖α+2
Lα+2

}

≤ (α+ 4)[E(u0)]
+ + 2(α+ 2)K

1
4−Nα

(4.9)

for 0 ≤ t ≤ Sθ. Applying (2.6) and (4.9), we deduce that

(4.10) ‖uθ(Sθ)‖2L2 ≤ ‖u0‖2L2 + 2(cos θ)
[

(α + 4)[E(u0)]
+ + 2(α+ 2)K

1
4−Nα

]

Sθ.

It now follows from (4.10) and (4.5) that

(4.11) Sθ ≥ ‖u0‖2L2

2
[

(α + 4)[E(u0)]+ + 2(α+ 2)K
1

4−Nα

]

cos θ
.

Since T θ
max ≥ Sθ, the result follows from (4.11).
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Remark 4.1. Suppose E(u0) ≤ 0. It follows from (4.11) that

(4.12) T θ
max ≥ ‖u0‖2L2

4(α+ 2)K
1

4−Nα cos θ
.

For a fixed θ, the right-hand side converges to 0 very fast as α ↑ 4/N , so the estimate
is certainly not optimal with respect to the dependence on α. Compare the estimate
from above given in Remark 5.4.

5. Proof of Theorem 1.5. Our proof of Theorem 1.5 is modeled on the proof
of finite-time blowup for the nonlinear Schrödinger equation ([34, 9, 12, 20]). The

basic idea is to estimate d2

dt2

∫

Ψ(x)|u|2 for an appropriate function Ψ > 0, in terms of
the initial energy E(u0). If E(u0) < 0, this estimate implies that

∫

Ψ(x)|u|2 becomes
negative in finite time, thus showing that the solution cannot be global.

In the case of (GL), we have the following generalized variance identity.
Lemma 5.1. Fix a real-valued function Ψ ∈ C∞(RN )∩W 4,∞(RN ). Suppose (1.3),

let u0 ∈ C0(R
N ) ∩ H1(RN ), and consider the corresponding maximal solution u ∈

C([0, Tmax), C0(R
N ) ∩ H1(RN )) of (GL). It follows that the map t �→

∫

RN Ψ|u|2
belongs to C2([0, Tmax)),

1

2

d

dt

∫

RN

Ψ|u|2 = cos θ
(

−
∫

RN

Ψ|∇u|2 +
∫

RN

Ψ|u|α+2 +
1

2

∫

RN

∆Ψ|u|2
)

(5.1)

+ sin θℑ
∫

RN

∇Ψu∇u,

and

1

2

d2

dt2

∫

RN

Ψ|u|2(5.2)

= −1

2

∫

RN

∆2Ψ|u|2 − α

α+ 2

∫

RN

∆Ψ|u|α+2 + 2ℜ
∫

RN

〈H(Ψ)∇u,∇u〉

+ cos θ
d

dt

∫

RN

{

−2Ψ|∇u|2 + α+ 4

α+ 2
Ψ|u|α+2 +∆Ψ|u|2

}

− 2 cos2 θ

∫

RN

Ψ|ut|2

for all 0 ≤ t < Tmax, where H(Ψ) is the Hessian matrix (∂2
ijΨ)i,j.

Proof. Multiplying the equation (GL) by eiθΨ(x)u, taking the real part, and using
the identity

2ℜ(∇Ψu∇u) = ∇ · (∇Ψ|u|2)−∆Ψ|u|2,

we obtain (5.1). We now differentiate (5.1) with respect to t. We begin with the term
which has sin θ as a factor and we note that, using the identity

∇Ψu∇ut = ∇ · (∇Ψutu)− (∇Ψ · ∇u)ut −∆Ψuut,

and integration by parts,

d

dt

(

sin θℑ
∫

RN

∇Ψu∇u
)

= − sin θ
(

ℑ
∫

RN

∆Ψuut + 2ℑ
∫

RN

(∇Ψ · ∇u)ut

)

;
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i.e.,

d

dt

(

sin θℑ
∫

RN

∇Ψu∇u
)

= − sin θℑ
∫

RN

[∆Ψu+ 2∇Ψ · ∇u]ut.

We rewrite this last identity in the form

d

dt

(

sin θℑ
∫

RN

∇Ψu∇u
)

= cos θℜ
∫

RN

[∆Ψu+ 2∇Ψ · ∇u]ut(5.3)

−ℜ
∫

RN

[∆Ψu+ 2∇Ψ · ∇u]e−iθut.

Using (GL) and the identities

ℜ(∇Ψ · ∇u)|u|αu =
1

α+ 2
∇ · (∇Ψ|u|α+2)− 1

α+ 2
∆Ψ|u|α+2,

ℜ∇(∇Ψ · ∇u) · ∇u =
1

2
∇ · (∇Ψ|∇u|2) + ℜ〈H(Ψ)∇u,∇u〉 − 1

2
∆Ψ|∇u|2,

we see that

−ℜ
∫

RN

[∆Ψu+ 2∇Ψ · ∇u]e−iθut(5.4)

= −ℜ
∫

RN

[∆Ψu+ 2∇Ψ · ∇u](∆u + |u|αu)

= −1

2

∫

RN

∆2Ψ|u|2 − α

α+ 2

∫

RN

∆Ψ|u|α+2 + 2ℜ
∫

RN

〈H(Ψ)∇u,∇u〉.

We now deduce from (5.3) and (5.4) that

d

dt

(

sin θℑ
∫

RN

∇Ψu∇u
)

(5.5)

= −1

2

∫

RN

∆2Ψ|u|2 − α

α+ 2

∫

RN

∆Ψ|u|α+2 + 2ℜ
∫

RN

〈H(Ψ)∇u,∇u〉

+cos θℜ
∫

RN

[∆Ψu+ 2∇Ψ · ∇u]ut.

Note that

d

dt

∫

RN

Ψ
( |∇u|2

2
− |u|α+2

α+ 2

)

= ℜ
∫

RN

Ψ(∇u · ∇ut − |u|αuut)

= −ℜ
∫

RN

[(Ψ(∆u + |u|αu)ut) + (∇Ψ · ∇u)ut

= − cos θ

∫

RN

Ψ|ut|2 −ℜ
∫

RN

(∇Ψ · ∇u)ut,

so that

(5.6) 2ℜ
∫

RN

(∇Ψ ·∇u)ut = −2 cos θ

∫

RN

Ψ|ut|2−
d

dt

∫

RN

(

Ψ|∇u|2− 2

α+ 2
Ψ|u|α+2

)

.

Moreover,

(5.7) ℜ
∫

RN

∆Ψuut =
d

dt

1

2

∫

RN

∆Ψ|u|2.
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We deduce from (5.5), (5.6), and (5.7) that

d

dt

(

sin θℑ
∫

RN

∇Ψu∇u
)

(5.8)

= −1

2

∫

RN

∆2Ψ|u|2 − α

α+ 2

∫

RN

∆Ψ|u|α+2 + 2ℜ
∫

RN

〈H(Ψ)∇u,∇u〉

+cos θ
d

dt

∫

RN

(

−Ψ|∇u|2 + 2

α+ 2
Ψ|u|α+2 +

1

2
∆Ψ|u|2

)

− 2 cos2 θ

∫

RN

Ψ|ut|2.

Taking now the time derivative of (5.1) and applying (5.8), we obtain (5.2).
The next tool we use for the proof of Theorem 1.5 is the following estimate. It says

that the maximal existence time of a solution u of (GL) is controlled, independently
of θ, by the maximal time until which ‖u(t)‖L2 remains bounded by a (fixed) multiple
of ‖u0‖L2.

Lemma 5.2. Suppose (1.3), let u0 ∈ C0(R
N ) ∩H1(RN ), and consider the corre-

sponding maximal solution u ∈ C([0, Tmax), C0(R
N ) ∩H1(RN )) of (GL). Set

(5.9) τ = sup{t ∈ [0, Tmax); ‖u(s)‖2L2 ≤ K‖u0‖2L2 for 0 ≤ s ≤ t},

where

(5.10) K =

[

1−
( α+ 4

2α+ 4

)
1
2

]−1

> 1,

so that 0 ≤ τ ≤ Tmax. If E(u0) ≤ 0, then Tmax ≤ α+4
α τ .

Proof. If τ = Tmax, there is nothing to prove, so we now assume τ < Tmax, so
that

(5.11) ‖u(t)‖2L2 ≤ ‖u(τ)‖2L2 = K‖u0‖2L2 , 0 ≤ t ≤ τ.

Since E(u0) ≤ 0, it follows from (2.8) that the map t �→ ‖u(t)‖L2 is nondecreasing on
[0, Tmax); and so, using (5.11),

(5.12) ‖u(t)‖2L2 ≥ K‖u0‖2L2 , τ ≤ t < Tmax.

We now use calculations based on Levine [15]. We deduce from (2.9) that

(5.13)
d

dt

∫

RN

|u|2 ≥ 2(α+ 2) cos2 θ

∫ t

0

∫

RN

|ut|2.

Set

(5.14) h(t) =

∫ t

0

∫

RN

|u|2.

It follows from (5.13) and the Cauchy–Schwarz inequality that

[2(α+ 2) cos2 θ]−1hh′′ ≥ h

∫ t

0

∫

RN

|ut|2 ≥
(

∫ t

0

∫

RN

|u| |ut|
)2

≥
(

∫ t

0

∣

∣

∣

∫

RN

utu
∣

∣

∣

)2

.

(5.15)D
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Since I(u(t)) ≤ (α+ 2)E(u(t)) ≤ 0 by (3.1), identities (2.5) and (2.6) yield

(5.16)

∣

∣

∣

∣

∫

RN

utu

∣

∣

∣

∣

=
1

2 cos θ

d

dt

∫

RN

|u|2 =
1

2 cos θ
h′′(t).

We deduce from (5.15) and (5.16) that

(5.17) hh′′ ≥ α+ 2

2
(h′(t)− h′(0))2.

It follows from (5.17) and (5.12) that

(5.18) hh′′ ≥ α+ 2

2

(K − 1

K

)2

[h′(t)]2 =
α+ 4

4
[h′(t)]2

for all τ ≤ t < Tmax. This means that (h−α
4 )′′ ≤ 0 on [τ, Tmax); and so

h(t)−
α
4 ≤ h(τ)−

α
4 + (t− τ)(h−α

4 )′(τ) = h(τ)−
α
4

[

1− α

4
(t− τ)h(τ)−1h′(τ)

]

for τ ≤ t < Tmax. Since h(t)−
α
4 ≥ 0, we deduce that for every τ ≤ t < Tmax,

α

4
(t− τ)h(τ)−1h′(τ) ≤ 1;

i.e.,

(5.19) (t− τ)‖u(τ)‖2L2 ≤ 4

α

∫ τ

0

‖u(s)‖2L2ds ≤ 4

α
τ‖u(τ)‖2L2 ,

where we used (5.11) in the last inequality. Thus t ≤ α+4
α τ for all τ ≤ t < Tmax,

which proves the desired inequality.
The last ingredient we use in the proof of Theorem 1.5 is Lemma 5.3 below. It

is an estimate, based on Ogawa and Tsutsumi [20], which enables us to choose an
appropriate function Ψ in Lemma 5.1. Unfortunately, we have only been able to
accomplish this in the radially symmetric case. In other words, we are only able to
construct a function Ψ for which we can estimate the right-hand side of (5.2) for
radially symmetric functions u.

Before stating this result, we rewrite formula (5.2) for radially symmetric Ψ and
u. Consider a real-valued function Ψ ∈ C∞(RN ) ∩W 4,∞(RN ) as in Lemma 5.1, and
assume further that Ψ is radially symmetric. It follows that

∂2
jkΨ =

δjk
r

Ψ′ − xjxk

r3
Ψ′ +

xjxk

r2
Ψ′′,

so that

ℜ〈H(Ψ)∇u,∇u〉 = Ψ′

r
|∇u|2 −

(Ψ′

r3
− Ψ′′

r2

)

|x · ∇u|2

=
Ψ′

r
|∇u|2 −

(Ψ′

r
−Ψ′′

)

|∂ru|2.
(5.20)

If, in addition, u is radially symmetric, then (5.20) yields

(5.21) ℜ〈H(Ψ)∇u,∇u〉 = Ψ′′|ur|2.
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It follows from (5.2) and (5.21) that if both u and Ψ are radially symmetric, then

1

2

d2

dt2

∫

RN

Ψ|u|2 = 2NαE(u(t))− (Nα− 4)

∫

RN

|ur|2 − 2

∫

RN

(2−Ψ′′)|ur|2(5.22)

+
α

α+ 2

∫

RN

(2N −∆Ψ)|u|α+2 − 1

2

∫

RN

∆2Ψ|u|2

+cos θ
d

dt

∫

RN

{

−2Ψ|∇u|2 + α+ 4

α+ 2
Ψ|u|α+2 +∆Ψ|u|2

}

− 2 cos2 θ

∫

RN

Ψ|ut|2.

Since Ψ(x) is radially symmetric, by abuse of notation, we often write Ψ(x) = Ψ(r),
where r = |x|. Using this notation, we have ∆Ψ(x) = Ψ′′(r)+ N−1

r Ψ′(r). We hope the
reader will forgive our using both notations in the same formula, as we did in (5.22).

We now state the needed estimate. Since the proof is an adaptation of arguments
in [20] and is somewhat technical, it is given in the appendix to this paper.

Lemma 5.3. Suppose N ≥ 2 and α ≤ 4. Given any 0 < a,A < ∞, there exists a

radially symmetric function Ψ ∈ C∞(RN )∩W 4,∞(RN ) such that Ψ(x) > 0 for x �= 0
and

(5.23) − 2

∫

RN

(2−Ψ′′)|ur|2 +
α

α+ 2

∫

RN

(2N −∆Ψ)|u|α+2 − 1

2

∫

RN

∆2Ψ|u|2 ≤ a

for all radially symmetric u ∈ H1(RN ) such that ‖u‖L2 ≤ A.
Proof of Theorem 1.5. We let K be defined by (5.10) and we set

(5.24) τθ = sup{t ∈ [0, T θ
max); ‖uθ(s)‖2L2 ≤ K‖u0‖2L2 for 0 ≤ s ≤ t},

so that

(5.25) sup
0≤θ<π

2

sup
0≤t<τθ

‖uθ(t)‖2L2 ≤ K‖u0‖2L2.

It follows from Lemma 5.2 that

(5.26) T θ
max ≤ α+ 4

α
τθ .

We now let Ψ be given by Lemma 5.3 with

(5.27) A =
√
K‖u0‖L2, a = −NαE(u0).

Since E(uθ(t)) ≤ E(u0) it follows from (5.22), (5.23), and (5.27) that

1

2

d2

dt2

∫

RN

Ψ|uθ|2 ≤ NαE(u0)(5.28)

+ cos θ
d

dt

∫

RN

{

−2Ψ|∇uθ|2 + α+ 4

α+ 2
Ψ|uθ|α+2 +∆Ψ|uθ|2

}

for all 0 ≤ t < τθ . Let

(5.29) B =

∫

RN

{

−2Ψ|∇u0|2 +
α+ 4

α+ 2
Ψ|u0|α+2 +∆Ψ|u0|2

}
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and

Γθ = cos θ
(

−
∫

RN

Ψ|∇u0|2 +
∫

RN

Ψ|u0|α+2 +
1

2

∫

RN

∆Ψ|u0|2
)

(5.30)

+ sin θℑ
∫

RN

∇Ψu0∇u0.

Integrating twice the inequality (5.28) and applying (5.29)–(5.30) and (5.1), we deduce
that

1

2

∫

RN

Ψ|uθ|2(5.31)

≤ 1

2

∫

RN

Ψ|u0|2 + tΓθ +NαE(u0)
t2

2

+ cos θ

∫ t

0

∫

RN

{

−2Ψ|uθ
r|2 +

α+ 4

α+ 2
Ψ|uθ|α+2 +∆Ψ|uθ|2

}

−Bt cos θ.

On the other hand, it follows from (2.8) that

d

dt

∫

RN

|uθ|2 ≥ 2 cos θ
α

α+ 2

∫

RN

|uθ|α+2.

Integrating between 0 and t ∈ (0, τθ), we obtain

(5.32) 2 cos θ

∫ t

0

∫

RN

|uθ|α+2 ≤ α+ 2

α
[‖uθ(t)‖2L2 − ‖u0‖2L2 ] ≤ α+ 2

α
(K − 1)‖u0‖2L2 ,

where we used (5.25) in the last inequality. Since Ψ ∈ W 4,∞(RN ), it now follows
from (5.31), (5.32), and (5.25) that there exists a constant C independent of θ ∈
(−π/2, π/2) and t ∈ (0, τθ) such that

(5.33) 0 ≤ C + Ct+NαE(u0)
t2

2

for all 0 ≤ t < τθ. Since E(u0) < 0, this implies that there exists T < ∞ such that
τθ ≤ T for all −π

2 < θ < π
2 , and the result follows by applying (5.26).

Remark 5.4. Suppose N ≥ 2, α < 4/N . Let u0 ∈ C0(R
N ) ∩H1(RN ) be radially

symmetric and satisfy E(u0) < 0. Given −π/2 < θ < π/2, let uθ be the corresponding
solution of (GL) defined on the maximal interval [0, T θ

max). It follows in particular
from Theorem 1.1 that uθ blows up in finite time. Using the calculations of the
proof of Theorem 1.5, one can improve the estimate (1.4). More precisely, taking
into account the term (4 − Nα)

∫

RN |uθ
r|2 in (5.22), instead of (5.33), we obtain the

inequality

(5.34) 0 ≤ C + Ct+ (4−Nα)

∫ t

0

∫ s

0

∫

RN

|uθ
r|2 +NαE(u0)

t2

2
,

for all −π/2 < θ < π/2 and 0 ≤ t < τθ . On the other hand, it follows from (2.9) that

d

dt

∫

RN

|uθ|2 ≥ α cos θ

∫

RN

|uθ
r|2.
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Integrating between 0 and t ∈ (0, τθ) and using (5.25), we obtain

(5.35) α cos θ

∫ t

0

∫

RN

|uθ
r |2 ≤ [‖uθ(t)‖2L2 − ‖u0‖2L2 ] ≤ (K − 1)‖u0‖2L2.

It follows from (5.34) and (5.35) that for some constant C > 0,

(5.36) 0 ≤ C + C
(

1 +
4−Nα

cos θ

)

t+NαE(u0)
t2

2

for all −π/2 < θ < π/2 and 0 ≤ t < τθ , which yields the estimate

(5.37) T θ
max ≤ C(u0)

(

1 +
4−Nα

cos θ

)

.

This is interesting, because we see the dependence on both θ and α. It is optimal in
θ, but maybe not in α. (Compare the lower estimate (4.12).)

6. Comments on the hypotheses of Theorem 1.5. As observed above, the
assumptions that u0 is radially symmetric and that α ≤ 4 in Theorem 1.5 may seem
unnatural. In this section, we show that both these assumptions are necessary for
the method we use. Indeed, our proof of Theorem 1.5 relies on the identity (5.2).
Assuming that Ψ ∈ W 4,∞(RN ) ∩ C4(RN ) is radially symmetric, it follows from (5.2)
and (5.21) that

1

2

d2

dt2

∫

RN

Ψ|u|2 = 2NαE(u(t))− (Nα− 4)

∫

RN

|∇u|2

+ 2

∫

RN

(Ψ′

r
−Ψ′′

)

(|∇u|2 − |ur|2)− 2

∫

RN

(2−Ψ′′)|∇u|2

+
α

α+ 2

∫

RN

(2N −∆Ψ)|u|α+2 − 1

2

∫

RN

∆2Ψ|u|2

+ cos θ
d

dt

∫

RN

{

−2Ψ|∇u|2 + α+ 4

α+ 2
Ψ|u|α+2 +∆Ψ|u|2

}

− 2 cos2 θ

∫

RN

Ψ|ut|2.

In order to complete our argument, we need at the very least an estimate of the form

(6.1) − (Nα− 4)

∫

RN

|∇u|2 + 2

∫

RN

(Ψ′

r
−Ψ′′

)

(|∇u|2 − |ur|2)

− 2

∫

RN

(2−Ψ′′)|∇u|2 + α

α+ 2

∫

RN

(2N −∆Ψ)|u|α+2 ≤ F (‖u‖L2),

where F is bounded on bounded sets. Lemma 5.3 provides such an estimate for
radially symmetric u under the assumption α ≤ 4.

We claim that if Nα > 4, then there is no radially symmetric Ψ ∈ C4(RN ) ∩
L∞(RN ), Ψ ≥ 0 such that the estimate (6.1) holds for general u. To see this, fix
ϕ ∈ C∞

c (RN ), ϕ �≡ 0 and let

(6.2) u(x) = λN/2ϕ(λ(x − x0)),
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where λ > 0 and x0 ∈ R
N . It follows in particular that ‖u‖L2 = ‖ϕ‖L2 . Given

g ∈ C(RN ) we have for λ large

∫

RN

g(x)|∇u|2 ≈ λ2g(x0)

∫

RN

|∇ϕ|2 dy,(6.3)

∫

RN

g(x)|u|α+2 ≈ λNα/2g(x0)

∫

RN

|ϕ|α+2 dy,(6.4)

∫

RN

g(x)|∂ru|2 ≈ λ2g(x0)

∫

RN

|∂rϕ|2 dy.(6.5)

If Nα > 4 and (6.1) holds, then we deduce from (6.3)–(6.5) that 2N −∆Ψ(x0) ≤ 0
for all x0 ∈ R

N , so that Ψ �∈ L∞(RN ).
We now show that the assumption α ≤ 4 is necessary in order that (6.1) holds

for some Ψ ∈ W 4,∞(RN ) ∩ C4(RN ) and all radially symmetric u. To see this, fix
ϕ ∈ C∞([0,∞)) with suppϕ ⊂ [1, 2] and ϕ �≡ 0. For λ > 0 and r0 > 0 consider

(6.6) u(x) = λ1/2r
−(N−1)/2
0 ϕ(λ(r − r0)).

Denote by ωN the area of the unitary sphere of RN . It follows that for λ ≥ 2/r0,

‖u‖2L2 = ωNλr−N+1
0

∫ ∞

0

|ϕ(λ(r − r0))|2rN−1dr

= ωN (λr0)
−N+1

∫ 2

1

|ϕ(r)|2(r + λr0)
N−1dr

≤ ωN (λr0)
−N+1(2 + λr0)

N−1‖ϕ‖2L2(R) ≤ 2N−1ωN‖ϕ‖2L2(R).

(6.7)

Given a radially symmetric function g ∈ C(RN ) and r0 > 0 such that g(r0) > 0, we
have as λ → ∞

∫

RN

g(x)|ur|2 = ωNλ2(λr0)
−N+1

∫ 2

1

g(λ−1r + r0)|ϕ′(r)||2(r + λr0)
N−1dr

≈ λ2ωNg(r0)‖ϕ′‖2L2(R)

(6.8)

and, similarly,
∫

RN

g(x)|u|α+2(6.9)

= ωNλ
α
2 r

− (N−1)(α+2)
2

0

∫ 2

1

g(λ−1r + r0)|ϕ(r)|α+2(λ−1r + r0)
N−1dr

≈ λ
α
2 ωNg(r0)r

− (N−1)α
2

0 ‖ϕ‖α+2
Lα+2(R).

If α > 4 and (6.1) holds, then we deduce from (6.7)–(6.9) that 2N −∆Ψ(r0) ≤ 0 for
all r0 > 0, so that Ψ �∈ L∞(RN ).

7. The variance identity and consequences. Another way one might try to
dispense with the requirements in Theorem 1.5 that α ≤ 4 and that u0 be radially
symmetric is to assume that u0 has finite variance. Indeed, finite-time blowup of
negative energy solutions of the nonlinear Schrödinger equation, i.e., (GL) with θ =
±π/2, was originally proved [9, 34] for finite-variance solutions. No assumption of
radial symmetry nor the upper bound α ≤ 4 was required. These conditions were
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introduced by Ogawa and Tsutsumi [20] in their proof of finite-time blowup of negative
energy solutions (with possibly infinite variance). Therefore, it is reasonable to hope
that for (GL) the additional assumption of finite variance could lead to a proof of
finite-time blowup without the assumptions in [20].

Consequently, we consider a finite-variance solution of (GL) which is sufficiently
regular so that Ψ = |x|2 can be used in formula (5.2). This gives

1

2

d2

dt2

∫

RN

|x|2|u|2(7.1)

= 2NαE(u(t))− (Nα− 4)

∫

RN

|∇u|2

+cos θ
d

dt

∫

RN

{

−2|x|2|∇u|2 + α+ 4

α+ 2
|x|2|u|α+2 + 2N |u|2

}

− 2 cos2 θ

∫

RN

|x|2|ut|2.

These formal calculations can be justified by standard techniques assuming u0 is
sufficiently regular, and certainly if u0 ∈ C∞

c (RN ). We note right away that the
three terms estimated in Lemma 5.3 have disappeared, and so this lemma is no longer
needed. We therefore proceed to outline a proof of the conclusion of Theorem 1.5
based on the formula (7.1). Unfortunately, it will turn out that the conditions that
α ≤ 4 and that u0 be radially symmetric will again be required, but for apparently
different reasons than in the proof of Lemma 5.3.

Consider, for simplicity, an initial value u0 ∈ C∞
c (RN ). Suppose (1.3) and let uθ

be the corresponding solution of (GL), defined on the maximal interval [0, T θ
max).

Arguing as in the proof of Theorem 1.5 at the end of section 5, we obtain that,
for some C1 > 0 independent of θ,

∫

RN

|x|2|uθ|2 ≤
∫

RN

|x|2|u0|2 + C1t+NαE(u0)t
2(7.2)

+ 2 cos θ

∫ t

0

∫

RN

{

−2|x|2|∇uθ|2 + α+ 4

α+ 2
|x|2|uθ|α+2 + 2N |uθ|2

}

,

for all 0 ≤ t < T θ
max; see (5.30), (5.29), and (5.31). For K defined by (5.10) set

C2 = 4NK‖u0‖2L2 . If τθ is given by (5.24) then

(7.3) 4N cos θ

∫ t

0

∫

RN

|uθ|2 ≤ C2t

for all 0 ≤ t < τθ; see (5.25). Therefore, in order to obtain an inequality analogous
to (5.33) it remains to estimate the term

(7.4) 2 cos θ

∫ t

0

∫

RN

{

−2|x|2|∇uθ|2 + α+ 4

α+ 2
|x|2|uθ|α+2

}

.

This can be done with the following estimate, similar to some results in [2].
Lemma 7.1. Suppose N ≥ 2 and 4/N ≤ α ≤ 4. Given any M > 0, there exists

a constant C such that

(7.5)

∫

|x|2|u|α+2 ≤
∫

|x|2|∇u|2 + C

∫

|u|α+2 + C,

for all smooth, radially symmetric u such that ‖u‖L2 ≤ M .
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Proof. We first claim that

(7.6) ‖ | · |N |u|2‖L∞ ≤ 2‖u‖L2‖ | · |∇u‖L2 .

Indeed, considering u as a function of r > 0, we have

rN |u(r)|2 = −
∫ ∞

r

d

ds
[sN |u(s)|2] = −N

∫ ∞

r

sN−1|u(s)|2 + 2

∫ ∞

r

sNℜ(u∂ru).

We deduce that

rN |u(r)|2 ≤ 2

∫ ∞

r

sN |u(s)| |∂ru(s)|

≤ 2
(

∫ ∞

r

sN−1|u(s)|2
)

1
2
(

∫ ∞

r

sN+1|∂ru(s)|2
)

1
2

= 2‖u‖L2({|x|>r})‖ | · |∇u‖L2({|x|>r}),

which proves (7.6). It now follows from (7.6) that

∫

|x|2|u|α+2 ≤ ‖ | · |N |u|2‖
2
N

L∞

∫

|u|α+2− 4
N ≤ 2

2
N M

2
N ‖ | · |∇u‖

2
N

L2

∫

|u|α+2− 4
N .

Since, by Hölder,

∫

|u|α+2− 4
N ≤ M

8
Nα

(

∫

|u|α+2
)

Nα−4
Nα

,

we deduce that

(7.7)

∫

|x|2|u|α+2 ≤ 2
2
N M

2α+8
Nα

(

∫

|u|α+2
)

Nα−4
Nα ‖ | · |∇u‖

2
N

L2.

Suppose first that α > 4/N and fix 0 < η ≤ 1. Applying Young’s inequality xy ≤
η
− p

p′ xp

p + η yp′

p′ with 1
p = Nα−4

Nα , it follows that

(7.8) 2−
2
N

∫

|x|2|u|α+2 ≤ η−
4

Nα−4
Nα− 4

Nα

∫

|u|α+2 + η
4

Nα
M

α+4
2 ‖ | · |∇u‖

α
2

L2.

If α < 4, then we apply again Young’s inequality to the last term in the right-hand
side of (7.8) and we obtain

2−
2
N

∫

|x|2|u|α+2 ≤ η−
4

Nα−4
Nα− 4

Nα

∫

|u|α+2 +
η

N
‖ | · |∇u‖2L2

+
η(4 − α)

Nα
M

2α+8
4−α .

The estimate (7.5) follows by choosing η appropriately. If α = 4 (note that 4 > 4/N
since N > 1), then (7.5) follows from (7.8) by choosing η sufficiently small. It remains
to consider the case α = 4/N , in which (7.7) becomes

(7.9)

∫

|x|2|u|α+2 ≤ 2
2
N M

2α+8
Nα ‖ | · |∇u‖

2
N

L2.

Since N > 1, we may apply Young’s inequality to deduce (7.5).
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Assuming N ≥ 2, 4/N ≤ α ≤ 4, and u0 is radially symmetric, one can then
continue as follows. Setting M =

√
K‖u0‖L2, we deduce from (5.25) and Lemma 7.1

that there exists a constant C3 > 0 such that

(7.10)

∫

RN

{

−2|x|2|∇uθ|2 + α+ 4

α+ 2
|x|2|uθ|α+2

}

≤ C3 + C3

∫

RN

|uθ|α+2,

for all 0 ≤ θ < π
2 and all 0 ≤ t < τθ. It follows from (7.2), (7.3), and (7.10) that

∫

RN

|x|2|uθ|2 ≤
∫

RN

|x|2|u0|2 + (C1 + C2 + 2C3)t+NαE(u0))t
2(7.11)

+ 2C3 cos θ

∫ t

0

∫

RN

|uθ|α+2.

Using (5.32) we see that there exists C4 such that
∫

RN

|x|2|uθ|2 ≤ C4 + (C1 + C2 + 2C3)t+NαE(u0)t
2

for all −π
2 ≤ θ < π

2 and all 0 ≤ t < τθ. We then may conclude as in the proof of
Theorem 1.5.

Thus we see how to obtain a uniform estimate of T θ
max by using the variance

identity. However, we use Lemma 7.1 and this is why we assume that u0 is radially
symmetric and that N ≥ 2 and 4/N ≤ α ≤ 4. Therefore, we obtain a weaker result
than Theorem 1.5 (which does not require finite variance).

The obstacle for improving this argument seems to be Lemma 7.1. Unfortu-
nately, both the symmetry assumption and the requirement α ≤ 4 are necessary in
Lemma 7.1.

Let us first observe that radial symmetry is essential in Lemma 7.1. Indeed, fix
ϕ ∈ C∞

c (RN ), ϕ �≡ 0 and let u(x) be given by (6.2). Taking g(x) ≡ |x|2 in (6.3)
and (6.4) and g(x) ≡ 1 in (6.4), we see that (7.5) cannot hold for arbitrarly large
|x0| when Nα > 4. (And not even for Nα = 4, since we may choose ϕ such that
‖ϕ‖α+2

Lα+2 ≫ ‖∇ϕ‖2L2 .)
We next remark that the restriction α ≤ 4 is also essential in Lemma 7.1. Indeed,

let u be defined by (6.6) for some ϕ ∈ C∞(R), ϕ �≡ 0 supported in [1, 2], and for
λ, r0 > 0. Applying the first identity in (6.8) with g(x) ≡ |x|2 and the first identity
in (6.9) with g(x) ≡ 1, we deduce that

∫

|x|2|∇u|2 ≤ λ22N+1ωNr20‖ϕ′‖2L2(R),(7.12)

∫

|u|α+2 ≤ λ
α
2 2N−1ωNr

− (N−1)α
2

0 ‖ϕ‖α+2
Lα+2(R)(7.13)

for all λ ≥ 2/r0. Moreover, applying the first identity in (6.9) with g(x) ≡ |x|2, we
obtain

(7.14)

∫

|x|2|u|α+2 ≥ λ
α
2 ωNr

2− (N−1)α
2

0 ‖ϕ‖α+2
Lα+2(R)

for all λ > 0. Applying (6.7) and (7.12)–(7.14), we see that if (7.5) holds then there
is a constant A > 0 such that

λ
α
2 r

2− (N−1)α
2

0 ≤ A

(

1 + λ2r20 + λ
α
2 r

− (N−1)α
2

0

)
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for all r0 > 0 and λ ≥ 2/r0. Taking r0 =
√
2A, we obtain

λ
α
2 r

− (N−1)α
2

0 ≤ 1 + λ2r20

for all λ ≥ 2/r0, which yields α ≤ 4.

Appendix. Proof of Lemma 5.3. We follow the method of [20], and we
construct a family (Ψε)ε>0 such that, given a,A, the estimate (5.23) holds with Ψ =
Ψε provided ε > 0 is sufficiently small. Fix a function h ∈ C∞([0,∞)) such that

(A.1) h ≥ 0, supph ⊂ [1, 2],

∫ ∞

0

h(s) ds = 1,

and let

(A.2) ζ(t) = t−
∫ t

0

(t− s)h(s) ds = t−
∫ t

0

∫ s

0

h(σ) dσds

for t ≥ 0. It follows that ζ ∈ C∞([0,∞)) ∩W 4,∞((0,∞)), ζ′ ≥ 0, ζ′′ ≤ 0, ζ(t) = t for

t ≤ 1, and ζ(t) = M for t ≥ 2 with M =
∫ 2

0 sh(s) ds. Set

(A.3) Φ(x) = ζ(|x|2).

It follows in particular that Φ ∈ C∞(RN ) ∩W 4,∞(RN ). Given any ε > 0, set

(A.4) Ψε(x) = ε−2Φ(εx),

so that

(A.5) ‖∆2Ψε‖L∞ = ε2‖∆2Φ‖L∞ .

Next, set

(A.6) ξ(t) =
√

2(1− ζ′(t))− 4tζ′′(t) =

√

2

∫ t

0

h(s) ds+ 4th(t).

It is not difficult to check that ξ ∈ C1([0,∞)) ∩W 1,∞(0,∞). Let

(A.7) γ(r) = ξ(r2),

and, given ε > 0, let

(A.8) γε(r) = γ(εr).

It easily follows that γε is supported in [ε−1,∞), so that

(A.9) ‖r−(N−1)γ′
ε‖L∞ ≤ εN−1‖γ′

ε‖L∞ = εN‖γ′‖L∞ ,

and

(A.10) ‖r−(N−1)γεur‖L2 ≤ εN−1‖γεur‖L2.

Set

Iε(u) = −2

∫

RN

(2−Ψ′′
ε )|ur|2(A.11)

+
α

α+ 2

∫

RN

(2N −∆Ψε)|u|α+2 − 1

2

∫

RN

∆2Ψε|u|2.
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Elementary but long calculations using in particular (A.6) show that

(A.12) 2−Ψ′′
ε (x) = γε(|x|)2

and

(A.13) 2N −∆Ψε(x) = N [γε(|x|)]2 + 4(N − 1)(ε|x|)2ζ′′(ε2|x|2) ≤ N [γε(|x|)]2.

We deduce from (A.11), (A.12), (A.13), and (A.5) that

(A.14) Iε(u) ≤ −2

∫

RN

γ2
ε |ur|2 +

Nα

α+ 2

∫

RN

γ2
ε |u|α+2 +

ε2

2
‖∆2Φ‖L∞‖u‖2L2.

We next claim that

(A.15) ‖γ
1
2
ε u‖2L∞ ≤ εN‖γ′‖L∞‖u‖2L2 + 2εN−1‖u‖L2‖γεur‖L2.

Indeed,

γε(r)|u(r)|2 = −
∫ ∞

r

d

ds
[γε(s)|u(s)|2] ≤

∫ ∞

0

|γ′
ε| |u|2 + 2

∫ ∞

0

γε|u| |ur|

≤ ‖r−(N−1)γ′
ε‖L∞‖u‖2L2 + 2‖u‖L2‖r−(N−1)γεur‖L2.

(A.16)

(The above calculation is valid for a smooth function u and is easily justified for a
general u by density.) The estimate (A.15) follows from (A.16), (A.9), and (A.10).
We now observe that

(A.17)

∫

RN

γ2
ε |u|α+2 =

∫

RN

γ
4−α

2
ε [γ

1
2
ε |u|]α|u|2 ≤ ‖γ‖

4−α
2

L∞ ‖γ
1
2
ε u‖αL∞‖u‖2L2.

Applying (A.15) and the inequality x
α
2 ≤ 1 + x2, we deduce from (A.17) that there

exists a constant C independent of ε > 0 and u such that

(A.18)
Nα

α+ 2

∫

RN

γ2
ε |u|α+2 ≤ Cε

(N−1)α
2 ‖u‖

α
2 +2

L2

(

ε
α
2 ‖u‖

α
2

L2 + 1 + ‖γεur‖2L2

)

.

Estimates (A.14) and (A.18) now yield

Iε(u) ≤ −
(

2− Cε
(N−1)α

2 ‖u‖
α
2 +2

L2

)

∫

RN

γ2
ε |ur|2(A.19)

+Cε
(N−1)α

2 ‖u‖
α
2 +2

L2

(

ε
α
2 ‖u‖

α
2

L2 + 1
)

+
ε2

2
‖∆2Φ‖L∞‖u‖2L2.

We now fix 0 ≤ a,A < ∞, and we first choose ε > 0 sufficiently small so that

Cε
(N−1)α

2 A
α
2 +2 ≤ 2. It then follows from (A.19) that if ‖u‖L2 ≤ A, then

(A.20) Iε(u) ≤ Cε
(N−1)α

2 A
α
2 +2

(

ε
α
2 A

α
2 + 1

)

+
ε2

2
‖∆2Φ‖L∞A2.

Choosing ε > 0 possibly smaller, but depending on a,A, we deduce that Iε(u) ≤ a if
‖u‖L2 ≤ A. This completes the proof.
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