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I ntroduction

In the framework of nuclear core calculations, the develepnof efficient tools to
run neutron kinetic computations is a field of current actiegearch. While such
calculations are crucial for security assessment and tidby sif new reactor con-
cepts, they present several mathematical and computhissoas that still need to
be overcome.

The exact model (kinetic transport equation) is indeed daréxpensive to be
simulated for these purposes and different simplificatiomslti group diffusion ap-
proximation) have led to more tractable numerical simatadi Nevertheless, on real
geometries and despite the use of domain decompositioniegaucelerations of
the simulations thanks to parallel architectures [7], éhsrstill need for improve-
ments for applications on regular basis.

In this context, the purpose of this work is to investigate ithplementation of
the parareal in time algorithm [9] within an industrial seihcalled MNOS devel-
oped at C.E.A. (cf. [4]) following the preliminary analy$§.

The paper is organized as follows: after the presentatioheofieutron diffusion
equation in Section 1, the main aspects of the parareal metiibbe recalled in
Section 2. In particular, we will explain the distributedatithm that has been used
in our case from the point of view of the expected speed-up. @dérformances of
the parareal in time algorithm in a numerical applicatiomsummarized in section
3 which is followed in Section 4 by a discussion about the eogence behavior
observed in our example.
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1 Modd

The evolution of the fluxy of neutrons in a reactor cog is governed by a kinetic
transport PDE whose theoretical properties (existendgueness, positiveness of
the solution) have been investigated in e.g. [6] (chaptel, X¥ction 2, theorem 3).
Given the fact thaty depends on 7 variables, namely the timthe posmon within
the reactor denoted ag, the velocity of the neutron& = \/ZE/m whereE
stands for the energy of the neutrcﬁ stands for the direction of the velocity and
m s the mass of the neutron, it has been proposed in e.g. [&p{eh XXI, section
5), to simplify the model by first considering the average fiuer the angular vari-
ables as the unknowma(t, 7",E) = 7 J5, Lp(t,T),f_f, E)dQ’. This approach leads
to results that are accurate enough in most of the usual bas#se computing time
still remains unacceptably long.

Another simplification consists in averaging also in thergpeariable. This fur-
ther approximation, known as the multi-group theory [18]pased on the division
of the energy interval int@ subintervals (Epin, Enex] = [Ec, Ec-1]U. .. U[E1, Eo])
and leads to consider the sét= {¢%}4c(1 ) as the new unknown solution. In
order to take into account the presence of radioactive igstdalso called precur-
sors) that are important since they emit neutrons with argdeday, the model is
complemented with a set of first order ODE’s expressing ttiegays denoted as
C= {Cg}ge{u}. Since their half-lives have values that vary in a wide rarige
resulting system is very stiff and small time steps are megluior an accurate ap-
proximation in long time intervals.

The set ®,C) is the solution of the following set of multi-group diffusi@qua-
tions:

g G e G /o L
4% 0. (09T ¢P) + 0PgP = 27 +X89§lff 97+ 3 XNC
over[0,T| x #Z VQ €{1,G},
(D) %~ acor z g@g @9 over[0,T] x 2,v( € {1,L},

@9 =0, on [0 T] X ﬁ,%’
#%(0,.) = @(.); C(0,.) =Cypo(.) ONZ

whereV? is the neutron velocityp? the diffusion coefficient and? the total cross-
section in energy groug. xg is the prompt spectrum in energy grogp)([g the
delayed spectrum of precursbin energy grou andA, is the decay constant of
precursor/. #9 and ﬁf’ denote the prompt and delayed fission operators respec-
tively. 9% is the neutron scattering operator from enegglp g and makes the
flux equations be coupled with respect to the energy variable
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2 The parareal algorithm

The unsteady probleifx) can be written in a more compact form:

oy

0t+£¢(t y)=0.t € [T, T1]; 1)

it is complemented with initial conditions at tinte= 1o : y(Tp) = Yo. The parareal
in time algorithm applied to (1) is an iterative techniqueandy at each iteration a
predictor corrector propagation is proposed based on twpggators : a fine one
Fh o (Yo) that computes an apprOX|mat|on of the solution of (1) at tmaccurately
but slowly, and a coarse o, '1(yo) that computes an other approximation quickly
but not so accurately (and not accurately enough). In aadtt these two propa-
gators.# and¥, the parareal in time algorithm is based on the division efftlil
interval[0, T] into N sub-intervalso, T] = UN"3[Tn, T 1] that will each be assigned
to a processadr,, assuming that we have N processors at our disposal.

The valuey(Ty) is approximated bynk ask increases with an accuracy that tends
to the one achieved by the fine solver (see [9], [2], [3] fortHer details). It is
obtained by the recurrence relation:

YR = G () PR~ (), n= 1N @)

starting fromY? 1= %T"“(YO) In this work, the recently described distributed al-
gorithm (summarized in [1]) has been used for the practicgllémentation of
parareal. It represents an improvement of parareal fronalperithmic point of
vue.

The first method of implementation was indeed suggested]iarfé consisted
on a master-slave algorithm where the master carried outdaiese propagation in
the whole time interval (each slave being in charge of the fiirgagations over
its assigned time slice and sendﬁat”+1 Y¥) to the master so that the master com-
puted the parareal corrections §2)). This orlgmal algorithm gives rise to two main
computing drawbacks: the coarse propagation by the mastebottleneck in the
computation and the memory requirement in the master psocesales linearly
with the number of slaves. The distributed algorithm im@®ioth aspects and can
easily be implemented via the MPI library: for each proce$)ahe fine and the
coarse solvers are propagated difer T, 1] and the parareal correcti<Yﬁfjfll is car-
ried out. The process is repeated until convergence¥ie:t — Y| < n, Vn, where
n is a given tolerance.

It is easy to realize that this kind of implementation doesai@nge the number
of iterations in order the parareal algorithm to convergathpurovides better speed-
ups than the original master-slave version. This is theoreagy the distributed
algorithm has been implemented in this study. Indeed, if wanot take into ac-
count the communication time between processors, theetiearspeed-ups of the
distributed and master-slave algorithms are respect{gely [1]):
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N N
Nr -+ k*(1+r) Sws Nr(1+k*)+k* ®)

wherer is the ratio between the two solution times of the two propag&’ and.%#
andk* is the number of parareal iterations needed in order to acgeve

Stigtrib =

3 Numerical ssmulation

3.1 Definition of the test case:

The parareal algorithm has been implemented with an intpliscretization in time.
Note that here we have used the same physical model (diffufoboth the coarse
and the fine solvers (the only difference is the size of the titeps used to solve
equation(x) ot for .# andAt = T1 — Tn for ). At each time step, a Gauss-Seidel
iteration is used on the energy groups and the spatial dizatien is done with
RT-1 finite elements (see [4]).

The geometry and history that have been chosen for the dionls the so
called TWIGL benchmark that represents a rod withdrawa [8B. The geometry
of the core is three-dimensional. A cross-sectional vievt isfspecified inFIGURE
1 where only a quarter of it has been represented (the resieciarfierred by symme-
try). The first group of rods (yellow) is withdrawn frotma= 0 (z= 100cm measured
starting from below) untit = 26.6 s. (z= 180cm) at a constant velocity. The sec-
ond group of rods (brawn) is inserted frdm: 7.5 s. (z=180cm) untilt =47.7 s.
(z=60cm) and the simulated interval of time 8, T] with T = 66.6 s.

Computations have been carried out WBk= 2 energy groupg, = 6 precursors.
The coefficients ofx) remain constant in time and only the geometry varies. The
fine solver has a fixed time step&f = 1/6 s.

The scaling has been evaluated with a convergence testi@ssbin which the
tolerance) has been fixed to the precision of the numerical schemerfi~e10~3).
With this threshold, convergence has been achieved afterkor= 2, 3 or at most
4 iterations of the parareal in time algorithm.

«——110cm ——» |:| Absorber-rod 1

. Absorber-rod 2

] Fuel 1

B Fuel 2
D Reflector

Fig. 1 Cross-sectional view of a quarter of the core in the TWIG Ldbenark

——woQLL —

—
X
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3.2 Strong scaling results:

For the strong scaling analysis, the same problem has bésrtdsm an increasing
numberN of processors. The size of each interval, equal to the tire of the
coarse solver, has been reduced fuvim= 500t to At = 50t in order to increase the
number of processors. Therefore Nagaries, the ratio and the number of parareal
iterationsk* change. With the computéd and usingdt /At as an approximation of

r, one can infer from formula 3 the optimal speed-up valuesdha be obtained in
our current case with the distributed algorithm (measupestd-ups are of course
lower due to the communication time that is not taken intooaot in formula 3).
The values are plotted inlGURE 2, where the theoretical speed-ups of the master-
slave algorithm are also shown in order to compare both ndstho

Q
8 ‘ ‘ ‘ ‘
~D, S-S
o -=MS, S-S —
5 6 |-D,w-s
5 = MS, W-9
8
o 4
n o
2 2
0 1 1 1 1
0 10 20 30 40 50

Number of processors (N)

Fig. 2 Optimal speed-ups obtained for the scaling tests (D=MDisted algorithm; MS= Master-
Slave algorithm; S-S= Strong Scaling; W-S= Weak Scaling)

As it can be observed, the distributed algorithm performtebéor any number
N of processors. For a reduced number of processors, the-sipseare similar
because both algorithms increase I¥gk* for N small enough. However, wheh
becomes significant in formulae 3, the distributed alganithill behave likeN/r
and the master-slave method lik (r(1+k*)), making the distributed algorithm
become more perfomant on a wider range of valué¥.dfhe performances reach a
plateau and even decrease wiNehecomes very largeN(> 20 in our case) because
the cost of¢ becomes equivalent to the cost&f (r tends to 1).

3.3 Weak scaling results

For this alternative evaluation of the scaling, the samergey as before has been
used. We now consider the case in which the problem has dlaléngthT = NAt
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and the time step of the coarse solé¢ris fixed (i.e. the size of the problem linearly
increases with the numbét of processors). For our computations, the fine and
coarse time steps are fixeddb= 1/6 s. andAt = 505t respectively.

The control rods are inserted and withdrawn periodicallyaisequence of mo-
tion that creates fluctuations in the total power. With theapatedk*, the optimal
speed-ups for the distributed algorithm are plottedi®uRE 2 and compared to
the master-slave model. The most important result hereaisthie distributed algo-
rithm can effectively speed-up long time calculations a=ait be observed. When
compared to the master-slave implementation for largeegatiiN, the distributed
algorithm has a clear advantage because the incre&ééas not such a strong neg-
ative impact on it than on the master-slave implementatgrit(can also be seen in
FIGURE 2).

4 About the convergence of parareal in the kinetic neutron
diffusion equation

The analysis of the convergence process can be done intoays, wither by look-
ing only at the history of the values at eah 1 < n < N, or by looking at the error
at each fine discrete tinmeAt :

> Thtmdt T+ mat
|- 7™ (@K) = Fo" ™ ()| 2
®oll 2

vn=1,..N,vm=0,1,..4 vk=0,. ,N-1

ek(tn + MOt fine =

(4)

FIGURE 3 illustrates the global convergence history accordingtomiula 4. Above
the convergence threshold, we note a surprising behavitineoerror over each
interval [Ty, To11] that is, in most cases, neither linear nor constant dedjpte t)
is linear. The following analysis will explain that this isielto the presence of the
radioactive isotopes.

Under several hypothesis (see the point kinetics appraioméan [10]), the ki-
netic behavior of systerfk) can be analysed through a set of first order ODE'’s of
the form:

L
42U — ao(t) +[§lMCe(t)
(5) A

[=X

) _ yd(t) — AC(t), ¥ =1,...,L
®(0) = @5, C(0) = Crg

where the coefficients are in the rang8.5 < a < —6.10~3, while for any/,1 <
(<L,102%2<)A <4and310°<y <3,410°72

In order to understand the phenomenon in the simulatiofx pfepresented in
FIGURE 3, let us consider the case whére- 1 in (5). Due to linearity, the evolution
of the error éfine) between the parareal fine propagator and the sequentiarime
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Fig. 3 Example of convergence of the fine parareal soluﬁéﬁ”‘&(d)ﬁ) (TWIGL benchmark,
N = 8 processorsAt = 8.3s.)

follows the same evolution a® in (5) over each intervdlly, Ty, 1] starting from
an initial errord @ over ® and dC overC = C;. This system can be solved and
the solution is the sum of two exponential behavigts' andet+! where . are

— 2
the two eigenvalues associated with the problgm = C—AEVATOTAY | e
range of values where the physical parametersili¢,a is not small and we can

consider thaty = %(84—0(5)). In this case, the eigenvalues behavauas=

aAtAral Aiale | o(g) wheree is a small quantity, the errdrd(t) = 5 dye™ +
125 0Co (€7t —eAt) + 6(8 My, 6Co, a1, A )€ + o(g), with 6 gathering the terms at
ordere. At first order, and depending on the valuesxo&ndA, d @ (and therefore
efine) Will present an exponentially decreasing trend (e.g= —0.006,A = 4) or
a brief increase followed by a decrease (@g= —0.5,A = 0.01) as it appears in
FIGURE 3.

Conclusion

The results of this study show that the parareal distribatgdrithm can effectively
speedup neutron kinetic diffusion calculations. They can cetiabe improved by
coupling parareal with spatial domain decomposition. AHar analysis needs to
be done on the impact of the communication time between psocs.

An analysis of a surprising behavior of the error within eadirval [Ty, Tn. 1]
has also been explained and is a consequence of a specialf timegparameters.

Note also that these results represent the first implementat the parareal in
time algorithm within the industrial solver Mos so the current results represent
as well a successful industrial application of parareal.
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These results are encouraging because they open the ddoe twhstruction

of kinetic transport solvers. Our ongoing study is therefiar explore whether the
parareal algorithm can successfully accelerate suchletifoos.
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