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A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS

FOR A NONLINEAR PROBLEM

CHRISTINE BERNARDI †, JAD DAKROUB †‡, GIHANE MANSOUR ‡, TONY SAYAH ‡.

Abstract. A posteriori error indicators have been studied in recent years owing to their remarkable
capacity to enhance both speed and accuracy in computing. This work deals with a posteriori error
estimation for the �nite element discretization of a nonlinear problem. For a given nonlinear equation
considering �nite elements we solve the discrete problem using two iterative methods involving some
kind of linearization. For each of them, there are actually two sources of error, namely discretization and
linearization. Balancing these two errors can be very important, since it avoids performing an excessive
number of iterations. Our results lead to the construction of computable upper indicators for the full
error.
Several numerical tests are provided to evaluate the e�ciency of our indicators.

Résumé. Les indicateurs d'erreur a posteriori ont été beaucoup considérés au cours des dernières années
à cause de leurs capacités remarquables à améliorer la vitesse et la précision dans la résolution itérative
des problèmes. Dans ce travail, notre but est d'appliquer cette méthode pour un problème non linéaire.
Nous proposons alors deux algorithmes itératifs de résolution du problème et nous étudions la conver-
gence de ces algorithmes vers la solution du problème discret. Une étape importante consiste à démontrer
des estimations d'erreur a posteriori en distinguant les erreurs de linéarisation et de discrétisation.
Nous présentons �nalement quelques résultats d'expériences numériques.

Keywords : A posteriori error estimation, nonlinear problems, iterative methods.

1. Introduction

Many research works deal with the a posteriori analysis and the adaptive mesh-re�nement for �nite ele-
ment discretization of elliptic problems, [11]. First, a posteriori analysis controls the overall discretization
error of the problem and it provides error indicators which can be computed from the computed numerical
solution and the given data of the problem. Once these error indicators are constructed, we prove their
e�ciency by bounding each indicator by the local error. This analysis was �rst introduced by I. Babuška
[2], and developed by R. Verfürth [11]. In this work, we are interested in studying the following nonlinear
problem.

Let Ω be an open polygon of IRd, d = 2, we consider

−∆u+ λ|u|2pu = f in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

where λ and p are two positive real numbers. The right-hand side f belongs to H−1(Ω), the dual of
the Sobolev space H1

0 (Ω). Using P1 Lagrange �nite elements, the discrete variational problem amounts
to a system of nonlinear equations that are solved using an iterative method involving some kind of
linearization. Thus, two sources of error appear, namely linearization and discretization. The main goal
of this work is to balance these two sources of error. In fact, if the discretization error dominates then the
nonlinear solver iterations is reduced. Therefore, our objective is to calculate a posteriori error estimates
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distinguishing linearization and discretization errors in the context of an adaptive procedure. This type of
analysis was introduced by A.-L. Chaillou and M. Suri [4, 5] for a general class of problems characterized
by strongly monotone operators. It had been developed by L. El Alaoui, A. Ern and M. Vohralík [6]
for a class of second-order monotone quasi-linear di�usion-type problems approximated by piecewise
a�ne, continuous �nite elements. In fact, the main di�erence between these two works is that in [6] they
considered an iterative loop for the linearization procedure while in [4, 5] they replaced the nonlinear
problem by a simpli�ed linear model without considering any adaptive procedure.

Furthermore, in this work we present two di�erent strategies for the linearization process, namely �xed-
point algorithm and Newton algorithm. Both strategies are iterative and the algorithm can be outlined
as follows :

(1) On the given mesh, perform an iterative linearization until the stopping criterion is satis�ed
(2) If the error is less than the desired precision, then stop, else re�ne the mesh adaptively and go

to step (1).

Then, we compare these two algorithms. Actually, the Newton iteration version has faster convergence
rates than the �xed-point iteration version but is more sensitive to the initial values.

An outline of the paper is as follows. In Section 2, we present the variational formulation of problem (1.1)-
(1.2). We introduce in Section 3 the discrete variational problem with the a priori estimate. The two
di�erent algorithms are studied in Section 4. The a posteriori analysis of the discretization of both �xed-
point algorithm and Newton algorithm is performed in Section 5. Section 6 is devoted to the numerical
experiments.

2. Analysis of the model

We describe in this section the nonlinear problem (1.1)-(1.2) together with its variational formulation.
First of all, we recall the main notion and results which we use later on. For a domain Ω, denote by Lp(Ω)
the space of measurable functions summable with power p. For v ∈ Lp(Ω), the norm is de�ned by

‖ v ‖Lp(Ω)=

(∫
Ω

|v(x)|pdx
)1/p

.

Throughout this paper, we constantly use the classical Sobolev space

Wm,r(Ω) =
{
v ∈ Lr(Ω); ∀|k| ≤ m, ∂kv ∈ Lr(Ω)

}
,

where k = (k1, k2) is a 2-tuple of positive integers such that |k| = k1 + k2 and

∂kv =
∂|k|v

∂xk1
1 ∂x

k2
2

.

Wm,r(Ω) is equipped with the semi-norm

|v|m,r,Ω =

 ∑
|k|=m

∫
Ω

|∂kv|rdx

1/r

,

and the norm

‖ v ‖m,r,Ω=

(
m∑
`=0

|v|r`,r,Ωdx

)1/r

.

For r = 2, we de�ne the Hilbert space Hm(Ω) = Wm,2(Ω). In particular, we consider the following space

H1
0 (Ω) = {v ∈ H1(Ω), v|∂Ω

= 0},
and its dual space H−1(Ω).

We recall the Sobolev imbeddings (see Adams [1], Chapter 3).

Lemma 2.1. For all 1 ≤ j <∞ and d = 2, there exists a positive constant Sj such that

∀v ∈ H1
0 (Ω), ‖ v ‖Lj(Ω)≤ Sj |v|1,Ω. (2.1)
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Remark 2.2. For d = 3, inequality (2.1) with standard de�nition of H1
0 (Ω) remains valid only for j ≤ 6,

whence the interest of working in dimension d = 2.

The model problem (1.1)-(1.2) admits the equivalent variational formulation :

Find u ∈ X such that

∀v ∈ X,
∫

Ω

∇u∇vdx+

∫
Ω

λ|u|2puvdx = 〈f, v〉, (2.2)

with X = H1
0 (Ω).

Theorem 2.3. Problem (2.2) admits a unique solution u ∈ X.
Proof. We associate the following energy functional with problem (2.2) :

E(u) =
1

2

∫
Ω

∇u(x)2dx+
λ

2p+ 2

∫
Ω

|u(x)|2pu(x)2dx− 〈f, u(x)〉,

we then have the estimation

E(u) ≥ 1

2

∫
Ω

|∇u(x)|2dx+
λ

2p+ 2

∫
Ω

|u|2p+2− ‖ f ‖−1,Ω‖ u ‖1,Ω .

Then, the result follows from the energy minimization corollary (see [9], Chapter 3).

We now introduce the following technical Lemma :

Lemma 2.4. Let a, b and p be three real numbers. We have the following relation∣∣|a|p − |b|p∣∣ ≤ p|a− b|(|a|p−1 + |b|p−1
)
.

Proof. The result follows from applying the mean value theorem to f(x) = xp with x > 0.

Remark 2.5. In the sequel, we denote by C, C ′,... generic constants that can vary from line to line but
are always independent of all discretization parameters.

3. Finite element discretization and the a priori estimate

This section collects some useful notation concerning the discrete setting and the a priori estimate.

Let (Th)h be a regular family of triangulations of Ω, in the sense that, for each h :
• The union of all elements of Th is equal to Ω.

• The intersection of two di�erent elements of Th, if not empty, is a vertex or a whole edge of both
triangles.
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed circle is smaller
than a constant independent of h.
As usual, h stands for the maximum of the diameters hK , K ∈ Th.
Let Xh ⊂ H1

0 (Ω) be the P1 �nite element space associated with Th, more precisely

Xh =

{
vh ∈ H1

0 (Ω), ∀K ∈ Th, vh|K ∈ P1(K)

}
,

where P1(K) stands for the space of restrictions to K of a�ne functions on IR2.

We then consider the following �nite element discretization of Problem (2.2), obtained by the Galerkin
method :

Find uh ∈ Xh such that

∀vh ∈ Xh,

∫
Ω

∇uh∇vhdx+

∫
Ω

λ|uh|2puhvhdx = 〈f, vh〉. (3.1)

In order to prove the existence of a solution to problem (3.1), let us recall some results on the �nite
dimensional approximations of nonlinear problems due to Brezzi-Rappaz-Raviart theorem [3]. Next, we
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apply them to problem (3.1). Let V andW be two Banach spaces. We introduce a C1 mappingG : V →W
and a linear continuous mapping S ∈ L(W,V ). We set :

F (u) = u− SG(u). (3.2)

We consider the �nite dimensional approximation of a solution u ∈ V of the equation F (u) = 0 :

For h > 0, we are given a �nite dimensional subspace Vh of the space V and an operator Sh ∈ L(W ;Vh).
We set for uh ∈ Vh :

Fh(uh) = uh − ShG(uh).

The approximate problem consists on �nding a solution uh ∈ Vh of the equation

Fh(uh) = 0. (3.3)

Then, we have the following theorem (see [3], Section 3 or [7], Chapter 4) :

Theorem 3.1. Assume that G is a C1 mapping from V intoW with DG Lipschitz-continuous, SDG(u) ∈
L(V ) is compact and DF (u) is an isomorphism of V . In addition, we assume that for all v ∈ V

lim
h→0
‖ v −Πhv ‖V = 0, (3.4)

for some linear operator Πh ∈ L(V ;Vh) and

lim
h→0
‖ Sh − S ‖L(W,V )= 0. (3.5)

Then, there exist h0 > 0 and a neighborhood O of the origin in V such that, for any h ≤ h0 , problem
(3.3) admits a unique solution uh such that uh − u belongs to O.
Furthermore, we have for some constant M > 0, independent of h

‖ uh − u ‖V≤M
(
‖ u−Πhu ‖V + ‖ (Sh − S)G(u) ‖V

)
. (3.6)

In order to apply the Brezzi-Rappaz-Raviart theorem [3] to problem (3.1) we take V = H1
0 (Ω) and

W = H−1(Ω). We introduce the linear continuous mapping

S : W → V
f 7→ Sf = w,

where w is the solution of the problem{
−∆w = f in Ω,
w = 0 on ∂Ω.

It is readily checked that S is the Riesz isomorphism, hence an isometry between H−1(Ω) and H1
0 (Ω).

Lemma 3.2. The following stability property holds for any f in H−1(Ω)

|Sf |1,Ω ≤‖ f ‖−1,Ω .

We consider now the following C1 mapping

G : V → W
w 7→ G(w) = f − λ|w|2pw

and observe that problem (2.2) can be written as follows

u− SG(u) = 0.

Lemma 3.3. There exists a real number L > 0, and a neighborhood V of u in H1
0 (Ω) such that the

following Lipschitz property holds

∀w ∈ V, ‖ S
(
DG(u)−DG(w)

)
‖L(H1

0 (Ω))≤ L|u− w|1,Ω.

Proof. We have

‖ S
(
DG(u)−DG(w)

)
‖L(H1

0 (Ω))≤‖ DG(u)−DG(w) ‖L(H−1(Ω)) . (3.7)
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We observe that for any z ∈ H1
0 (Ω),

DG(u).z −DG(w).z = 2λp
(
|w|2p−1w − |u|2p−1u

)
z − λ

(
|w|2p − |u|2p

)
z. (3.8)

Using lemma 2.4 and combining (3.7) with (3.8) yields the desired property.

Since the operator SDG(u) ∈ L(V ) is compact, it follows from the Fredholm's alternative that DF (u) is
an isomorphism of V if the equation

DF (u).w = 0 with w ∈ V

has only the zero solution. Thus, since

DG(u).w = −
(
2λp|u|2p−1uw + λ|u|2pw

)
,

we consider the following problem{
−∆w + 2λp|u|2p−1uw + λ|u|2pw = g in Ω,

w = 0 on ∂Ω,
(3.9)

with g ∈ H−1(Ω), λ > 0.

we now introduce the following lemma that proves the uniqueness of the solution w = 0.

Lemma 3.4. The equation
(
I − SDG(u)

)
.w = 0 admits a unique solution w = 0.

Proof. The existence and uniqueness of a solution to (3.9) is easily established due to Lax-Milgram
theorem. Then, the result follows from the fact that w = 0 is obviously a solution of problem (3.9).

We denote by Sh the operator which associate with any f in W the solution uh of the discrete linear
problem,

Sh : W → Vh
f 7→ Shf = wh,

where wh satis�es,

∀vh ∈ Vh,
∫

Ω

∇wh∇vh dx =

∫
Ω

fvh dx. (3.10)

We are now in a position to state the following corollary which relies on Theorem 3.1 and provides the a
priori error estimate :

Corollary 3.5. Let u be the solution of (2.2). There exist a neighborhood of the origin in V and a real
number h0 > 0 such that, for all h ≤ h0, problem (3.1) has a unique solution uh with uh − u in this
neighborhood. Moreover, the following a priori error estimate holds

‖ uh − u ‖V≤M
{
‖ u−Πhu ‖V + ‖ (Sh − S)G(u) ‖V

}
,

where M is a constant independent of h.

In addition, if u ∈ H2(Ω), we have

‖ uh − u ‖1,Ω≤ Ch ‖ u ‖2,Ω .

4. Iterative algorithms

In this section, in order to solve our nonlinear discrete problem, we propose two di�erent algorithms,
namely the �xed-point algorithm and the Newton algorithm. One of the main advantages of the �xed-
point algorithm is that it converges to the unique �xed-point of the function for any starting point.
However, if the initial guess is su�ciently close to the theoretical solution, Newton iteration version leads
to much faster convergence rates than the �xed-point iteration version. We start by introducing the
�xed-point algorithm.
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4.1. Fixed-point algorithm. Let u0
h be an initial guess. We introduce, for i ≥ 0, the following algo-

rithm :

Find ui+1
h ∈ Vh such that

∀vh ∈ Vh, (∇ui+1
h ,∇vh) + λ(|uih|2pui+1

h , vh) = 〈f, vh〉. (4.1)

It is readily checked that problem (4.1) has a unique solution that depends continuously on f :

|ui+1
h |1,Ω ≤‖ f ‖−1,Ω . (4.2)

The proof of its convergence relies on the coercivity of the bilinear form.

Theorem 4.1. (The convergence Theorem). Let ui+1
h and uh be the solutions of the iterative problem

and the discrete problem respectively. Then

|ui+1
h − uh|1,Ω ≤ C−1

1 C2|uih − uh|1,Ω,

where,

C1 = 1− λS2S4S
2p
8p ‖ f ‖

2p
−1,Ω,

C2 = 4λpS2S4S8S
2p−1
8(2p−1) ‖ f ‖

2p
−1,Ω .

Moreover, (uih)i converges if C1 > 0 and C−1
1 C2 < 1.

Proof. First, taking vh = uh in (3.1) we have the following estimation

|uh|1,Ω ≤‖ f ‖−1,Ω . (4.3)

We start now by subtracting (4.1) from (3.1). We obtain, for all vh ∈ Xh,

(∇(ui+1
h − uh),∇vh) = λ(|uh|2puh − |uih|2pui+1

h , vh). (4.4)

The right-hand side can be written as follows :

λ
(
|uh|2puh − |uih|2pui+1

h , vh
)

= λ
(
(|uh|2p − |uih|2p)uh, vh

)
+ λ
(
|uih|2p(uh − ui+1

h ), vh
)
. (4.5)

From Lemma 2.4, we have∣∣|uh|2p − |uih|2p∣∣ ≤ 2p
(
|uih|2p−1 + |uh|2p−1

)
|uih − uh|. (4.6)

We now estimate the two terms in the right-hand side of (4.5).

(i) The �rst term is bounded, using (2.1), (4.6) and the Cauchy-Schwarz inequality, as follows∫
Ω

(|uh|2p − |uih|2p)uhvhdx ≤ 2p

∫
Ω

(
|uih|2p−1 + |uh|2p−1

)
|uih − uh||uh||vh|dx

≤ 2p ‖ |uih|2p−1 + |uh|2p−1 ‖L8(Ω)‖ uih − uh ‖L8(Ω)‖ uh ‖L4(Ω)‖ vh ‖L2(Ω)

≤ 2pS2S4S8 ‖ |uih|2p−1 + |uh|2p−1 ‖L8(Ω) |uih − uh|1,Ω|uh|1,Ω|vh|1,Ω.

Using (4.2) and (4.3), leads to

λ
(
(|uh|2p − |uih|2p)uh, vh

)
≤ 4λpS2S4S8S

2p−1
8(2p−1) ‖ f ‖

2p
−1,Ω |u

i
h − uh|1,Ω|vh|1,Ω. (4.7)

(ii) We now estimate the second term in the right-hand side of (4.5). Cauchy-Schwarz inequality gives(
|uih|2p(uh − uhi+1), vh

)
≤ ‖ uih

2p ‖L4(Ω)‖ ui+1
h − uh ‖L4(Ω)‖ vh ‖L2(Ω)

≤ ‖ uih ‖
2p
L8p(Ω)‖ u

i+1
h − uh ‖L4(Ω)‖ vh ‖L2(Ω) .

Applying (2.1) and (4.2), we obtain

λ
(
|uih|2p(uh − uhi+1), vh

)
≤ λS2S4S

2p
8p ‖ f ‖

2p
−1,Ω |u

i+1
h − uh|1,Ω|vh|1,Ω. (4.8)

Choosing vh = ui+1
h − uh and collecting (4.7) and (4.8) prove the desired estimate.
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4.2. Newton algorithm. Starting from an initial guess u0
h, construct the sequence (uih) in Xh such

that, for i ≥ 0, we have

ui+1
h = uih − [DFh(uh)]−1.F (uih). (4.9)

Applying (4.9) to problem (3.3), we obtain the following problem :

Find ui+1
h ∈ Xh such that

∀wh ∈ Xh (∇ui+1
h ,∇wh) + λ(2p+ 1)

(
(uih)2pui+1

h , wh
)

= 2λp
(
(uih)2p+1, wh

)
+ 〈f, wh〉. (4.10)

The existence and uniqueness of a solution to (4.10) is established due to the Lax-Milgram theorem.

In order to prove the convergence of the Newton's algorithm we apply [7], Chapter 4, Theorem 6.3, which
gives

Theorem 4.2. (The convergence Theorem). There exist α > 0 such that for h ≤ h0 and an initial
guess u0

h, in the ball with centre uh and radius α the Newton's algorithm (4.10) determines a unique
sequence (uih) in this ball that converges to the solution uh of problem (3.3). Furthermore the convergence
is quadratic :

‖ ui+1
h − uh ‖X≤ C ‖ uih − uh ‖2X .

5. A posteriori error analysis

We start this section by introducing some additional notation which is needed for constructing and
analyzing the error indicators in the sequel.

For any triangle K ∈ Th we denote by E(K) and N (K) the set of its edges and vertices respectively and
we set

Eh =
⋃

K∈Th

E(K) and Nh =
⋃

K∈Th

N (K).

With any edge E ∈ Eh we associate a unit vector n such that n is orthogonal to E. We split Eh and Nh
in the form

Eh = Eh,Ω ∪ Eh,∂Ω and Nh = Nh,Ω ∪ Eh,∂Ω

where Eh,∂Ω is the set of edges in Eh that lie on ∂Ω and Eh,Ω = Eh \ Eh,∂Ω. The same goes for Nh,∂Ω.

Furthermore, for K ∈ Th and E ∈ Eh, let hK and hE be their diameter and length respectively. An
important tool in the construction of an upper bound for the total error is Clément's interpolation operator
Rh with values in Xh. The operator Rh satis�es, for all v ∈ H1

0 (Ω), the following local aproximation
properties (see R. Verfürth, [11], Chapter 1) :

‖ v −Rhv ‖L2(K) ≤ ChK |v|1,∆K
,

‖ v −Rhv ‖L2(E) ≤ Ch
1/2
E |v|1,∆E

,

where ∆K and ∆E are the following sets :

∆K =
⋃ {

K ′ ∈ Th; K ′ ∩K 6= ∅
}

and ∆E =
⋃ {

K ′ ∈ Th; K ′ ∩ E 6= ∅
}
.

We now recall the following properties (see R. Verfürth, [11], Chapter 1) :

Proposition 5.1. Let r be a positive integer. For all v ∈ Pr(K), the following properties hold

C ‖ v ‖L2(K) ≤ ‖ vψ1/2
K ‖L2(K) ≤ ‖ v ‖L2(K) , (5.1)

|v|1,K ≤ Ch−1
K ‖ v ‖L2(K) . (5.2)

where ψK is the triangle-bubble function (equal to the product of the barycentric coordinates associated
with the nodes of K).
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Finally, we denote by [vh] the jump of vh across the common edge E of two adjacent elements K,K ′ ∈ Th.
We have now provided all prerequisites to establish an upper bound for the total error. Let ui+1

h and u be
the solution of the iterative problem and the continuous problem respectively. They satisfy the identity∫

Ω

∇(ui+1
h − u)∇vdx =

∫
Ω

∇ui+1
h ∇vdx+ λ

∫
Ω

|u|2puvdx−
∫

Ω

fvdx. (5.3)

We now start the a posteriori analysis of the �xed-point algorithm.

5.1. Fixed-point algorithm. In order to prove an upper bound of the error, we �rst introduce an
approximation fh of the data f which is constant on each element K of Th. Then, we distinguish the
discretization and linearization errors. We �rst write the residual equation∫

Ω

∇u∇vdx+ λ

∫
Ω

|u|2puvdx−
∫

Ω

∇ui+1
h ∇vdx− λ

∫
Ω

|uih|2pui+1
h vdx

=

∫
K

(f − fh)(v − vh)dx+
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h )(v − vh)dx (5.4)

−1

2

∑
E∈Eh,Ω

∫
E

[
∂ui+1

h

∂n
](v − vh)dτ

}
,

where τ denotes the tangential coordinate on ∂K.

We let the ∆ui+1
h here and afterwards for a better understanding and also in view of the extension to

higher order �nite elements but it vanishes since we are working with piecewise a�ne functions.

By adding and subtracting λ

∫
Ω

|ui+1
h |

2pui+1
h vdx, we obtain∫

Ω

∇u∇vdx+ λ

∫
Ω

|u|2puvdx−
∫

Ω

∇ui+1
h ∇vdx− λ

∫
Ω

|ui+1
h |

2pui+1
h vdx

=

∫
K

(f − fh)(v − vh)dx+
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h )(v − vh)dx (5.5)

−1

2

∑
E∈Eh,Ω

∫
E

[
∂ui+1

h

∂n
](v − vh)dτ

}
+ λ

∫
Ω

(
|uih|2p − |ui+1

h |
2p
)
ui+1
h vdx.

We now de�ne the local linearization indicator η
(L)
K,i and the local discretization indicator η

(D)
K,i by :

η
(L)
K,i = |ui+1

h − uih|1,K ,(
η

(D)
K,i

)2
= h2

K ‖ fh + ∆ui+1
h − λ|uih|2pu

i+1
h ‖2L2(K) +

∑
E∈Eh,Ω

hE ‖ [
∂ui+1

h

∂n
] ‖2L2(E) .

Assumption 5.2. The solution ui+1
h of problem (4.1) is such that the operator Id + SDG(ui+1

h ) is an
isomorphism of H1

0 (Ω)

Remark 5.3. Owing to the convergence Theorem 4.1, where C1 > 0 and C2C
−1
1 < 1, Assumption 5.2 is

easily derived from the fact that Id+ SDG(u) is an isomorphism when h is small enough.

We can now state the �rst result of this section :

Theorem 5.4. Upper bound. Let ui+1
h and uh be the solution of the iterative problem (4.1) and the

discrete problem (3.1) respectively. Suppose that the solution ui+1
h satis�es Assumption 5.2. Then, there

exists a neighbourhood O of u such that the solution ui+1
h in O satis�es the following a posteriori error

estimate

|ui+1
h − u|1,Ω ≤ C

( ∑
K∈Th

(
(
η

(D)
K,i

)2
+ h2

K ‖ f − fh ‖2L2(K))

)1/2

+

( ∑
K∈Th

(
η

(L)
K,i

)2)1/2

.



A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR A NONLINEAR PROBLEM 9

Proof. Owing to Lemma 3.3 and Assumption 5.2, it follows from [10] that, for any ui+1
h in a appropriate

neighbourhood O of u

|ui+1
h − u|1,Ω ≤ C ‖ ui+1

h + SG(ui+1
h ) ‖−1,Ω . (5.6)

By introducing F (u) in (5.6), and from equation (5.5), we obtain

|ui+1
h − u|1,Ω ≤ C

(
sup

v∈H1
0 (Ω)

inf
vh∈H1

0,h(Ω)

〈f − fh, v − vh〉+ 〈J , v − vh〉
|v|1,Ω

+ sup
v∈H1

0 (Ω)

λ

∫
Ω

(
|uih|2p − |ui+1

h |
2p
)
ui+1
h v dx

|v|1,Ω

)
(5.7)

where 〈J , v − vh〉 =
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h )(v − vh) dx

−1

2

∑
E∈Eh,Ω

∫
E

[
∂ui+1

h

∂n
](v − vh) dτ

}
.

Using lemma 2.4, we majorate the second term of the right hand side of (5.7) by ηL. Hence, taking vh
equal to the Clément operator Rhv in (5.7), we obtain the desired estimate.

We address now the e�ciency of the previous indicators.

Theorem 5.5. Lower bound. For each K ∈ Th, there holds

η
(L)
K,i ≤ ‖ uih − u ‖1,ωK

+ ‖ ui+1
h − u ‖1,ωK

,

η
(D)
K,i ≤ C

(
‖ uih − u ‖1,ωK

+ ‖ ui+1
h − u ‖1,ωK

+
∑
κ⊂ωK

hκ ‖ f − fh ‖L2(κ)

)
,

where ωK is the union of the triangles sharing at least one edge with K.

Proof. The estimation of the linearization indicator follows easily from the triangle inequality by intro-

ducing u in η
(L)
K,i. We now estimate the discretization indicator η

(D)
K,i . We proceed in two steps :

(i) We start by adding and subtracting λ

∫
Ω

|uih|2pui+1
h vdx and λ

∫
Ω

|ui+1
h |

2pui+1
h vdx in (5.3). Using the

integration by parts we get∑
K∈Th

∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h )vdx =

∫
Ω

∇(ui+1
h − u)∇vdx−

∑
K∈Th

∫
K

(f − fh)vdx

+
1

2

∑
E∈Eh,Ω

h
1/2
E

∫
E

[
∂ui+1

h

∂n
]vdτ + λ

∫
Ω

(|u|2pu− |ui+1
h |

2pui+1
h )vdx+ λ

∫
Ω

ui+1
h (|ui+1

h |
2p − |uih|2p)vdx.

(5.8)
We choose v = vK such that

vK =

{
(fh + ∆ui+1

h − λ|uih|2pu
i+1
h )ψK sur K

0 sur Ω \K

where ψK is the triangle-bubble function.

Using Cauchy-Schwarz inequality, (2.1), (5.1) and (5.2) we obtain

‖ fh + ∆ui+1
h − λ|uih|2pu

i+1
h ‖2L2(K)

≤ (1 + λC ‖ f ‖2p−1,Ω) ‖ u− ui+1
h ‖1,K |vK |1,K+ ‖ f − fh ‖L2(K)‖ vK ‖L2(K)

+λC ‖ f ‖2p−1,Ω‖ u
i
h − ui+1

h ‖1,K |vK |1,K . (5.9)

Therefore, we get the following estimate of the �rst term of the local discretization estimator η
(D)
K,i

hK ‖ fh + ∆ui+1
h − λ|uih|2pui+1

h ‖L2(K)≤ C(‖ u− ui+1
h ‖1,K +hK ‖ f − fh ‖L2(K)) + C ′η

(L)
K,i (5.10)
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where C ′ = λC ‖ f ‖2p−1,Ω .

(ii) Now we estimate the second term of ηD,K . Similarly, using (5.8) we infer

1

2

∑
E∈Eh,Ω

h
1/2
E

∫
E

[
∂ui+1

h

∂n
]v dτ =

∫
Ω

∇(u− ui+1
h )∇vdx+

∑
K∈Th

∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h )vdx (5.11)

−
∫

Ω

(f − fh)vdx− λ
∫

Ω

(|ui+1
h |

2pui+1
h − |uih|2pui+1

h )vdx− λ
∫

Ω

(|u|2pu− |ui+1
h |

2pui+1
h )vdx.

We choose v = vE such that

vE =

 LE,κ

([
∂ui+1

h

∂n

]
ψE

)
κ ∈ {K,K ′}

0 sur Ω \ (K ∪K ′)
where ψE is the edge-bubble function, K ′ denotes the other element of Th that share E with K and LE,κ
is a lifting operator from E into κ constructed by a�ne transformation from a �xed lifting operator on
the reference element.

Using Cauchy-Schwarz inequality, (2.1), (5.1) and (5.2) we get

h
1/2
E ‖

[∂ui+1
h

∂n

]
‖2L2(E)

≤ (1 + λC ‖ f ‖2p−1,Ω) ‖ u− ui+1
h ‖1,K∪K′‖ vE ‖L2(E) +hE ‖ f − fh ‖L2(K∪K′)‖ vE ‖L2(E) (5.12)

+hE ‖ fh + ∆ui+1
h − λ|uih|2pui+1

h ‖L2(K∪K′)‖ vE ‖L2(K∪K′) +C ′η
(L)
K,i|vE |1,K∪K′ .

Collecting the two bounds above leads to the following estimation

η
(D)
K,i ≤ C

(
‖ u− ui+1

h ‖1,ωK
+
∑
κ⊂ωK

hκ ‖ f − fh ‖L2(κ)

)
+ 2C ′η

(L)
K,i.

Since
η

(L)
K,i = |ui+1

h − uih|1,K ≤ |ui+1
h − u|1,K + |uih − u|1,K ,

we obtain the �nal result

η
(D)
K,i ≤ C

(
‖ u− uih ‖1,ωK

+ ‖ u− ui+1
h ‖1,ωK

+
∑
κ⊂ωK

hκ ‖ f − fh ‖L2(κ)

)
.

These estimates of the local linearization and discretization indicators are fully optimal.

5.2. Newton algorithm. Here, our purpose is to analyze the a posteriori estimation error of the Newton
algorithm.

We �rst write the residual equation

∫
Ω

∇u∇vdx+ λ(2p+ 1)

∫
Ω

|u|2puvdx− 2λp

∫
Ω

u2p+1vdx

−
∫

Ω

∇ui+1
h ∇vdx− λ(2p+ 1)

∫
Ω

|uih|2pui+1
h vdx+ 2λp

∫
Ω

(uih)2p+1vdx

=
∑
K∈Th

∫
K

(f − fh)(v − vh)dx+
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ(2p+ 1)|uih|2pui+1

h + 2λp(uih)2p+1)(v − vh)dx

−1

2

∑
E∈Eh,Ω

∫
E

[
∂ui+1

h

∂n
](v − vh)dτ

}
. (5.13)

Adding and subtracting λ(2p+ 1)

∫
Ω

|ui+1
h |

2pui+1
h vdx and 2λp

∫
Ω

(ui+1
h )2p+1vdx, we obtain
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Ω

∇u∇vdx+ λ(2p+ 1)

∫
Ω

|u|2puvdx− 2λp

∫
Ω

u2p+1vdx

−
∫

Ω

∇ui+1
h ∇vdx− λ(2p+ 1)

∫
Ω

|ui+1
h |

2pui+1
h vdx+ 2λp

∫
Ω

(uhi+ 1)2p+1vdx

=
∑
K∈Th

∫
K

(f − fh)(v − vh)dx+
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ(2p+ 1)|uih|2pui+1

h + 2λp(uih)2p+1)(v − vh)dx

−1

2

∑
E∈ΥK

h
1/2
E

∫
E

[
∂ui+1

h

∂n
](v − vh)dτ

}
+ 2λp

∫
Ω

((uih)2p+1 − (ui+1
h )2p+1)vdx (5.14)

+λ(2p+ 1)

∫
Ω

ui+1
h (|ui+1

h |
2p − |uih|2p)vdx.

We de�ne now the linearization estimator ηL,K and the local discretization indicator η
(D)
K,i

η
(L)
K,i = |ui+1

h − uih|1,K ,(
η

(D)
K,i

)2
= h2

K ‖ fh + ∆ui+1
h − λ(2p+ 1)|uih|2pu

i+1
h + 2λp(uih)2p+1 ‖2L2(K) +

∑
E∈Eh,Ω

hE ‖ [
∂ui+1

h

∂n
] ‖2L2(E)

Remark 5.6. Despite their complex aspect, all these indicators are easy to compute.

We consider now the following C1 mapping

G̃ : V → W

w 7→ G̃(w) = f − λ(2p+ 1)|w|2pw + 2λpw2p+1,

and we set

F̃ (u) = u− SG̃(u). (5.15)

We consider the �nite dimensional approximation of a solution u ∈ V of the equation F̃ (u) = 0.

Lemma 5.7. There exists a neighborhood V and a real number L̃ > 0 such that the following Lipschitz
property holds

∀w ∈ V, ‖ S
(
DG̃(u)−DG̃(w)

)
‖L(H1

0 (Ω))≤ L̃|u− w|1,Ω.

Proof. We have

‖ S
(
DG̃(u)−DG̃(w)

)
‖L(H1

0 (Ω))≤‖ DG̃(u)−DG̃(w) ‖L(H−1(Ω)) . (5.16)

We observe that for any z ∈ H1
0 (Ω),

DG̃(u).z −DG̃(w).z = 2λp(2p+ 1)
(
|w|2p−1 − |u|2p−1

)
z − 2λp(2p+ 1)

(
|w|2p − |u|2p

)
z. (5.17)

Combining (5.16), (5.17) with Lemma 2.4 yields the desired property.

Assumption 5.8. The solution ui+1
h of problem (4.10) is such that the operator Id+ SDG̃(ui+1

h ) is an
isomorphism of H1

0 (Ω) ( see Remark 5.3).

We can now state the �rst result of this section :

Theorem 5.9. Upper bound. Let u and ui+1
h be the solution of the continuous problem and the iterative

problem respectively. We have the following estimation

|ui+1
h − u|1,Ω ≤

( ∑
K∈Th

((
η

(D)
K,i

)2
+ h2

K ‖ f − fh ‖2L2(K)

))1/2

+

( ∑
K∈Th

(
η

(L)
K,i

)2)1/2

,

where C is a constant that depends on λ, p, f and u0.

Proof. Owing to Lemma 5.7 and Assumption 5.8, it follows from [10] that, for any ui+1
h in a appropriate

neighbourhood O of u

|ui+1
h − u|1,Ω ≤ C ‖ ui+1

h + SG̃(ui+1
h ) ‖−1,Ω . (5.18)
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By introducing F̃ (u) in (5.18), and from equation (5.14), we obtain

|ui+1
h − u|1,Ω

≤ C
(

sup
v∈H1

0 (Ω)

inf
vh∈H1

0,h(Ω)

〈f − fh, v − vh〉+ 〈J̃ , v − vh〉
|v|1,Ω

+ sup
v∈H1

0 (Ω)

λ(2p+ 1)

∫
Ω

(
|uih|2p − |ui+1

h |
2p
)
ui+1
h v dx

|v|1,Ω
(5.19)

+ sup
v∈H1

0 (Ω)

2λp

∫
Ω

(
|uih|2p+1 − |ui+1

h |
2p+1

)
v dx

|v|1,Ω

)
where 〈J̃ , v − vh〉 =

∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ(2p+ 1)|uih|2pui+1

h + 2λp(uih)2p+1)(v − vh)dx

−1

2

∑
E∈Eh,Ω

∫
E

[
∂ui+1

h

∂n
](v − vh) dτ

}
.

We now estimate the last two terms of the right-hand side of equation (5.19).

As previously, λ(2p+ 1)

∫
Ω

ui+1
h (|ui+1

h |
2p − |uih|2p)vdx is estimated as follows

λ(2p+ 1)

∫
Ω

ui+1
h (|ui+1

h |
2p − |uih|2p)vdx ≤ λ(2p+ 1)S′C|ui+1

h − uih|1,Ω|v|1,Ω (5.20)

with S′ = 4pS2S4S8S
2p−1
8(2p−1).

As well, using Cauchy-Schwarz inequality, Lemma 2.4 and inequality (2.1) yield

2λp

∫
Ω

((uih)2p+1 − (ui+1
h )2p+1)vdx ≤ 2(2p+ 1)CλpS2S

2
4 |ui+1

h − uih|1,Ω|v|1,Ω. (5.21)

Hence, taking vh equal to the Clément operator Rhv , we obtain the desired estimate.

Our purpose now is to prove the e�ciency of our indicators.

Theorem 5.10. Lower bound. For each K ∈ Th, there holds

η
(L)
K,i ≤ ‖ uih − u ‖1,ωK

+ ‖ ui+1
h − u ‖1,ωK

,

η
(D)
K,i ≤ C

(
‖ uih − u ‖1,ωK

+ ‖ ui+1
h − u ‖1,ωK

+
∑
κ⊂ωK

hκ ‖ f − fh ‖L2(κ)

)
,

where ωK is the union of the triangles sharing at least one edge with K.

Proof. The estimation of the linearization indicator follows easily by introducing u in η
(L)
K,i.We now start

by estimating the discretization indicator η
(D)
K,i . We proceed in two steps :

(i) Adding and subtracting 2λp

∫
Ω

|uih|2p+1vdx, λ(2p+1)

∫
Ω

|uih|2pui+1
h vdx and λ(2p+1)

∫
Ω

|uih+1|2pui+1
h vdx

in (5.3) and using integration by parts leads to∑
K∈Th

∫
K

(fh+∆ui+1
h +λ(2p+1)|uih|2pui+1

h −2λp(uih)2p+1)vdx =

∫
Ω

∇(ui+1
h −u)∇vdx−

∑
K∈Th

∫
K

(f−fh)vdx

−1

2

∑
E∈Eh,Ω

h
1/2
E

∫
E

[
∂ui+1

h

∂n
]vdτ+λ

∫
Ω

(|u|2pu−|ui+1
h |

2pui+1
h )vdx+λ(2p+1)

∫
Ω

ui+1
h (|ui+1

h |
2p−|uih|2p)vdx

(5.22)

+2λp

∫
Ω

(
(uih)2p+1 − (ui+1

h )2p+1
)
vdx.
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We choose v = vK in (5.22) where

vK =

{
(fh + ∆ui+1

h + λ(2p+ 1)|uih|2pu
i+1
h − 2λp(uih)2p+1)ψK sur K

0 sur Ω \K

and ψK is the triangle-bubble function.

Using Cauchy-Schwarz inequality, (2.1), (5.1) and (5.2) we obtain

‖ (fh + ∆ui+1
h + λ(2p+ 1)|uih|2pu

i+1
h − 2λp(uih)2p+1) ‖2L2(K)

≤ (1 + λC) ‖ u− ui+1
h ‖1,K |vK |1,K+ ‖ f − fh ‖L2(K)‖ vK ‖L2(K)

+λC(4p+ 1) ‖ uih − ui+1
h ‖1,K |vK |1,K . (5.23)

Hence, we get the following estimation of the �rst term of the local discretization estimator η
(D)
K,i

hK ‖ (fh + ∆ui+1
h + λ(2p+ 1)|uih|2pu

i+1
h − 2λp(uih)2p+1) ‖L2(K)

≤ C(‖ u− ui+1
h ‖1,K +hK ‖ f − fh ‖L2(K)) + λC(4p+ 1)η

(L)
K,i. (5.24)

(ii) We now estimate the second term of η
(D)
K,i . Similarly, using (5.22) we infer

1

2

∑
E∈Eh,Ω

h
1/2
E

∫
E

[
∂ui+1

h

∂n
]vdτ

=

∫
Ω

∇(u− ui+1
h )∇vdx+

∑
K∈Th

∫
K

(fh + ∆ui+1
h + λ(2p+ 1)|uih|2pui+1

h − 2λp(uih)2p+1)vdx (5.25)

−
∫

Ω

(f − fh)vdx− λ
∫

Ω

(|u|2pu− |ui+1
h |

2pui+1
h )vdx+ λ(2p+ 1)

∫
Ω

ui+1
h (|ui+1

h |
2p − |uih|2p)vdx

+2λp

∫
Ω

((uih)2p+1 − (ui+1
h )2p+1)vdx.

We choose v = vE

vE =

 LE,κ

([
∂ui+1

h

∂n

]
ψE

)
κ ∈ {K,K ′}

0 sur Ω \ (K ∪K ′)

with the same notation as in the proof of Theorem 5.5.

Using Cauchy-Schwarz inequality, (2.1), (5.1) and (5.2) we get

h
1/2
E ‖ [

∂ui+1
h

∂n
] ‖2L2(E) ≤ (1 + λC) ‖ u− ui+1

h ‖1,K∪K′‖ vE ‖L2(E) +hE ‖ f − fh ‖L2(K∪K′)‖ vE ‖L2(E)

(5.26)

+hE ‖ (fh + ∆ui+1
h + λ(2p+ 1)|uih|2pui+1

h − 2λp(uih)2p+1) ‖L2(K∪K′)‖ vE ‖L2(K∪K′)

+λC(4p+ 1)η
(L)
K,i|vE |1,K∪K′ .

Collecting the two above bounds leads to the following estimation

η
(D)
K,i ≤ C

(
‖ u− ui+1

h ‖1,ωK
+
∑
κ⊂ωK

hκ ‖ f − fh ‖L2(κ)

)
+ 2λC(4p+ 1)η

(L)
K,i.

Since
η

(L)
K,i = |ui+1

h − uih|1,K ≤ |ui+1
h − u|1,K + |uih − u|1,K ,

we obtain the �nal result

η
(D)
K,i ≤ C

(
‖ u− uih ‖1,ωK

+ ‖ u− ui+1
h ‖1,ωK

+
∑
κ⊂ωK

hκ ‖ f − fh ‖L2(κ)

)
.
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6. Numerical results

In this section, we present numerical experiments for our nonlinear problem. These simulations have been
performed using the code FreeFem++ due to F. Hecht and O. Pironneau, see [8]. They are divided into
�ve main categories :

(1) a priori and a posteriori estimates for the �xed-point algorithm

(2) a priori and a posteriori estimates for the Newton algorithm

(3) comparison of the two algorithms

(4) mixed algorithm

(5) conclusion.

6.1. Fixed point algorithm.

6.1.1. A priori estimation. A �rst test case. We consider the domain Ω =]0, 1[2, each edge is divided
into N equal segments so that Ω is divided into N2 equal squares. We consider the theoretical solution
u = x(x− 1)y(y − 1)(x2 + y2)exy and the iterative algorithm 4.1.

We use the classical stopping criterion errL ≤ 10−7, where errL is de�ned by

errL =
|ui+1
h − uih|1,Ω
|ui+1
h |1,Ω

.

The convergence of our nonlinear problem depends on two parameters λ and p. In fact, big values of |u|2p
and λ lead to a divergence of our problem. Indeed, Theorem 4.1 ensures the convergence of the solution
of the iterative problem for small values of λ and p.

Figure 1 compares the exact solution with the estimated solution for N = 120, λ = 1 and p = 1.

Figure 1. Exact solution (left) and numerical solution (right) for N = 120, λ =
1 and p = 1.

Figure 2 presents the error curve as a function of h in logarithmic scales. We test the algorithm for the
number of segments N going from 80 to 120 with λ = 1 and p = 1. The slope is equal to 1.018.
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Figure 2. Error curve for N going from 80 to 120 with λ = 1 and p = 1.

6.1.2. A posteriori analysis. A second test case. In this section, we test our a posteriori error

estimates on our model problem. We consider the domain Ω =]−1, 1[2, the exact solution u = e−100(x2+y2)

and the same iterative algorithm as in the �rst test case. We de�ne two di�erent stopping criteria : the

classical one de�ned previously and the new criterion errL ≤ γη
(D)
i , with γ a positive parameter and

η
(D)
i de�ned by

η
(D)
i =

( ∑
K∈Th

(
η

(D)
K,i

)2)1/2

.

We give in Figure 3 a comparison of the estimated solution and the exact solution on an adaptively
re�ned mesh for λ = 2 and p = 1.

Figure 3. Exact solution (left) and numerical solution (right) for λ = 2 and p = 1.

Figures 4 to 7 show the evolution of the mesh (see [11], Introduction) using the �xed-point algorithm
with the new stopping criterion. In fact, an adaptive mesh re�nement can be outlined as follows :

For i ≥ 0,

(1) Construct an initial mesh Ti
(2) Solve the discrete problem on Ti
(3) For each element K in Ti compute the a posteriori error estimate.
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(4) If the estimated global error is su�ciently small then STOP. Otherwise re�ne the mesh and
return to step (2).

 

Figure 4. Mesh re�nement for
γ = 0.01 : 148 vertices

 

Figure 5. Mesh re�nement for
γ = 0.01 : 334 vertices

 

Figure 6. Mesh re�nement for
γ = 0.01 : 5083 vertices

 

Figure 7. Mesh re�nement for
γ = 0.01 : 9963 vertices

Figure 8 presents the error curve for uniform (red) and adaptive (blue) mesh re�nement using the new
stopping criterion with λ = 50 , p = 10 and γ = 10−3. We note that the error using an adaptive mesh is
much smaller than the error using an uniform mesh.

Figure 9 illustrates the performance of our new stopping criterion with γ = 0.01 by comparing it to the
classical stopping criterion errL ≤ 10−5. We can clearly observe that our new stopping criterion reduces
the number of iterations.
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Figure 8. Error curve as a
function of the vertices number
for λ = 50 and p = 10. Uniform
error (top), adaptive error (bot-
tom).
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Figure 9. Iterations number
as a function of the re�nement
level for λ = 50 and p = 10.
Classical criterion (top), new
criterion (bottom).

6.2. Newton algorithm.

6.2.1. A priori analysis. A �rst test case. In this section we consider the domain Ω =]0, 1[2 with
the theoretical solution u = x(x− 1)y(y − 1)(x2 + y2)exy.

We consider the iterative algorithm (4.10) and the classical stopping criterion errL =
|ui+1
h − uih|1,Ω
|ui+1
h |1,Ω

≤

10−7.

Figure 10 presents the error curve as a function of h in logarithmic scales. We test the algorithm for N
going from 80 to 120 with λ = 1 and p = 1. The slope is equal to 0.999.
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Figure 10. Error curve for N going from 80 to 120 with λ = 1 and p = 1.

In Table 1, we represent the error estimates that correspond to the mesh N = 200.
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Remark 6.1. In the sequel, we denote by div the divergence of the scheme (this means that the error of
the algorithm does not decrease).

PPPPPPPPλ
p

1 2 3 4 5 10

10−2 0.0131062 0.0131053 0.0131053 0.0131053 0.0131053 0.0131053
10−1 0.0131145 0.0131053 0.0131053 0.0131053 0.0131053 0.0131053
1 0.0131053 0.0131056 0.0131053 0.0131053 0.0131053 0.0131053
5 0.0131058 0.0131069 0.0131053 0.0131053 0.0131053 0.0131053
10 0.0131073 0.0131085 0.0131053 0.0131053 0.0131053 0.0131053
50 0.0131058 0.0131053 0.0131053 0.0131053 0.0131053 0.0131053
102 0.0131095 0.0131053 0.0131053 0.0131053 0.0131053 0.0131053
103 div 0.0131053 0.0131053 0.0131053 0.0131053 0.0131053
104 div 0.0131055 0.0131053 0.0131053 0.0131053 0.0131053
105 div div 0.013127 0.0131053 0.0131053 0.0131053
106 div div 0.0153185 0.0131053 0.0131053 0.0131053
107 div div div 0.0131053 0.0131053 0.0131053
108 div div div 0.0131053 0.0131053 0.0131053
109 div div div div 0.0131053 0.0131053
1010 div div div div 0.0131053 0.0131053

Table 1. Error estimates for N = 200.

6.2.2. A posteriori analysis. A second test case. In this section, we test our a posteriori error

estimates on our model problem. We consider the domain Ω =]−1, 1[2, the exact solution u = e−100(x2+y2)

and the same iterative algorithm as in the �rst test case. We de�ne two di�erent stopping criteria :

ηL ≤ η∗,

ηL ≤ γη
(D)
i ,

with γ a positive parameter and with the same de�nition for η
(D)
i as previously.

Figure 11 compares the exact solution with the estimated solution for λ = 10 and p = 1.

Figure 11. Exact solution (left) and numerical solution (right) after the mesh re�ne-
ment for λ = 10 and p = 1.
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Figures 12 to 15 show the evolution of the mesh using the Newton algorithm with the new stopping

criterion (ηL ≤ γη(D)
i ).

 

Figure 12. Mesh re�nement :
147 vertices

 

Figure 13. Mesh re�nement :
320 vertices

 

Figure 14. Mesh re�nement :
4896 vertices

 

Figure 15. Mesh re�nement :
9599 vertices

Figure 16 presents the error curve for uniform (red) and adaptive (blue) mesh re�nement using the new
stopping criterion with λ = 10 , p = 1 and γ = 10−3. We note that the error using an adaptive mesh is
much smaller than the error using an uniform mesh.

Finally, Figure 17 illustrate the performance of our new stopping criterion for the Newton iteration by
comparing it to a more classical stopping criterion,
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Figure 16. Error curve as a
function of the vertices number
for λ = 10 and p = 1. Uniform
error (top), adaptive error (bot-
tom).

N
u

m
b

er
 o

f 
it

er
at

io
n

s 

New 
Class 

Refinement level 

Figure 17. Number of itera-
tions as a function of the re-
�nement level for λ = 10 and
p = 1. Classical criterion (top),
new criterion (bottom).

6.3. Comparison of the algorithms. In this section our purpose is to compare the �xed-point algo-
rithm with the Newton algorithm using adaptively re�ned meshes. Figure 18 illustrate the performance
of the Newton algorithm with an initial guess u0

h = 0.03. When comparing the two methods, Newton's
method requires only two iterations for all considered re�nement level, whereas the �xed-point algorithm
requires 10 iterations in the �rst re�nement level and does not go beneath 4 for the rest levels. It is clear
that the method of Newton avoids performing an excessive number of iterations.
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Figure 18. Number of iterations for the new stopping criterion on adaptively re�ned
meshes with γ = 0.001. FPA algorithm (top), Newton's algorithm (bottom).

6.4. Mixed Algorithm. As we saw in this section, the main advantage of the Newton's algorithm is
that it converges faster than the �xed-point algorithm. However, the choice of the initial data in Newton's
method is quite important, an initial guess u0

h that is not close to the theoretical solution can lead to the
divergence of our problem. Thus, in order to eliminate this drawback we propose a mixed algorithm. In
fact, we bene�t from the advantages of both algorithms. We start the �rst iteration by the �xed-point
method and we continue the iterative process using the Newton's algorithm. The following table provides
the CPU time of the convergence of each algorithm.
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Initial data u0
h Newton algorithm Fixed point algorithm Mixed algorithm

0.5 3.33 s 8.145 s 4.866 s
1.5 div 8.142 s 4.812 s
1.6 div 8.149 s 4.81 s
1.7 div 8.162 s 4.787 s
1.8 div 8.147 s 4.796 s
1.9 div 8.163 s 4.797 s
2 div 8.149 s 4.799 s
2.5 div 8.145 s 4.784 s

Table 2. CPU time in seconds of the convergence of each algorithm.

6.5. Conclusion. We have presented in this work an applied treatment of a posteriori error estimation
for �nite element approximation of the nonlinear problem (1.1). In order to solve the discrete problem we
proposed two di�erent methods : the �xed-point algorithm and the Newton algorithm. Thus, two sources
of error appear, the linearization error and the discretization error. Balancing these two errors is very
important ; in fact, it avoid performing an excessive number of iterations. As well, this analysis can be
applied for many other nonlinear problems. Furthermore, we have compared the two di�erent iteration
algorithms ; in fact, the Newton's algorithm converges faster than the �xed-point algorithm. However,
the choice of the initial data in Newton's method is quite important. The results are presented in Table
2.
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