
HAL Id: hal-00918896
https://hal.sorbonne-universite.fr/hal-00918896v1

Preprint submitted on 16 Dec 2013 (v1), last revised 16 Jan 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A linearized approach to worst-case design in parametric
and geometric shape optimization

Grégoire Allaire, Charles Dapogny

To cite this version:
Grégoire Allaire, Charles Dapogny. A linearized approach to worst-case design in parametric and
geometric shape optimization. 2013. �hal-00918896v1�

https://hal.sorbonne-universite.fr/hal-00918896v1
https://hal.archives-ouvertes.fr


A LINEARIZED APPROACH TO WORST-CASE DESIGN IN PARAMETRIC AND

GEOMETRIC SHAPE OPTIMIZATION

G. ALLAIRE 1, C. DAPOGNY2,3
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Abstract

The purpose of this article is to propose a deterministic method for optimizing a structure with respect
to its worst possible behavior when a ‘small’ uncertainty exists over some of its features. The main idea
of the method is to linearize the considered cost function with respect to the uncertain parameters, then
to consider the supremum function of the obtained linear approximation, which can be rewritten as a more
‘classical’ function of the design, owing to standard adjoint techniques from optimal control theory. The
resulting ‘linearized worst-case’ objective function turns out to be the sum of the initial cost function and of
a norm of an adjoint state function, which is dual with respect to the considered norm over perturbations.
This formal approach is very general, and can be justified in some special cases. In particular, it allows to
address several problems of considerable importance in both parametric and shape optimization of elastic
structures, in a unified framework.
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1. Introduction

As idealized visions of reality, most optimization frameworks assume a complete knowledge of the param-
eters and data of the underlying model. Unfortunately, for a lot of reasons, physical parameters involved in
realistic applications are hardly ever known with such exactness, and the feasibility and optimality of the
solution to an optimization problem can be tremendously jeopardized by slight variations in the data. In
this spirit, an example of the less compliant microstructure for an elastic composite material submitted to a
particular set of traction loads is given in [9], which is infinitely compliant when submitted to any load with
a different orientation (see also [4] for a discussion about the sensitivity of linear programming problems
with uncertain parameters).

In the more specific context of shape optimization of elastic structures, which is at stake in this paper,
optimization problems may be plagued by (at least) three very different types of uncertainties:

• Uncertainties about the location, magnitude and orientation of the body forces or surface loads exerted
on shapes: not to mention the fact that they are generally known through error-prone measurements,
these external stresses are affected by the outer medium, which may itself undergo unknown pertur-
bations.

• Uncertainties about the elastic material’s properties: changes in the conditions in the considered
medium (temperature, humidity, etc...) may alter the material’s stiffness. On a different note,
the material’s properties could also be perturbed during its manufacturing process, in which small
inclusions of ‘parasitic’ phases may accidentally occur.

• Uncertainties about the geometry of the shape itself: due to wear, or to the manufacturing process,
the geometry of the shape may cease to be (or may not be from the beginning) the one which was
initially forecast.

Robust design has been paid much attention in shape and topology optimization (and in optimization in
general). Depending on the available information regarding the uncertainties, the question has been studied
from two distinct perspectives.

On the one hand, many authors assume the knowledge of a probabilistic distribution (which is often
obtained via statistical studies) as for the behavior of perturbations around an unperturbed state; see
for instance [19, 28] and references therein. Then, the mean value of the considered objective criterion
[13, 27], or a weighted sum of its mean value and standard deviation [8, 18] are minimized to guarantee
a fine performance, which is relatively independent of the perturbations. Other approaches, referred to as
reliability-based approaches (see the overview in [11]) put the emphasis on ensuring that constraints are
satisfied in all the possible perturbed configurations. Such a requirement is often modeled under the form
of upper bound constraints on so-called failure probabilities. Regardless of the particular considered model,
such probabilistic methods generally prove very costly, since they imply repeated evaluations of the mean
value or standard deviation of the objective function, or probabilities of violation of constraint functions.
This is generally achieved by (expensive) sampling methods (e.g. Monte-Carlo methods), which may be sped
up by relying on first or second order approximations of the constraint functions; see e.g. [11] about the
so-called First-Order Reliability-based Methods (FORM), and [26] for an example of use in the context of
structural optimization.

On the other hand, when no information is available on the expected perturbations but for bounds on their
magnitude, so-called worst-case designs approaches are preferred. The problem can then be rephrased either
as that of minimizing the worst value of the objective function among all the perturbed designs [10, 20, 29],
or guaranteeing that constraints are fulfilled by every such design [21] (the latter approach being called
confidence optimization). Such problems are generally formulated as bilevel ‘min-max’ problems [22]: a first
problem consists in finding the worst-case perturbation for a given design, then a second one is about finding
the optimal design with respect to this supremum criterion. Of course, worst-case design problems are very
difficult and computationally expensive in full generality (see for instance [29] for a reduced-basis method
adapted to a worst-case design problem). They cannot be solved without resorting to approximations, except
in a few very specific cases; see [10, 20] about the important problem of finding the less compliant shape
under uncertainties on the body forces. On the theoretical side, worst-case functionals have recently been
studied, for instance in [24], where conditions are given for such min-max problems to admit at least one
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solution. In [25], it is shown that the concept of topological derivative is robust when the linear elasticity
system at play undergoes ‘small’ perturbations.

The aim of this paper is to propose a unified framework for the worst-case design of elastic structures,
with respect to ‘small’ perturbations on the applied body forces and surface loads, on the material’s prop-
erties and on the geometries of the structures. More precisely, a formal and rather inexpensive approach is
presented for the minimization of the maximum value of a given criterion under the assumption of ‘small
amplitude’ perturbations. Note that we do not attempt to tackle the so-called ‘confidence worst-case design’
approach, which would ask constraints to be satisfied for all the perturbed designs, but claim that the same
philosophy would allow to deal with them. The starting ingredient of our approach is to take advantage
of the smallness of the perturbations and thus to linearize the cost function with respect to perturbations
around the unperturbed configuration. The maximum value of the resulting linear functional among all
possible perturbations can be explicitly computed, and is then optimized. This idea is quite natural and it
has already been used in some specific cases (for example, [21] considers the case of compliance minimization
under geometric uncertainties). Our approach is however systematic and very general. It is formal, for there
is a priori no guarantee that the supremum of the linearized cost function should be close to the real worst
value of the original criterion. Yet, we shall see that, in some cases, it can be rigorously justified and admits
physical interpretation. Besides, in general, it should provide valuable help in discerning ‘trends’ towards
robustness with respect to perturbations of various kinds.

This article is organized as follows: Section 2 opens the discussion with a presentation of the general
philosophy of the proposed method in a formal, abstract framework. This method is then carried out in
Section 3, in the simpler situation of (parametric) optimization of the thickness of an elastic plate, which
already features almost all the salient features of the approach; then, it is used in shape optimization in
Section 4. Then, some numerical examples and discussions are proposed in Section 5 to appraise the efficiency
of the proposed method, and some technical details are supplied concerning the proposed implementation.

2. General setting and main notations

This very informal section presents the generic worst-case optimization problem addressed in this paper,
and exposes the main ideas of the proposed approach to deal with it. In the meantime, some notations are
introduced.

Let H be a set of admissible designs among which the ‘best’ element is sought, with respect to a prescribed
criterion or cost function C(u(h)), depending on h ∈ H via the solution (or state) u(h) to a system where h
acts as a parameter, say:

(1) A(h)u(h) = b.

In this system, the right-hand side b represents the data (typically the applied loads). In the applications
ahead, H will stand for either a space of design parameters - like the properties of an elastic material, or the
thickness of a plate (see Section 3) - or for a space of geometric shapes (see Section 4).

The system (1) may undergo perturbations that affect the state u(h), thus spoiling the performance of
the corresponding design h ∈ H. The set P of such perturbations is assumed to be a Banach space, with
norm ||.||P , and we only assume that the expected perturbations have ‘small’ maximum norm m > 0.

To keep things simple, let us assume that these perturbations only affect the right-hand side of (1), i.e.
b = b(δ), δ ∈ P. As we shall see, this is the case when the optimal thickness (resp. shape) of an elastic plate
(resp. structure) is sought under uncertainties over the applied external body forces or traction loads. The
state u = u(h, δ) is now solution to:

(2) A(h)u(h, δ) = b(δ).

By convention, the case δ = 0 accounts for the unperturbed situation, and we shall indifferently denote by
u(h, 0) or u(h) the corresponding state when the context is clear. The associated worst-case optimization
problem consists in minimizing the functional J : H → R, defined as the maximum value reached by the
cost function C(u(h, δ)) for all the potential perturbations δ ∈ P, i.e.

∀h ∈ H, J (h) = sup
δ∈P

||δ||P≤m

C(u(h, δ)).
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Taking advantage of the assumption that the amplitude m of the exerted perturbations is small, and since we
claimed that this problem is difficult to solve as such in general, we propose to trade it for that of minimizing

another functional J̃ , obtained from J by linearizing the dependence of C(u(h, δ)) on δ before evaluating
the supremum:

(3) ∀h ∈ H, J̃ (h) = sup
δ∈P

||δ||P≤m

(
C(u(h)) +

dC

du
(u(h))

∂u

∂δ
(h, 0)(δ)

)
,

where dC
du

stands for the (total) differential of C with respect to u, and ∂u
∂δ

is the (partial) differential of u with

respect to δ. Note that the application δ 7→
(
C(u(h)) + dC

du
(u(h))∂u

∂δ
(h, 0)(δ)

)
is affine by construction, since

it only involves differentials of functions. Now, the supremum in formula (3) can be computed explicitly, in
terms of the norm ||.||Q of another Banach space Q:

(4) ∀h ∈ H, J̃ (h) = C(u(h)) +m

∣∣∣∣
∣∣∣∣
dC

du
(u(h))

∂u

∂δ
(h, 0)

∣∣∣∣
∣∣∣∣
Q

.

Here, Q refers to either the dual space of P (i.e. Q = P∗) or to the pre-dual space of P (i.e. P = Q∗). In
the former case, (4) is a consequence of the definition of the definition of the dual norm, and in the latter
one, it is a corollary of Hahn-Banach’s theorem [5].

The resulting expression is still not explicit in terms of h, for it involves the sensitivity ∂u
∂δ

(h, 0) of the
solution to the state equation with respect to perturbations. However, classical techniques in optimal control
theory allow to make it explicit, up to the introduction of an adjoint state p(h), which arises as the solution
to an adjoint system very similar to (1):

(5) A(h)T p(h) =
dC

du
(u(h)),

where A(h)T stands for the adjoint operator to A(h), and we implicitly identified the differential dC
du

with
the gradient of C with respect to some dual pairing. Indeed, differentiating with respect to δ in (2) produces
a system for ∂u

∂δ
(h, 0):

A(h)
∂u

∂δ
(h, 0) =

db

dδ
(0);

using this latter equation in combination with the definition (5) of p(h) readily leads to:

dC

du
(u(h))

∂u

∂δ
(h, 0) =

(
A(h)T p(h)

)∂u
∂δ

(h, 0) =

(
A(h)

∂u

∂δ
(h, 0)

)
p(h) =

db

dδ
(0)p(h).

Eventually, J̃ rewrites as:

(6) J̃ (h) = C(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0)p(h)

∣∣∣∣
∣∣∣∣
Q

.

This last expression can be interpreted as follows: the approximate cost function J̃ (h) is an aggregated
sum of the unperturbed cost function C(u(h)) and a penalization of the perturbations || db

dδ
(0)p(h)||Q, the

penalization parameter m being precisely the expected magnitude of perturbations.
Of course, the above argument is very formal, since the involved expressions mix blithely the notions of

differential applications and gradients, as well as the spaces associated to perturbations, state variables, etc...
As we shall see, a significant part of the work consists in giving a precise meaning to this rough sketch.

Remark 1. It is no surprise that formula (6) for functional J̃ features the adjoint state p(h); it is indeed
well-known that the adjoint measures the sensitivity of the optimal cost function C with respect to perturbations
on the right-hand side of the state equation (1) (see e.g. [1], rem. 4.14 and 5.21).

The previous analysis leaves us with a more classical state-constrained optimization problem, save that
the functional to be minimized itself brings an adjoint state into play. The computation of the derivative of

J̃ can however be carried out as follows:
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• Derivating the part C(u(h)) in (6) does not pose any further difficulty: it is merely the unperturbed
cost function of the considered problem. Doing so involves the already introduced adjoint state p(h),
which accounts for the sensitivity of C with respect to its argument.

• Derivating the second part || db
dδ
(0)p(h)||Q is a little bit more tricky, and brings into play two further

adjoint states q(h) and z(h). The first one q(h) has nothing to do with p(h) and expresses the
sensitivity of the new ‘objective function’ || db

dδ
(0) · ||Q with respect to its argument. As we shall see,

even when the unperturbed optimization problem is self-adjoint (i.e. p(h) = ±u(h)), q(h) differs
from ±u(h). The second one z(h) describes the sensitivity of p(h) - that is, in some way, of dC

du
- and

typically involves second order derivatives of C with respect to its argument. When the unperturbed
problem is self-adjoint, z(h) happens to be equal to ±q(h).

Remark 2. For simplicity of the exposition, we did not consider the possibility that the problem of mini-

mizing J (or J̃ ) may be constrained. Actually, in the remainder of this article, we will only be considering
constraints on the volumes of structures, which are especially easy to enforce in our context (see Section
5). However, there is no theoretical difficulty in extending our approach to worst-case design problems with
confidence constraints, i.e. problems of the form:

min
h∈H

max
δ∈P

C(u(h, δ)) s.t. max
δ∈P

ci(u(h, δ)) ≤ 0, ∀i = 1, ..., N,

where ci are scalar-valued functions of the state u.

Notations. Throughout this article, we consistently denote as C the various cost functions under consider-
ation. Note that, contrary to the basic setting presented above, such cost functions may themselves depend
on the perturbations (which is not subsequently problematic). We will denote as J the associated worst-case

design functional, and as J̃ the approximate worst-case design functional, obtained by the aforementioned
linearization of the cost function.

3. Worst-case design in parametric optimization

3.1. Description of the model problem.

Throughout Section 3, we consider a thin linear elastic plate in plane stress situation, with Lipschitz
cross-section Ω ⊂ Rd (d = 2 in concrete applications) and positive thickness h ∈ L∞(Ω) (see Figure 1).

Ω
x •

h(x)•

ΓD
ΓN

g

Figure 1. Thin plate with cross section Ω and thickness h, clamped on a part of its
boundary corresponding to ΓD ⊂ ∂Ω, and submitted to transversal loads, applied on a part
associated to ΓN ⊂ ∂Ω.

From the plane stress assumption, the equilibrium equation of the plate can be written as a d-dimensional
system posed on Ω. More specifically, assume the plate is clamped on a part of its boundary, associated to
the subset ΓD of ∂Ω. Surface loads g ∈ L2(ΓN )d are applied on the complementary part ΓN := ∂Ω \ ΓD of
∂Ω. Denote also as f ∈ L2(Ω)d the body force exerted on the plate.
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The in-plane displacement function u belongs to the space H1
ΓD

(Ω)d, where we have defined:

H1
ΓD

(Ω) :=
{
u ∈ H1(Ω), u = 0 on ΓD

}
.

It arises as the unique solution in H1
ΓD

(Ω)d of the linear elasticity system in Ω:

(7)





−div(hAe(u)) = f in Ω
u = 0 on ΓD

hAe(u)n = g on ΓN

,

where e(u) = (∇uT +∇u)/2 is the strain tensor, n : ∂Ω → Sd−1 is the unit outer normal vector field to Ω,
A is the material Hooke’s law, defined for any e ∈ S(Rd) (the set of d× d real symmetric matrices) by

(8) Ae = 2µe+ λtr(e)I,

with the Lamé coefficients λ, µ, satisfying µ > 0 and λ+ 2µ/d > 0.
Our general purpose is to optimize the thickness h of the considered plate among a set Uad ⊂ L∞(Ω)

of admissible thickness functions, with respect to a criterion yet to be specified. Throughout Section 3, we
shall simply work with:

(9) Uad = {h ∈ L∞(Ω), s.t. a.e. x ∈ Ω, hmin ≤ h(x) ≤ hmax} ,

where 0 < hmin < hmax are prescribed lower and upper bounds for thickness functions. Depending on the
context, we may also need to impose a constraint on the volume of the plate; yet, to keep notations as
generic as possible, we chose not to incorporate it into the modeling of the present section (see Section 5 for
details about the numerical treatment of this constraint). Note also that it is customary to add a uniform
smoothness constraint on h in order to easily obtain an existence result for the optimal design problem. Since
existence of optimal designs is not the focus of the present paper, we ignore such smoothness constraints.

The remainder of Section 3 is now dedicated to illustrating the general guideline of Section 2 on a series
of model problems.

3.2. Worst-case design of an elastic plate under perturbations on the body forces.

Let us start our study with the optimization of the thickness of the considered plate in the worst-case
scenario when the applied body forces f are perturbed as f + ξ, for small ξ ∈ L2(Ω)d.

Let j : Rd
f × Rd

u → R be a function of class C2, which complies with the following growth conditions:

(10) ∀f ∈ Rd, u ∈ Rd,





|j(f, u)|≤ C(|f |2+|u|2)
|∇f j(f, u)|≤ C(|f |+|u|), |∇uj(f, u)|≤ C(|f |+|u|)
|∇2

f j(f, u)|≤ C, |∇f∇uj(f, u)|≤ C, |∇2
uj(f, u)|≤ C

,

for some positive constant C > 0. This function j could also depend on the space variable x ∈ Rd, without
any change in the following developments and conclusions; to keep notations simple, this dependence is
omitted (as will be the case in all the considered problems). Note that ∇uj(f, u) and ∇f j(f, u) are vectors
in Rd, and ∇2

f j(f, u), ∇f∇uj(f, u) = ∇2
uj(f, u) are d× d matrices.

To emphasize the dependence of the elastic displacement u on the plate thickness h and the body forces
f , we denote by uh,f ∈ H1

ΓD
(Ω)d the unique solution to problem (7) using these data. The cost function for

a plate of thickness h with loads f is then defined as:

(11) C(h, f) =

∫

Ω

j(f, uh,f ) dx.

To set ideas, we have only assumed this cost to depend on uh,f - and not on its gradient-, as an integral
expression on Ω - not on its boundary -, but it would be easy to generalize the discussion ahead to such
cases (see Section 4.4 and [14]).

Let us now fix f ∈ L2(Ω)d and g ∈ L2(ΓN )d. As in Section 2, when no confusion is possible, we will
denote indifferently uh = uh,f the solution to the unperturbed problem. The worst-case design problem in
our situation reads:

(12) min
h∈Uad

J (h), where J (h) = sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d

≤m

C(h, f + ξ).
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Following the general guideline of Section 2, we propose to trade problem (12) for a new one where C(h, f)
has been linearized with respect to f , namely:

(13) min
h∈Uad

J̃ (h), where J̃ (h) = sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d

≤m

(
C(h, f) +

∂C

∂f
(h, f)(ξ)

)
.

The main result of this section is an explicit formula for (13) and the computation of its derivative with
respect to the thickness h, thanks to the introductions of several adjoint problems.

Theorem 1. The functional J̃ , defined by (13) rewrites, for any h ∈ Uad, as

(14) J̃ (h) =

∫

Ω

j(f, uh) dx+m ||∇f j(f, uh)− ph||L2(Ω)d ,

where ph ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to

(15)





−div(hAe(p)) = −∇uj(f, uh) in Ω,
p = 0 on ΓD,

hAe(p)n = 0 on ΓN .

Let h ∈ Uad such that ∇f j(f, uh) − ph 6= 0 in L2(Ω)d. Then J̃ is Fréchet differentiable at h, and its
directional derivative reads, for any s ∈ L∞(Ω), as

(16) J̃ ′(h)(s) =

∫

Ω

D(uh, ph, qh, zh) s dx,

where

D(uh, ph, qh, zh) := Ae(uh) : e(ph) +
m

2 ||∇f j(f, uh)− ph||L2(Ω)d

(
Ae(uh) : e(zh) +Ae(ph) : e(qh)

)
.

In the last formula, the second, and third adjoint states qh, zh ∈ H1
ΓD

(Ω)d are defined as the unique solutions
to, respectively:

(17)





−div(hAe(q)) = −2 (ph −∇f j(f, uh)) in Ω,
q = 0 on ΓD,

hAe(q)n = 0 on ΓN ,

(18)





−div(hAe(z)) = −2∇f∇uj(f, uh)
T (∇f j(f, uh)− ph)−∇2

uj(f, uh)qh in Ω,
z = 0 on ΓD,

hAe(z)n = 0 on ΓN .

Proof. We first prove formula (14) for J̃ . Since the map f 7→ uh,f is linear and continuous from L2(Ω)d into

H1
ΓD

(Ω)d, it is obviously Fréchet differentiable. Applying the chain rule lemma to the computation of ∂C
∂f

,

we deduce from (13) the following formula for J̃ :

(19) J̃ (h) =

∫

Ω

j(f, uh)dx+ sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d

≤m

(∫

Ω

∇f j(f, uh) · ξ dx+

∫

Ω

∇uj(f, uh) ·
∂uh,f

∂f
(ξ) dx

)
.

To simplify the second term, let us use the variational formula for the derivative
∂uh,f

∂f
(ξ) obtained by

differentiating that of uh,f with respect to f . We get, for any ξ ∈ L2(Ω)d:

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

hAe

(
∂uh,f

∂f
(ξ)

)
: e(v) dx =

∫

Ω

ξ · v dx.

Now introduce the first adjoint state ph ∈ H1
ΓD

(Ω)d, the unique solution of (15). It comes from the associated
variational formulation that:

∫

Ω

−∇uj(f, uh,) ·
∂uh,f

∂f
(ξ) dx =

∫

Ω

hAe(ph) : e

(
∂uh,f

∂f
(ξ)

)
dx =

∫

Ω

ph · ξ dx.

7



In this view, (19) becomes:

(20)

J̃ (h) =

∫

Ω

j(f, uh) dx+ sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d

≤m

(∫

Ω

∇f j(f, uh) · ξdx−

∫

Ω

ph · ξ dx

)

=

∫

Ω

j(f, uh) dx+m ||∇f j(f, uh)− ph||L2(Ω)d

,

where the supremum with respect to ξ is achieved by ξ∗ = m(∇f j(f, uh)− ph)/ ||∇f j(f, uh)− ph||L2(Ω)d .

In a second step we prove that J̃ is differentiable with respect to the thickness h and we compute its
derivative. This is a classical issue and the whole problem of worst-case design with respect to an uncertainty
on the body forces has been concealed in the adjoint state ph. As expected, the first term in the right hand
side of (20) is the unperturbed cost function and its differentiation is a classical result recalled in Lemma 2
below. We obtain, for any s ∈ L∞(Ω),

(21)
∂

∂h

(∫

Ω

j(f, uh) dx

)
(s) =

∫

Ω

s Ae(uh) : e(ph) dx.

To be able to differentiate the second term ||∇f j(f, uh)− ph||L2(Ω)d , we have to assume that h is such that

∇f j(f, uh) − ph 6= 0 in L2(Ω)d. This is a reasonable hypothesis, meaning that the considered plate with
thickness h is not indifferent to a small perturbation on the applied body forces. Excluding such a case, and
using again Lemma 2 with a function ℓ(u, p) = |∇f j(f, u)− p|2, an elementary calculation yields

(22)
∂

∂h

(
||∇f j(f, uh)− ph||L2(Ω)d

)
(s) =

∫

Ω

s
(
Ae(uh) : e(zh) +Ae(ph) : e(qh)

)
dx

2 ||∇f j(f, uh)− ph||L2(Ω)d
,

where qh and zh are solutions of (17) and (18), respectively. Eventually, combining (21) and (22) delivers
the desired formula. �

In the proof of Theorem 1, we used the following general lemma for differentiating functionals depending
on h via uh and the adjoint state ph, solution to (15). For simplicity we shall not indicate the dependence
of the integrand j with respect to f .

Lemma 2. For h ∈ Uad, denote as uh ∈ H1
ΓD

(Ω)d the unique solution to problem (7).

(i) Let j : Rd → R be a function of class C1, which fulfills the growth conditions (10). Consider the
functional

K(h) =

∫

Ω

j(uh) dx.

Then K is Fréchet differentiable at any h ∈ Uad and its derivative reads, for any s ∈ L∞(Ω),

(23) K ′(h)(s) =

∫

Ω

sAe(uh) : e(ph) dx,

where the adjoint state ph ∈ H1
ΓD

(Ω)d is the unique solution of the system (15).

(ii) Suppose moreover that j is of class C2 and let ℓ : Rd
u ×Rd

p → R be a function of class C1, both of them
satisfying the growth conditions (10). Consider the functional

L(h) =

∫

Ω

ℓ(uh, ph) dx,

where ph is defined by (15). Then L is Fréchet differentiable at any h ∈ Uad and its derivative reads:

∀s ∈ L∞(Ω), L′(h)(s) =

∫

Ω

s
(
Ae(uh) : e(zh) +Ae(ph) : e(qh)

)
dx,

where qh ∈ H1
ΓD

(Ω)d is the unique solution to

(24)





−div(hAe(q)) = −∇pℓ(uh, ph) in Ω,
q = 0 on ΓD,

hAe(q)n = 0 on ΓN ,
8



and zh ∈ H1
ΓD

(Ω)d is the unique solution to

(25)





−div(hAe(z)) = −∇uℓ(uh, ph)−∇2
uj(uh)qh in Ω,

z = 0 on ΓD,
hAe(z)n = 0 on ΓN .

The proof of Lemma 2 requires the following well-known result about the differentiability of the solution
uh to (7) with respect to the thickness h. This is a classical result in optimal control theory, the proof
of which can be found e.g. in [1], or [23], Chap. 5 in a more general case, which is typically obtained by
applying the implicit function theorem.

Lemma 3. Let uh ∈ H1
ΓD

(Ω)d be the solution to (7). The mapping h 7→ uh, from Uad into H1
ΓD

(Ω)d, is
Fréchet differentiable.

Proof of Lemma 2. (i): This first point is again a classical result in optimal control theory. However, for
the sake of completeness, we briefly recall its derivation using Céa’s method [7]. By virtue of Lemma 3 the
application h 7→ uh is differentiable; as a consequence, the forthcoming argument is not only formal, as in
most cases where Céa’s method generally comes in handy. Introduce the Lagrangian L : Uad ×H1

ΓD
(Ω)d ×

H1
ΓD

(Ω)d → R, defined as:

(26) L(h, û, p̂) =

∫

Ω

j(û) dx+

∫

Ω

hAe(û) : e(p̂) dx−

∫

Ω

f · p̂ dx−

∫

ΓN

g · p̂ ds,

and let us search for the points (u, p) where the partial derivatives of L(h, ., .) cancel, for a given h ∈ Uad.
First, the cancellation of the derivative of L at (h, u, p) ∈ Uad × H1

ΓD
(Ω)d × H1

ΓD
(Ω)d with respect to p

reads:

(27) ∀p̂ ∈ H1
ΓD

(Ω)d,
∂L

∂p
(h, u, p)(p̂) =

∫

Ω

hAe(u) : e(p̂) dx−

∫

Ω

f · p̂ dx−

∫

ΓN

g · p̂ ds = 0,

which is just the variational formulation for problem (7); hence u = uh, solution to (7).
Next, cancelling the derivative of L with respect to u leads to the variational formulation for the adjoint

state:

(28) ∀û ∈ H1
ΓD

(Ω)d,
∂L

∂u
(h, u, p)(û) =

∫

Ω

∇uj(u) · û dx+

∫

Ω

hAe(û) : e(p) dx = 0,

which allows to identify p as ph defined by (15). By definition of uh, we now have:

∀h ∈ L∞(Ω), ∀p̂ ∈ H1
ΓD

(Ω)d, K(h) = L(h, uh, p̂).

Thus, differentiating this last expression with respect to h yields:

∀p̂ ∈ H1
ΓD

(Ω)d K ′(h)(s) =
∂L

∂h
(h, uh, p̂)(s) +

∂L

∂u
(h, uh, p̂)(

∂uh

∂h
(s)).

Now taking p̂ = ph in the previous expression and using (28) lead to:

K ′(h)(s) =
∂L

∂h
(h, uh, ph)(s).

Eventually, differentiating (26) with respect to h produces the desired formula (23).
(ii): Similarly, the application h 7→ ph is differentiable (again by virtue of Lemma 3). Let us introduce the
(different) Lagrangian L : Uad ×H1

ΓD
(Ω)d ×H1

ΓD
(Ω)d → R, defined as:

L(h, p̂, q̂) =

∫

Ω

ℓ(uh, p̂) dx+

∫

Ω

hAe(p̂) : e(q̂) dx+

∫

Ω

∇uj(uh) · q̂ dx.

Searching for a point (p, q) ∈ H1
ΓD

(Ω)d × H1
ΓD

(Ω)d at which the derivative of L(h, ., .) with respect to q
vanishes yields:

(29) ∀q̂ ∈ H1
ΓD

(Ω)d,
∂L

∂q
(h, p, q)(q̂) =

∫

Ω

hAe(p) : e(q̂) dx+

∫

Ω

∇uj(uh) · q̂ dx = 0,

and we find p = ph, the solution to (15).
9



Now cancelling the derivative of L with respect to p one finds:

(30) ∀p̂ ∈ H1
ΓD

(Ω)d,
∂L

∂p
(h, p, q)(p̂) =

∫

Ω

∇pℓ(uh, p) · p̂ dx+

∫

Ω

hAe(p̂) : e(q) dx = 0,

and since p = ph, we identify q = qh the unique solution to (24).
Consequently, we have, for any h ∈ Uad, and any q̂ ∈ H1

ΓD
(Ω)d: L(h) = L(h, ph, q̂). As in the previous

point, differentiating this expression with respect to h, then taking q̂ = qh, we end up with:

L′(h)(s) =
∂L

∂h
(h, ph, qh)(s).

Now, we are left with computing this partial derivative ∂L
∂h

. Since L depends on h ∈ Uad via uh too, we use

point (i): for fixed functions p, q ∈ H1
ΓD

(Ω)d (independent of h), define the C1 function m : Rd → R as:

m(u) = ℓ(u, p) +∇uj(u) · q.

Note that m actually also depends on the space variable x ∈ Rd, and this dependence is omitted. Applying
the first point to the map h 7→

∫
Ω
m(uh) dx and introducing z̃h ∈ H1

ΓD
(Ω)d as the unique solution to the

system 



−div(hAe(z)) = −∇uℓ(uh, p)−∇2
uj(uh)q in Ω

z = 0 on ΓD

hAe(z)n = 0 on ΓN

,

we end up with:

∂L

∂h
(h, p, q)(s) =

∂

∂h

(∫

Ω

ℓ(uh, p) dx+

∫

Ω

∇uj(uh).q dx

)
(s) +

∫

Ω

sAe(p) : e(q) dx

=

∫

Ω

sAe(uh) : e(z̃h) dx+

∫

Ω

sAe(p) : e(q) dx.

Note that, in general, z̃h 6= zh since p 6= ph or q 6= qh. Now we take p = ph and q = qh, so that z̃h = zh, and
we get the desired formula for L′(h)(s). �

Remark 3. Using Céa’s method is not the only possibility (neither the simpler) for proving Theorem 1.
Alternatively, one can differentiate the variational problems defining uh and ph, apply the chain rule lemma

for the derivative of J̃ with respect to the thickness h and simplify the resulting expression by using the two
new adjoint states qh and zh. This is rather simple in the present context of parametric optimization (see for
instance the first step of the proof of Theorem 1). Yet, it is much more cumbersome when it comes to doing
the same in geometric shape optimization. To emphasize the similarities between both settings, we thought
it better to prove Lemma 2 using Céa’s method, which will be the right tool in Section 4 too.

Example 1. For the sake of simplicity, suppose that no surface loads are applied - g = 0 (however, the
argument would adapt mutatis mutandis to the general case; see [14]) -, and that we are interested in the
compliance as a cost function, i.e. j(f, u) = f · u in (11). The various derivatives of j are:

∇uj(f, u) = f, ∇f j(f, u) = u, ∇2
uj(u) = 0, ∇f∇uj(f, u) = I.

For any h ∈ Uad, the unique solution ph ∈ H1
ΓD

(Ω)d to problem (15) is ph = −uh (the unperturbed problem

is self-adjoint, as is well-known in this case). Then, J̃ , defined by (14), has the following expression:

(31) ∀h ∈ Uad, J̃ (h) =

∫

Ω

f · uh dx+ 2m ||uh||L2(Ω)d .

Furthermore, qh ∈ H1
ΓD

(Ω)d is the unique solution to the problem:




−div(hAe(q)) = 4uh in Ω
q = 0 on ΓD

hAe(q)n = 0 on ΓN

,
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and from (18), one acknowledges that zh = −qh, which gives the straightforward expression for the gradient

of J̃ (h), for any h ∈ Uad such that uh 6= 0:

∀s ∈ L∞(Ω), J̃ ′(h)(s) = −

∫

Ω

s

(
Ae(uh) : e(uh) +

m

2 ||uh||L2(Ω)d
Ae(uh) : e(qh)

)
dx.

Remarks 1.

• Interestingly enough, formula (31) expresses the fact that - at first order - optimizing the worst-case
compliance when uncertainties around body forces are expected translates into a penalization of the
unperturbed compliance by the norm of the displacement uh of the structure.

• As we already mentioned in the introduction, in this particular case where the cost function C is the
compliance, the study of the exact worst-case functional J defined in (12) can be addressed without
linearization of C, resorting to more involved techniques [10, 20].

There are many variants of the perturbation setting considered in Theorem 1. Let us describe briefly
another example for which Theorem 1 and Lemma 2 can easily be extended (the reader is refered to [14] for
other examples).

Example 2 (Localization and restriction of the direction of perturbations). Still assuming that g = 0, let
η ∈ L∞(Ω)d be a fixed vector field on Ω; the most important case we have in mind is when η is 0 everywhere
except on a small portion of Ω, where it is a constant unit direction. The underlying idea is to investigate
perturbed body forces of the kind (f + ξη), ξ ∈ L2(Ω), ||ξ||L2(Ω)≤ m.

Still considering the compliance as an objective function, for any h ∈ Uad, the worst-case functional J of
interest is in this case:

(32) J (h) = sup
ξ∈L2(Ω)

||ξ||
L2(Ω)

≤m

{
C(h, f + ξη) =

∫

Ω

(f + ξη) · uf+ξηdx

}
.

Similarly to (13), the linearized worst-case functional is, for any h ∈ Uad,

J̃ (h) = sup
ξ∈L2(Ω)

||ξ||
L2(Ω)

≤m

(
C(h, f) +

∂C

∂f
(h, f)(ξη)

)

Theorem 4. The functional J̃ rewrites:

(33) J̃ (h) =

∫

Ω

f · uh dx+ 2m ||η · uh||L2(Ω) .

Let h ∈ Uad be such that η ·uh 6= 0 in L2(Ω). Then J̃ is Fréchet-differentiable at h, and its differential reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) = −

∫

Ω

s

(
Ae(uh) : e(uh) +

m

2 ||η · uh||L2(Ω)

Ae(uh) : e(qh)

)
dx,

where the adjoint state qh ∈ H1
ΓD

(Ω)d is the unique solution to:




−div(hAe(q)) = 4(η · uh)η in Ω,
q = 0 on ΓD,

hAe(q)n = 0 on ΓN .

3.3. Parametric optimization of a worst-case scenario problem under geometric uncertainty.

We now investigate perturbations of a different nature, searching for the optimal thickness h ∈ L∞(Ω)
of the considered plate when robustness is expected with respect to uncertainties over the thickness of the
plate itself. As we have already mentioned in the introduction, such a problem typically occurs in the case of
mechanical parts which are likely to undergo high stress during their use, thus to wear out, or of mechanical
parts whose manufacturing process is especially error-prone.

11



More precisely, let j, k : Rd → R be two functions of class C2, satisfying the growth conditions (10). For
any h ∈ Uad, denote as uh the solution to problem (7) and introduce the cost of the design with thickness h:

C(h) :=

∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds.

Modeling uncertainties over the geometry (i.e. thickness) of the plate itself demands first to address an
important issue concerning the perturbed designs: if h ∈ Uad and s ∈ L∞(Ω) is a ‘small’ perturbation over
h, the thickness (h + s) of the corresponding perturbed design may not belong to Uad (although it is still
uniformly bounded away from 0 and ∞). However, we believe this is part of the modeling, for designs
generally end up perturbed in an accidental way, and there is no particular reason that a perturbed design
should still fulfill any imposed constraint. Furthermore, not enforcing that (h + s) should belong to Uad

allows for an easier mathematical study.
Let m < hmin the maximum expected amplitude of the uncertainty over the thickness h. We consider

the optimization problem:

(34) min
h∈Uad

J (h), where J (h) = sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

C(h+ s).

As alluded to in Section 3.1, this problem is very difficult to tackle in such form. However, in the particular
situation where the cost C(h) is the compliance of the structure, it turns out almost trivial, meaning that
the worst case in (34) can be found analytically.

Proposition 5. Suppose that the cost function C(h) is the compliance, that is:

∀h ∈ Uad, C(h) =

∫

Ω

hAe(uh) : e(uh) dx =

∫

Ω

f · uh dx+

∫

ΓN

g · uh ds.

Then, the exact worst-case functional J is equivalently given by J (h) = C(h − m). Simply put, the worst
case with respect to the compliance, when there is an uncertainty of maximum amplitude m over h, is the
corresponding structure with thickness (h−m), which is the less rigid (thinner) perturbed structure.

Proof. This is a simple consequence of the elastic energy minimization principle. One has:

C(h) = −2 inf
u∈H1

ΓD
(Ω)d

(
1

2

∫

Ω

hAe(u) : e(u) dx−

∫

Ω

f · u dx−

∫

ΓN

g · u ds

)
.

Hence, by inverting the two maximizations, we get

J (h) = sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

sup
u∈H1

ΓD
(Ω)d

(
2

∫

Ω

f · u dx+ 2

∫

ΓN

g · u ds−

∫

Ω

(h+ s)Ae(u) : e(u) dx

)

= sup
u∈H1

ΓD
(Ω)d

(
2

∫

Ω

f · u dx+ 2

∫

ΓN

g · u ds−

∫

Ω

(h−m)Ae(u) : e(u) dx

) ,

which allows us to conclude. �

In the general, non trivial setting (i.e. when C(h) is not the compliance), we propose to reformulate our
optimization problem according to the general principle of Section 2:

(35) min
h∈Uad

J̃ (h), where J̃ (h) = sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(
C(h) +

∂C

∂h
(h)(s)

)
,

and the following result makes it possible to build a gradient-based algorithm for this simplified minimization
problem.

Theorem 6. The functional J̃ , defined as (35) rewrites:

∀h ∈ Uad, J̃ (h) =

∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds+m ||Ae(uh) : e(ph)||L1(Ω) ,
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where ph ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to

(36)





−div(hAe(p)) = −∇uj(uh) in Ω
p = 0 on ΓD

hAe(p)n = −∇uk(uh) on ΓN

.

Moreover, J̃ is differentiable at any h ∈ Uad such that the set

(37) Eh := {x ∈ Ω, Ae(uh) : e(ph) = 0}

has zero Lebesgue measure, and its differential at such a point reads, for any s ∈ L∞(Ω),

J̃ ′(h)(s) =

∫

Ω

s
(
Ae(uh) : e(ph) +m (Ae(ph) : e(qh) +Ae(uh) : e(zh))

)
dx,

the second and third adjoint states qh, zh ∈ H1
ΓD

(Ω)d being respectively defined as the unique solutions to:

(38)





−div(hAe(q)) = div(εAe(uh)) in Ω
q = 0 on ΓD

hAe(q)n = −εAe(uh)n on ΓN

,

(39)





−div(hAe(z)) = −∇2
uj(uh)qh + div(εAe(ph)) in Ω

z = 0 on ΓD

hAe(z)n = −εAe(ph)n−∇2
uk(uh)qh on ΓN

,

and ε ∈ L∞(Ω) is defined as ε = sgn (Ae(uh) : e(ph)).

Proof. The proof is close in essence to that of Theorem 1 and we illustrate another way to get the desired
expressions, without relying on Céa’s method (see Remark 3). Knowing that h 7→ uh and h 7→ ph are
differentiable as functions from Uad into H1

ΓD
(Ω)d (see Lemma 3), we achieve a variational formulation for

their derivatives by differentiating the ones of (7) and (36), then introducing the adjoint states qh and zh
with simple algebraic manipulations (in the parametric setting).

• Expression of J̃ as a function of h using an adjoint state.
Computing ∂C

∂h
, we deduce from (35) the following formula for J (h), for any h ∈ Uad,

J̃ (h) =

∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds+ sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(∫

Ω

∇uj(uh) ·
∂uh

∂h
(s) dx+

∫

ΓN

∇uk(uh) ·
∂uh

∂h
(s) ds

)
.

Then, using the variational formulation of the adjoint problem (36) with the test function ∂uh

∂h
(s), we deduce

J̃ (h) =

∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds+ sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(
−

∫

Ω

hAe(ph) : e

(
∂uh

∂h
(s)

)
ds

)
.

On the other hand, differentiating the variational formulation of (7) yields for any s ∈ L∞(Ω)

(40) ∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

sAe(uh) : e(v) dx = −

∫

Ω

hAe

(
∂uh

∂h
(s)

)
: e(v) dx.

Therefore, we obtain

J̃ (h) =

∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds+ sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(∫

Ω

sAe(uh) : e(ph) ds

)
.

Taking s(x) to be of the same sign as Ae(uh) : e(ph)(x) and of absolute value equal to m yields the maximizer

in the above expression and the desired expression for J̃ .

• Computation of the Fréchet derivative of J̃ .
Assume now that the set Eh defined by (37) has zero Lebesgue measure, and introduce ε := sgn (Ae(uh) : e(ph)).
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We then have, for all s ∈ L∞(Ω),

J̃ ′(h)(s) =
∂

∂h

(∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds

)∣∣∣∣
h

(s)

+m

(∫

Ω

ε Ae

(
∂uh

∂h
(s)

)
: e(ph) dx+

∫

Ω

ε Ae(uh) : e

(
∂ph
∂h

(s)

)
dx

)
,

where we used Lemma 7. As usual, the first term actually rewrites, from the definition of ph by (36),

∂

∂h

(∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds

)∣∣∣∣
h

(s) =

∫

Ω

sAe(uh) : e(ph) dx.

As for the second term, differentiating with respect to h directly in the variational formulation satisfied by
ph, we get, for all s ∈ L∞(Ω), and any v ∈ H1

ΓD
(Ω)d,

∫

Ω

hAe

(
∂ph
∂h

(s)

)
: e(v) dx = −

∫

Ω

sAe(ph) : e(v) dx−

∫

Ω

(
∇2

uj(uh)
∂uh

∂h
(s)

)
· v dx

−

∫

ΓN

(
∇2

uk(uh)
∂uh

∂h
(s)

)
· v ds

.

Comparing the above variational formulation for ∂ph

∂h
(s) with the test function qh and the variational formu-

lation for qh (solution to (38)) with the test function ∂ph

∂h
(s), we get:

∫

Ω

ε Ae(uh) : e

(
∂ph
∂h

(s)

)
dx = −

∫

Ω

h Ae(qh) : e

(
∂ph
∂h

(s)

)
dx

=

∫

Ω

sAe(ph) : e(qh) dx+

∫

Ω

(
∇2

uj(uh)
∂uh

∂h
(s)

)
· qh dx

+

∫

ΓN

(
∇2

uk(uh)
∂uh

∂h
(s)

)
· qh ds.

Now, similarly, we compare the variational formulation for zh (solution to (39)) with the test function ∂uh

∂h
(s)

and the variational formulation (40) for ∂uh

∂h
(s) with the test function zh. This yields, for all s ∈ L∞(Ω):

∫

Ω

ε Ae

(
∂uh

∂h
(s)

)
: e(ph) dx

+

∫

Ω

(
∇2

uj(uh)
∂uh

∂h
(s)

)
· qh dx+

∫

ΓN

(
∇2

uk(uh)
∂uh

∂h
(s)

)
· qh ds = −

∫

Ω

hAe(zh) : e

(
∂uh

∂h
(s)

)
dx

=

∫

Ω

sAe(zh) : e(uh) dx,

thus ending the proof. �

In the course of the proof of Theorem 6, we used the following lemma for the differentiation of the L1

norm (see [33], Theorem 2.1 for a proof):

Lemma 7. Let Ω ⊂ Rd an open, bounded domain, and denote as f : L1(Ω) → R the L1 norm function:

∀u ∈ L1(Ω), F (u) =

∫

Ω

|u(x)| dx.

f is then convex, and its subgradient ∂f(u) ⊂ L∞(Ω) at any point u ∈ L1(Ω) reads:

λ ∈ ∂f(u) ⇔





λ(x) = 1 if u(x) > 0
λ(x) = −1 if u(x) < 0

λ(x) ∈ [−1, 1] if u(x) = 0
.

As a consequence, if u ∈ L1(Ω) is such that {x ∈ Ω, u(x) = 0} is of null Lebesgue measure, F is Fréchet-
differentiable at u, and its differential dF (u) reads:

∀v ∈ L1(Ω), dF (u)(v) =

∫

Ω

sgn(u(x))v(x) dx.
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Example 3. Consider once again the model case of the minimization of the compliance, assuming g = 0
(for simplicity). Then, j(u) = f ·u, k(u) = 0, and one has ∇uj(u) = f and ∇2

uj(u) = 0. Since ph ∈ H1
ΓD

(Ω)d

is the unique solution to (36), one easily finds that ph = −uh. Then, the approximate worst-case functional

J̃ rewrites:

J̃ (h) =

∫

Ω

f · uh dx+m ||Ae(uh) : e(uh)||L1(Ω) .

Assume the thickness h ∈ Uad is such that the set Eh := {x ∈ Ω, Ae(uh) : e(uh) = 0} has zero Lebesgue
measure. Then we have ε = sgn (−Ae(uh) : e(uh)) = −1 in Ω. In this view, it is then easy to show that the

second and third adjoint states reduce to qh = uh and zh = −uh. Eventually, the differential of J̃ reads:

J̃ ′(h)(s) = −(1 + 2m)

∫

Ω

sAe(uh) : e(uh) dx.

Remark 4. The results of Example 3 have to be compared with those of Proposition 5 which is concerned
with the worst-case compliance (without linearization). In particular, it allows us to give a mathematically
rigorous approximation result. Indeed, Proposition 5 gives the exact formula J (h) = C(h −m) from which
we deduce by a simple computation that, for a given h ∈ Uad,

∀s ∈ L∞(Ω), J ′(h)(s) = J̃ ′(h)(s) +O(m2),

where the O(m2) is uniform with respect to s.

3.4. Worst-case design with uncertainties over the elastic material’s properties.

The proposed method can also be used to deal with perturbations on elastic material’s properties. Consider
a plate made of a material with Lamé moduli that are functions λ, µ ∈ L∞(Ω) such that:

(41) µ(x) ≥ γ > 0, λ+
2µ

d
≥ γ +

2γ

d
> 0, a.e x ∈ Ω.

Denote by Aλ,µe = 2µe+λtr(e) the corresponding (possibly inhomogeneous) Hooke’s tensor and by uh,λ,µ ∈
H1

ΓD
(Ω)d the unique solution to the elasticity system (7) when h is the thickness of the plate and the Lamé

moduli of the constituent material are λ, µ. We shall also denote as uh := uh,λ,µ, and A := Aλ,µ, when no
ambiguity is possible.

We investigate perturbations (λ + α, µ + β) over the Lamé coefficients of magnitude (i.e. of L∞-norm)
m < γ, around a given reference state (λ, µ). These coefficients are confessedly not the physically relevant
properties of the material over which perturbations should be considered: for instance, the impact of an
increase in temperature on the material’s properties is certainly better transcribed in terms of the Young’s
modulus and Poisson ratio. Nevertheless, we will focus on perturbations on the Lamé coefficients, so to keep
expressions as light as possible; Young’s modulus and Poisson ratio being analytical functions of the Lamé
coefficients of the material, this last case would be no more difficult.

Let j : Rd → R and k : Rd → R be two functions of class C2, satisfying the growth conditions (10). The
cost of the plate is defined by:

C(h, λ, µ) =

∫

Ω

j(uh,λ,µ) dx+

∫

ΓN

k(uh,λ,µ) ds.

The corresponding worst-case objective function is, in this context:

J (h) = sup
α,β∈L∞(Ω)

||α||L∞(Ω)≤m

||β||L∞(Ω)≤m

C(h, λ+ α, µ+ β).

By linearization, we approximate J by

(42) J̃ (h) = C(h, λ, µ) + sup
α,β∈L∞(Ω)

||α||L∞(Ω)≤m

||β||L∞(Ω)≤m

(
∂C

∂λ
(h, λ, µ)(α) +

∂C

∂µ
(h, λ, µ)(β)

)
.

The next result gives an explicit formula for J̃ , and a computation of its derive.
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Theorem 8. The functional J̃ defined by (42) reduces to:

(43) J̃ (h) =

∫

Ω

j(uh) dx+

∫

ΓN

k(uh) ds+ 2m||he(uh) : e(uh)||L1(Ω)+m||hdiv(uh)div(ph)||L1(Ω),

where ph ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to (36). Moreover, J̃ is
differentiable at any h ∈ Uad such that the set

Eh := {x ∈ Ω, Ae(uh) : e(ph) = 0 or div(uh)div(ph) = 0}

has zero Lebesgue measure and its derivative at such a point reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) =

∫

Ω

sD(uh, ph, qh, zh) dx,

where

D(uh, ph, qh, zh) = Ae(uh) : e(ph)+m
(
2εee(uh) : e(ph)+εddiv(uh)div(ph)+Ae(ph) : e(qh)+Ae(uh) : e(zh)

)
,

with εe = sgn (e(uh) : e(ph)), εd = sgn (div(uh)div(ph)), the second and third adjoint states qh, zh ∈ H1
ΓD

(Ω)d

being respectively defined as the unique solutions to some boundary value problems which are best formulated
in terms of the associated variational equations:

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

hAe(qh) : e(v) dx = −

∫

Ω

h
(
2εee(uh) : e(v) + εddiv(uh)div(v)

)
dx,

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

hAe(zh) : e(v) dx = −

∫

Ω

h
(
2εee(ph) : e(v) + εddiv(ph)div(v)

)
dx

−

∫

Ω

(
∇2

uj(uh)qh
)
· v dx−

∫

ΓN

(
∇2

uk(uh)qh
)
· v ds.

Proof. The proof is in essence identical to that of Theorem 4 and we refer to [14] for details, if necessary. �

Remark 5. When the cost function C is the compliance of the plate, a result analogous to Proposition 5
holds true. Namely, one can compute exactly the worst-case functional J which is

J (h) = C(h, λ−m,µ−m).

The conclusions of Theorem 8 about the derivative of the approximate worst-case functional J̃ can then be
drawn closer to this exact expression for J . After some computations, we find, as in Remark 4, that for any
h ∈ Uad:

∀s ∈ L∞(Ω), J ′(h)(s) = J̃ ′(h)(s) +O(m2).

4. Worst-case design in shape optimization

4.1. Description of the model problem.

We are now interested in the design of shapes, that is bounded domains Ω ⊂ Rd, with at least Lipschitz
regularity. A shape Ω is submitted to body forces f ∈ H1(Rd)d and traction loads g ∈ H2(R)d on part of its
boundary ΓN ⊂ ∂Ω, while it is clamped on another part ΓD ⊂ ∂Ω. Neither of these parts of the boundary is
subject to optimization, and only the free boundary Γ := ∂Ω \ (ΓD ∪ ΓN ) is optimizable. The displacement
of this shape is the unique solution in H1

ΓD
(Ω)d to the linear elasticity system posed in Ω:

(44)





−div(Ae(u)) = f in Ω,
u = 0 on ΓD,

Ae(u)n = g on ΓN ,
Ae(u)n = 0 on Γ,

where A is the material’s Hooke’s law, defined by (8). In accordance with this setting, the set Uad of
admissible domains is:

Uad =
{
Ω ⊂ Rd is open, Lipschitz and bounded, ΓD ∪ ΓN ⊂ ∂Ω

}
.
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As for representing variations of shapes, we rely on Hadamard’s boundary variation method [31, 23, 36]: for
a shape Ω ⊂ Rd, we consider variations of the form:

Ωθ := (I + θ)(Ω), θ ∈ W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1.

This brings about the following notion of differentiation with respect to the domain.

Definition 1. A functional J(Ω) of the domain is shape differentiable at Ω if the underlying function
θ 7→ J((I + θ)(Ω)), from W 1,∞(Rd,Rd) into R is Fréchet differentiable at θ = 0. The shape derivative J ′(Ω)
of J at Ω is then the corresponding Fréchet differential, so that the following asymptotic expansion holds in
the vicinity of 0 ∈ W 1,∞(Rd,Rd):

(45) J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where lim
θ→0

|o(θ)|

||θ||W 1,∞(Rd,Rd)

= 0.

To guarantee that all the considered variations of shapes belong to Uad, the set of deformations of shapes
is restricted from W 1,∞(Rd,Rd) to Θad ⊂ W 1,∞(Rd,Rd), where:

Θad =
{
θ ∈ W 1,∞(Rd,Rd) s.t. θ(x) = 0 for x ∈ ΓD ∪ ΓN

}
.

Remark 6. Throughout Section 4, we shall consider shape derivatives of functionals which depend on the
domain via the solution uΩ ∈ H1

ΓD
(Ω)d to the linear elasticity system (44), or similar adjoint systems. A

rigorous justification of the shape differentiability of such functionals typically requires the shape differen-
tiability of uΩ (or the featured adjoint states). This is a classical result (see e.g. [1], [16], [23], [31], [36])
which requires some higher smoothness of uΩ and of the adjoints. Owing to the regularity theory for the
linear elasticity system [12], it is indeed the case when the data at hand, namely Ω, f, g are smooth enough.
We shall implicitly and systematically assume that these data are smooth although we do not give precise
regularity assumptions.

4.2. Worst-case design in shape optimization under uncertainties over the applied body forces.

In this section, we optimize the shape of a structure Ω with respect to a worst-case scenario when the
body forces are subject to small perturbations. For the sake of simplicity, we limit ourselves to a single
example of cost function, which is easily generalized to more complex situations (as well as to perturbations
over the surface loads).

Let j : Rd
f × Rd

u → R be a function of class C2, satisfying the growth conditions (10). For any shape
Ω ∈ Uad and any body force term f , let uΩ,f be the corresponding elastic displacement, solution to problem
(44). The cost associated to this configuration is:

C(Ω, f) =

∫

Ω

j(f, uΩ,f ) dx.

We now fix a particular body force term f ∈ H1(Rd)d, and introduce the worst-case optimization problem
at stake in the section:

(46) min
Ω∈Uad

J (Ω), where J (Ω) = sup
ξ∈L2(Rd)d

||ξ||
L2(Rd)d

≤m

C(Ω, f + ξ).

Note that the allowed perturbations ξ over the body force term are ‘naturally’ assumed to belong to L2(Rd)d,
whereas the unperturbed body force term f is chosen in H1(Rd)d (which is a technical assumption when
it comes to performing shape differentiation). As proposed in Section 2, the following linearized version of
problem (46) lends itself to an easier analysis:

(47) min
Ω∈Uad

J̃ (Ω), where J̃ (Ω) = sup
ξ∈L2(Rd)d

||ξ||
L2(Rd)d

≤m

(
C(Ω, f) +

∂C

∂f
(Ω, f)(ξ)

)
.

The main result of this section is the following theorem which gives an explicit formula for J̃ as well as its
shape gradient.
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Theorem 9. The functional J̃ , defined in (47), rewrites:

(48) ∀Ω ∈ Uad, J̃ (Ω) =

∫

Ω

j(f, uΩ) dx+m||∇f j(f, uΩ)− pΩ||L2(Ω)d ,

where pΩ ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to

(49)





−div(Ae(p)) = −∇uj(f, uΩ) in Ω,
p = 0 on ΓD,

Ae(p)n = 0 on Γ ∪ ΓN .

Moreover, J̃ is differentiable at any Ω ∈ Uad such that ∇f j(f, uΩ)− pΩ 6= 0 in L2(Ω)d and its derivative at
such a point reads, for any θ ∈ Θad,

J̃ ′(Ω)(θ) =

∫

Γ

(j(f, uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f) θ · n ds

+ m
2||∇f j(f,uΩ)−pΩ||

L2(Ω)d

∫

Γ

(
|∇f j(f, uΩ)− pΩ|

2+∇uj(f, uΩ) · qΩ − zΩ · f
)
θ · n ds

+ m
2||∇f j(f,uΩ)−pΩ||

L2(Ω)d

∫

Γ

(
Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)

)
θ · n ds,

where the second and third adjoint states qΩ, zΩ ∈ H1
ΓD

(Ω)d are respectively defined as the unique solutions
to the following systems:

(50)





−div(Ae(q)) = −2 (pΩ −∇f j(f, uΩ)) in Ω,
q = 0 on ΓD,

Ae(q)n = 0 on ΓN ,

(51)





−div(Ae(z)) = −∇2
uj(f, uΩ)qΩ − 2∇f∇uj(f, uΩ)

T (∇f j(f, uΩ)− pΩ) in Ω,
z = 0 on ΓD,

Ae(z)n = 0 on ΓN .

Following the steps of Section 3, the proof of Theorem 9 requires the following lemma (which is an
equivalent of Lemma 2 in the shape optimization context). As in Section 3, the dependence of the integrand
function j on the f variable is omitted for the sake of simplicity.

Lemma 10. For any Ω ∈ Uad, denote by uΩ ∈ H1
ΓD

(Ω)d the unique solution to (44).

(i) Let j : Rd → R be a function of class C1 and define a functional K of the domain Ω as:

∀Ω ∈ Uad, K(Ω) =

∫

Ω

j(uΩ) dx.

Then, K is shape differentiable at any Ω ∈ Uad, and its derivative reads, for any θ ∈ Θad,

K ′(Ω)(θ) =

∫

Γ

(
j(uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f

)
θ · n ds,

where pΩ ∈ H1
ΓD

(Ω)d is the adjoint state, solution of (49).

(ii) Let b : Rd → Rd and ℓ : Rd
u × Rd

p → R be two functions of class C1. Note that ∇ub is a d × d matrix,

and that ∇uℓ and ∇pℓ are vectors in Rd. Introduce the functional L, defined as:

∀Ω ∈ Uad, L(Ω) =

∫

Ω

ℓ(uΩ, pΩ) dx,

where pΩ ∈ H1
ΓD

(Ω)d is the unique solution to

(52)





−div(Ae(p)) = −b(uΩ) in Ω,
p = 0 on ΓD,

Ae(p)n = 0 on Γ ∪ ΓN .

Then, L is shape differentiable at any Ω ∈ Uad, and its shape derivative reads, for any θ ∈ Θad,

L′(Ω)(θ) =

∫

Γ

(
ℓ(uΩ, pΩ) + b(uΩ) · qΩ +Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)− zΩ · f

)
θ · n ds,
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where qΩ, zΩ ∈ H1
ΓD

(Ω)d are respectively defined as the unique solutions to the systems:

(53)





−div(Ae(q)) = −∇pℓ(uΩ, pΩ) in Ω,
q = 0 on ΓD,

Ae(q)n = 0 on Γ ∪ ΓN ,

(54)





−div(Ae(z)) = −∇ub(uΩ) · qΩ −∇uℓ(uΩ, pΩ) in Ω,
z = 0 on ΓD,

Ae(z)n = 0 on Γ ∪ ΓN .

Proof. (i): This is a classical result in shape optimization (see e.g. Theorem 3.6 in [3]).
(ii): Let us once again rely on Céa’s method. Introduce the Lagrangian L : Uad×H1

ΓD
(Rd)d×H1

ΓD
(Rd)d → R,

defined as:

L(Ω, p̂, q̂) =

∫

Ω

ℓ(uΩ, p̂) dx+

∫

Ω

Ae(p̂) : e(q̂) dx+

∫

Ω

b(uΩ) · q̂ dx,

and let us search for the points (p, q) ∈ H1
ΓD

(Rd)d × H1
ΓD

(Rd)d where the partial derivatives of L(Ω, ., .)
vanish, for a particular shape Ω ∈ Uad.

• The partial derivative of L with respect to q at (Ω, p, q) reads:

∀q̂ ∈ H1
ΓD

(Rd)d,
∂L

∂q
(Ω, p, q)(q̂) =

∫

Ω

Ae(p) : e(q̂) dx+

∫

Ω

b(uΩ) · q̂ dx.

Canceling this expression yields precisely the variational formulation of system (52) which defines the ‘adjoint’
state pΩ. Thus, we deduce p = pΩ.

• The derivative of L with respect to p evaluated at (Ω, p, q) reads:

∀p̂ ∈ H1
ΓD

(Rd)d,
∂L

∂p
(Ω, p, q)(p̂) =

∫

Ω

∇pℓ(uΩ, p) · p̂ dx+

∫

Ω

Ae(p̂) : e(q) dx.

Canceling this expression yields precisely the variational formulation of system (53) which defines the ‘second
adjoint’ state qΩ. Thus, we deduce q = qΩ.

• Eventually, one has L(Ω) = L(Ω, pΩ, q̂), for any Ω ∈ Uad and any q̂ ∈ H1
ΓD

(Rd). As usual, differentiating
this equality with respect to Ω (knowing that pΩ is shape differentiable according to Remark 6), then taking
q̂ = qΩ in the resulting expression yields:

∀θ ∈ Θad, L′(Ω)(θ) = L′(Ω, pΩ, qΩ)(θ).

This last (partial) shape derivative L′(Ω, p̂, q̂)(θ) can now be computed using point (i), since it depends on
Ω only via uΩ, with the following choice of integrand j, for fixed functions p, q ∈ H1

ΓD
(Rd)d:

j(uΩ) = ℓ(uΩ, p) +Ae(p) : e(q) + b(uΩ) · q,

followed by the specification of p and q as pΩ and qΩ respectively. Introducing the third adjoint state
zΩ ∈ H1

ΓD
(Ω)d as the unique solution to (54) (which is precisely the adjoint of point (i) for our above choice

of j), we deduce the desired formula for L′(Ω)(θ). �

We are now in a position to carry out the proof of Theorem 9.

Proof of Theorem 9. The proof follows the same steps as that of Theorem 1 and is divided into two steps.

• Expression of J̃ as a function of Ω using an adjoint state.
Starting from formula (47), we first compute the derivative ∂C

∂f
:

∀ξ ∈ L2(Ω)d,
∂C

∂f
(Ω, f)(ξ) =

∫

Ω

(
∇f j(f, uΩ) · ξ +∇uj(f, uΩ) ·

∂uΩ,f

∂f
(ξ)

)
dx.

The first part ∇f j(f, uΩ) · ξ of the integrand does not pose any problem since it is explicitly linear in ξ. To
simplify the second one, we use the adjoint system (49) for pΩ, the variational formulation of which is

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

Ae(pΩ) : e(v) dx = −

∫

Ω

∇uj(f, uΩ) · v dx.
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On the other hand, since the map f 7→ uΩ,f is linear and continuous from L2(Ω)d into H1
ΓD

(Ω)d, it is
obviously Fréchet differentiable. Differentiating with respect to f the variational formulation of (44) (giving
the solution uΩ,f ) leads to

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

Ae

(
∂uΩ,f

∂f
(ξ)

)
: e(v) dx =

∫

Ω

ξ · v dx.

Combining those two relations yields
∫

Ω

∇uj(f, uΩ) ·

(
∂uΩ,f

∂f
(ξ)

)
dx = −

∫

Ω

Ae(pΩ) : e

(
∂uΩ,f

∂f
(ξ)

)
dx = −

∫

Ω

ξ · pΩ dx.

A simple maximization with respect to ξ ∈ L2(Ω)d delivers the sought expression for J̃ (Ω).

• Shape sensitivity analysis of J̃ .
Differentiating the first term in (48) with respect to the domain is a straightforward application of point

(i) in Lemma 10. Its shape derivative reads:

∀θ ∈ Θad,

(∫

Ω

j(f, uΩ) dx

)′

(θ) =

∫

Γ

(
j(f, uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f

)
θ · n ds.

As for the second term, we use point (ii) in Lemma 10 with ℓ(u, p) = |∇f j(f, u)− p|2, so that

∇uℓ(u, p) = 2∇f∇uj(u)
T · (∇f j(f, u)− p) , ∇pℓ(u, p) = 2(p−∇f j(f, u)).

Doing so entails, for all θ ∈ Θad:
(∫

Ω

|∇f j(f, uΩ)− pΩ|
2 dx

)′

(θ) =

∫

Γ

(
|∇f j(f, uΩ)− pΩ|

2+∇uj(f, uΩ) · qΩ − zΩ · f
)
θ · n ds

+

∫

Γ

(
Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)

)
θ · n ds

where qΩ, zΩ ∈ H1
ΓD

(Ω)d are defined by (50) and (51). These two identities lead to the desired formula for

J̃ ′(Ω)(θ). �

Example 4. As an illustration of Theorem 9, assume that g = 0 and consider the case of the compliance
as a cost function. We have: j(f, u) = f · u, therefore:

∇f j(f, u) = u , ∇uj(f, u) = f , ∇f∇uj(f, u) = I , ∇2
uj(f, u) = 0.

In this context, it is easy to see that pΩ = −uΩ. Thus, J̃ admits the following expression:

J̃ (Ω) =

∫

Ω

f · uΩ dx+ 2m||uΩ||L2(Ω)d .

Furthermore, if uΩ 6= 0 in L2(Ω)d, J̃ is shape differentiable at Ω. Easy computations allow us to deduce
that the adjoint state qΩ ∈ H1

ΓD
(Ω)d is the unique solution to the system:




−div(Ae(q)) = 4uΩ in Ω,
q = 0 on ΓD,

Ae(q)n = 0 on Γ ∪ ΓN ,

and that zΩ = −qΩ. The shape derivative of J̃ at Ω then takes the form, for any θ ∈ Θad,

J̃ ′(Ω)(θ) =

∫

Γ

(
2uΩ · f −Ae(uΩ) : e(uΩ)

)
θ · n ds

+ m
4||uΩ||

L2(Ω)d

∫

Γ

(
4|uΩ|

2+2qΩ · f − 2Ae(uΩ) : e(qΩ)
)
θ · n ds.
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4.3. Worst-case design in shape optimization under uncertainties on the Lamé moduli of the

material.

This section is intended as the mirror image of Section 3.4 in the context of shape optimization: we
investigate the worst-case design of an objective functional with respect to perturbations on the Lamé
coefficients of the elastic material filling Ω. The Lamé coefficients are functions λ, µ ∈ L∞(Rd) satisfying
the uniform bounds in (41) (see Section 3.4). The solution to problem (44), posed on a shape Ω filled with
a material having Lamé coefficients λ, µ, is denoted as uΩ,λ,µ.

Let j : Rd → R be a function of class C2, satisfying the growth conditions (10). For any functions
λ, µ ∈ L∞(Rd) satisfying (41), the cost of the structure Ω filled with a material with such Lamé coefficients
is defined as:

C(Ω, λ, µ) =

∫

Ω

j(uΩ,λ,µ) dx.

Let us now fix reference values of the Lamé coefficients λ, µ. For the sake of simplicity, when the con-
text is clear, we still denote uΩ = uΩ,λ,µ. Considering perturbations of magnitude m < γ over λ, µ, the
corresponding worst-case objective function J is then:

∀Ω ∈ Uad, J (Ω) = sup
α,β∈L∞(Rd)

||α||
L∞(Rd)

≤m

||β||
L∞(Rd)

≤m

C(Ω, λ+ α, µ+ β),

and the approximated objective function J̃ reads:

∀Ω ∈ Uad, J̃ (Ω) = C(Ω, λ, µ) + sup
α,β∈L∞(Rd)

||α||
L∞(Rd)

≤m

||β||
L∞(Rd)

≤m

(
∂C

∂λ
(Ω, λ, µ)(α) +

∂C

∂µ
(Ω, λ, µ)(β)

)
.

We have the following result, whose proof (similar to that of Theorem 9) is omitted.

Theorem 11. The considered functional J̃ rewrites, for any Ω ∈ Uad:

(55) J̃ (Ω) =

∫

Ω

j(uΩ) dx+ 2m||e(uΩ) : e(pΩ)||L1(Ω)+m||div(uΩ)div(pΩ)||L1(Ω),

where pΩ ∈ H1
ΓD

(Ω)d is the adjoint state, solution of (49). Moreover, J̃ is differentiable at any shape Ω ∈ Uad

such that the set

EΩ := {x ∈ Ω, e(uΩ) : e(pΩ)(x) = 0 or div(uΩ)div(pΩ)(x) = 0}

has zero Lebesgue measure, and its shape derivative at such a point is:

∀θ ∈ Θad, J̃ ′(Ω)(θ) =

∫

Γ

D(uh, ph, qh, zh) θ · n ds,

where

D(uh, ph, qh, zh) = j(uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f

+ m
(
2|e(uΩ) : e(pΩ)|+|div(uΩ)div(pΩ)|+∇uj(uΩ) · qΩ +Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ)

)
,

where qΩ, zΩ ∈ H1
ΓD

(Ω)d are respectively defined as the unique solutions to the variational problems:

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

Ae(q) : e(v) dx = −

∫

Ω

(
2εee(uΩ) : e(v) + εddiv(uΩ)div(v)

)
dx,

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

Ae(z) : e(v) dx = −

∫

Ω

(
2εee(pΩ) : e(v) + εddiv(pΩ)div(v) +

(
∇2

uj(uΩ)qΩ
)
· v
)
dx,

and εe = sgn (e(uΩ) : e(pΩ)), and εd = sgn (div(uΩ)div(pΩ)).

Remark 7. The observations of Remark 5 on the compliance case can be straightforwardly extended from
the parametric to the shape optimization setting (up to some extra computations).
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4.4. Worst-case design in shape optimization under geometric uncertainties.

The purpose of this section is to compute a shape derivative for a given functional of the domain J(Ω)
which is robust with respect to uncertainties on the boundaries of shapes themselves. Let us first specify
what we intend by shape optimization under geometric uncertainty. We assume that perturbations only
affect the free boundary Γ of Ω. To that effect, we introduce a cutoff function χ : Rd → R and two open
neighborhoods O1 ( O2 of ΓD ∪ ΓN in Rd, enjoying the following properties:

(56) χ is smooth and nonnegative over Rd,





χ(x) = 0 for x ∈ O1,
χ(x) ∈ (0, 1] for x ∈ O2 \ O1,
χ(x) = 1 for x ∈ O2.

If m > 0 is the expected magnitude of perturbations over the geometry, we are interested in perturbations
of Ω ∈ Uad of the form (see Figure 2):

(57) (I + χV )(Ω), V ∈ W 1,∞(Rd,Rd), ||V ||L∞(Rd)d≤ m.

Note that an other way to describe this problem consists in assuming perturbations of Ω of the form:

(58) (I + χvn)(Ω), v ∈ W 1,∞(Rd), ||v||L∞(Rd)≤ m,

where n = nΩ denotes (an extension to Rd of) the normal vector field to ∂Ω (the Ω - index is meant to
emphasize its dependence on Ω and will be omitted when the situation is clear).

As we shall observe, both descriptions are equivalent as far as we are concerned. However, the former
one (57), which is the one retained in the following, proves more convenient from a mathematical viewpoint,
since it features independent sets for admissible shapes and admissible perturbations of them; on a different
note, perturbed shapes in the sense of (58) are ‘less regular’ than the unperturbed one.

Ω

V (I + χV )(Ω)

ΓN

ΓD

Figure 2. Perturbation (I + χV )(Ω) of a domain Ω

Remark 8. The chosen description for perturbations over the geometry slightly differs from that adopted in
other contributions on the topic, for instance:

• in [35], the only retained possibility is that Ω may suffer from a (small) uniform ‘shrinking’ or
‘thickening’, i.e. perturbations of shapes are of the form (58), with constant v; a filtering approach
is used to incorporate this uncertainty into the objective function.

• Closer to the present work, in [8], the authors also use perturbations of the form (58) with a scalar
field v varying in a random fashion over the boundary of the shape, following a Gaussian probability
distribution with 0 mean value.

• Eventually, in [21], perturbations of a shape Ω are of the form (58), with v being bounded in L2(Rd)-
norm, and ‘small’ in the sense that the discrepancy between the volumes of the perturbed and unper-
turbed shapes is ‘small’.
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The approaches considered in [21, 35] fit into our general framework, but we believe that the above setting is
more suited to realistic uncertainties over the manufacturing process.

Let C(Ω) be a cost functional; the associated worst-case scenario functional is:

J (Ω) = sup
V ∈W1,∞(Rd,Rd)
||V ||

L∞(Rd)d
≤m

C((I + χV )(Ω)),

where χ is the cutoff function defined by (56).
In what follows, we will focus on several particular cases as regards the form of C(Ω); the presented

techniques could easily be generalized to different problems. The first investigated example will be that of
the compliance C(Ω) of a shape Ω:

(59) C(Ω) =

∫

Ω

Ae(uΩ) : e(uΩ) dx =

∫

Ω

f · uΩ dx+

∫

ΓN

g · uΩ ds;

then we will turn to a functional J(Ω), which depends only on uΩ (not on e(uΩ)) by means of a smooth
enough function j : Rd → R (we have in mind the least-square discrepancy criterion, with respect to a target
displacement):

(60) J(Ω) =

∫

Ω

j(uΩ) dx.

Finally, we will consider the case of a functional S(Ω), which depends only on the stress tensor σ(uΩ) :=
Ae(uΩ), through a smooth function j : S(Rd) → R (we have in mind a Lp-norm of the stress, as studied in
[2]):

(61) S(Ω) =

∫

Ω

j(σ(uΩ)) dx,

where σ(uΩ) := Ae(uΩ) is the stress tensor associated to the displacement uΩ.

As in the corresponding context of parametric optimization (see Section 3.3), the case of the compliance
as a cost function is especially simple, as confirmed by the following proposition, whose proof unrolls along
the lines of Proposition 5.

Proposition 12. Assume that no body forces are applied to the structures under optimization: f = 0, and
that the cost function C(Ω) is the compliance, that is:

C(Ω) = C(Ω) =

∫

Ω

Ae(uΩ) : e(uΩ) dx =

∫

ΓN

g.uΩ ds.

Then, for any shape Ω ∈ Uad, the exact worst-case functional J reads:

J (Ω) = sup
V ∈W1,∞(Rd,Rd)
||V ||

L∞(Rd)d
≤m

C((I + χV )(Ω)) = C((I −mχnΩ)(Ω)).

Simply put, the most compliant shape among all the perturbed designs of a shape Ω according to (57) is the
thinnest of all.

However, for a general objective function C(Ω), the worst-case functional J (Ω) is not explicit and we

approximate it by J̃ (Ω), defined as:

(62) ∀Ω ∈ Uad, J̃ (Ω) = sup
V ∈W1,∞(Rd,Rd)
||V ||

L∞(Rd)d
≤m

(C(Ω) + C′(Ω)(χV )).

Before stating the results of interest, let us set some more notations. If Ω ∈ Uad is any shape, we denote
as τ a local basis of tangent vectors to Γ, so that (τ, n) is a local orthonormal frame of Rd. Any matrix
M ∈ S(Rd) can be decomposed into this basis as:

M =

(
Mττ Mτn

Mnτ Mnn

)
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where Mττ stands for the (d − 1) × (d − 1) tangential minor of M, Mτn is the vector of the (n − 1) first
tangential components of the normal column Mn, Mnτ is the row vector of the (n − 1) first tangential
components of the normal row nTM, and Mnn = Mn · n. We eventually denote as divΓ the tangential
divergence operator defined on Γ.

Theorem 13. Consider the worst-case functional J̃ (Ω), defined by (62), when the cost function is C(Ω) =

J(Ω), defined by (60). Then J̃ rewrites:

(63) J̃ (Ω) =

∫

Ω

j(uΩ) dx+m

∫

Γ

χ |j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ| ds,

where pΩ ∈ H1
ΓD

(Ω)d is the adjoint state, solution of (49).

Furthermore, J̃ is shape differentiable at any Ω ∈ Uad such that the set

EΓ := {x ∈ Γ, (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (x) = 0}

has zero (surface) Lebesgue measure. At such a point, its shape derivative reads, for any θ ∈ Θad,

(64)

J̃ ′(Ω)(θ) =

∫

Γ

χ
(
j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ

)
θ · n ds

+m

∫

Γ

(
∂

∂n
+ κ

)(
χ |j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ|

)
θ · n ds

+m

∫

Γ

(
Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ)− f · zΩ

)
θ · n ds,

where κ is the mean curvature of ∂Ω and the second and third adjoint states qΩ, zΩ are respectively defined
as the unique solutions in H1

ΓD
(Ω)d to the systems:

(65)





−div(Ae(q)) = 0 in Ω,
q = 0 on ΓD,

Ae(q)n = 0 on ΓN ,
Ae(q)n = εχ f + divΓ (εχ (σ(uΩ))ττ ) on Γ,

and

(66)





−div(Ae(z)) = −∇2
uj(uΩ)qΩ in Ω,

z = 0 on ΓD,
Ae(z)n = 0 on ΓN ,
Ae(z)n = −εχ∇uj(uΩ) + divΓ (εχ (σ(pΩ))ττ ) on Γ,

where ε := sgn (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ).

Remark 9. As already said in Remark 6, computing shape derivatives require smoothness of the data Ω, f, g.
It is clearly necessary to simply give a meaning to formula (63). More regularity is even required for the
shape derivative (64). We shall not dwell on the precise assumptions and simply ask the data Ω, f, g to be
smooth enough.

To prove Theorem 13 we need the following technical lemma.

Lemma 14. (i) For any Ω ∈ Uad, the shape derivative of the functional J(Ω), defined by (60), reads:

∀θ ∈ Θad, J ′(Ω)(θ) =

∫

Γ

(
j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ

)
θ · n ds,

where pΩ ∈ H1
ΓD

(Ω)d is the adjoint state, solution of (49).

(ii) Let ℓ : Rd
u × Rd

p × Re → R be a smooth enough function which vanishes in a neighborhood of ΓD ∪ ΓN ,
and define the functional L(Ω) as:

(67) L(Ω) =

∫

Γ

ℓ(uΩ, pΩ, Ae(uΩ) : e(pΩ)) ds,

where pΩ is defined by system (49). Then L is shape differentiable and its shape derivative reads:

(68) ∀θ ∈ Θad, L′(Ω)(θ) =

∫

Γ

D(uΩ, pΩ, qΩ, zΩ) θ · n ds,
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with

(69) D(uΩ, pΩ, qΩ, zΩ) =

(
∂

∂n
+ κ

)(
ℓ(uΩ, σ(uΩ)ττ : e(pΩ)ττ )

)
+Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ)− f · zΩ,

and the second an third adjoint states qΩ, zΩ ∈ H1
ΓD

(Ω)d are respectively defined as the unique solutions
to:

(70)





−div(Ae(q)) = 0 in Ω
q = 0 on ΓD

Ae(q)n = 0 on ΓN

Ae(q)n = −∇pℓ(uΩ, pΩ, Ae(uΩ) : e(pΩ))
+divΓ

(
∂ℓ
∂e
(uΩ, pΩ, Ae(uΩ) : e(pΩ))(σ(uΩ))ττ

)
on Γ

,

and:

(71)





−div(Ae(z)) = −∇2
uj(uΩ)qΩ in Ω

z = 0 on ΓD

Ae(z)n = 0 on ΓN

Ae(z)n = −∇uℓ(uΩ, pΩ, Ae(uΩ) : e(pΩ))
+divΓ

(
∂ℓ
∂e
(uΩ, pΩ, Ae(uΩ) : e(pΩ))(σ(pΩ))ττ

)
on Γ

.

Proof. (i): This is a very classical result in shape optimization (see e.g. [3]).
(ii): We need to assume that uΩ and pΩ enjoy more regularity than the sole ‘natural’ H1(Ω)d regularity,

e.g uΩ ∈ H2(Ω)d ∩H1
ΓD

(Ω)d and pΩ ∈ H2(Ω)d ∩H1
ΓD

(Ω)d, so that the very definition of L(Ω) makes sense.
To differentiate L(Ω), it proves convenient to introduce the Lagrangian functional L defined on Uad ×(

H2(Rd)d ∩H1
ΓD

(Rd)d
)4

by:

L(Ω, û, ẑ, p̂, q̂) =

∫

Γ

ℓ(û, p̂, Ae(û) : e(p̂)) ds+

∫

Ω

Ae(û) : e(ẑ) dx−

∫

Ω

f · ẑ dx−

∫

ΓN

g · ẑ ds

+

∫

Ω

Ae(p̂) : e(q̂) dx−

∫

Ω

−∇uj(û) · q̂ dx,

which incorporates as constraints both variational formulations for uΩ and pΩ, the respective solutions to (44)

and (49). As usual, we look for points (u, z, p, q) ∈
(
H2(Rd)d ∩H1

ΓD
(Rd)d

)4
where the partial derivatives of

L(Ω, ., .) vanish, for a particular shape Ω ∈ Uad.
• As before, canceling the partial derivative of L with respect to z at (Ω, u, z, p, q) imposes that u should

satisfy:

∀ẑ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d,

∫

Ω

Ae(u) : e(ẑ) dx =

∫

Ω

f · ẑ dx+

∫

ΓN

g · ẑ ds.

As H2(Rd) is dense in H1(Rd), this is equivalent to the fact that u = uΩ.
• Similarly, canceling the derivative of L with respect to q at (Ω, u, z, p, q) imposes that p should satisfy:

∀q̂ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d,

∫

Ω

Ae(p) : e(q̂) dx = −

∫

Ω

∇uj(uΩ) · q̂ dx.

For the same reason, this implies that p = pΩ.
• Let us now study the partial derivative of L with respect to p at (Ω, u, z, p, q). It reads, for all p̂ ∈

H2(Rd)d ∩H1
ΓD

(Rd)d:

(72)

∂L

∂p
(Ω, u, z, p, q)(p̂) =

∫

Γ

(
∇pℓ(u, p,Ae(u) : e(p)) · p̂+

∂ℓ

∂e
(u, p,Ae(u) : e(p))Ae(u) : e(p̂)

)
ds

+

∫

Ω

Ae(p̂) : e(q) dx
.

This last expression is not so convenient when it comes to achieving an unambiguous definition of q by means
of a variational formulation over the space H1

ΓD
(Rd)d, because the term

p̂ 7→

∫

Γ

(
∂ℓ

∂e
(u, p,Ae(u) : e(p))Ae(u) : e(p̂)

)
ds
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is not a continuous linear form over H1
ΓD

(Rd)d. However, we already identified u as uΩ. In particular, u = uΩ

satisfies Neumann homogeneous boundary conditions Ae(u)n = 0 over Γ. This allows for a simplification of
the nasty term in (72):

∀p̂ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d, Ae(u) : e(p̂) = (Ae(u))ττ : e(p̂)ττ a.e. on Γ.

Using this information in (72) together with an integration by parts on Γ yields, for all p̂ ∈ H2(Rd)d ∩
H1

ΓD
(Rd)d:

∂L

∂p
(Ω, u, z, p, q)(p̂) =

∫

Γ

(
∇pℓ(u, p,Ae(u) : e(p)) · p̂− divΓ

(
∂ℓ

∂e
(u, p,Ae(u) : e(p))(Ae(u))ττ

)
· p̂

)
ds

+

∫

Ω

Ae(p̂) : e(q) dx
,

because ℓ ≡ 0 on ΓD ∪ ΓN . Under our standing assumption that u = uΩ is smooth enough, canceling
this last expression yields a well-defined variational problem for q, which admits as unique solution in
H2(Rd)d ∩H1

ΓD
(Rd)d (owing to the regularity theory for linear elasticity, see [12]) q = qΩ, defined by (70).

• The study of the partial derivative of L with respect to u at (Ω, u, z, p, q) unrolls in the same way. It
reads, for all û ∈ H2(Rd)d ∩H1

ΓD
(Rd)d:

∂L

∂u
(Ω, u, z, p, q)(û) =

∫

Γ

(
∇uℓ(u, p,Ae(u) : e(p)) · û+

∂ℓ

∂e
(u, p,Ae(u) : e(p))(Ae(p))ττ : e(û)ττ

)
ds

+

∫

Ω

Ae(û) : e(z) dx+

∫

Ω

(
∇2

uj(u)q
)
· û dx

=

∫

Γ

(
∇uℓ(u, p,Ae(u) : e(p)) · û− divΓ

(
∂ℓ

∂e
(u, p,Ae(u) : e(p))(Ae(p))ττ

)
· û

)
ds

+

∫

Ω

Ae(û) : e(z) dx+

∫

Ω

(
∇2

uj(u)q
)
· û dx

,

where the first equality holds because Ae(p)n = 0 on Γ, and the second one follows again from integration
by parts on Γ, with ℓ ≡ 0 on ∂Γ. Under our assumption that u = uΩ is smooth enough, canceling this
last expression yields a well-defined variational problem for z, which admits z = zΩ as unique solution in
H2(Rd)d ∩H1

ΓD
(Rd)d, defined by (71).

Eventually, for any domain Ω ∈ Uad, and any fixed functions q̂, ẑ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d, one has:

L(Ω) = L(Ω, uΩ, ẑ, pΩ, q̂),

whence, differentiating this expression with respect to Ω, and evaluating at q̂ = qΩ and ẑ = zΩ,

∀θ ∈ Θad, L′(Ω)(θ) = L′(Ω, uΩ, zΩ, pΩ, qΩ)(θ),

and the desired formula (68) follows. �

Proof of Theorem 13. First, using point (i) in Lemma 14, we know that J is shape differentiable. A maxi-
mizer V ∈ W 1,∞(Rd,Rd) in formula (62) is then easily obtain: only its trace on Γ matters and it is simply
given by V = m ε n on Γ, where ε := sgn (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ). This immediatly gives formula
(63).

Then, using point (ii) in Lemma 14, with ℓ(u, p, e) = χ |j(u) + e− f · p| produces formula (64). �

Remark 10. Actually, the proposed approach in this paper almost requires to differentiate the considered
cost function twice with respect to the domain. Hence, the formulae derived in this section could also be
used in the context of a second-order algorithm for shape optimization (see [14] for more details, or [17] for
further discussions around the shape Hessian).

We conclude this tour with the study of the stress-based cost function S(Ω) defined by (61). The following
result is proved in the exact same way as Theorem 13, and the proof is therefore omitted.

Theorem 15. Consider the worst-case functional J̃ (Ω), defined by (62), when the cost function is C(Ω) =

S(Ω), defined by (61). Then J̃ rewrites:

(73) J̃ (Ω) =

∫

Ω

j(σ(uΩ)) ds+m

∫

Γ

χ |j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ| ds,
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where the adjoint state pΩ ∈ H1
ΓD

(Ω)d is defined as the unique solution to:

(74)





−div(Ae(p)) = div(A ∂j
∂σ

(σ(uΩ))) in Ω,
p = 0 on ΓD,

Ae(p)n = −A ∂j
∂σ

(σ(uΩ))n on Γ ∪ ΓN .

Furthermore, J̃ is shape differentiable at any Ω ∈ Uad such that the set

EΓ := {x ∈ Γ, (j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ) (x) = 0}

has zero (surface) Lebesgue measure. At such a point, its shape derivative reads, for all θ ∈ Θad,

(75)

J̃ ′(Ω)(θ) =

∫

Γ

χ
(
j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ

)
θ · n ds

+m

∫

Γ

(
∂

∂n
+ κ

)(
χ |j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ|

)
θ · n ds

+m

∫

Γ

(
Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ)− f · zΩ

)
θ · n ds

,

where the second and third adjoint states qΩ, zΩ are respectively defined as the unique solutions in H1
ΓD

(Ω)d

to the following variational problems:

(76) ∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

Ae(q) : e(v) dx = −

∫

Γ

εχ ((σ(uΩ))ττ : e(v)ττ − f · v) ds,

and
(77)

∀v ∈ H1
ΓD

(Ω)d,

∫

Ω

Ae(z) : e(v) dx = −

∫

Γ

εχ

(((
A
∂j

∂σ
(σ(uΩ))

)

ττ

)
: e(v)ττ + (σ(pΩ))ττ : e(v)ττ

)
ds,

−

∫

Ω

(
∂2j

∂σ2
(σ(uΩ))Ae(qΩ)

)
: Ae(v) dx

where ε := sgn (j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ).

5. Numerical results

All computations are performed within the FreeFem++ environment [34], except otherwise mentioned. We
give approximate CPU times for the test cases which are ran on a MacBook Pro with a 2.66 GHz Intel Core
2 Duo processor.

5.1. Worst-case optimization problems in parametric structural optimization.

Let us start with the parametric structural optimization setting, and test the derivatives computed in
Section 3. We reuse the notations introduced then: in every case, a cost functional C of the thickness (and

of perturbation parameters) is considered, and the corresponding approximate worst-case functional J̃ is
minimized using either a steepest-descent algorithm, or an augmented Lagrangian algorithm (see [32], §17.4).
No efforts have been made to minimize the CPU time by using a better optimization algorithm.

In both examples below, we impose bounds hmin = 0.1 and hmax = 1 over admissible thickness functions,
and the initial design of the plate is described by a uniform thickness h = 0.5. The elastic material filling
the plate is characterized by its (normalized) Young’s modulus and Poisson ration ν given by:

(78) E = 1, ν = 0.3.
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Figure 3. Minimization of the compliance with a fixed Lagrange multiplier ℓ = 5.10−4 and
uncertainties over the body forces; from left to right, top to bottom, m = 0 (with boundary
conditions), 0.05, 0.1, 0.2, 0.35, 0.5, 1, 1.5, 2, 5.

5.1.1. Uncertainties on the applied body forces in parametric optimization.

This first example illustrates the results of Section 3.2, and more precisely those of Example 2. The
situation is as depicted in Figure 3: the plate of size 2 × 1 is clamped on its bottom-left and bottom-right
sides, and its cost, when its thickness is h and when submitted to body forces f is its compliance:

C(h, f) =

∫

Ω

f · uh,f dx,

(no surface loads are applied). The plate is equipped with a triangular computational mesh having 10128
vertices (thus, twice as many triangles). The unperturbed state is associated to the following distribution of
forces: f = (0,−1) near the centre of the bottom side of the plate (red spot on Figure 3, top), and f = (0, 0)
elsewhere. Vertical perturbations (0, ξ) ∈ L2(Ω)2 of maximum amplitude ||ξ||L2(Ω)≤ m are expected, which
are located on the bottom side on the plate, between the regions where it is clamped and where the given
force f is applied (grey areas on Figure 3, top). In such a case, only one adjoint is necessary to compute a
gradient (see Theorem 4).

The approximate worst-case functional J̃ defined by (33) is considered for minimization, and so that the
problem is not trivial, a volume constraint is added, using a fixed Lagrange multiplier ℓ = 5.10−4. The
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Figure 4. Convergence histories for the problem of compliance minimization under uncer-
tainties over the body forces, using the same Lagrange multiplier for all examples (cf. Figure
3).

considered minimization problem thus becomes:

min
h∈Uad

(
J̃ (h) + ℓ

∫

Ω

h dx

)
.

For increasing values of m, 100 iterations of a gradient-based steepest descent algorithm are performed and
the resulting shapes and convergence histories are reported in Figures 3 and 4.

Predictably, this simple setting does not really allow us to compare the resulting shapes for various values
of the perturbation parameter m. Indeed, since the volume Lagrange multiplier is kept fixed for all value of
m, the resulting optimal volume is increasing with m,.

To better capture the behavior of the optimal design in terms of the perturbation parameter m, we turn
to a more ‘realistic’ context, where a volume constraint

Vol(h) :=

∫

Ω

h dx = VT ,

is enforced owing to an augmented Lagrangian method in the course of minimizing J̃ . The same test case is
run with a target volume VT = 0.7; 150 iterations prove necessary to achieve convergence of the algorithm,
and each computation takes about 6 − 7 minutes (except for the one associated to the value m = 0, which
does not involve any computation of an adjoint state). Results and convergence histories are reported on
Figures 5 and 6.
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Figure 5. Minimization of the compliance with uncertainties over the body forces,
with an imposed volume VT = 0.7; from left to right, top to bottom, m =
0, 0.05, 0.1, 0.2, 0.35, 0.5, 1, 1.5, 2, 5, with a target volume VT = 0.7.
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Figure 6. Convergence histories for the approximate worst-case compliance (left) and for
the volume (right) of the plate when uncertainties over body forces are considered (cf. Figure
5).

5.1.2. Geometric uncertainties in parametric optimization.
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Figure 7. Parametric optimization of a plate under uncertainties over its thickness. From
left to right, top to bottom, details of the test case, and obtained designs for m = 0,
0.03, 0.036, 0.0365, 0.038, 0.04.

We now illustrate the proposed model for dealing with geometric uncertainty in parametric optimization
of Section 3.3. Recall that, in this context, the case of the compliance as a cost function is almost trivial,
as assessed by Proposition 5. Hence, we consider another example, depicted in Figure 7, which is the
optimization of a gripping mechanism. The considered plate is fixed on a part ΓD ⊂ ∂Ω, and submitted to
surface loads g ∈ L2(ΓN )2 on another part ΓN ⊂ ∂Ω. g equals (0,−1) on the upper part of ΓN , and (0, 1) on
its lower part. The plate is endowed with a triangular mesh of 12382 vertices. In this case, we chose as cost
function C(h) a least-square discrepancy criterion between the solution uh to (7), and a target displacement
u0, that is:

∀h ∈ Uad, C(h) =

∫

ΓT

|uh − u0|
2 ds,

where ΓT is another non optimizable subset of ∂Ω, disjoint from ΓD and ΓN . We chose u0 = (0,−1) on the
upper part of ΓT , and u0 = (0, 1) on its lower part.
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To help the optimization algorithm of the associated approximate worst-case functional J̃ to reach a ’light’
optimal desing, a very small volume constraint is imposed by using a fixed Lagrange multiplier ℓ = 0.0003,
which is a mere numerical token (the cost criterion does not vary monotonically with the volume of the
structure in this case).

For increasing values of m, we perform 100 iterations of a steepest-descent algorithm which requires three
adjoints, accoridng to the conclusions of Theorem 6. The optimal designs are depicted in Figures 7 and
8. Each computation takes about 10 minutes (except for the one associated to m = 0, which only involves
the computation of one adjoint state at each iteration of the process). As in the previous test-case, one
observes that the performances of the obtained shapes in their unperturbed states worsen as m grows (which
is coherent, since the larger the value of m, the lower the importance of this unperturbed problem in the

balance expressed by J̃ between perturbed and unperturbed states). Note also that the overall looks of
the obtained shapes change significantly around the value m ≈ 0.0365, at which the optimization algorithm

follows a different path towards a local minimum of J̃ .
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Figure 8. Convergence histories for the parametric optimization example under uncertain-
ties over the thickness (cf. Figure 7).

5.2. Examples of shape optimization problems under uncertainties.

5.2.1. Details around the numerical implementation.

As far as numerical simulations are concerned, shape optimization of elastic structures differs from its
parametric counterpart mainly regarding the difficulty to account for the evolutions of shapes during the
process. To deal with this issue, we rely on the level set method, as was originally suggested in [3, 37], which
roughly speaking consists in describing every shape Ω ⊂ Rd by means of a scalar function φ : Rd → R

enjoying the properties:

∀x ∈ Rd,





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈ cΩ

.

The main asset of this change in perspectives lies in that the motion of a domain Ω(t), t ∈ [0, T ] evolving in
time, driven by a normal velocity V (t, x) is translated in terms of a corresponding level set function φ(t, .)
into the following Hamilton-Jacobi equation:

(79)
∂φ

∂t
+ V |∇φ|= 0 on [0, T ]× Rd.

In the situation of Section 4 (whose notations are reused here), the minimization of a functional J̃ (Ω) of the
domain is considered, whose shape derivative is of the form:

∀θ ∈ Θad, J̃ ′(Ω)(θ) =

∫

Γ

D(uΩ, pΩ, qΩ, zΩ) θ · n ds,
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for some algebraic combination D(uΩ, pΩ, qΩ, zΩ) of solutions to (state and adjoints) elasticity systems posed
on Ω. Then, V is set to 0 on ΓD ∪ ΓN and to −D(uΩ, pΩ, qΩ, zΩ) on the free boundary Γ.

In numerical practice, the whole space Rd is reduced to a large working domain D ⊂ Rd, which encloses
all the considered shapes, and comes equipped with a fixed simplicial mesh T . The (state or adjoints) linear
elasticity systems posed on a given shape Ω, involved in the expressions of V , cannot be computed exactly
since Ω is only known by means of an associated level set function (i.e. no mesh of Ω is available). The
Ersatz material approach [3] is then used to transfer a linear elasticity system posed on Ω to one posed on D
by filling the void D \ Ω with a very soft material with Hooke’s law εA, ε ≪ 1 (ε = 1.e−3 in our examples).

While the elasticity analysis are performed in FreeFem++, the Hamilton-Jacobi equation (79) and the
redistanciation of φ are solved using a characteristic method as described in [15, 6].

For the sake of completeness, the computational times of two representative computations are provided,
in Sections 5.2.2 (whose model involves one adjoint state) and 5.2.4 (whose model involves three adjoint
states).

5.2.2. Shape optimization under uncertainties about the applied loads.

ΓD

ΓN

g0

40

80

40

20

5

5

Figure 9. Optimization of the shape of a mast with respect to the worst-case compliance
with perturbations under the body forces; setting of the test case.

Let us start by illustrating the conclusions of Section 4.2, and more precisely of Example 4. The cost
C(Ω, f) of a shape Ω ⊂ Rd, when submitted to body forces f ∈ L2(Ω)d and traction loads g ∈ L2(ΓN )d is
its compliance:

C(Ω, f) =

∫

Ω

f · uΩ,f dx+

∫

ΓN

g · uΩ,f ds.

In a first example we consider the situation depicted in Figure 10: a mast is clamped on a part ΓD of its
boundary and traction loads g = (0,−1) are applied on ΓN , near the bottom-left and bottom-right parts
of its arms. In the unperturbed state, no body forces are applied (f = 0). Perturbations are expected as
vertical body forces (0, ξ), of amplitude ||ξ||L2(Rd)≤ m, which are located on near the bottom of the arms of
the mast (blue areas in Figure 10).

We minimize the corresponding worst-case scenario functional J̃ with respect to the shape for different
values of parameter m, using a fixed Lagrange multiplier ℓ = 1 to impose a volume constraint. 200 iterations
of a gradient algorithm are used, and results are displayed on Figure 10.

One observes that, once again, the shapes tend to thicken as m grows, but also notices interesting changes
in trends in the layout of the structure. Once again, to better appraise this feature, we run the very same
example, using an augmented Lagrangian method to enforce a volume constraint Vol(Ω) = VT , where VT is
a target volume (in this example, VT = 2000). Each computation (except for the one associated to m = 0)
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Figure 10. (From left to right): Optimal shapes of a mast for compliance minimization,
with uncertainties on the body forces of amplitude m = 0, 0.6, 2, 3. The same Lagrange
multiplier for the volume constraint is used in all cases.

takes about 25 minutes, for a computational mesh composed of 11257 vertices. The results are reported on
Figure 11, and confirm our initial guess (see also Figure 12 for convergence histories).

Figure 11. (From left to right): optimal shapes of a mast for compliance minimization,
under uncertainties on the body forces of amplitude m = 0, 0.6, 2, 3; all the shapes have the
some volume VT = 2000.

A second example is the benchmark optimal bridge test case, as described in Figure 14 (top). The same
computations (fixed Lagrange multiplier followed by fixed volume constraint) are applied on this example.
The bridge is clamped on two sides of its boundary, and vertical body forces f = (0,−10) are applied at the
middle of the bottom of the structure (yellow box). Vertical perturbations of amplitude lower than m are
expected to occur on the blue areas. First, a minimization procedure is carried out, using a fixed Lagrange
multiplier ℓ = 0.2 for the volume constraint, for several values of m, and results are to be seen on Figure
14. The results of the subsequent step, to get optimal shapes with the same target volume VT = 0.75 are
displayed on Figure 15. In both cases, the computational mesh is worth 9205 vertices.

Remark 11. Some of the ‘optimal’ shapes displayed turn out to be non symmetric, whereas the setting of
the corresponding test case is. This is mainly because no particular attention has been paid about this feature;
in particular, the meshes of the (symmetric) bounding boxes are triangular, and not symmetric.
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Figure 12. Convergence history for approximate worst-case compliance (left) and for the
volume (right) in the (worst-case) optimal mast test case.
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Figure 13. Optimal shape of a bridge under perturbations over the body forces; setting of
the test case.

5.2.3. Shape optimization under uncertainties on the material’s properties.

The proposed approach is evaluated in the context of Section 4.3; we seek the optimal design of a force
inverter: the considered shapes are clamped on the upper and lower parts of their left-hand side, a surface
load g = (−0.1, 0) is applied at the centre of this left-hand side, and should exhibit a prescribed displacement
u0 = (1, 0) in a (non optimizable) area located at the centre of their right-hand side (see the details on Figure
16).

In this context, the cost of a shape Ω ∈ Uad, when filled with a material with Lamé coefficients λ, µ is:

C(Ω, λ, µ) =

∫

Ω

k(x)|uΩ,λ,µ − u0|
2 dx,

where k is the characteristic function of the area where the target displacement should be reached.
We are in search of a shape Ω ∈ Uad which minimizes this cost, when perturbations |α|≤ m, |β|≤ m

are expected over the ‘reference’ Lamé coefficients λ, µ associated to (78), and this leads us to consider the

functional J̃ of formula (48).
As was the case in the example of Section 5.1.2, the performance of a shape has nothing to do with

its weight. Nevertheless, for purely numerical purposes, we add a very small penalization, with respective

parameters ℓv = 5.e−3 and ℓc = 0.02 on the volume and compliance of the shapes to the expression of J̃ . The
first additional term helps in removing the small ‘islands’ (i.e. disconnected parts obtained after topological
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Figure 14. (From left to right, top to bottom): Optimal shape of a bridge under pertur-
bations over the body forces of amplitude m = 0, 0.2, 0.5, 1, 1.5, 2. The same Lagrange
multiplier for the volume constraint is used in all cases.

Figure 15. (From left to right, top to bottom): optimal shape for the worst-case optimal
bridge example, for m = 0, 0.2, 0.5, 1, 1.5, 2. The same volume constraint V = VT = 0.75 is
imposed in all six cases.

changes occurred), while the second one makes it easier to obtained a connected structure (which is difficult,
since shapes tend to develop very small parts in the course of the process in order to gain flexibility).

Figure 16 shows the shapes obtained after 400 iterations of a gradient algorithm performed on a mesh
of 8401 vertices, for several values of m, and Figure 17 displays the corresponding deformed shapes. Note

36



that the two last ones are not ‘inverting’ the displacement of the shape. The convergence histories for these
computations are reported on Figure 18.

5.2.4. Shape optimization under geometric uncertainties.

We eventually look into the setting of Section 4.4, where geometric uncertainties are considered, first in
the context of the device of a gripping mechanism, as illustrated in Figure 19: the shapes of interest are
clamped on the top and bottom parts of their left-hand side, and a small horizontal force g = (0.1, 0) is
applied at the centre of this side, with the goal that the jaws (corresponding to the blue area in Figure 19)
will close, namely comply with a target displacement u0, equal to (0,−0.2) on the upper part, and (0, 0.2)
on the lower part. The cost C(Ω) of a shape Ω ∈ Uad reads:

C(Ω) =

∫

Ω

k(x)|uΩ − u0|
2 dx,

where k is the characteristic function of the area near the jaws.
As perturbations of magnitude m on the geometry of shapes are expected, we aim at optimizing the

approximate worst-case functional J̃ associated to this problem, defined by formula (63). Small constraints
over the volume and compliance of shapes are incorporated using fixed Lagrange multipliers ℓv = 0.003,
and ℓc = 1, serving the same purposes as in the force inverter test case, and 200 iterations of the usual
gradient-based algorithm are performed.

Several results are displayed on Figure 19, corresponding to different values of m. Each computation
is performed on a computational mesh of 10288 vertices, and takes about 35 minutes, except for the one
associated to m = 0. The corresponding displacements are shown on Figure 20, and it is easily seen that,
as expected, the performances of the unperturbed shapes are less and less efficient as m increases, and the
‘optimal shape’ obtained for the value m = 0.1 is not functional, since the jaws do not tighten when the
shape is deformed.

On a different note, enforcing robustness with respect to geometric uncertainties seems to urge the joints
of the shape (i.e. the very thin parts which allow to invert the displacement caused by the applied surface
loads g) to thicken. Intuitively, this goes in the same direction as imposing manufacturing constraints on
the resulting shapes (see [30] for a more extensive discussion on this issue).

The proposed approach for addressing geometric uncertainties is eventually applied to a case where the
stress of structures is at stakes. Our shapes are now L-shaped beams, clamped on their upper part, and
submitted to traction loads g = (0,−1) on a portion of their right-hand side (see the details on Figure 21).
The cost C(Ω) of a shape Ω ∈ Uad is now related to the stress σ(uΩ) induced by its displacement as:

(80) C(Ω) =

∫

Ω

k(x)||σ(uΩ)||
p dx,

where p ≥ 2, k is a characteristic function which equals 1 everywhere on the working domain except near
the area ΓN where loads are applied, and ||.|| is the Frobenius norm for matrices.

The worst-case design associated to this cost function is investigated, when uncertainties over the geometry

of the shape of maximum amplitude m are expected. The approximate worst-case function J̃ defined by
(73) is minimized, using parameter p = 2.

An augmented Lagrangian method is used to impose a target volume VT = 0.8 on shapes, and all the
computations take place on a mesh of 7296 vertices; see the results on Figure 22, the stress distribution in
the resulting structures in Figure 23, and the convergence histories in Figure 24.
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Figure 16. (From left to right, top to bottom): details of the test-case, optimal shape for
the worst case force inverter test case, with perturbations over the Lamé coefficients of the
material of magnitude m = 0, 0.001, 0.002, 0.003, 0.0045, 0.0075, 0.01, 0.02, 0.1.
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Figure 17. (From left to right, top to bottom): deformed configurations of the optimal
shapes of Figure 16, with m = 0, 0.001, 0.002, 0.003, 0.0045, 0.0075, 0.01, 0.02, 0.1. The
bounding box of the optimal shapes is displayed in red.
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Figure 18. Convergence histories for the (worst-case) force inverter test case.
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Figure 19. (From left to right, top to bottom): details of the test-case, optimal shape for
the worst-case gripping mechanism test case, with m =
0, 0.001, 0.002, 0.004, 0.005, 0.007, 0.009, 0.01, 0.02.
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Figure 20. (From left to right, top to bottom): deformed configurations of the
optimal shapes for the worst-case gripping mechanism test case, with m =
0, 0.001, 0.002, 0.004, 0.005, 0.007, 0.009, 0.01, 0.02 (the bounding box of the optimal shapes
is displayed in red).
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Figure 21. Details of the test-case, in the (worst-case) L-Beam test case, under geometric perturbations.

Figure 22. (From left to right, top to bottom): details of the test-case, optimal shape for
m = 0, 0.005, 0.01, 0.015, 0.02, 0.05, for the (worst-case) L-Beam example, using p = 2.

Eventually, the same procedure is applied for the value p = 5 (and still increasing values for m). As
expected, the resulting optimal shapes are more ‘rounded’ in the vicinity of the reentrant corner, where a
stress singularity develops. See Figure 25 for results, Figure 26 for the stress distribution in the shapes, and
Figure 27 for convergence histories.
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Figure 23. (From left to right, top to bottom): stress distribution (||σ||2) for m =
0, 0.005, 0.01, 0.015, 0.02, 0.05 in the optimal L-Beams displayed on Figure 22, using p = 2.
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Figure 24. Convergence history for (left): the stress
∫
Ω
k||σ(uΩ)||

p dx and (right): the
volume, in the (worst-case) L-Beam example, using p = 2.
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