Double-hybrid density-functional theory with meta-generalized-gradient approximations: Supplementary material

Sidi Ould Souvi^{1,2*}, [†] Kamal Sharkas^{1,2}, and Julien Toulouse^{1,2‡}

¹Sorbonne Universités, UPMC Univ Paris 06, UMR 7616,

Laboratoire de Chimie Théorique, F-75005 Paris, France

²CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France

(Dated: February 4, 2014)

In this supplementary material, we show that the non-linear Rayleigh-Schrödinger perturbation theory first introduced in Ref. 1 and applied to double-hybrid approximations in Ref. 2 can be extended to meta-GGA functionals depending explicitly on both the density $n(\mathbf{r})$ and the positive kinetic-energy density $\tau(\mathbf{r})$.

Given a Hamiltonian $\hat{H}^{(0)}$, a perturbation operator \hat{W} and a functional $F[n,\tau]$, we define the following energy expression by minimizing over N-electron normalized wave functions Ψ ,

$$E^{\alpha} = \min_{\Psi} \left\{ \langle \Psi | \hat{H}^{(0)} + \alpha \hat{W} | \Psi \rangle + F[n_{\Psi}, \tau_{\Psi}] \right\}, \quad (1)$$

where $n_{\Psi}(\mathbf{r}) = \langle \Psi | \hat{n}(\mathbf{r}) | \Psi \rangle$ and $\tau_{\Psi}(\mathbf{r}) = \langle \Psi | \hat{\tau}(\mathbf{r}) | \Psi \rangle$ are the density and the positive kinetic-energy density of the wave function Ψ , respectively, expressed with the second-quantized operators $\hat{n}(\mathbf{r}) = \sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\psi}_{\sigma}(\mathbf{r})$ and $\hat{\tau}(\mathbf{r}) = (1/2) \sum_{\sigma=\uparrow,\downarrow} \nabla_{\mathbf{r}} \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \cdot \nabla_{\mathbf{r}} \hat{\psi}_{\sigma}(\mathbf{r})$. In Eq. (1), α is the perturbation parameter; we are ultimately interested in the case $\alpha = 1$. The minimizing wave function Ψ^{α} satisfies the Euler-Lagrange equation

$$\left(\hat{H}^{(0)} + \alpha \hat{W} + \hat{\Omega}^{\alpha}\right) |\Psi^{\alpha}\rangle = \mathcal{E}^{\alpha} |\Psi^{\alpha}\rangle, \tag{2}$$

where the eigenvalue \mathcal{E}^{α} comes from the normalization condition and $\hat{\Omega}^{\alpha}$ is a potential operator (non linear in α) coming from the variation of $F[n,\tau]$,

$$\hat{\Omega}^{\alpha} = \int d\mathbf{r} \frac{\delta F[n^{\alpha}, \tau^{\alpha}]}{\delta n(\mathbf{r})} \hat{n}(\mathbf{r}) + \int d\mathbf{r} \frac{\delta F[n^{\alpha}, \tau^{\alpha}]}{\delta \tau(\mathbf{r})} \hat{\tau}(\mathbf{r}), \quad (3)$$

where $n^{\alpha}(\mathbf{r}) = \langle \Psi^{\alpha} | \hat{n}(\mathbf{r}) | \Psi^{\alpha} \rangle$ and $\tau^{\alpha}(\mathbf{r}) = \langle \Psi^{\alpha} | \hat{\tau}(\mathbf{r}) | \Psi^{\alpha} \rangle$. Starting from the reference $\alpha = 0$, we develop a perturbation theory in α . We introduce the intermediate normalized wave function $\tilde{\Psi}^{\alpha} = \Psi^{\alpha} / \langle \Psi^{\alpha=0} | \Psi^{\alpha} \rangle$, and expand $\tilde{\Psi}^{\alpha}$, n^{α} , τ^{α} , $\hat{\Omega}^{\alpha}$ and \mathcal{E}^{α} in powers of α : $\tilde{\Psi}^{\alpha} = \sum_{k=0}^{\infty} \tilde{\Psi}^{(k)} \alpha^{k}$, $n^{\alpha} = \sum_{k=0}^{\infty} n^{(k)} \alpha^{k}$, $\tau^{\alpha} = \sum_{k=0}^{\infty} \tau^{(k)} \alpha^{k}$, $\hat{\Omega}^{\alpha} = \sum_{k=0}^{\infty} \hat{\Omega}^{(k)} \alpha^{k}$ and $\mathcal{E}^{\alpha} = \sum_{k=0}^{\infty} \mathcal{E}^{(k)} \alpha^{k}$. The coefficients $n^{(k)}$ and $\tau^{(k)}$ are obtained from the expansion of

 $\tilde{\Psi}^{\alpha}$ through

$$n^{\alpha}(\mathbf{r}) = \frac{\langle \tilde{\Psi}^{\alpha} | \hat{n}(\mathbf{r}) | \tilde{\Psi}^{\alpha} \rangle}{\langle \tilde{\Psi}^{\alpha} | \tilde{\Psi}^{\alpha} \rangle}, \tag{4}$$

$$\tau^{\alpha}(\mathbf{r}) = \frac{\langle \tilde{\Psi}^{\alpha} | \hat{\tau}(\mathbf{r}) | \tilde{\Psi}^{\alpha} \rangle}{\langle \tilde{\Psi}^{\alpha} | \tilde{\Psi}^{\alpha} \rangle}, \tag{5}$$

and the coefficients $\hat{\Omega}^{(k)}$ are found from the expansions of n^{α} and τ^{α} , after expanding $\hat{\Omega}^{\alpha}$ around $n^{(0)}$ and $\tau^{(0)}$,

$$\hat{\Omega}^{\alpha} = \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})} \hat{n}(\mathbf{r}) + \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})} \hat{\tau}(\mathbf{r})
+ \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})\delta n(\mathbf{r}')} \Delta n^{\alpha}(\mathbf{r}') \hat{n}(\mathbf{r})
+ \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})\delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \hat{n}(\mathbf{r})
+ \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})\delta n(\mathbf{r}')} \Delta n^{\alpha}(\mathbf{r}') \hat{\tau}(\mathbf{r})
+ \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})\delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \hat{\tau}(\mathbf{r}) + \cdots,$$
(6)

where $\Delta n^{\alpha} = n^{\alpha} - n^{(0)}$ and $\Delta \tau^{\alpha} = \tau^{\alpha} - \tau^{(0)}$. The zeroth-order equation is

$$\left(\hat{H}^{(0)} + \hat{\Omega}^{(0)}\right) |\tilde{\Psi}^{(0)}\rangle = \mathcal{E}^{(0)} |\tilde{\Psi}^{(0)}\rangle,\tag{7}$$

and of course $\tilde{\Psi}^{(0)} = \Psi^{\alpha=0}$. For the general order $k \geq 1$,

$$\left(\hat{H}^{(0)} + \hat{\Omega}^{(0)} - \mathcal{E}^{(0)}\right) |\tilde{\Psi}^{(k)}\rangle + \hat{W}|\tilde{\Psi}^{(k-1)}\rangle$$
$$+ \sum_{i=1}^{k} \hat{\Omega}^{(i)} |\tilde{\Psi}^{(k-i)}\rangle = \sum_{i=1}^{k} \mathcal{E}^{(i)} |\tilde{\Psi}^{(k-i)}\rangle. \tag{8}$$

The corresponding eigenvalue correction of order k is

$$\mathcal{E}^{(k)} = \langle \tilde{\Psi}^{(0)} | \hat{W} | \tilde{\Psi}^{(k-1)} \rangle + \sum_{i=1}^{k} \langle \tilde{\Psi}^{(0)} | \hat{\Omega}^{(i)} | \tilde{\Psi}^{(k-i)} \rangle, \quad (9)$$

containing, besides the usual first term, a "non-linearity" term as well. Introducing the reduced resolvent, \hat{R}_0 ,

$$\hat{R}_{0} = \sum_{I} \frac{|\tilde{\Psi}_{I}^{(0)}\rangle\langle\tilde{\Psi}_{I}^{(0)}|}{\mathcal{E}_{I}^{(0)} - \mathcal{E}^{(0)}},\tag{10}$$

^{*}Present address: Institut de Radioprotection et Sûreté Nucléaire, PSN-RES/SAG/LETR, Cadarache, 13115 Saint-Paul-lès-Durance, France

[†]Electronic address: sidi.souvi@irsn.fr

[‡]Electronic address: julien.toulouse@upmc.fr

where $\tilde{\Psi}_{I}^{(0)}$ and $\mathcal{E}_{I}^{(0)}$ are the excited eigenfunctions and eigenvalues of $\hat{H}^{(0)} + \hat{\Omega}^{(0)}$, the wave function correction of order k writes

$$|\tilde{\Psi}^{(k)}\rangle = -\hat{R}_0 \hat{W} |\tilde{\Psi}^{(k-1)}\rangle - \hat{R}_0 \hat{\Omega}^{(k)} |\tilde{\Psi}^{(0)}\rangle - \hat{R}_0 \sum_{i=1}^{k-1} \left(\hat{\Omega}^{(i)} - \mathcal{E}^{(i)}\right) |\tilde{\Psi}^{(k-i)}\rangle.$$
 (11)

The total energy can be re-expressed in terms of the eigenvalue \mathcal{E}^{α} and the "double counting correction" D^{α}

$$E^{\alpha} = \mathcal{E}^{\alpha} + D^{\alpha},\tag{12}$$

where

$$D^{\alpha} = F[n^{\alpha}, \tau^{\alpha}] - \int d\mathbf{r} \frac{\delta F[n^{\alpha}, \tau^{\alpha}]}{\delta n(\mathbf{r})} n^{\alpha}(\mathbf{r}) - \int d\mathbf{r} \frac{\delta F[n^{\alpha}, \tau^{\alpha}]}{\delta \tau(\mathbf{r})} \tau^{\alpha}(\mathbf{r}).$$
(13)

We expand E^{α} and D^{α} in powers of α : $E^{\alpha} = \sum_{k=0}^{\infty} E^{(k)} \alpha^k$ and $D^{\alpha} = \sum_{k=0}^{\infty} D^{(k)} \alpha^k$. The coefficients $D^{(k)}$ are found from the expansions of n^{α} and τ^{α} , after expanding D^{α} around $n^{(0)}$ and $\tau^{(0)}$,

$$D^{\alpha} = F[n^{(0)}, \tau^{(0)}] + \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})} \Delta n^{\alpha}(\mathbf{r})$$

$$+ \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})} \Delta \tau^{\alpha}(\mathbf{r})$$

$$+ \frac{1}{2} \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r}) \delta n(\mathbf{r}')} \Delta n^{\alpha}(\mathbf{r}') \Delta n^{\alpha}(\mathbf{r})$$

$$+ \frac{1}{2} \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \Delta n^{\alpha}(\mathbf{r})$$

$$+ \frac{1}{2} \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta n(\mathbf{r}')} \Delta n^{\alpha}(\mathbf{r}') \Delta \tau^{\alpha}(\mathbf{r})$$

$$+ \frac{1}{2} \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \Delta \tau^{\alpha}(\mathbf{r}) + \cdots$$

$$- \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})} n^{\alpha}(\mathbf{r}) - \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})} \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') n^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta n(\mathbf{r}')} \Delta n^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta n(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta n(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta n(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

$$- \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \Delta \tau^{\alpha}(\mathbf{r}') \tau^{\alpha}(\mathbf{r})$$

The zeroth-order total energy is simply

$$E^{(0)} = \mathcal{E}^{(0)} + F[n^{(0)}, \tau^{(0)}] - \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})} n^{(0)}(\mathbf{r}) - \int d\mathbf{r} \frac{\delta F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})} \tau^{(0)}(\mathbf{r}).$$
(15)

The general correction of order $k \ge 1$ writes

$$E^{(k)} = \langle \tilde{\Psi}^{(0)} | \hat{W} | \tilde{\Psi}^{(k-1)} \rangle + \Delta^{(k)}$$
 (16)

where $\Delta^{(k)}$ is

$$\Delta^{(k)} = \sum_{i=1}^{k} \langle \tilde{\Psi}^{(0)} | \hat{\Omega}^{(i)} | \tilde{\Psi}^{(k-i)} \rangle + D^{(k)}.$$
 (17)

At first order, it can be verified that the nonlinearity term of the eigenvalue and the double counting correction cancel each other, i.e. $\Delta^{(1)} = 0$, and we obtain the conventional first-order energy correction

$$E^{(1)} = \langle \tilde{\Psi}^{(0)} | \hat{W} | \tilde{\Psi}^{(0)} \rangle. \tag{18}$$

At second order, the situation is analogous, i.e. $\Delta^{(2)} = 0$, and again the conventional form of the energy correction is retrieved

$$E^{(2)} = \langle \tilde{\Psi}^{(0)} | \hat{W} | \tilde{\Psi}^{(1)} \rangle. \tag{19}$$

The nonlinearity effects are "hidden" in the first-order wave function correction, which can be obtained from the self-consistent equation:

$$|\tilde{\Psi}^{(1)}\rangle = -\hat{R}_0 \hat{W} |\tilde{\Psi}^{(0)}\rangle - \hat{R}_0 \hat{\Omega}^{(1)} |\tilde{\Psi}^{(0)}\rangle$$
 (20)

Since the first-order potential operator is, for real wave functions,

$$\hat{\Omega}^{(1)} = 2 \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r}) \delta n(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{n}(\mathbf{r}') | \tilde{\Psi}^{(1)} \rangle \hat{n}(\mathbf{r})
+ 2 \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r}) \delta \tau(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{\tau}(\mathbf{r}') | \tilde{\Psi}^{(1)} \rangle \hat{n}(\mathbf{r})
+ 2 \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta n(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{n}(\mathbf{r}') | \tilde{\Psi}^{(1)} \rangle \hat{\tau}(\mathbf{r})
+ 2 \iint d\mathbf{r} d\mathbf{r}' \frac{\delta^2 F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r}) \delta \tau(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{\tau}(\mathbf{r}') | \tilde{\Psi}^{(1)} \rangle \hat{\tau}(\mathbf{r}),$$
(21)

Eq. (20) can be re-expressed as

$$|\tilde{\Psi}^{(1)}\rangle = -\hat{R}_0 \hat{W} |\tilde{\Psi}^{(0)}\rangle - \hat{R}_0 \hat{G}_0 |\tilde{\Psi}^{(1)}\rangle, \qquad (22)$$

where

$$\hat{G}_{0} = 2 \iint d\mathbf{r} d\mathbf{r}' \hat{n}(\mathbf{r}) |\tilde{\Psi}^{(0)}\rangle \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})\delta n(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{n}(\mathbf{r}')
+ 2 \iint d\mathbf{r} d\mathbf{r}' \hat{n}(\mathbf{r}) |\tilde{\Psi}^{(0)}\rangle \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta n(\mathbf{r})\delta \tau(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{\tau}(\mathbf{r}')
+ 2 \iint d\mathbf{r} d\mathbf{r}' \hat{\tau}(\mathbf{r}) |\tilde{\Psi}^{(0)}\rangle \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})\delta n(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{n}(\mathbf{r}')
+ 2 \iint d\mathbf{r} d\mathbf{r}' \hat{\tau}(\mathbf{r}) |\tilde{\Psi}^{(0)}\rangle \frac{\delta^{2} F[n^{(0)}, \tau^{(0)}]}{\delta \tau(\mathbf{r})\delta \tau(\mathbf{r}')} \langle \tilde{\Psi}^{(0)} | \hat{\tau}(\mathbf{r}').$$
(23)

The final expression of the second-order energy correction can be written as the series

$$E^{(2)} = -\langle \tilde{\Psi}^{(0)} | \hat{W} (1 + \hat{R}_0 \hat{G}_0)^{-1} \hat{R}_0 \hat{W} | \tilde{\Psi}^{(0)} \rangle$$

$$= -\langle \tilde{\Psi}^{(0)} | \hat{W} \hat{R}_0 \hat{W} | \tilde{\Psi}^{(0)} \rangle$$

$$+\langle \tilde{\Psi}^{(0)} | \hat{W} \hat{R}_0 \hat{G}_0 \hat{R}_0 \hat{W} | \tilde{\Psi}^{(0)} \rangle - \cdots$$
 (24)

To define meta-GGA double-hybrid approximations, we apply this perturbation theory with the following choices. The Hamiltonian $\hat{H}^{(0)}$ is

$$\hat{H}^{(0)} = \hat{T} + \hat{V}_{\text{ext}} + \lambda \hat{V}_{\text{H}_T}^{\text{HF}} [\Phi^{\lambda}], \qquad (25)$$

where λ is a fixed parameter, \hat{T} is the kinetic energy operator, $\hat{V}_{\rm ext}$ is an external potential operator, and $\hat{V}_{Hx}^{\rm HF}[\Phi^{\lambda}]$ is the Hartree-Fock-like Hartree-exchange potential operator evaluated for the DS1H single-determinant wave function Φ^{λ} . The perturbation operator \hat{W} is

$$\hat{W} = \lambda \left(\hat{W}_{ee} - \hat{V}_{Hx}^{HF} [\Phi^{\lambda}] \right), \tag{26}$$

where \hat{W}_{ee} is the Coulomb electron-electron interaction operator. The functional $F[n,\tau]$ is

$$F[n,\tau] = \bar{E}_{H}^{\lambda}[n] + \bar{E}_{xc}^{\lambda}[n,\tau], \qquad (27)$$

where $\bar{E}_{\rm H}^{\lambda}[n]$ and $\bar{E}_{xc}^{\lambda}[n,\tau]$ are the complement λ -dependent Hartree and exchange-correlation functionals, respectively. With these choices, the zeroth-order wave function is the DS1H single-determinant wave function $\tilde{\Psi}^{(0)} = \Phi^{\lambda}$, and due to the Møller-Plesset form of the perturbation operator of Eq. (26), single excitations in \hat{R}_0 give vanishing matrix elements for \hat{W} in Eq. (24), $\langle \Phi_{i \to a}^{\lambda} | \hat{W} | \Phi^{\lambda} \rangle = 0$, so only double excitations give non zero matrix elements $\langle \Phi_{i,j \to a,b}^{\lambda} | \hat{W} | \Phi^{\lambda} \rangle$. Moreover, the action of \hat{G}_0 on double excitations gives zero due to the presence of the one-electron operators $\hat{n}(\mathbf{r})$ and $\hat{\tau}(\mathbf{r})$ in Eq. (23), so the nonlinearity terms in Eq. (24) vanish, and the second-order energy correction is given by the standard MP2 correlation energy expression

$$E^{\lambda,(2)} = \lambda^2 \sum_{\substack{i < j \\ a < b}} \frac{|\langle ij||ab\rangle|^2}{\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b} = \lambda^2 E_c^{\text{MP2}}, (28)$$

where i, j and a, b refer to occupied and virtual DS1H spin-orbitals, respectively, with associated orbital eigenvalues ε_k , and $\langle ij||ab\rangle$ are the antisymmetrized two-electron integrals.

134, 064113 (2011).

J. G. Ángyán, I. C. Gerber, A. Savin, and J. Toulouse, Phys. Rev. A 72, 012510 (2005).

^[2] K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys.