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In this supplementary material, we show that the non-
linear Rayleigh-Schrédinger perturbation theory first in-
troduced in Ref. 1 and applied to double-hybrid approx-
imations in Ref. 2 can be extended to meta-GGA func-
tionals depending explicitly on both the density n(r) and
the positive kinetic-energy density 7(r).

_Given a Hamiltonian HO g perturbation operator
W and a functional F[n, 7|, we define the following en-
ergy expression by minimizing over N-electron normal-
ized wave functions W,

B = min{(U|H® + aW[¥) + Flnw,mal}, (1)

where ng(r) = (¥|n(r)|¥) and 7g(r) = (V|7 (r)|¥) are
the density and the positive kinetic-energy density of
the wave function W, respectively, expressed with the
second-quantized operators n(r) = > _, | Ul (1) 1y (r)
and 7(r) = (1/2) ZU:N/ Vel (r) Vi, (r). In Eq. (1),
« is the perturbation parameter; we are ultimately inter-
ested in the case o = 1. The minimizing wave function
U satisfies the Euler-Lagrange equation

(H<0> +aW+Qa) Do) = 2P, 2)

where the eigenvalue £¢ comes from the normalization
condition and Q¢ is a potential operator (non linear in
«) coming from the variation of F[n, 7],

S OF[n®, 7] . OF[n™, 7] .
Q —/drT(r)n(r)—i—/drT(r)T(r), (3)

where n®(r) = (¥*a(r)|T*) and 7% (r) = (P*|7(r)|P*).

Starting from the reference o = 0, we develop a per-
turbation theory in a. We introduce the intermediate
normalized wave function U = g /(go=0|g) and ex-

pand \ijo‘, n, QO‘ and £% in powers of a: U =
S URak, n = 30 nWak, re = 330 ok
Qo =3, Q(k)a and £ = 312 EXak. The coefﬁ-

cients n®) and 7(®) are obtained frorn the expansion of
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and the coefficients Q*) are found from the expansions
of n® and 7, after expanding Q® around n(®) and 79,

o SF[n© 0] SF[n© O]
Q = /drT(r)n(r)—i—/drT(r)T(r)
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where An® = n® — n(® and Ar* = 7@ — 7O The
zeroth-order equation is
(g«n 4 Q(O)) (@) = £OFO)y (7)

and of course W(0) = ¥o=0_ For the general order k > 1,
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The corresponding eigenvalue correction of order k is
~ ~ k ~ ~
EX = (GO e*-Dy 4 Z<\Ij(0)|Q(i)|\Ij(k*i)>7 (9)

i=1

containing, besides the usual first term, a “non-linearity”

term as well. Introducing the reduced resolvent, Ry,
= (0)\ /(0

: [ (85

Ry = Zma (10)



where \i!(lo)

and 51(0) are the excited eigenfunctions and
eigenvalues of H® + Q) the wave function correction

of order k writes

Ry = —ReW|TF=DY — ReQ®F) |G )
k—1
R Y (Q(i) _ g(i)) =0y, (1)
i=1

The total energy can be re-expressed in terms of the
eigenvalue £¢ and the “double counting correction” D¢

EY =&%+ D“, (12)
where
D® = F[n®, %]
OF [n®, 7¢] OF [n®, 7¢]
— [ dr———n%(r) — | dv———7%(r). (1
/r ) n“(r) /r 57 (0) 7). (13)
We expand E® and D¢ in powers of a: FE% =

Yoo E®ak and D = Y2 DWak. The coefficients
D) are found from the expansions of n® and 7%, after
expanding D® around n(®) and 7(%),
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The zeroth-order total energy is simply
5O _ 5(0)+F[n(0)77-(0)]_/ r%();(o)]n(m r)
n(r
5F[n(0), 7'(0)] (0)

The general correction of order k > 1 writes

E® = (3O w1y 4 A (16)
where A®*) is
k ~ ~
AR — Z<qj(0)|g(i)|q;(kfi)> + D), (17)
i=1

At first order, it can be verified that the nonlinearity
term of the eigenvalue and the double counting correc-
tion cancel each other, i.e. A =0, and we obtain the
conventional first-order energy correction

EW = (5O §O), (18)

At second order, the situation is analogous, i.e. A?) =0,
and again the conventional form of the energy correction
is retrieved

E® = (3O gy, (19)

The nonlinearity effects are “hidden” in the first-order
wave function correction, which can be obtained from
the self-consistent equation:

B0 = ~ R EO) — OO EO)  (20)

Since the first-order potential operator is, for real wave
functions,
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Eq. (20) can be re-expressed as

(W) = —RW[BV) — RoGo[BD),  (22)
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The final expression of the second-order energy correction
can be written as the series

E® — _(FON(1+ RoGo) " ReW|E©)
_@(0) |W§OW|@(0)>
HUO W R GoRoW [T — ... (24)

To define meta-GGA double-hybrid approximations,
we apply this perturbation theory with the following
choices. The Hamiltonian H(® i

HO =T 4 Vi + AVEF [07], (25)
where A is a fixed parameter, T is the kinetic energy oper-
ator, V;xt is an external potential operator, and V}II{F[Q)‘]
is the Hartree-Fock-like Hartree-exchange potential op-
erator evaluated for the DS1H single-determinant wave
function ®*. The perturbation operator W is

W= (W - GilF[0%]), (26)
where Wee is the Coulomb electron-electron interaction
operator. The functional F[n, 7] is

Fln, 7] = Egj[n] + Ex.[n, 7], (27)

where Ej[n] and E).[n,7] are the complement M-
dependent Hartree and exchange-correlation functionals,
respectively. With these choices, the zeroth-order wave
function is the DS1H single-determinant wave function
U0 = ®* and due to the Moller-Plesset form of the
perturbatlon operator of Eq. (26), single excitations in
Ry give vanishing matrix elements for W in Eq. (24),
(P _)a|W|<I>)‘> = 0, so only double excitations give non

zero matrix elements <(I)i.j~>a.b|W|(I))\>' Moreover, the

action of G on double excitations gives zero due to the
presence of the one-electron operators 7(r) and 7(r) in
Eq. (23), so the nonlinearity terms in Eq. (24) vanish,
and the second-order energy correction is given by the
standard MP2 correlation energy expression

z]||ab
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N2EMP2 1 (98)

where i,j and a,b refer to occupied and virtual DS1H
spin-orbitals, respectively, with associated orbital eigen-
values e, and (ij||ab) are the antisymmetrized two-
electron integrals.
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