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Geometric algebra for vector fields analysis and

visualization: mathematical settings, overview

and applications

Chantal Oberson Ausoni and Pascal Frey

Abstract The formal language of Clifford’s algebras is attracting an increasingly

large community of mathematicians, physicists and software developers seduced

by the conciseness and the efficiency of this compelling system of mathematics.

This contribution will suggest how these concepts can be used to serve the purpose

of scientific visualization and more specifically to reveal the general structure of

complex vector fields. We will emphasize the elegance and the ubiquitous nature

of the geometric algebra approach, as well as point out the computational issues at

stake.

1 Introduction

Nowadays, complex numerical simulations (e.g. in climate modelling, weather fore-

cast, aeronautics, genomics, etc.) produce very large data sets, often several ter-

abytes, that become almost impossible to process in a reasonable amount of time.

Among other challenges, storage, transfer, analysis and visualization are the more

crucial. This requires developing new methods and implementing new algorithms

to efficiently process this large quantity of information. On the other hand, in math-

ematics or theoretical physics, problems are commonly posed in high-dimensional

spaces and require specific methods to reduce their dimension and make the solu-

tions understandable. In both cases, there is a critical need for an abstract, general

purpose method of analysis capable of extracting the salient features of the complex

data. Unfortunately, numerical algorithms are too often inadequate to perceive the

mathematical properties or the general structure of the objects considered. In this

chapter, we will explain how the formal language of geometric algebras may be
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one of these long sought analysis tools, as it provides a unified framework bringing

us closer by the topological aspects of geometrical problems, in a wide range of

applications, including scientific visualization.

Based on the work of Grassman, Clifford’s geometric algebras, born in the mid

19th-century, consider algebraic operators along with three main products to de-

scribe the spatial relations characteristic to geometric primitives in a coordinate-free

approach. The many possibilities offered by Clifford algebras and Geometric Alge-

bras (hereafter denoted GA), and especially their geometrically intuitive aspects,

have been emphasized by the physicist D. Hestenes who recognized their impor-

tance to relativistic physics [16]. Since then, geometric algebras have also found

applications in computer graphics and scientific visualization, owing to their geo-

metric compactness and simplicity.

The next section will briefly present the main concepts and the basic manipula-

tion rules of Clifford and geometric algebras. Then, the specific case of vector fields

defined on d-dimensional spaces or on differential manifolds will be addressed in

Section 3. In the last section, we will show how geometric algebra can be efficiently

used to understand the algebraic structure of vector fields and implemented.

2 Clifford and geometric algebras

Leaning on the earlier concepts of Grassman’s exterior algebra and Hamilton’s

quaternions, Clifford intended his geometric algebra to describe the geometric prop-

erties of vectors, planes and eventually higher dimensional objects1. Basically, Clif-

ford algebra for Rn is the minimal enlargement of Rn to an associative algebra

with unit capturing the metric, geometric and algebraic properties of Euclidean

space [13]. In general, geometric algebras are distinguished from Clifford algebras

by their restriction to real numbers and their emphasis on geometric interpretation

and physical applications.

Our intent in this section is to give an elementary and coherent account of the

main concepts of Clifford and geometric algebras. The reader who is interested in

the theoretical aspects of geometric algebras is referred to the textbooks [13, 16,

15], among others. Computational aspects of geometric algebra and its usability in

research or engineering applications are discussed in [6, 18].

2.1 Clifford algebra

Clifford algebra can be introduced in many ways; the axiomatic approach we follow

here separates the algebraic structure from the geometric interpretation.

1 The material in this section is intended to be fairly basic but readers unfamiliar with abstract

mathematical concepts may skip this formal introduction as well as the parts written in smaller

characters.
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2.1.1 Basic notions and definitions

Let V be a vector space over a field K, and let Q : V → K be a quadratic form

on V . A Clifford algebra Cl(V,Q) is an associative algebra over K, with unity 1,

together with a linear map i : V →Cl(V,Q) verifying, for all v ∈V , the contraction

rule i(v)2 = Q(v)1, such that the following universal property is satisfied [20]:

Given any other associative algebra A over K and any linear map j : V → A such that, for

all v ∈ V , j(v)2 = Q(v)1A, there is a unique algebra homomorphism f : Cl(V,Q) → A, for

which the following diagram commutes: V

j

""F
F

F

F

F

F

F

F

F

F i

// Cl(V,Q)

f

��

A

Note that the existence and the uniqueness (up to unique isomorphism) of a Clifford

algebra for every pair (V,Q) can be established by considering a quotient algebra of

a tensor algebra. The product defining the Clifford algebra will be called geometric

product and denoted as: uv, for u,v ∈ Cl(V,Q) (with a small space between the

factors). One usually considers V as a linear subspace of Cl(V,Q), thus dropping

the inclusion in the definition of the Clifford algebra, leading to write uu = Q(u).
Consequently, the vector space V is not closed under multiplication as, for example,

uu is a scalar and not an element of V . The contraction rule also implies that every

v ∈V has an inverse v−1 = v
Q(v) , unless Q is degenerate.

To better understand the geometric product, one can classically define it as the

sum of an inner product (symmetric part) and an outer product (antisymmetric part):

ab =
1

2
(ab+ ba)

︸ ︷︷ ︸

<a,b>

+
1

2
(ab− ba)

︸ ︷︷ ︸

a∧b

.

In this setting, the inner product corresponds to the bilinear form φ associated to the

quadratic form Q thanks to the polarizing identity:

φ(u,v) =
1

2
(Q(u+ v)−Q(u)−Q(v))=

1

2
((u+ v)(u+ v)− uu− vv)=< u,v > .

By definition, the element a∧b, if non zero, is called a 2-blade, and has to be

understood as a new entity, that is neither a scalar nor a vector. Geometrically, it

represents an oriented plane segment, and can be characterized by an algebraic area

(the usual area of the parallelogram with sides a and b in Rd) and the attitude (an-

gular position) of this plane. Similarly, one can define n-blades, for any n ≤ dim(V ).
By convention, 0-blades are scalars.

Given an orthonormal basis {e1,e2, . . .} of the space V , we define G0 as the in-

clusion of the scalars K in Cl(V,Q) and Gn to be the part of Cl(V,Q) generated from

the products
n

∏
j=1

ei j
, for 1 ≤ i1 < · · · < in. The direct sum

∞⊕

n=0

Gn is then the graded

Clifford algebra. The elements of Gn are called n-vectors, where n represents the
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grade. Elements can be of “mixed grade”, like the product ab, which is a sum of

a scalar (grade 0) and a bivector (grade 2). A generic multivector A can be decom-

posed as a sum A = ∑∞
n=0 Ar, where Ar = 〈A〉r is of grade r. A n-blade is a n-vector,

but the converse is not true. We take for granted here that a sum of two blades A and

B is another blade iff they are of the same grade k and share a common factor of

grade k− 1 or k.

Factorization of blades with the geometric product yields two equivalent forms

for a blade: one based on the outer product, the other on the geometric product. Ac-

tually, for any arbitrary metric, given a k-blade Ak, it is possible to find an orthogonal

basis {v1, · · · ,vk} of this blade, implying Ak =v1 ∧ v2 ∧·· ·∧ vk= v1 v2 · · · vk.

The meet and join are non-linear operations, corresponding to the blade intersec-

tion and union. Suppose we have an orthogonal factorization of two blades A and

B, i.e. they are given with their orthogonal factorizations A = A′C and B = C B′,
C being the largest common factor. In this very simple case, M = A∩B = C and

J = A∪B = (A′C)∧B′.
An extension of the inner product, sometimes called Clifford scalar product, can

be defined between two blades Ak of grade k and Bl of grade l as follows:

< Ak,Bl >=

{
〈Ak Bl〉|k−l| if k, l > 0

0 else
.

Similarly, it is possible to define the outer product of two blades Ak and Bl as:

Ar ∧Bs = 〈Ak Bl〉k+l .

2.1.2 Advanced concepts

Two important involutions are defined on Cl(V,Q): reversion and grade involution.

On a r-blade A = (a1 ∧ a2 ∧ ·· · ∧ ar), the reversion A† consists of reversing the

order of the constitutive vectors (or, because the outer product is antisymmetric on

vectors, changing the sign r(r − 1)/2 times); the grade involution A# consists of

reversing the sign of every constitutive vector:

A† = ar ∧ar−1 ∧·· ·∧a1 = (−1)r(r−1)/2a1 ∧a2 ∧·· ·∧ar A# = (−1)rA .

On a generic element A = ∑∞
r=0 Ar of Cl(V,q), the reversion and grade involution

are extended linearly from the previous definitions

A† =
∞

∑
r=0

(−1)r(r−1)/2Ar A# =
∞

∑
r=0

(−1)rAr .

The even (resp. odd) multivectors are the ones with A# = A (resp. A# =−A).

Using the reversion and the selection of the scalar part 〈·〉0, let us define a bilinear

form on Cl(V,Q). On blades Ak and Bl , we set:

Ak ∗Bl =







〈A†
k Bl〉0 if k = l 6= 0

A0 ·B0 if k = l = 0

0 else

.
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Extending it linearly to multivectors A and B, we obtain the generic formula

A∗B = 〈A† B〉0. Proof of the equivalence between both formulations can be found

in [16], p.13. On vectors, this bilinear form clearly corresponds to the inner product:

a ∗ b =< a,b >.

2.2 Geometric algebras

The case V = Rn and Q non degenerate lead to a series of specific definitions and

results. As a matter of fact, we have for example:

If K = R and Q is non-degenerate, every non-zero blade Ar has an inverse A
†
r

A∗A
= A

†
r

〈A† A〉0
.

If K = R and Q is positive definite on V , then we can define the modulus of element

A as |A| =
√

A† ∗A =
√

〈A† A〉0, since for an element a1 · · ·ar , (a1 · · ·ar)
†(a1 · · ·ar) =

Q(ar) · · ·Q(a1)≥ 0.

In R
3, the existence of an inverse vector has a very clear interpretation. For a given vector

v ∈ R
3 and a given scalar a, the equation < v,w >= a defines the affine plane w0 + v⊥ .

Likewise, given v and a bivector A, the equation v∧w = A defines the affine line w0 +λ v.

In both cases, there is no unique solution. However, in the setting of geometric algebra, the

equation vw = A leads to the unique solution w = v−1 A (corresponding to the intersection

of a plane < v,w >= A0 and of a line v∧w = A2).

2.2.1 Particular settings

Such a Clifford algebra, in the case V =Rn and Q non degenerate, is called geomet-

ric algebra. Let (p,q) be the signature of the quadratic form Q, i.e. Q diagonalizes

in Q(v) = v2
1+ · · ·+v2

p−v2
p+1−·· ·−v2

p+q (Sylvester’s law of inertia). We write Rp,q

for V and Clp,q for the associated geometric (Clifford) algebra.

Taking a basis {e1,e2, . . . ,en} of R
n, using the element 1 to span the scalars

and all products
r

∏
j=1

ei j
for 1 ≤ i1 < · · ·< ir ≤ n (r ∈ Nn) to span the multivectors,

the set {1,e1,e2, . . . ,en,e1 e2,e1 e3, . . . ,e1 e2 . . . en} will form a basis for Clp,q, with

2n = ∑n
r=0

(
n
r

)
elements. The element In = e1 e2 . . .en is called pseudoscalar and is

defined to a scalar multiple, since all n-blades are proportional.

The dual A∗ of a multivector A is defined as A∗ = A I−1
n . The duality operation

transforms a r-vector Ar into an (n− r)-vector Ar I−1
n ; in particular, it maps scalars

into pseudoscalars. The duality relation states (A∧B)∗ = A⌋B∗ , where ⌋ denotes

the left contraction 2. The inclusion of an element x in a given subspace A specified

by a blade A can be defined in two ways:

• the direct way: x ∈ A ⇐⇒ x∧A = 0

• the dual way: x ∈ A ⇐⇒ x⌋A∗ = 0.

2 For two blades A and B of grades a and b, the left contraction A⌋B is 〈AB〉b−a when a ≤ b, it is

zero otherwise. When blade A is contained in blade B, it equals the geometric product AB [6].
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Given a basis {b1, ...,bn} of Rp,q, n = p + q, we can define a reciprocal frame

{b1, ...,bn}, through the formula bi = (−1)i−1(b1 · · · ∧bi−1 ∧ b̌i ∧bi+1 · · · ∧bn) I−1
n ,

where In = b1∧ ...∧bn and the ˇ -sign mentions the element removed from the list.

The two basis are mutually orthogonal: < bi,b
j >= δ i

j. Since the reciprocal of an

orthonormal basis is itself, this definition is needed only in non-euclidean cases. It

is also useful in differential geometry.

A vector of Rp,q can be written a = ∑n
i=1 aie

i or a = ∑n
i=1 aiei with ai =< a,ei >

et ai =< a,ei >. If we have a multivector basis {eα |α ∈ {1, · · · ,2n}, we can also

define a reciprocal frame {eα |α ∈ {1, · · · ,2n}}.

2.2.2 Versors, rotors, spinors and rotations

One of the main features of GA is its ability to deal with the rotations. Indeed, a

unique object R can be used to compute the rotation of any subspace X , writing a

conjugation with the geometric product:

R(X) = RX R−1 .

The equation x = axa−1 gives the reflection of an arbitrary vector x along the

a-line (a invertible). Its opposite x = −axa−1 gives the reflection in the dual hy-

perplane A = a∗. Two consecutive reflections form a simple rotation, which can be

written as follows: x” =−bx′b−1 = baxa−1 b−1 = (ba)x(ba)−1. It is a rotation of

twice the angle between a and b in the plane containing a and b. The element ab

is called a 2-versor. In general, a k-versor is a multivector that can be written as

the geometric product of k invertible vectors v = v1 v2 ...vk. By Cartan-Dieudonné

theorem, every isometry of Rp,q can be reduced to at most n = p+ q reflections in

hyperplanes. It means that we can write every orthogonal transformation f with a

k-versor U (k ≤ n) and the conjugation: f (x) = (−1)kU xU−1.

In all spaces of signatures (n,0), (0,n), (n− 1,1) or (1,n − 1), including the

Euclidean spaces, every rotation can be written in exponential form3:

R(x) = S xS† with S = e
1
2 (i1 θ1+···+im θm), i1, · · · , im orthogonal 2-blades .

Note that a rotation of a non-Euclidean space is defined to be an orthogonal trans-

formation of determinant one continuously connected to identity. The element S

given by the exponential form of preceding equation is a rotor, i.e. an even versor S

satisfying S S† = 1.

A linear map f: V → V can be extended in a function f : Cl(V,Q)→Cl(V,Q)
while preserving the outer product:

f (a1 ∧a2 ∧·· ·∧ar) = f (a1)∧ f (a2)∧·· ·∧ f (ar) .

It is then called an outermorphism. In particular, the reflection of a blade Ak in a dual

hyperplane a∗ is (−1)kaAk a−1 and the the rotation of a blade by a rotor is RAkR†

according to the previous equations for vectors.

3 Quite naturally, the exponential of a blade A is defined with the usual power series ∑∞
k=0

Ak

k!
. The

additivity exp(A+B) = exp(A)exp(B) is not true in general. The circular and hyperbolic functions

of blades are also defined with power series.
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2.2.3 Geometric calculus

Differentiation. We consider a finite dimensional vector space V with quadratic

form Q and a multivector-valued function F : U ⊂ V −→ Cl(V,Q). It comes of no

surprise that the directional derivative of F in direction r is simply:

Fr(x) = lims→0
F(x+ sr)−F(x)

s
.

This expression will be most of the time written (r ∗∇)F instead of Fr, expressing

the idea of a scalar product between r and the operator ∇, seen as a vector, as will

be clearer below. The linearity in r is straightforward; the sum, the geometric prod-

uct and the grade are preserved. If we want to differentiate a multivector-valued

function F : U ⊂ V −→ Cl(V,Q) directly relative to the variable, we consider a

base {e1, · · · ,em} of V and the coordinates functions of the vector x in this basis

x = ∑n
i=1 xiei. The directional derivatives along the basis directions, (ei ∗∇) = ∂

∂xi
,

combine into a total change operator 4 as:

∇ =
m

∑
i=1

ei (ei ∗∇) meaning ∇F(x) =
m

∑
i=1

ei ∂F(x)

∂xi

.

Note that we also have to define the differentiation from the right, because of the

non-commutativity: for a function F , F(x)∇ = ∑m
i=1(ei ∗∇)F(x)ei = ∑m

i=1
∂F(x)

∂xi
ei.

Thanks to the geometric product, we can write ∇ as: ∇F = ∇∧F+< ∇,F >. In the

case of a vector-valued function F , we have the usual definitions of the divergence

and curl operators:

curl(F) := ∇∧F =
1

2
(∇F −F ∇) and div(F) :=< ∇,F >=

1

2
(∇F +F ∇) .

To write the product rule, accents are necessary to specify on what factor the differ-

entiation acts: ∇(F G) = ∇̀F̀ G+ ∇̀F G̀. The definition of a differentiation with re-

spect to a multivector, for a function F : U ⊂Cl(V,Q)−→Cl(V,Q), is quite straight-

forward, given a reciprocal frame for the whole space Cl(V,Q).

Integration. Consider again a multivector-valued function F ; the line integral is

∫

C
F(x)dx = lim

n→∞

n

∑
j=1

F
j
∆x j , with F

j
=

1

2
(F(xi)+F(xi−1))

where the chords ∆xi = xi − xi−1 correspond to a subdivision of the curve C. The

measure dx is said to be a directed measure, since it is vector-valued. The product

between F(x) and dx is the geometric product. If F is vector-valued,

∫

C
F(x)dx =

∫

C
< F(x),dx >+

∫

C
F(x)∧dx .

4 This explains the notation Fr = (r∗∇)F for the directional differentiation.
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Similarly, if D ⊂R2 is a triangulated planar domain, F
k

is the average of F over the

k-th simplex,
∫

D
F(x)dx = lim

n→∞

n

∑
k=1

F
k
∆xk .

The surface measure of the k-th simplex given by vertices x0,x1,x2 is

∆xk = 1
2
(x0 ∧ x1 + x2 ∧ x0 + x1 ∧ x2) .

This integral definition can be generalized to higher dimensions [5].

The fundamental theorem states:

∮

∂V
F dS =

∫

V
F̀ ∇̀dX , for a function F defined over a volume V .

2.2.4 Clifford Convolution and Clifford Fourier Transform

For F and H two multivector-valued functions F,H : Rm → Clp,q, the left- and the

right-Clifford Convolution of the functions write respectively:

(H ∗l F)(x) =
∫

Rm H(x′)F(x− x′)|dx′| , (H ∗r F)(x) =
∫

Rm H(x− x′)F(x′)|dx′| .
The quantity |dx| is used to make the integral grade preserving since dx is a vector

within Clifford algebra. Modifying x− x′ into x+ x′, we get the left- and right- Clif-

ford correlations [7]. The Clifford convolutions generalize the known convolution

of scalar-valued functions.

A vector field F can be smoothed through convolution with a scalar field, for

example a Gaussian kernel. In the case of two vector fields, the formula for the

geometric product leads to the integration of a scalar function < H(x− x′),F(x′)>
and a bivector function H(x− x′)∧F(x′) [25].

In the case of a multivector-valued function F :R3 →Cl3,0, it is possible to define

the Clifford Fourier Transform (CFT) of F and its inverse as follows:

F{F}(u) = ∫

R3 F(x)e−2πI3<x,u>|dx| , F−1{F}(x) = ∫

R3 F(u)e2πI3<x,u>|du| .

The function e−2πI3<x,u> = cos(2π < x,u >)+ I3 sin(2π < x,u >) is often called

Clifford Fourier kernel.

The convolution theorem is also valid for the Clifford Fourier Transform and

Clifford convolutions as defined here. For example, using the left convolution,

F{H ∗l F}(u) := F{H}(u)F{F}(u) .

As mentioned before, the reader willing to get a deeper understanding of the

mathematical basics about Clifford algebras and geometric algebras is referred to

[13, 16, 15]. In the next section, we will focus on the analysis of vector fields in the

context of GA.
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3 Vector fields in geometric algebra

Our main focus in this paper is the analysis of vector fields, more precisely of steady,

linear and non-linear vector fields in Euclidean space and on manifolds. One is clas-

sically interested in streamlines, critical points with their classification, separatrices,

leading to the topological graph of a vector field. We will show how the analysis of

vector fields can benefit from the richer context of geometric algebra.

3.1 Vector fields on domains of Euclidean space

Classically, vector fields are applications v : U ⊂Rn →Rn. Using the notions of GA

defined in Section 2.2, if Cl1
n,0 is the set of 1-vectors of Cln,0, a map v : Rn −→Cl1

n,0
is also a vector field. This definition can be easily extended to bivector, trivector, or

spinor fields, for example.

The identification of vector fields (satisfying the Lipschitz regularity condition)

with ordinary differential equations dx/dt = v(x) can also be transposed from the

classical to the GA setting. The Lipschitz continuity condition can be written in this

frame,i.e. there exists a scalar constant K ≥ 0 such that

‖v(x1)− v(x2))‖n ≤ K‖x1 − x2‖n for all x1,x2 ∈U .

Furthermore, the defined derivation and integration make it possible to state the

existence of an unique solution (streamline or integral curve) through a given point,

exactly like in the classical frame. In 2D and 3D, drawing the streamlines is a very

classical way to represent a vector field. In order to avoid occlusions and empty

areas, departure points (seeds) for these curves are to be placed efficiently.

Let us consider a small example. To a given classical vector field, we can asso-

ciate curvature and torsion scalar fields: the curvature (resp. torsion) in a point is the

curvature (resp. torsion) of the unique streamline in this point [31]. The curvature

field associated to a vector field can be used for the seeding, or can be displayed

as a further scalar value in the form of isosurfaces or by color coding. In the GA

settings, instead of scalar fields, a curvature bivector and a torsion trivector fields

can be defined. Visualizing the curvature bivector along a streamline, we get what

is called the Frenet ribbon [4].

3.2 Vector fields on differential manifolds

Now we turn to vector fields on differential manifolds, having in mind to embed

the differential geometry formalism into geometric calculus. For a more detailed

presentation of this combined approach, see [16, 28].
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In differential geometry, if M is a smooth manifold, a tangent vector is most of

the time seen as a derivation, i.e. a linear operator D : C∞(p) → C∞(p)5 satisfying

the Leibniz rule D( f ·g) = f ·D(g)+ g ·D( f ). The tangent space of M in p is TpM,

the set of such derivations. A vector field is a function assigning to every p ∈ M an

element of TpM.

In R3, in a more intuitive way, we can imagine giving in each point p of a surface

S a vector tangent v(p) to the surface. The link between this v and the associated

derivation Dv is the derivative Dv( f )(p) = D f (p)(v(p)). The operator point of view

makes it easier to manipulate vector fields and compose them with other operators.

Furthermore a discretization can be made without working with coordinates [2].

To translate this definition into GA, we give the tangent spaces a Clifford algebra

structure. Taking a chart (U,φ) around p ∈ M, the derivations e
p
i defined by

e
p
i ( f ) =

∂

∂xi

( f ◦φ−1)|x=φ(p)

form a basis for TpM. Forming the blades of these basis vectors, we can be build a

geometric algebra structure on TpM.

With a little more abstraction, a vector field can classically be seen as a section of the

tangent bundle, a particular vector bundle: Taking TM to be the disjoint union of tangent

spaces on M, T M = ⊔x∈MTxM, and π : TM → M defined by π(v) = x for x ∈ TxM, we can

see M as the base space, TM as the total space and π as the projection, these three elements

defining a fibre bundle called the tangent bundle. The section is a continuous map s with

π ◦ s = idM , meaning s(x) ∈ TxM, hence what we understand as a vector field. The adding

of a geometric algebra structure can be done in the general case of a vector bundle on a

manifold with some metrics, using a construction very similar as the one made in 2.1.1:

quotienting a tensor algebra with a two-sided ideal.

Scalar fields, vector fields, bivector fields, spinor fields on surfaces, for example, are

natural extensions of this definition of vector fields (or can be seen as sections of the

Clifford tangent bundle, see above), and, as long as M is simply connected, it is also

the case for rotation fields r : M → SO(n), since they can be lifted to spinor fields.

Since every differentiable manifold is locally diffeomorphic to an Euclidean

space (via the charts), the existence and uniqueness of streamlines is also granted

on manifolds, within or outside GA context.

3.3 Critical points, orbits and topological graph

The topological graph is an important tool of analysis: it goes one step further as the

streamline representation and decomposes the vector field domain in areas of similar

behavior. The critical points and closed orbits (with their type, like defined below)

and the separatrices (streamlines or surfaces between areas of different behavior)

5 C∞(p) describes the smooth functions defined on some open neighborhood of p.
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form the topological graph of the vector field, that eventually describes the underly-

ing structure of the field in a more efficient way as a collection of streamlines. Such

a graph does not take into account the norm of the vector field [9].

The classification of critical points finds its origin in the theory of dynamical sys-

tems. For regular critical points, i.e. for critical points with an invertible Jacobian

matrix, a linear approximation of the field can be considered. Studying eigenvalues

and eigenvectors of the Jacobian matrix makes the classification possible, provided

none of the eigenvalues is pure imaginary. The so-called hyperbolic critical points,

satisfying this condition, are isolated and are structurally stable: a small local per-

turbation does not modify the topology. This legitimates the linear approximation to

describe the field’s behavior around this point. In two dimensions for example, the

hyperbolic critical points are sources, sinks, saddles and spirals. Unstable critical

points are centers. A similar classification can be done for orbits, according to the

derivative of the Poincaré map [1].

For non-linear critical points, said of higher order, the non-invertibility of the first

derivate leads to consider a higher order Taylor expansion. For the isolated ones, the

index6 might help to discriminate critical points of different types. Sometimes this

proves insufficient, since two critical points with same index can be of different

types. The GA formalism provides an elegant alternative for the computation of the

index: for example, in 3D,

ind(c) =
1

8π I3

∫

B(c)

v∧dv

|v|3 ,

for v the vector field, c the critical point, B(c) an arbitrary small ball around c [21].

Unlike the index, the ordered list of all different behavior sectors (i.e., elliptic,

hyperbolic and parabolic sectors) makes a univoque classification possible [26, 14,

11, 30].

Next, we turn to a more practical view of geometric algebras, as this chapter is

also intended for engineers and practitioners. In particular, we will briefly explain

how GA can be implemented and the potential advantages of using Clifford algebra

when, for example, dealing with rotations in spaces of high dimensions.

4 Geometric algebra for computer graphics and visualization of

vector fields

Nowadays, geometric algebra is mostly recognized as a promising mathematical

concept and is only beginning to find broader legitimacy in applications. Emerg-

ing computer architectures (multicore, many-core, parallel) lead us to believe that

the language of GA may find a new playground and evolve towards what Hilden-

brand calls Geometric Algebra Computing (GAC) [17]. However, GA is not yet

6 In 2D, the index corresponds the number of turns the field makes around a critical point.
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a widespread method in engineering applications, mainly because of two reasons,

academic and practical [22]. On the one hand, GA combines many mathematical

concepts that were developed separately over the years and are taught as such in

curriculum. On the other hand, most engineering applications in three-dimensional

space can be dealt using standard vector and matrix algebra tools. The goal of this

last section is to introduce how GA can be used advantageously in computer graph-

ics applications and vector field analysis and visualization.

4.1 Geometric algebra for computer graphics

It is surely the most obvious field of application of GA. In geometrical applications,

operations and transformations are applied on primitives that are combined to repre-

sent an object (model). Linear geometric transformations are usually represented us-

ing matrices, vectors and scalars. But while 3× 3 matrices encode the 3D-rotations

about an axis through the origin, quaternions (which form a subalgebra of GA [23])

are better suited instead, because they are easier to interpret.

The quaternion representation of a rotation is a nearly minimal parametrization that requires

only four scalars. Given a quaternion, one can easily read off the axis and angle of the rota-

tion, it is not the case with the Euler angles representation. The composition of rotations in

quaternion form is faster and more stable numerically (the renormalization is more efficient

than with matrices). Furthermore, the interpolation in H (for example to get an animated

view of a rotated object) consists in defining a path on S3 which is mapped to SO(3). The

Euler angles parametrization, from the 3-torus to SO(3) is not a global diffeomorphism:

the uniqueness breaks at some points (problem known as the gimbal lock). This is why,

in graphic libraries such as OpenGL, rotations are given in terms of a rotation axis and a

rotation angle and converted internally into rotation matrices.

Note that H is trivially isomorphic to the even algebra Cl+3,0 (the set of even

multivectors of Cl3,0): we can identify the unit and the basis elements i, j,k ofH with

the unit and the products e1 e2, e1 e3 and e2 e3 of Cl3,0 [15]. Thus, the aforementioned

quaternion representation of a rotation (of angle θ around unit axis u):

q = e
1
2

θ(uxi+uyj+uzk) = cos 1
2
θ +(uxi+ uyj+ uzk)sin 1

2
θ with R(x) = qxq−1 ,

can be seen as a rotor of Cl3,0. The products and the conjugation on H and on

Cl+3,0 are defined likewise. Similarly, identifying the pseudoscalar I of Cl2,0 with the

imaginary unit i of C, we have an algebra isomorphism between Cl+2,0 and C.

Clearly, geometric algebra exhibits structural simplicity in the formulations, but

its naive implementation may be far less efficient than classical analytical geometry

implementations, especially for high dimensions. Fortunately, GA expressions can

benefit from compilation (e.g. operator overloading) and parallelization techniques

(including GPUs) [12, 17].

In practice, GA has been implemented in two ways. The additive approach en-

codes each multivector of Cln,0 with its 2n coordinates. It leads typically to a O(22n)
time complexity for linear operations and for products (inner, outer and geomet-

ric), and to a storage complexity in O(2n). The multiplicative approach, restricted
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to blades, stores the coordinates of the unit orthogonal factors in a matrix and the

magnitude using a scalar. Although the storage complexity is smaller than in the

additive approach, there is still no available strategy for an efficient implementation

of addition. Nevertheless, factorization and simplification operations allow a trivial

implementation of “meet” and “join” operations.

As suggested by its name, the conformal model Cl4,1 of R3 can be used to rep-

resent various angle-preserving geometries. In this model, all conformal transfor-

mations can be represented by versors, especially the ones preserving the Euclidean

distances.

To define the conformal model Cl4,1 of R3, two vectors e+ and e− are adjoined to the basis

vectors e1,e2,e3 of R3 embedded in R5. They are chosen to form an orthogonal basis, with

e+
2 =Q(e+) = 1 and e−2 =Q(e−) =−1. If we define respectively n0 =

1/√
2
(e−+e+) and

n∞ = 1/√
2
(e−− e+), the new basis {e1,e2,e3,n0,n∞} is not orthogonal (< n0,n∞ >=−1),

but makes intuitive definitions for the model possible. The representation p of a point

pb ∈ R3 in the conformal model is defined by the following mapping:

p = F(pb) = pb +n0 +
1
2

p2
b n∞ .

The element n0 has the same translation role as the origin vector e0 in the homogeneous

model. The vector n∞ represents the point at infinity and the axis of symmetry of the

horosphere, the set of elements defined by this equation. The Euclidean distance between

two points pb,qb ∈ R3 is directly proportional to the squared root of the inner product

< F(pb),F(qb) > of their representations in the model Cl4,1. The horosphere is formed

of null vectors, i.e. vectors of zero norm, as consequence of the fact that p2 =< p, p > is

proportional to (pb − pb)
2 = 0.

The spheres, planes, circles and lines of R3 can be expressed in the conformal model

space Cl4,1 with two different conditions: an inner product and an outer product.

For example, a sphere S(ab, r) centered in ab, with radius r corresponds to:

S̃(ab, r) = F(ab)− 1/2r2n∞ ∈Cl4,1 with pb ∈ S(a, r)⇐⇒< F(pb), S̃(ab, r)>= 0 .
And the sphere containing the four points ab,bb,cb,db ∈ R

3 corresponds to the element:

S = F(ab)∧F(bb)∧F(cb)∧F(db) ∈Cl4,1 with pb ∈ S ⇐⇒ F(pb)∧S = 0.

Since any vector x ∈ Cl4,1 can be written x = F(ab)± 1/2r2n∞, for an ab ∈ R
3 and

a r ∈ R, the buildings blocks of Cl1,4 are spheres, points (spheres with radius zero)

and imaginary spheres (spheres with imaginary radius). The reflection in an hy-

perplane corresponds to a conjugation by a vector in Cl4,1. To the other transfor-

mations, translations, rotations and scalings, correspond rotors in exponential form

(e.g. T = e−
1/2tbn∞ for the translation of vector tb). All orthonormal transformations

can be expressed by rotors, since translations enjoy this property.

4.2 Geometric algebra for the visualization of vector fields

For the sake of clarity, we restrict ourselves here to 2D and 3D vector fields or vector

fields defined on surfaces embedded in R3. The objective is to show that GA allows

to perform the local analysis of the fields using differential geometry in a rather

classical way, but offers more flexibility and efficiency when identifying the global

structures.
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With vector data defined at the vertices of a simplicial triangulation Th or of a

regular sampling (Cartesian grid), discrete equivalents of geometric and topological

entities (e.g. curve, ball) are needed, as well as interpolations, giving vector values

at arbitrary locations. This can be achieved in several ways but requires special

attention to avoid ambiguous or non conformal situations [19].

To compute the topological index in 2D, we recast the formulation given in Sec-

tion 3.3 in a discrete setting [14]. Let B(c) denote a closed polygonal curve around

the critical point. For every triple of neighbor vertices (p1, p2, p3), form the trivector
1/6(ṽ(p1)∧ ṽ(p2)∧ ṽ(p3)) with the values of the normalized vector field ṽ = v/‖v‖.

The sum of all trivectors, divided by the volume of the unit disk π , will give an

approximation of the winding number of v on the curve, which is in turn an approx-

imation of the index of v in c.

It can be shown that two closed polygonal curves discretizing the same underlying contin-

uous curve lead to the same winding number, as long as they are ε-dense (i.e. any point of

the continuous curve between two neighbors will be within ε-distance of both neighbors).

In a continuous setting, the index of a critical point is well defined as the winding number

of every circle containing this only critical point, since a non vanishing vector field v in the

interior of a closed path γ implies a zero winding number of v on γ .

A similar computation can be done for 3D vector fields, on a triangulated surface

around the critical point, and with the normalization factor 4/3π for the volume of

the unit ball. For a vector field on a surface, the computation is less straightforward

than in 2D, since vectors should be projected on a plane, before the sum is computed.

A common aforementioned technique in visualization is to integrate the vector

field along a curve, the integral line (or streamline in a fluid). Given a Lipschitz

continuous vector field v defined on an open subset U ⊂R
m, one defines curves γ(t)

on U such that for each t in an interval I, γ ′(t) = v(γ(t)). Picard’s theorem states

that there exists a unique C1-curve γx for each point x in U , so that γx(0) = x, and

γ ′x(t) = v(γx(t)) for t ∈ (−ε,+ε). These curves partition the set U into equivalent

classes.

Numerically, the discretization of streamlines relies on an integration method; Euler

or Runge-Kutta methods are the most common schemes to advance a point along

the integral curve given its previous location and a time step δ t. Any such method

requires to interpolate the field vector at a new location x. The interpolation, defined

on classical vector fields using barycentric coordinates, can be written exactly the

same way for GA vector fields v : Rm →Clm,0 (m = 2,3). For example, if x is con-

tained in a simplex then the linear interpolate reads: v(x) = ∑l
i=1 λivi, where vi (resp.

λi) denotes the values of v at the simplex vertices (resp. corresponding barycentric

coordinates) . Note that the interpolation of a vector field v defined on a triangulated

surface S is not straightforward, since the interpolated vectors need to be defined in

the tangent planes.

Not every characteristic of the field lies in the topological graph: features such

as vortices, shear zones, shock waves, attachment lines or surfaces are not captured

in this description and are very important elements to specify the structure of a vec-

tor field. The computation methods reviewed in [24] to extract features in vector

fields are presented in the classical frame but can be extended naturally to the GA
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frame. Several scalar fields deliver information on the presence of vortices: the vor-

ticity magnitude, the helicity magnitude, the pressure for example. For instance, the

vorticity is exactly half of the curl defined in GA.

In some specific situations, the vector field may exhibit local patterns with repeti-

tions over the domain. Their localization would help to apprehend the overall struc-

ture of the field. For example, in 2D, we could look for the repetition of singularities

like monkey saddles, zones with axis drain, or S-shaped zones. The following ap-

proach is inspired by image processing.

Correlation. Given a 2D (resp. 3D) pattern, i.e. a vector field defined on a small

square (resp. cubic) domain, we can compute the Clifford correlation (introduced

in 2.2.4) between this pattern and a vector field. At each point of the domain, this

function gives the similarity of the vector field (in the neighborhood of this point)

with the given pattern [8]. The correlation implies a convolution (quadratic com-

plexity), which can be replaced, via Clifford Fourier Transform, by a multiplication

(linear complexity) in the frequency domain. Furthermore, since the 3D CFT can be

written as a sum of four complex Fourier transforms through the identification of

the pseudoscalar I3 with the imaginary unit i, Fast Fourier Transforms can be used.

However, the main drawback of this method is related to the necessity to check the

presence of a given pattern in all positions, for many scales and in many orientations,

or the search of the pattern will not be complete.

Invariants. Suppose that we have again a particular feature (patch) we want to

identify in a given vector field. Let us attribute values to the different patches through

a mapping. Such a mapping, if it exhibits rotation, translation and scale invariance is

called shortly RTS-invariant. Is it, for example, not rotation invariant, then its value

has to be computed for all rotated variants of the patch of interest.

A family of RTS-invariants and non redundant moments of order ≤ d [27] can be built for

2D scalar and vector fields, using the complex numbers to get a nice formulation of the

rotation invariance in the equations. For 3D scalar functions, one of the ways of defining

such moments is to use the spherical harmonic functions as building bricks. To extend to

3D vector fields, complex numbers are no help anymore, and quaternions generate a dimen-

sion 4 algebra. If the nice formulation of rotations in Clifford algebra and the existence of

a product of vectors seems to pave the way for this generalization, the defining of building

bricks (perhaps with the spherical vectorial harmonics) for the moments is the first diffi-

culty, followed by the formulation of a rotation invariance condition. To our knowledge, the

extension has not been written yet.

Several alternatives to moments as RTS-invariants are defined in literature. For ex-

ample, the harmonic power spectrum and harmonic bispectrum defined in [10] for

3D vector fields rely on spherical vectorial harmonics. The theory is explained in the

classical frame, using representation theory, but possibly further invariants could be

defined and a substantial gain of clarity could be achieved if using GA.

Heat equation. On a Riemannian manifold M, consider the Clifford bundle ob-

tained from the tangent bundle. The Riemannian metric gi j(p) =< e
p
i ,e

p
j >, since

positive definite, leads to Euclidean tangent spaces. Let define now a connection on

the manifold ∇E compatible with the metric (for example the Levi-Cevita connec-

tion) and extend it as ∇C to the Clifford space such that it preserves the graduation,
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we define a generalized Laplacian as follows:

∆C = ∑
i j

gi j(∇
C
ei

∇C
e j
−∑

k

Γ k
i j ∇C

ek
) .

Considering the heat equation ∂ st

∂ t
+∆Cst = 0, with initial condition s0 = s, associ-

ated with these operators, the solution is a regularization of the section s. It can be

approximated through the convolution with the heat kernel. Varying the operators

(Clifford-Hodge, Clifford-Beltrami), different flows are obtained, leading to differ-

ent regularizations. This approach was introduced in [3], and was applied to reduce

noise in color images (translating the RGB intensities in a surface and a vector field

on this surface), but not yet, to the best of our knowledge, as a global approach tool

for vector fields.

In addition to regularization, heat kernel signatures, like they are defined for scalar

fields [29], could be used to define signatures of vector field patches.
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