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Abstract The formal language of Clifford’s algebras is attracting an increasingly

large community of mathematicians, physicists and software developers seduced

by the conciseness and the efficiency of this compelling system of mathematics.

This contribution will suggest how these concepts can be used to serve the purpose

of scientific visualization and more specifically to reveal the general structure of

complex vector fields. We will emphasize the elegance and the ubiquitous nature

of the geometric algebra approach, as well as point out the computational issues at

stake.

1 Introduction

Nowadays, complex numerical simulations (e.g. in climate modelling, weather fore-

cast, aeronautics, genomics, etc.) produce very large data sets, often several ter-

abytes, that become almost impossible to process in a reasonable amount of time.

Among other challenges, storage, transfer, analysis and visualization are the more

crucial. This requires developing new methods and implementing new algorithms

to efficiently process this large quantity of information. On the other hand, in math-

ematics or theoretical physics, problems are commonly posed in high-dimensional

spaces and require specific methods to reduce their dimension and make the solu-

tions understandable. In both cases, there is a critical need for an abstract, general

purpose method of analysis capable of extracting the salient features of the com-
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plex data. Unfortunately, numerical algorithms are too often inadequate to perceive

the mathematical properties or the general structure of the objects considered. In

this chapter, we will explain how the formal language of geometric algebras may

be one of these analysis tools, as it provides a unified framework bringing us closer

by the topological aspects of geometrical problems, in a wide range of applications,

including scientific visualization. The main strength of geometric algebra lies in the

elegance and the generality (ubiquity) of its formulations, which can be injected

within the classical Euclidean framework as well as in differential geometry. In this

perspective, concepts and ideas introduced should not replace existing theories and

tools, but complement them and shed new light on them.

Based on the work of Grassmann, Clifford’s geometric algebras, born in the mid

19th-century, consider algebraic operators along with three main products to de-

scribe the spatial relations characteristic to geometric primitives in a coordinate-

free approach. The many possibilities offered by Clifford algebras and geometric

algebras (hereafter denoted GA), and especially their geometrically intuitive as-

pects, have been emphasized by numerous scientists. For instance, the physicist D.

Hestenes has acknowledged their importance to relativistic physics [20]. Likewise,

the mathematicians G.-C. Rota [17], I.R. Porteous [27] and J. Snygg [32], among

others, have largely promoted the geometric compactness and simplicity of GA,

hence contributing to broaden the field to further applications in computer graphics

and scientific visualization.

The next section will briefly present the main concepts and the basic manipula-

tion rules of Clifford and geometric algebras. Then, the specific case of vector fields

defined on d-dimensional spaces or on differential manifolds will be addressed in

Section 3. In the last section, we will show how geometric algebra can be efficiently

used to understand the algebraic structure of vector fields and implemented.

Fig. 1 Sampling a vector field over a cube (left) and summing the trivectors on the unit sphere

(right), to compute an approximation of the index, see 4.2 (reprinted from [9]). Note that such a

trivector is a volume in space and not a triple of vectors.

2 Clifford and geometric algebras

Leaning on the earlier concepts of Grassmann’s exterior algebra and Hamilton’s

quaternions, Clifford intended his geometric algebra to describe the geometric prop-
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erties of vectors, planes and eventually higher dimensional objects. Basically, Clif-

ford algebra for R
n is the minimal enlargement of R

n to an associative algebra

with unit capturing the metric, geometric and algebraic properties of Euclidean

space [16]. In general, geometric algebras are distinguished from Clifford algebras

by their restriction to real numbers and their emphasis on geometric interpretation

and physical applications.

Note. Our intent in this section is to give an elementary and coherent account of the

main concepts of Clifford and geometric algebras. The reader who is interested in

the theoretical aspects of geometric algebras is referred to the textbooks [16, 20, 19],

among others. Computational aspects of geometric algebra and its usability in re-

search or engineering applications are discussed in [9, 22]. We privileged a contin-

uous and straightforward digest, deliberately avoiding the conventional succession

of definitions and theorems commonly found in most textbooks. Furthermore, most

of the concepts in this section are presented in a general setting. The material in this

section is intended to be fairly basic but readers unfamiliar with abstract mathemat-

ical concepts should skip the formal definition, as well as the advanced concepts

in 2.1.2 and 2.2.1.

2.1 Clifford algebra

Clifford algebra can be introduced in many ways; the approach we follow here sep-

arates the algebraic structure from the geometric interpretation of the product.

2.1.1 Basic notions and definitions

Formal definition. Let V be a vector space over a field K, and let Q : V → K be

a quadratic form on V . A Clifford algebra Cl(V,Q) is an associative algebra over

K, with identity element 1, together with a linear map i : V →Cl(V,Q) satisfying,

for all v ∈ V , the contraction rule i(v)2 = Q(v)1, such that the following universal

property is fulfilled [24]:

Given any other associative algebra A over K and any linear map

j : V → A such that, for all v ∈ V , j(v)2 = Q(v)1A, there is a unique

algebra homomorphism f : Cl(V,Q)→ A, for which the following dia-

gram commutes: V

j
##

i
// Cl(V,Q)

f

��

A
Note that the existence and the uniqueness (up to unique isomorphism) of a Clif-

ford algebra for every pair (V,Q) can be established by considering a quotient alge-

bra of a tensor algebra.

The product defining the Clifford algebra will be called geometric product and

denoted as: uv, for u,v ∈ Cl(V,Q) (with a small space between the factors). One
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usually considers V as a linear subspace of Cl(V,Q), thus dropping the inclusion in

the definition of the Clifford algebra, leading uu = u2 = Q(u). Consequently, the

vector space V is not closed under multiplication as, for example, uu is a scalar

and not an element of V . The contraction rule also implies that every v ∈ V has an

inverse v−1 = v
Q(v) , unless Q is degenerate.

Intuitive interpretation of the geometric product. One can classically consider the

product of two elements a,b ∈ V as the sum of a symmetric and an antisymmetric

part:

ab =
1

2
(ab+ba)

︸ ︷︷ ︸

<a,b>

+
1

2
(ab−ba)

︸ ︷︷ ︸

a∧b

.

− In this setting, the symmetric part < a,b > corresponds to the bilinear form φ
associated to the quadratic form Q thanks to the polarization identity:

φ(a,b) = 1
2
(Q(a+b)−Q(a)−Q(b)) = 1

2
((a+b)(a+b)−aa−bb) =< a,b >,

this, of course, as a consequence of the contraction rule v2 = Q(v). When Q is

non-degenerate, it is an inner product.

− The antisymetric part a∧b has, if non-zero, to be understood as a new entity, that

is neither a scalar nor a vector. For Q non-degenerate, the so defined outer prod-

uct has a very simple interpretation: a∧b, for a,b ∈V , geometrically represents

an oriented plane segment, and can be characterized by an algebraic area (the

usual area of the parallelogram with the vectors a and b as sides) and the attitude

(angular position) of this plane1.

The graded Clifford algebra. Consider again the Clifford algebra Cl(V,Q), V and

Q like above. We define G0 as the inclusion of the scalars K in Cl(V,Q). Given an

orthonormal basis {e1,e2, . . .} of V , let Gn be the part of Cl(V,Q) generated from

the products
n

∏
j=1

ei j
, for 1 ≤ i1 < · · · < in. The direct sum

∞⊕

n=0

Gn is then the graded

Clifford algebra. The elements of Gn are called n-vectors, where n is the grade.

Elements can be of “mixed grade”, like the product ab of two elements in V , which

is a sum of a scalar (grade 0) and a bivector (grade 2). A multivector A can be

decomposed as a sum A = ∑
∞
r=0 Ar, where Ar = 〈A〉r is of grade r.

Extension of the definition of outer product. The outer product of two multivectors

Ak (grade k) and Bℓ (grade l) is defined as the grade |k+ ℓ|- part of the product Ak Bℓ,

writing Ak ∧Bℓ = 〈Ak Bℓ〉k+ℓ . This product extends by linearity on the whole Clif-

ford algebra. For any n ≤ dim(V ), n-blades are defined recursively as outer prod-

ucts of n vectors a1 ∧·· ·∧an= (a1 ∧·· ·∧an−1)∧an. By convention, 0-blades are

scalars. A n-blade is a n-vector, but the converse is not true. More precisely [15],

a sum of two blades A and B is another blade iff they are of the same grade k and

share a common factor of grade k−1 or k.

1 The geometric interpretation of the decompostion of the geometric product in outer and inner

products will be explained again for V = R
3 at the beginning of 2.2.
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2.1.2 Advanced concepts

Factorization of blades with the geometric product yields two equivalent forms for

a blade: one based on the outer product, the other on the geometric product. Ac-

tually, for any arbitrary quadratic form Q, given a k-blade Ak, it is possible to find

an orthogonal basis {v1, · · · ,vk} of this blade2. It implies the double formulation

Ak =v1 ∧ v2 ∧·· ·∧ vk= v1 v2 · · · vk. For example, if a,b ∈ V , with Q(a) non-zero,

we have a∧b = a∧
(

b− <a,b>
Q(a) a

)

= a
(

b− <a,b>
Q(a) a

)

.

The meet and join are non-linear operations, corresponding to the blade intersec-

tion and union. Suppose we have an orthogonal factorization of two blades A and

B, i.e., they are given with their orthogonal factorizations A = A′C and B = C B′,
C being the largest common factor. In this very simple case3, M = A∩B = C and

J = A∪B = (A′C)∧B′.
Two important involutions are defined on Cl(V,Q): reversion and grade involu-

tion. On a r-blade A = (a1 ∧ a2 ∧ ·· · ∧ ar), the reversion A† consists of reversing

the order of the constitutive vectors (or, because the outer product is antisymmetric

on vectors, changing the sign r(r−1)/2 times); the grade involution A# consists of

reversing the sign of every constitutive vector:

A† = ar ∧ar−1 ∧·· ·∧a1 = (−1)r(r−1)/2a1 ∧a2 ∧·· ·∧ar A# = (−1)rA .

The reversion and grade involution extend by linearity on Cl(V,q): if A = ∑
∞
r=0 Ar,

A† =
∞

∑
r=0

(−1)r(r−1)/2Ar A# =
∞

∑
r=0

(−1)rAr .

The even (resp. odd) multivectors are the ones with A# = A (resp. A# =−A).

Using the reversion and the selection of the scalar part 〈·〉0, let us define a bilinear

form on Cl(V,Q). On blades Ak and Bℓ, we set:

Ak ∗Bℓ =







〈A†
k Bℓ〉0 if k = ℓ 6= 0

A0 ·B0 if k = ℓ= 0

0 else

.

Extending it linearly to multivectors A and B, we obtain the general formula

A∗B = 〈A† B〉0. Proof of the equivalence between both formulations can be found

in [20], p.13. On vectors, this bilinear form clearly corresponds to the inner product:

a∗b=< a,b>. When Q is non-degenerate, it is non-degenerate, and it is sometimes

called Clifford scalar product.

2 A general demonstration (also valid for a degenerate Q) is given for example in [8], page 88. In

Euclidean spaces, the well-known Gram-Schmidt orthogonalization can be used.
3 The dualization introduced in 2.2 makes more general equations for M and J possible.
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2.2 Geometric algebras

The case V = R
n and Q non-degenerate leads to a series of specific definitions and

results. As a matter of fact, we have for example:

− Every non-zero blade Ar has an inverse A
†
r

A∗A
= A

†
r

〈A† A〉0
.

− If, in addition, Q is positive definite, then we can define the modulus of element A

as |A|=
√

A† ∗A=
√

〈A† A〉0, since for an element a1 · · ·ar, (a1 · · ·ar)
†(a1 · · ·ar)=

Q(ar) · · ·Q(a1)≥ 0.

− In R
3, the existence of an inverse vector has a very clear interpretation. For a

given vector v ∈ R
3 and a given scalar a, the equation < v,w >= a defines the

affine plane w0 + v⊥. Likewise, given v and a bivector A, the equation v∧w = A

defines the affine line w0 +λv. In both cases, there is no unique solution. How-

ever, in the setting of geometric algebra, the equation vw = A leads to the unique

solution w = v−1 A (corresponding to the intersection of a plane < v,w >= A0

and of a line v∧w = A2).

Such a Clifford algebra, in the case V = R
n and Q non-degenerate, is called

geometric algebra. Let (p,q) be the signature of the quadratic form Q, i.e., Q diag-

onalizes in Q(v) = v2
1 + · · ·+ v2

p − v2
p+1 −·· ·− v2

p+q (Sylvester’s law of inertia). We

write R
p,q for V and Clp,q for the associated geometric (Clifford) algebra.

Taking a basis {e1,e2, . . . ,en} of R
n, using the element 1 to span the scalars

and all products
r

∏
j=1

ei j
for 1 ≤ i1 < · · ·< ir ≤ n (r ∈ Nn) to span the multivectors,

the set {1,e1,e2, . . . ,en,e1 e2,e1 e3, . . . ,e1 e2 . . . en} will form a basis for Clp,q, with

2n = ∑
n
r=0

(
n
r

)
elements. The element In = e1 e2 . . .en is called pseudoscalar and is

defined to a scalar multiple, since all n-blades are proportional.

2.2.1 Duality and reciprocal frames

The dual A∗ of a multivector A is defined as A∗ = A I−1
n . The duality operation trans-

forms a r-vector Ar into an (n− r)-vector Ar I−1
n ; in particular, it maps scalars into

pseudoscalars. The duality relation states (A∧B)∗ = A⌋B∗ , where ⌋ denotes the left

contraction 4. The inclusion of an element x in a given subspace A specified by a

blade A can be defined in two ways:

− the direct way: x ∈ A ⇐⇒ x∧A = 0

− the dual way: x ∈ A ⇐⇒ x⌋A∗ = 0.

Given a basis {b1, ...,bn} of Rp,q, n = p+ q, we can define a reciprocal frame

{b1, ...,bn}, through the formula bi = (−1)i−1(b1 · · · ∧bi−1 ∧ b̌i ∧bi+1 · · · ∧bn) I−1
n ,

where In = b1 ∧ ...∧bn and the ˇ -sign mentions the element removed from the list.

4 For two blades A and B of grades a and b, the left contraction A⌋B is 〈AB〉b−a when a ≤ b, it is

zero otherwise. When blade A is contained in blade B, it equals the geometric product AB [9].
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The two basis are mutually orthogonal: < bi,b
j >= δ i

j. Since the reciprocal of an

orthonormal basis is itself, this definition is needed only in non-Euclidean cases. It

is also useful in differential geometry.

A vector of Rp,q can be written a = ∑
n
i=1 aie

i or a = ∑
n
i=1 aiei with ai =< a,ei >

and ai =< a,ei >. If we have a multivector basis {eα |α ∈ {1, · · · ,2n}, we can also

define a reciprocal frame {eα |α ∈ {1, · · · ,2n}}.

2.2.2 Versors, rotors, spinors and rotations

One of the main features of GA is its ability to deal with the rotations. Indeed, a

unique object R can be used to compute the rotation of any subspace X , writing a

conjugation with the geometric product:

R(X) = RX R−1 .

The equation x = axa−1 gives the reflection of an arbitrary vector x along the

a-line (a invertible). Its opposite x = −axa−1 gives the reflection in the dual hy-

perplane A = a∗. Two consecutive reflections form a simple rotation, which can be

written as follows: x” =−bx′ b−1 = baxa−1 b−1 = (ba)x(ba)−1. It is a rotation of

twice the angle between a and b in the plane containing a and b. The element ab is

called a 2-versor. In general, a k-versor is a multivector that can be written as the

geometric product of k invertible vectors v = v1 v2 ...vk. By the Cartan-Dieudonné

Theorem [6, 7], every isometry of Rp,q can be reduced to at most n = p+q reflec-

tions in hyperplanes. It means that we can write every orthogonal transformation f

with a k-versor U (k ≤ n) and the conjugation: f (x) = (−1)kU xU−1.

In all spaces of signatures (n,0), (0,n), (n − 1,1) or (1,n − 1), including the

Euclidean spaces, every rotation can be written in exponential form5:

R(x) = SxS† with S = e
1
2 (i1 θ1+···+im θm), i1, · · · , im orthogonal 2-blades .

Note that a rotation of a non-Euclidean space is defined to be an orthogonal trans-

formation of determinant one continuously connected to identity. The element S

given by the exponential form of preceding equation is a rotor, i.e., an even versor

S satisfying SS† = 1.

A linear map f: V → V can be extended in a function f : Cl(V,Q)→Cl(V,Q)
while preserving the outer product:

f (a1 ∧a2 ∧·· ·∧ar) = f (a1)∧ f (a2)∧·· ·∧ f (ar) .

It is then called an outermorphism. In particular, the reflection of a blade Ak in a

dual hyperplane a∗ is (−1)kaAk a−1 and the rotation of a blade by a rotor is RAkR†

according to the previous equations for vectors.

5 Quite naturally, the exponential of a blade A is defined with the usual power series ∑
∞
k=0

Ak

k!
. The

additivity exp(A+B) = exp(A)exp(B) is not true in general. The circular and hyperbolic functions

of blades are also defined with power series.
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2.2.3 Geometric calculus

Differentiation. We consider a finite-dimensional vector space V with quadratic

form Q and a multivector-valued function F : U ⊂ V −→ Cl(V,Q). It comes of no

surprise that the directional derivative of F in direction r is simply:

Fr(x) = lims→0
F(x+ sr)−F(x)

s
.

This expression will be most of the time written (r ∗∇)F instead of Fr, expressing

the idea of a scalar product between r and the operator ∇, seen as a vector, as will

be clearer below. The linearity in r is straightforward; the sum, the geometric prod-

uct and the grade are preserved. If we want to differentiate a multivector-valued

function F : U ⊂ V −→ Cl(V,Q) directly relative to the variable, we consider a

base {e1, · · · ,em} of V and the coordinate functions of the vector x in this basis

x = ∑
n
i=1 xiei. The directional derivatives along the basis directions, (ei ∗∇) = ∂

∂xi
,

combine into a total change operator 6 as:

∇ =
m

∑
i=1

ei (ei ∗∇) meaning ∇F(x) =
m

∑
i=1

ei ∂F(x)

∂xi

.

Note that we also have to define the differentiation from the right, because of the

non-commutativity: for a function F , F(x)∇ = ∑
m
i=1(ei ∗∇)F(x)ei = ∑

m
i=1

∂F(x)
∂xi

ei.

Thanks to the geometric product, we can write ∇ as: ∇F = ∇∧F+< ∇,F >. In the

case of a vector-valued function F , we have the usual definitions of the divergence

and curl operators:

curl(F) := ∇∧F =
1

2
(∇F −F ∇) and div(F) :=< ∇,F >=

1

2
(∇F +F ∇) .

To write the product rule, accents are necessary to specify on what factor the differ-

entiation acts: ∇(F G) = ∇̀F̀ G+ ∇̀F G̀. The definition of a differentiation with re-

spect to a multivector, for a function F : U ⊂Cl(V,Q)−→Cl(V,Q), is quite straight-

forward, given a reciprocal frame for the whole space Cl(V,Q).

Integration. Consider again a multivector-valued function F ; the line integral is

∫

C
F(x)dx = lim

n→∞

n

∑
j=1

F
j
∆x j , with F

j
=

1

2
(F(xi)+F(xi−1))

where the chords ∆xi = xi − xi−1 correspond to a subdivision of the curve C. The

measure dx is said to be a directed measure, since it is vector-valued. The product

between F(x) and dx is the geometric product. If F is vector-valued,

∫

C
F(x)dx =

∫

C
< F(x),dx >+

∫

C
F(x)∧dx .

6 This explains the notation Fr = (r ∗∇)F for the directional differentiation.
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Similarly, if D ⊂R
2 is a triangulated planar domain, F

k
is the average of F over the

k-th simplex,
∫

D
F(x)dx = lim

n→∞

n

∑
k=1

F
k
∆xk .

The surface measure of the k-th simplex given by vertices x0,x1,x2 is

∆xk = 1
2
(x0 ∧ x1 + x2 ∧ x0 + x1 ∧ x2) .

This integral definition can be generalized to higher dimensions [5].

The fundamental theorem states:

∮

∂V
F dS =

∫

V
F̀ ∇̀dX , for a function F defined over a volume V .

2.2.4 Clifford Convolution and Clifford Fourier Transform

For F and H two multivector-valued functions F,H : Rm → Clp,q, the left- and the

right-Clifford Convolution of the functions write respectively:

(H ∗ℓ F)(x) =
∫

Rm H(x′)F(x− x′)|dx′| , (H ∗r F)(x) =
∫

Rm H(x− x′)F(x′)|dx′| .
The quantity |dx| is used to make the integral grade-preserving since dx is a vector

within Clifford algebra. Modifying x−x′ into x+x′, we get the left- and right- Clif-

ford correlations [10]. The Clifford convolutions generalize the known convolution

of scalar-valued functions.

A vector field F can be smoothed through convolution with a scalar field, for

example a Gaussian kernel. In the case of two vector fields, the formula for the

geometric product leads to the integration of a scalar function < H(x− x′),F(x′)>
and a bivector function H(x− x′)∧F(x′) [29].

In the case of a multivector-valued function F :R3 →Cl3,0, it is possible to define

the Clifford Fourier Transform (CFT) of F and its inverse as follows:

F{F}(u) = ∫

R3 F(x)e−2πI3<x,u>|dx| , F−1{F}(x) = ∫

R3 F(u)e2πI3<x,u>|du| .

The function e−2πI3<x,u> = cos(2π < x,u >)+ I3 sin(2π < x,u >) is often called

Clifford Fourier kernel.

The convolution theorem is also valid for the Clifford Fourier Transform and

Clifford convolutions as defined here. For example, using the left convolution,

F{H ∗ℓ F}(u) := F{H}(u)F{F}(u) .

As mentioned before, the reader willing to get a deeper understanding of the

mathematical basics about Clifford algebras and geometric algebras is referred to

[16, 20, 19]. In the next section, we will focus on the analysis of vector fields in the

context of GA.
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3 Vector fields in geometric algebra

Our main focus in this paper is the analysis of vector fields, more precisely of steady,

linear and non-linear vector fields in Euclidean space and on manifolds. One is clas-

sically interested in streamlines, critical points with their classification, separatrices,

leading to the topological graph of a vector field. We will show how the analysis of

vector fields can benefit from the richer context of geometric algebra.

3.1 Vector fields on domains of Euclidean space

Classically, vector fields are mappings of the form v : U ⊂ R
n → R

n, where U is

an open set. Using the notions of GA defined in Section 2.2, if Cl1
n,0 is the set of

1-vectors of Cln,0, a map v : Rn −→ Cl1
n,0 is also a vector field. This definition can

be easily extended to bivector, trivector, or spinor fields, for example.

The identification of vector fields (satisfying the Lipschitz regularity condition)

with ordinary differential equations dx/dt = v(x) can also be transposed from the

classical to the GA setting. The Lipschitz continuity condition can be written in this

frame, i.e., there exists a scalar constant K ≥ 0 such that

‖v(x1)− v(x2))‖n ≤ K‖x1 − x2‖n for all x1,x2 ∈U .

Furthermore, the defined derivation and integration make it possible to state the

existence of an unique solution (streamline or integral curve) through a given point,

exactly like in the classical frame. In 2D and 3D, drawing the streamlines is a very

classical way to represent a vector field. In order to avoid occlusions and empty

areas, departure points (seeds) for these curves are to be placed efficiently.

Let us consider a small example. To a given classical vector field, we can asso-

ciate curvature and torsion scalar fields: the curvature (resp. torsion) in a point is the

curvature (resp. torsion) of the unique streamline in this point [35]. The curvature

field associated to a vector field can be used for the seeding, or can be displayed as a

further scalar value in the form of isosurfaces or by color coding. In the GA settings,

instead of scalar fields, a curvature bivector field and a torsion trivector field can be

defined. Visualizing the curvature bivector along a streamline, we get what is called

the Frenet ribbon [4], see figure 2 for such a representation of the vector field.

3.2 Vector fields on differential manifolds

Now we turn to vector fields on differential manifolds, having in mind to embed

the differential geometry formalism into geometric calculus. For a more detailed

presentation of this combined approach, see [20, 32].
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Fig. 2 Frenet ribbons constructed from a discrete vector field. The colour encodes the torsion

(reprinted from [4]).

In differential geometry, if M is a smooth manifold, a tangent vector in p ∈ M is a

derivation, i.e., a linear operator D on C∞
p (the algebra of germs of smooth functions

at p) satisfying the Leibniz rule D( f ·g) = f ·D(g)+g ·D( f ). The tangent space of

M in p is TpM, the set of such derivations. A vector field is a function assigning to

every p ∈ M an element of TpM.

In R
3, in a more intuitive way, we can imagine giving in each point p of a surface

S a vector tangent v(p) to the surface. The link between this v and the associated

derivation Dv is the derivative Dv( f )(p) = D f (p)(v(p)). The operator point of view

makes it easier to manipulate vector fields and compose them with other operators.

Furthermore a discretization can be made without working with coordinates [2].

To translate this definition into GA, we give the tangent spaces a Clifford algebra

structure. Taking a chart (U,φ) around p ∈ M, the derivations e
p
i defined by

e
p
i ( f ) =

∂

∂xi

( f ◦φ−1)|x=φ(p)

form a basis for TpM. Forming the blades of these basis vectors, we can build a

geometric algebra structure on TpM.

With a little more abstraction, a vector field can classically be seen as a section of

the tangent bundle, a particular vector bundle: Taking T M to be the disjoint union

of tangent spaces on M, T M = ⊔x∈MTxM, and π : T M → M defined by π(v) = x

for x ∈ TxM, we can see M as the base space, T M as the total space and π as the

projection, these three elements defining a fibre bundle called the tangent bundle.

The section is a continuous map s with π ◦ s = idM , meaning s(x) ∈ TxM, hence

what we understand as a vector field. The adding of a geometric algebra structure

can be done in the general case of a vector bundle on a manifold with some metrics,

using a construction very similar as the one made in 2.1.1: quotienting a tensor

algebra with a two-sided ideal.

Scalar fields, vector fields, bivector fields, spinor fields on surfaces, for example,

are natural extensions of this definition of vector fields (or can be seen as sections

of the Clifford tangent bundle, see above), and, as long as M is simply connected, it
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is also the case for rotation fields r : M → SO(n), since they can be lifted to spinor

fields.

Since every differentiable manifold is locally diffeomorphic to an Euclidean

space (via the charts), the existence and uniqueness of streamlines is also granted

on manifolds, within or outside GA context.

3.3 Critical points, orbits and topological graph

The topological graph is an important tool of analysis: it goes one step further than

the streamline representation and decomposes the vector field domain into regions

of similar behavior. The critical points and closed orbits (with their type, like defined

below) and the separatrices (streamlines or surfaces between areas of different be-

havior) form the topological graph of the vector field, that eventually describes the

underlying structure of the field in a more efficient way as a collection of stream-

lines. Such a graph does not take into account the norm of the vector field [12].

The classification of critical points finds its origin in the theory of dynamical sys-

tems. For regular critical points, i.e., for critical points with an invertible Jacobian

matrix, a linear approximation of the field can be considered. Studying eigenval-

ues and eigenvectors of the Jacobian matrix makes the classification possible, pro-

vided none of the eigenvalues is pure imaginary. The so-called hyperbolic critical

points, satisfying this condition, are isolated and are structurally stable: a small lo-

cal perturbation does not modify the topology. This justifies the use of the linear

approximation to describe the field’s behavior around this point. In two dimensions

for example, the hyperbolic critical points are sources, sinks, saddles and spirals.

Unstable critical points are centers. A similar classification can be done for orbits,

according to the derivative of the Poincaré map [1]. For non-linear critical points,

said to be of higher order, the non-invertibility of the first derivative leads one to

consider a higher order Taylor expansion. For the isolated ones, the index7 can help

discriminate critical points of different types. Sometimes this proves insufficient,

since two critical points with same index can be of different types. The GA formal-

ism provides an elegant alternative for the computation of the index: for example,

C

O

M’

M

S’

S+

-

C

O

M’

M

S’

S
+

+

C

O

M

S

M’

Fig. 3 Classification of sectors: hyperbolic, parabolic and elliptic sectors (reprinted from [30]).

7 In 2D, the index corresponds the number of turns the field makes around a critical point.
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in 3D,

ind(c) =
1

8π I3

∫

B(c)

v∧dv

|v|3 ,

for v the vector field, c the critical point, B(c) an arbitrary small ball around c [25]. A

corresponding discrete computation will be introduced in 4.2. Unlike the index, the

ordered list of all different behavior sectors (i.e., elliptic, hyperbolic and parabolic

sectors) makes an unambiguous classification possible [30, 18, 14, 34] (see Fig 3).

Next, we turn to a more practical view of geometric algebras, as this chapter is

also intended for engineers and practitioners. In particular, we will briefly explain

how GA can be implemented and the potential advantages of using Clifford algebra

when, for example, dealing with rotations in spaces of high dimensions.

4 Geometric algebra for computer graphics and visualization of

vector fields

Nowadays, geometric algebra is mostly recognized as a promising mathematical

concept and is beginning to find broader application. Emerging computer architec-

tures (multicore, many-core, parallel) lead us to believe that the language of GA

may find a new playground and evolve towards what Hildenbrand calls Geomet-

ric Algebra Computing (GAC) [21]. However, GA is not yet a widespread method

in engineering applications, mainly because of two reasons, academic and practi-

cal [26]. On the one hand, GA combines many mathematical concepts that were

developed separately over the years and are taught as such in curriculum. On the

other hand, most engineering applications in three-dimensional space can be dealt

using standard vector and matrix algebra tools. The goal of this last section is to

introduce how GA can be used advantageously in computer graphics applications

and vector field analysis and visualization.

4.1 Geometric algebra for computer graphics

Computer graphics is surely the most obvious field of application of GA. In geo-

metrical applications, operations and transformations are applied on primitives that

are combined to represent an object (model). Linear geometric transformations are

usually represented using matrices, vectors and scalars. But while 3×3 matrices en-

code the 3D-rotations about an axis through the origin, quaternions are better suited

instead, because they are easier to interpret.

The quaternion representation of a rotation is a nearly minimal parametrization

that requires only four scalars. Given a quaternion, one can easily read off the axis

and angle of the rotation, it is not the case with the Euler angles representation. The

composition of rotations in quaternion form is faster and more stable numerically
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(the renormalization is more efficient than with matrices). Furthermore, the interpo-

lation in the set of quaternions H (for example to get an animated view of a rotated

object) consists in defining a path on S3 which is mapped to SO(3). The Euler an-

gles parametrization, from the 3-torus to SO(3) is not a global diffeomorphism: the

uniqueness breaks at some points (problem known as the gimbal lock). This is why,

in graphic libraries such as OpenGL, rotations are given in terms of a rotation axis

and a rotation angle and converted internally into rotation matrices.

Note that H forms a subalgebra of a geometric algebra [27]: it is trivially isomor-

phic to the even algebra Cl+3,0 (the set of even multivectors of Cl3,0). We can identify

the unit and the basis elements i, j,k of H with the unit and the products e1 e2, e1 e3

and e2 e3 of Cl3,0 [19]. Thus, the aforementioned quaternion representation of a ro-

tation (of angle θ around unit axis u):

q = e
1
2

θ(uxi+uyj+uzk) = cos 1
2
θ +(uxi+uyj+uzk)sin 1

2
θ with R(x) = qxq−1 ,

can be seen as a rotor of Cl3,0. The products and the conjugation on H and on Cl+3,0
are defined likewise. Similarly, identifying the pseudoscalar I of Cl2,0 with the imag-

inary unit i of C, we have an algebra isomorphism between Cl+2,0 and C.

Clearly, geometric algebra exhibits structural simplicity in the formulations, but

its naive implementation may be far less efficient than classical analytical geometry

implementations, especially for high dimensions. Fortunately, GA expressions can

benefit from compilation (e.g. operator overloading) and parallelization techniques

(including GPUs) [15, 21].

In practice, GA has been implemented in two ways. The additive approach en-

codes each multivector of Cln,0 with its 2n coordinates. It leads typically to a O(22n)
time complexity for linear operations and for products (inner, outer and geomet-

ric), and to a storage complexity in O(2n). The multiplicative approach, restricted

to blades, stores the coordinates of the unit orthogonal factors in a matrix and the

magnitude using a scalar. Although the storage complexity is smaller than in the

additive approach, there is still no available strategy for an efficient implementation

of addition. Nevertheless, factorization and simplification operations allow a trivial

implementation of “meet” and “join” operations.

As suggested by its name, the conformal model Cl4,1 of R3 can be used to rep-

resent various angle-preserving geometries. In this model, all conformal transfor-

mations can be represented by versors, especially the ones preserving the Euclidean

distances.

To define the conformal model Cl4,1 of R3, two vectors e+ and e− are adjoined to

the basis vectors e1,e2,e3 of R3 embedded in R
5. They are chosen to form an orthog-

onal basis, with e+
2 = Q(e+) = 1 and e−2 = Q(e−) =−1. If we define respectively

n0 =
1/√2(e−+e+) and n∞ = 1/√2(e−−e+), the new basis {e1,e2,e3,n0,n∞} is not

orthogonal (< n0,n∞ >= −1), but makes intuitive definitions for the model possi-

ble. The representation p of a point pb ∈ R
3 in the conformal model is defined by

the following mapping:

p = F(pb) = pb +n0 +
1
2

p2
b n∞ .

The element n0 has the same translation role as the origin vector e0 in the homoge-

neous model. The vector n∞ represents the point at infinity and the axis of symmetry
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of the horosphere, the set of elements defined by this equation. The Euclidean dis-

tance between two points pb,qb ∈ R
3 is directly proportional to the squared root of

the inner product < F(pb),F(qb)> of their representations in the model Cl4,1. The

horosphere is formed of null vectors, i.e., vectors of zero norm, as consequence of

the fact that p2 =< p, p > is proportional to (pb − pb)
2 = 0.

The spheres, planes, circles and lines of R3 can be expressed in the conformal

model space Cl4,1 with two different conditions, using the inner or the outer product.

For the example of the sphere:

− A sphere S(ab,r) centered in ab, with radius r corresponds to:

S̃(ab,r) = F(ab)−1/2r2n∞ ∈Cl4,1 with pb ∈ S(a,r)⇐⇒< F(pb), S̃(ab,r)>= 0 .
− The sphere containing the four points ab,bb,cb,db ∈ R

3 corresponds to the ele-

ment: S = F(ab)∧F(bb)∧F(cb)∧F(db)∈Cl4,1 with pb ∈ S ⇐⇒ F(pb)∧S = 0.

Since any vector x ∈ Cl4,1 can be written x = F(ab)± 1/2r2n∞, for an ab ∈ R
3

and a r ∈ R, the building blocks of Cl1,4 are spheres, points (spheres with radius

zero) and imaginary spheres (spheres with imaginary radius). The reflection in an

hyperplane corresponds to a conjugation by a vector in Cl4,1. To the other transfor-

mations, translations, rotations and scalings, correspond rotors in exponential form

(e.g. T = e−
1/2tbn∞ for the translation of vector tb). All orthonormal transformations

can be expressed by rotors, since translations enjoy this property.

4.2 Geometric algebra for the visualization of vector fields

For the sake of clarity, we restrict ourselves here to 2D and 3D vector fields or vector

fields defined on surfaces embedded in R
3. The objective is to show that GA allows

one to perform the local analysis of the fields using differential geometry in a rather

classical way, but offers more flexibility and efficiency when identifying the global

structures.

With vector data defined at the vertices of a simplicial triangulation Th or of a

regular sampling (Cartesian grid), discrete equivalents of geometric and topological

entities (e.g. curve, ball) are needed, as well as interpolations, giving vector values

at arbitrary locations. This can be achieved in several ways but requires special

attention to avoid ambiguous or non-conformal situations [23].

To compute the topological index in 2D, we recast the formulation given in Sec-

tion 3.3 in a discrete setting [18]. Let B(c) denote a closed polygonal curve around

the critical point. For every couple of neighbor vertices (p1, p2), form the bivector
1/2(ṽ(p1)∧ ṽ(p2)) with the values of the normalized vector field ṽ = v/‖v‖. The sum

of all bivectors, divided by the volume of the unit disk π , will give an approximation

of the winding number of v on the curve, which is in turn an approximation of the

index of v in c.

It can be shown that two closed polygonal curves discretizing the same underly-

ing continuous curve lead to the same winding number, as long as they are ε-dense
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(i.e., any point of the continuous curve between two neighbors will be within ε-

distance of both neighbors). In a continuous setting, the index of a critical point

is well defined as the winding number of every circle containing this only critical

point, since a nonvanishing vector field v in the interior of a closed path γ implies a

zero winding number of v on γ .

A similar computation can be done for 3D vector fields, on a triangulated surface

around the critical point (see figure 1). For a triangle of neighbor vertices (p1, p2, p3)
on this surface, form the trivector 1/6(ṽ(p1)∧ ṽ(p2)∧ ṽ(p3)) with the values of the

normalized vector field. The normalization factor is 4
3
π for the volume of the unit

ball [9, 25]. For a vector field on a surface, the computation is less straightforward

than in 2D, since vectors should be projected on a plane, before the sum is computed.

A common aforementioned technique in visualization is to integrate the vector

field along a curve, the integral line (or streamline in a fluid). Given a Lipschitz

continuous vector field v defined on an open subset U ⊂R
m, one defines curves γ(t)

on U such that for each t in an interval I, γ ′(t) = v(γ(t)). Picard’s theorem states

that there exists a unique C1-curve γx for each point x in U , so that γx(0) = x, and

γ ′x(t) = v(γx(t)) for t ∈ (−ε,+ε). These curves partition the set U into equivalent

classes.

Numerically, the discretization of streamlines relies on an integration method;

Euler or Runge-Kutta methods are the most common schemes to advance a point

along the integral curve given its previous location and a time step δ t. Any such

method requires to interpolate the field vector at a new location x. The interpolation,

defined on classical vector fields using barycentric coordinates, can be written ex-

actly the same way for GA vector fields v : Rm →Clm,0 (m = 2,3). For example, if

x is contained in a simplex then the linear interpolate reads: v(x) = ∑
l
i=1 λivi, where

vi (resp. λi) denotes the values of v at the simplex vertices (resp. corresponding

barycentric coordinates). Note that the interpolation of a vector field v defined on a

triangulated surface S is not straightforward, since the interpolated vectors need to

be defined in the tangent planes.

Not every characteristic of the field lies in the topological graph: features such

as vortices, shear zones, shock waves, attachment lines or surfaces are not captured

in this description and are very important elements to specify the structure of a vec-

tor field. The computation methods reviewed in [28] to extract features in vector

fields are presented in the classical frame but can be extended naturally to the GA

frame. Several scalar fields deliver information on the presence of vortices: the vor-

ticity magnitude, the helicity magnitude, the pressure for example. For instance, the

vorticity is exactly half of the curl defined in GA.

In some specific situations, the vector field may exhibit local patterns with repeti-

tions over the domain. Their localization would help to apprehend the overall struc-

ture of the field. For example, in 2D, we could look for the repetition of singularities

like monkey saddles, zones with axis drain, or S-shaped zones. The following ap-

proach is inspired by image processing.

Correlation. Given a 2D (resp. 3D) pattern, i.e., a vector field defined on a small

square (resp. cubic) domain, we can compute the Clifford correlation (introduced

in 2.2.4) between this pattern and a vector field. At each point of the domain, this
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function gives the similarity of the vector field (in the neighborhood of this point)

with the given pattern [11]. The correlation implies a convolution (quadratic com-

plexity), which can be replaced, via Clifford Fourier Transform, by a multiplication

(linear complexity) in the frequency domain. Furthermore, since the 3D CFT can be

written as a sum of four complex Fourier transforms through the identification of

the pseudoscalar I3 with the imaginary unit i, Fast Fourier Transforms can be used.

However, the main drawback of this method is related to the necessity to check the

presence of a given pattern in all positions, for many scales and in many orientations,

or the search of the pattern will not be complete.

Invariants. Suppose that we have again a particular feature (patch) we want to

identify in a given vector field. Let us attribute values to the different patches through

a mapping. Such a mapping, if it exhibits rotation, translation and scale invariance

is called shortly RTS-invariant. If it is, for example, not rotation invariant, then its

value has to be computed for all rotated variants of the patch of interest.

Fig. 4 Search for an S-shaped pattern in a 2D swirling jet flow dataset. The original pattern is

shown in a green circle, whereas the found occurences are shown in red circles, overlapping for

different scales. The method used is the comparison of computed values for a family of moment

invariants on the dataset, comparing with the tabulated values for the pattern (reprinted from [31]).

A family of RTS-invariants and non-redundant moments of order ≤ d [31] can

be built for 2D scalar and vector fields, using the complex numbers to get a nice

formulation of the rotation invariance in the equations. On figure 4, showing a 2D

swirling jet flow dataset, the occurences of a given S-shaped pattern can be seen, as

obtained by this method. For 3D scalar functions, one of the ways of defining such

moments is to use the spherical harmonic functions as building bricks. To extend to

3D vector fields, complex numbers are no help anymore, and quaternions generate a

dimension 4 algebra. If the nice formulation of rotations in Clifford algebra and the

existence of a product of vectors seems to pave the way for this generalization, the

defining of building bricks (perhaps with the spherical vectorial harmonics) for the

moments is the first difficulty, followed by the formulation of a rotation invariance

condition. To our knowledge, the extension has not been written yet.
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Several alternatives to moments as RTS-invariants are defined in literature. For

example, the harmonic power spectrum and harmonic bispectrum defined in [13]

for 3D vector fields rely on spherical vectorial harmonics. The theory is explained

in the classical frame, using representation theory, but possibly further invariants

could be defined and a substantial gain of clarity could be achieved if using GA.

Heat equation. On a Riemannian manifold M, consider the Clifford bundle ob-

tained from the tangent bundle. The Riemannian metric gi j(p) =< e
p
i ,e

p
j >, since

positive definite, leads to Euclidean tangent spaces. Let us define now a connec-

tion on the manifold ∇E compatible with the metric (for example the Levi-Cevita

connection) and extend it as ∇C to the Clifford space such that it preserves the grad-

uation, we define a generalized Laplacian as follows:

∆C = ∑
i j

gi j(∇
C
ei

∇C
e j
−∑

k

Γ k
i j ∇C

ek
) .

Considering the heat equation ∂ st

∂ t
+∆Cst = 0, with initial condition s0 = s, asso-

ciated with these operators, the solution is a regularization of the section s. It can

be approximated through the convolution with the heat kernel. Varying the oper-

ators (Clifford-Hodge, Clifford-Beltrami), different flows are obtained, leading to

different regularizations. This approach was introduced in [3], and was applied to

reducing noise in color images, see figure 5, but not yet, to the best of our knowl-

edge, as a global approach tool for vector fields.

Fig. 5 A color image (left) with the corresponding unit vector field of edge orientations (middle)

and a Clifford-Beltrami regularization of this vector field (reprinted from [3]).

In addition to regularization, heat kernel signatures, like they are defined for

scalar fields [33], could be used to define signatures of vector field patches.

Acknowledgements This work undertaken (partially) in the framework of CALSIMLAB is sup-

ported by the public grant ANR-11-LABX-0037-01 overseen by the French National Research

Agency (ANR) as part of the ”Investissements d’Avenir” program (reference : ANR-11-IDEX-

0004-02).



Geometric algebra for vector field analysis and visualization 19

References

1. D. Asimov. Notes on the topology of vector fields and flows. Technical report, NASA Ames

Research Center, 1993.

2. O. Azencot, M. Ben-Chen, F. Chazal, and M. Ovsjanikov. An operator approach to tangent

vector field processing. In Computer Graphics Forum, volume 32, pages 73–82. Wiley Online

Library, 2013.

3. T. Batard. Clifford bundles: A common framework for image, vector field, and orthonormal

frame field regularization. SIAM Journal on Imaging Sciences, 3(3):670–701, 2010.

4. W. Benger and M. Ritter. Using geometric algebra for visualizing integral curves. GraVisMa,

2010.

5. A. Bromborsky. An introduction to geometric algebra and calculus. 2010.
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34. H. Theisel, C. Rössl, and T. Weinkauf. Topological representations of vector fields. In L. Flo-

riani and M. Spagnuolo, editors, Shape Analysis and Structuring, Mathematics and Visualiza-

tion, pages 215–240. Springer Berlin Heidelberg, 2008.

35. T. Weinkauf and H. Theisel. Curvature measures of 3d vector fields and their applications.

Journal of WSCG, 10(2):507–514, 2002.


