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 in the case where the speed is far from minimal, where we expect the wave to be monotone.

: a wave that connects 0 to a pulsating wave around 1.

Introduction

What possible states can a traveling wave connect? The cases of two stable states, or one unstable and one stable states are standard. Here we investigate the case of a connection between a Turing unstable state (in the sense that the unstable modes are bounded and there are no highly oscillatory solutions [START_REF] Turing | The chemical basis of morphogenesis[END_REF]) and a dynamically unstable state using a nonlocal reaction-diffusion equation. Namely, we consider the equation:

∂tu(t, x) -∂xxu(t, x) = Au(t, x) for 0 ≤ u(t, x) < θ 1 -u(t, x -a) for u(t, x) ≥ θ, (1) 
with θ ∈ (0, 1), a, A > 0 and investigate various types of wave-like solutions, that is, time-global solutions which can be written as u(t, x) = U (x -ct). This equation is a toy model aiming at understanding the dynamics of more general nonlocal reaction-diffusion equations, such as the Fisher-KPP equation with a nonlocal competition term:

∂tu -∂xxu = u(1 -φσ ⋆ u) in R × R, (2) 
where φσ(z) = 1 σ φ(z/σ), φ ∈ L 1 (R) is a smooth nonnegative kernel such that φ(0) > 0 and x 2 φ(x) ∈ L 1 (R), σ > 0 is a parameter measuring the lenght of the nonlocality and ⋆ is the convolution product. This equation arises in various areas such as ecology [START_REF] Furter | Local vs. nonlocal interactions in population dynamics[END_REF] or adaptative dynamics [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF] (see also [START_REF] Britton | Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model[END_REF][START_REF] Gourley | Traveling front solutions of a nonlocal Fisher equation[END_REF]). It admits a positive solution of the form u(t, x) = U (x-ct), with U (+∞) = 0 and lim infx→-∞ U > 0, for all c ≥ 2 [START_REF] Berestycki | The non-local Fisher-KPP equation: traveling waves and steady states[END_REF]. Moreover, if the Fourier transform of φ is positive, for example if φ is a Gaussian kernel, then U (-∞) = 1 [START_REF] Berestycki | The non-local Fisher-KPP equation: traveling waves and steady states[END_REF]. However, such a convergence is not known in general.

Numerical simulations of the evolution equation [START_REF] Apreutesei | Spatial structures and generalized travelling waves for an integro-differential equation Disc[END_REF] show that nontrivial steady states may exist when σ is large enough [START_REF] Berestycki | The non-local Fisher-KPP equation: traveling waves and steady states[END_REF][START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF]. That is, there might exist periodic positive solutions p(x) of -p ′′ = p(1 -φσ ⋆ p) over R. These numerical simulations also suggest that these steady states could be connected to 0 through pulsating traveling waves. Due to the nonlocal term φσ ⋆ u, the steady state 1 could be linearly unstable with respect to some periodic perturbations, creating a bifurcation branch of stable periodic steady states. By analogy with reaction-diffusion systems, where similar phenomena occur, we call it a Turing mecanism and we then say that the steady state 1 is Turing unstable. Note that such a mecanism cannot arise if one considers the nonlinearity (φσ ⋆ u)(1 -u) instead of u(1 -φσ ⋆ u) since in this case a comparison principle holds, forbidding the existence of positive nontrivial steady states. Hence, these two nonlinearities are very different, from an analytical as well as a qualitative point of view.

The existence of traveling waves connecting 0 to 1, that is, solutions (c,

U ) ∈ R × C 2 (R) of -U ′′ -cU ′ = U (1 -φσ ⋆ U ) in R, U (-∞) = 1, U (+∞) = 0, U > 0, (3) 
remains unclear when the steady state 1 is Turing unstable. An alternative numerical approach was developed in [START_REF] Nadin | Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation[END_REF] in order to approximate the equation satisfied by the traveling waves (3) instead of the evolution equation ( 1), giving different results. Namely, these numerical simulations suggest that positive traveling waves necessarily connect 0 to 1. This is quite surprising, since for the classical (local) Fisher-KPP equation or more generally for reaction-diffusion equations admitting a comparison principle, unstable steady states can only be connected to stable ones. The existence of monotone traveling waves for (3) was recently investigated by Fang and Zhao [START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF]. They proved that for all c ≥ 2, there exists an explicit threshold parameter σc ∈ (0, ∞], such that there exists a decreasing traveling wave solution of equation ( 3) if and only if σ ∈ (0, σc). The convergence of this wave to 1 at -∞ immediatly follows from the monotonicity. This work was inspired by earlier papers on reaction-diffusion equations with delayed competition effect [START_REF] Gomez | Monotone traveling wavefronts of the KPP-Fisher delayed equation[END_REF][START_REF] Kwong | Existence and nonexistence of monotone traveling waves for the delayed Fisher equation[END_REF], which exhibit similar phenomena. As a corollary of this result, not mentioned explicitly in [START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF], one could derive the existence of traveling waves connecting the Turing unstable steady state 1 to the dynamically unstable one 0. Indeed, if the Fourier transform φ is not nonnegative, then when σ is large enough, the steady state 1 is linearly unstable with respect to perturbations of some given period range (see [START_REF] Berestycki | The non-local Fisher-KPP equation: traveling waves and steady states[END_REF][START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF]). On the other hand, it easily follows from the explicit expression of σc that limc→+∞ σc = +∞. Hence, there always exists some sufficiently large speed c such that σ < σc, and thus there exists a traveling wave of speed c connecting 0 to 1 monotonically. The fact that traveling waves with large speeds necessarily converge to 1 at -∞ was also proved through direct arguments by Alfaro and Coville [START_REF] Alfaro | Rapid traveling waves in the nonlocal Fisher equation connect two unstable states[END_REF]. It is not clear to us whether the threshold on the speed provided in [START_REF] Alfaro | Rapid traveling waves in the nonlocal Fisher equation connect two unstable states[END_REF] necessarily implies that the wave is monotone or not.

If the case of monotonic traveling wave solutions of ( 2) is now fully understood, the existence of non-monotonic traveling waves and their convergence to 1 is still unclear. Numerical simulations [START_REF] Nadin | Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation[END_REF] and the case of large speeds [START_REF] Alfaro | Rapid traveling waves in the nonlocal Fisher equation connect two unstable states[END_REF] suggest that the convergence to 1 always hold, whatever the Turing stability of this state is. On the other hand, in the present paper, investigating the toy model ( 1) we find completely different results: many different types of wave-like solutions, that is, solutions that are stationary in a moving frame with a given speed c, can be constructed. This equation not only admits monotonic traveling waves but also non-monotonic ones converging to 1, wave-trains oscillating around 1 and traveling waves connecting 0 to these wavetrains. Hence, our present results suggest that, similarly, equation ( 2) admits many types of wave-like solutions. In order to avoid any possible confusion, we underline that we do not consider pulsating traveling waves here, that is, solutions that are time-periodic in a moving frame.

Statement of the results

2.1 Monotone traveling waves connecting 0 to 1.

First, the sign of the spatial nonlocality a > 0 ensures that monotone traveling waves u(x, t) = U (x -ct) always exist. The profile

U satisfies U > 0 in R, U (-∞) = 1, U (+∞) = 0 and -U ′′ (z) -cU ′ (z) = AU (z) for 0 ≤ U (z) < θ 1 -U (z -a) for θ ≤ U (z) over R. ( 4 
) Proposition 2.1 Assume that A ≥ (1 -θ)/θ. For all c ≥ 2 √ A, there exists U ∈ W 2,∞ (R) satisfying (4) such that U is decreasing, U (+∞) = 0 and U (-∞) = 1.
Note that the condition A ≥ (1 -θ)/θ is the equivalent of a KPP condition for the discontinuous equation ( 1): if a = 0, it means that the nonlinearity is below its tangent A at u = 0. If this assumption is relaxed, the reader could check that our method still applies, giving the existence of traveling waves with speeds above a larger and less explicit threshold.

This result is not surprising. If the nonlinearity in (1) were continuous, then it would be an immediate consequence of Fang-Zhao's condition for the existence of monotonic traveling waves [START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF] since the linearization of the equation near u = 1 always admits real exponential solutions. Our proof relies on an explicit construction of the traveling wave.

Oscillating traveling waves connecting 0 to 1.

The next result states that oscillating traveling waves connecting 0 to 1 exist when the delay a is large enough.

Proposition 2.2 Assume that a > 0 and c ≥ 2 √ A satisfy c ≤ 2a 3π e -3 2 π - 3π a , (5) 
2a 3π ≤ (c + 2/c)e a/c . ( 6 
)
Then there exists a positive bounded solution U ∈ W 2,∞ (R) of ( 4) such that U (-∞) = 1, U (+∞) = 0 and U is not monotone.

One can easily check that these two inequalities both hold for a large enough. This result is more surprising since one would have expected oscillating traveling waves to appear only when the condition ensuring the monotonicty in [START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF] could not be satisfied anymore (see the numerical simulations in [START_REF] Berestycki | The non-local Fisher-KPP equation: traveling waves and steady states[END_REF][START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF][START_REF] Nadin | Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation[END_REF]). On the contrary, Propositions 2.1 and 2.2 show that monotonic and oscillating traveling waves can coexist. 

Wavetrains periodic around 1.

As for reaction-diffusion systems (see for example [START_REF] Doelman | The dynamics of modulated wave trains[END_REF]), we now construct a new type of solutions.

Definition 2.3

We say that a positive solution u of ( 1) is a wavetrain of speed c if it can be written as u(t, x) = W (x-ct), where W ∈ W 2,∞ (R) is positive and periodic, that is, there exists L > 0 such that W (z + L) = W (z) for all z ∈ R. We call W the profile of the wavetrain u. Lastly, we say that a wave train u is nontrivial if u ≡ 1. Such solutions have been observed numerically in the framework of nonlocal reaction-diffusion equations with asymmetric kernels in [START_REF] Apreutesei | Spatial structures and generalized travelling waves for an integro-differential equation Disc[END_REF][START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF].

The profile W of a wavetrain of speed c is a weak solution of

-W ′′ (z) -cW ′ (z) = AW (z) if 0 < W (z) < θ, 1 -W (z -a) if W (z) ≥ θ. (7) 
Proposition 2.4 Assume that (2k + 1)π ≤ a < (2k + 3)π, with k ∈ N. Then equation (1) admits k + 1 nontrivial wavetrains of the form ui(x, t) = 1 + Vi(x -cit), i = 1, . . . , k + 1,

with c1 > • • • > c k+1 > 0.
Moreover, any wavetrain u of (1) satisfies

θ ≤ u ≤ 2 -θ, u(x, t) = 1 + CVi(x -cit + ϕ),
for some i ∈ {1, . . . , k + 1} and C, ϕ ∈ R.

Note that any convex combination of such wavetrains u1, ..., u k+1 is still a time-global solution of (1) connecting 0 to 1. However, it is not a wavetrain anymore nor a wave-like solution since the ui have different speeds c1 > ... > c k+1 .

Connections between 0 and wavetrains

Lastly, we use the wavetrains to construct solutions of the form u(t, x) = U (x -ct), with U > 0 converging to 0 at +∞ and not converging to 1 at -∞, but to a wavetrain. Proposition 2.5 For all a ≥ a * := 3 2 π 2A + √ 4A 2 + 1, there exists a solution u of (1) which can be written as u(t, x) = U (x-ct), with c > 0 and U ∈ W 2,∞ (R) a positive function such that limz→+∞ U (z) = 0 and limz→-∞ U (z)-W (z) = 0, where W is the profile of a nontrivial wavetrain of speed c. Such a solution will not be unique in general. Indeed, we know from Proposition 2.4 that there may exist several wavetrains and, adapting the proof below, one might construct different traveling waves connecting 0 to each of these wavetrains, under some implicit conditions on a. We leave such a classification to forthcoming work. 3 Proofs of the results

Construction of the monotone traveling waves

Proof of Proposition 2.1. Let λ > 0 be the unique positive solution of fc(λ) := λ 2 + λc -e -aλ = 0, which is unique by monotonicity. The positivity of a ensures that such a solution always exists. Next, as c ≥ 2 √ A, the polynomial equation

η 2 -ηc + A = 0 admits two solutions 0 < η-≤ η+ (if c = 2 √ A, then η+ = η-= √ A)
. For all z ∈ R and for α > 0 to be fixed later, let

V (z) := (θ + α)e -η -z -αe -η + z if c > 2 √ A, θ(1 + αz)e -η -z if c = 2 √ A. ( 8 
)
It is easy to check that, if α > 0, with the additional assumption α ≤ η-when c = 2 √ A, then

-V ′′ (z) -cV ′ (z) = AV (z)
for all z > 0. We compute

V ′ (0) = α(η+ -η-) -η-θ if c > 2 √ A, θ(α -η-) if c = 2 √ A. (9) 
Let α ∈ R be such that V ′ (0) = -λ(1 -θ). The condition α ≤ η-is clearly satisfied since V ′ (0) ≤ 0. We now need to check that α is positive. A straightforward computation gives that, in both cases c = 2 √ A and c > 2 √ A, α > 0 if and only if θη-> λ(1 -θ).

As A ≥ (1 -θ)/θ, a sufficient condition for the positivity of α is λ < η-/A. On the other hand,

fc(η-/A) = η 2 - A 2 + cη- A -e -aη - A ≥ η 2 - A 2 + cη- A -1 = η 2 - A 2 + η 2 -+ A A -1 = η 2 - A 2 (1 + A) > 0.
As λ is the unique positive root of the increasing function fc, one gets η-/A > λ, from which we eventually derive α > 0.

Define for all z ∈ R:

U (z) := 1 -(1 -θ)e λz if z ≤ 0, V (z) if z > 0. ( 10 
)
This function is clearly decreasing and converges to 1 at -∞ and 0 at +∞. It is easy to check that U satisfies (4) on (-∞, 0) and on (0, ∞). Moreover, we have constructed V in such a way that

V (0) = θ and V ′ (0) = -λ(1 -θ), meaning that U ∈ C 1 (R).
Hence, U is a weak solution of (4) over R. ✷

Construction of the oscillating traveling waves

Lemma 3.1 For all λ > 0, if

e aλ (c + 2λ) ≤ 2a 3π , (11) 
then there exists a unique µ(λ) ∈ 3π 2a , 2π a such that

- sin aµ(λ) µ(λ) = e aλ (c + 2λ).
Moreover, the function µ is continuous (where it is defined).

Proof. Clearly, µ → -sin(aµ)/µ is decreasing over 3π 2a , 2π a . As Then for all λ ∈ [0, Λ], ( 11) is satisfied and thus µ(λ) is well-defined. Moreover, µ(Λ) = 3π/2a by uniqueness. Let

f (λ) := λ 2 + cλ -µ(λ) 2 -e -aλ cos aµ(λ) .
This function is continuous and one has

f (0) = -µ(0) 2 -cos aµ(0) < 0 since µ(0) ∈ 3π 2a , 2π a . Moreover, f (Λ) = Λ 2 + cΛ -µ(Λ) 2 -e -aΛ cos aµ(Λ) = Λ 2 + cΛ - 3π 2a 2 > Λ 2 - 3π 2a 2 .
Hence, f (Λ) > 0 if Λ ≥ 3π/2a. On the other hand, the increasing function g : λ → e aλ (c + 2λ) -2a/3π vanishes at Λ and (5) gives g(3π/2a) = e 3π/2 (c + 3π/a) -2a/3π ≤ 0.

It follows that Λ ≥ 3π/2a by monotonicity and thus f (Λ) > 0.

The intermediate value theorem implies that there exists λ ∈ (0, Λ) such that f (λ) = 0. Defining µ := µ(λ), we have thus found a couple (λ, µ) ∈ (0, ∞) 2 satisfying cλ + λ 2 -µ 2 = e -aλ cos(aµ), µ(c + 2λ) = -e -aλ sin(aµ).

Next, as in the proof of Proposition 2.1, we search for U in the form

U (z) = 1 -(1 -θ)e λz cos(µz) for z ≤ 0, V (z) for z ≥ 0. ( 13 
)
Our choice of (λ, µ) and the definition (8) of V yield that U satisfies (4) over R\{0}. As in the proof of Proposition 2.1, it only remains to check that η-> Aλ in order to be able to choose α > 0 so that U is of class W 2,∞ , where η-is the smallest solution of η 2 -cη + A = 0. It would thus follow that U is a weak solution of (4) over R, which would conclude the proof since U (-∞) = 1 and U (+∞) = 0 are clearly satisfied. First, as 0 = η 2 --cη-+ A > A -cη-, one has η-> A/c. Whence η-> Aλ if λ < 1/c. Since λ < Λ, it is then sufficient to have Λ ≤ 1/c. The latter holds true because, by [START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF],

g(1/c) = (c + 2/c)e a/c - 2a 3π ≥ 0 = g(Λ).
Thus, we can choose α > 0 so that U is of class C 1 and conclude the proof. ✷

Construction of the wavetrains

Lemma 3.2 Assume that u is a wavetrain of equation [START_REF] Alfaro | Rapid traveling waves in the nonlocal Fisher equation connect two unstable states[END_REF]. Then u(t, x) ≥ θ for all (t, x) ∈ R × R.

Proof. Writing u(t, x) = W (x -ct), as W is periodic, we know that it admits a minimum at some point z0 ∈ R. If W (z0) < θ, then (7) yields that W is C 2 in the neighborhood of z0. As it is positive, one has: 0 ≥ -W ′′ (z0) -cW ′ (z0) = AW (z0) > 0, a contradiction. ✷ Proof of Proposition 2.4. 1. We look for a solution W of (4) of the form W (z) = Re(V (z)), with

V (z) = 1 -Ce iξz , ξ ∈ R, C ∈ (0, 1 -θ].
Since W ≥ θ, equation (4) reduces to

-W ′′ (z) -cW ′ (z) = 1 -W (z -a) in R.
The complex-valued function V is a solution of the above equation if and only if

-ξ 2 + cξi = e -iaξ . (14) 
Computing the modulus of both sides we infer that

0 < ξ ≤ 1, c 2 ξ 2 + ξ 4 = 1,
from which we get the expression of c as a function of ξ: c(ξ) = ξ -2 -ξ 2 . We thus look for solutions ξ ∈ (0, 1] of the equation Γ(ξ) = Γa(ξ), where Γ(ξ) := -ξ 2 + c(ξ)ξi, Γa(ξ) := e -iaξ are sectors of the unit circle in the complex plane, the first one parametrized counter-clockwise from the angle π/2 to π, the second one clockwise from the angle 0 to -a. It is then clear that for (2k + 1)π ≤ a < (2k + 3)π, the number of solutions is exactly k + 1 (see Figure 3). Notice that the associated c's are distinct because ξ → c(ξ) is decreasing. 2. Next, if u is a wavetrain of speed c, then Lemma 3.2 yields that u ≥ θ. Hence, u satisfies ∂tu -∂xxu = 1 -u(t, x -a).

Writing u(t, x) = 1 + V (x -ct), with V periodic, we get that (c, V ) is a solution of 

V ′′ (z) + cV ′ (z) = V (z -a) in R. (15) 

Construction of the connections between 0 and the wavetrains

Proof of Proposition 2.5. Let a ≥ π. Our aim is to connect the fastest wavetrain u1 given by Proposition 2.4 with a function V of the form [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF]. As V is defined only for c ≥ 2 √ A, we need the speed c1 of u1 to satisfy c1 ≥ 2 √ A. With the same notation as in the proof of Proposition 2.4, we have that the decreasing monotonicity of ξ → c(ξ) implies that c1 = c(ξ1), where ξ1 is the smallest solution of Γ(ξ) = Γa(ξ) in (0, 1]. Since Γa(3π/2a) = i, it is clear that ξ1 < 3π/2a. Whence,

c1 = c(ξ1) > c(3π/2a) = 2a 3π 2 - 3π 2a 2 .
A straightforward computation shows that the latter term is larger than or equal to 2 √ A if and only if a ≥ a * = 3 2 π 2A + 4A 2 + 1.

As a consequence, for a ≥ a * , we can define V as in [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF], with c = c1 and α > 0 to be chosen later.

The profile of u1 is W (z) = 1 -(1 -θ) cos(ξ1z). Let

U (z) := V (z) if z ≥ 0, W (z) if z < 0. ( 16 
)
Choosing α > 0 in such a way that V ′ (0) = 0, we have that U ∈ C 1 (R). Note that in the case c = 2 √ A, we have θ(α -η-) = V ′ (0) = 0 and thus the condition α ≤ η-is still satisfied. Hence, u(t, x) := U (x -ct) satisfies the required properties.

✷.
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 11 Figure 1: Monotone (left) and and oscillating (right) traveling waves connecting 0 to 1.
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 12 Figure 2: Wavetrain (left) and its connection to 0 (right).
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  e aλ (c + 2λ), the intermediate value theorem gives the existence. The monotonicity gives the uniqueness, from which the continuity easily follows. ✷ Proof of Proposition 2.2. As c < 2a 3π by (5), we can define Λ as the unique positive solution of e aΛ (c + 2Λ) = 2a 3π .
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 3 Figure 3: The curves Γ and Γ a .
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