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Efficient Computation of the Coupling 
Between a Vertical Line Source and a Slot 

Guido Valerio, Member, IEEE, Massimiliano Casaletti, Member, IEEE,  
Josip Seljan, Ronan Sauleau, Senior Member, IEEE, and Matteo Albani, Senior Member, IEEE 

 
Abstract—A novel spectral formulation is proposed here for 

the coupling integral between a cylindrical wave with arbitrary 
radial wavenumber and azimuthal dependence, and a slot placed 
on a plane orthogonal to the wavefront. Such a kind of integral is 
massively encountered in electromagnetic modeling of stratified 
structures comprising slots and vertical pins or vias. The two-fold 
spatial integral defining the coupling is transformed into an 
equivalent one-fold spectral integral, the integration path of 
which is selected to obtain Gaussian decay of the integrand. Both 
propagating and evanescent cylindrical modes are considered. 
An arbitrary stratification orthogonal to the slot plane can be 
considered, as well as an arbitrary current on the slot. Numerical 
comparisons against the standard spatial approach are shown to 
validate the new formulation, and its advantage in terms of 
computation cost is investigated in depth. 
 

Index Terms—Slot coupling, spectral methods, cylindrical 
waves, steepest descent path, numerical methods. 

I. INTRODUCTION 

UMERICAL modeling of arbitrarily-shaped slotted 
waveguides and antennas is a vast research topic 

receiving considerable attention in last years, as the degree of 
complexity of the analyzed structures increases and their fine 
details need to be correctly described [1],[2]. 

Integral-equation methods provide convenient tools to study 
these structures, since Green’s functions for layered media can 
be rigorously determined [3]-[5], and slots can be replaced by 
equivalent unknown currents coupling different regions, 
solved through the method of moments (MoM). Various full-
wave and approximate methods have been developed for the 
fast computation of slots couplings, based on Green’s 
functions approximations or integral transforms [6]-[8]. 

A more difficult problem is the study of slotted structures 
involving vertical elements. They are lately becoming of wide 
interest, due to the development of substrate integrated 
waveguides (SIW), easily fabricated and integrated with 

printed circuits, e.g. 
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[9]-[15]. These structures require the 
modelization of a large number of vertical vias, and can be 
handled conveniently by coupling a Mode Matching (MM) 
technique for the closed SIW structure [16] with a MoM 
solution for the slot currents [17]. A large number of integral 
coupling the cylindrical waves scattered by each posts with 
the slots must be computed, and the possibility to solve large 
slotted SIW is strictly depending on an efficient calculation of 
these integrals. A very large number of vertical posts is 
usually present, placed at moderate or large distances from 
each slot. The possibility to obtain a reliable and accelerated 
computation strategy for the interaction between largely-
spaced slot and post is particularly useful. 

No method has been proposed so far as an alternative to the 
simple twofold spatial integration over the slot region. In this 
paper rigorous alternative expressions are derived together 
with a discussion on their range of validity and the 
computational advantage we can expect to obtain. 

The paper is organized as follows. In Section II, the spatial-
domain coupling integral is transformed into an equivalent 
spectral integral, and the integration path is deformed into a 
steepest descent path (SDP) in order to grant a fast 
exponential decay of the integrand. In Section III, numerical 
results are provided to validate the analytical manipulations. 
The computational advantages of the proposed approach is 
also discussed as the physical and geometric parameters vary 
in range of practical interest. 

II. SPECTRAL-DOMAIN TRANSFORMATION 

We address in this section the efficient computation of the 
integrals coupling a cylindrical wave centered at  and the 

equivalent magnetic current B on a slot centered at , lying 

on a plane orthogonal to the wavefront, as introduced in 

Cρ

ρS

[17]: 

     TM TM TM
S C C S, ; , ; dn n

S

R z z      ρ ρ M ρ ρ B ρ ρ ρ  (1) 

and 

     TE TE TE
S C C S, ; , ; dn n

S

R z z      ρ ρ N ρ ρ B ρ ρ ρ  .(2) 

The  and z coordinates refer to the global reference system 

 G G,x y  in Fig. 1.  is the radial wavenumber of a 

mode with TM or TE polarization with respect to the axis of 
the wavefront. M and N are cylindrical-wave vector functions 

TM/TE


[3] 

 N
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Fig. 1. Geometry of the problem analyzed in this paper. 
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where k is the medium wavenumber. The scalar functions  
are defined as follows 
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The functions  depend on the stratification considered 
along z, and can be expressed in simple closed forms [16], 
[18]. 

The function B describes the equivalent magnetic current 
flowing on the aperture of a slot, which corresponds to a basis 
function in the MoM formulation. In the following, the 
formulation is kept general, so that different functions can be 
used. However, the numerical results shown in next section 
refer to the choice 

     1
ˆ ˆ sin

2

p L
B u u

W L

     
 

B ρ u u 


 (5) 

for –L/2 < u < L/2, and –W/2 < v < W/2. The local Cartesian 
reference system (u,v) has its origin at the center of the slot, 
the u axis along its length L, and the v axis along its width W. 
The integer p describes the order of the function. 

The integrals (1) and (2) can be computed in the spatial 
domain. This requires the computation of twofold integrals 
performed on the surface of a slot. In this section, we 
transform them into equivalent monodimensional spectral-
domain integrals and investigate the most efficient numerical 
evaluation strategy. 

Through a straightforward substitution of the Fourier 
transform of M, N and B, the integral can be expressed as the 
inverse Fourier transform 
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Here a local Cartesian coordinate system  L L,x y

L
ˆ

xk 

 has been 

used, whose origin is placed in  and whose x axis is chosen 

along the source-slot direction, where k x
Cρ

L
ˆ

yk y . D is 

the distance between the center of the slot and the source (Fig. 
1). 

The Fourier transform of B is 
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with the transverse spectral vector  expressed 

in the (u,v) slot reference system. 

ˆ
u vk k  k u v̂

The u-components of the transforms of M and N are (see 
the Appendix for some details) 
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where G  is the angle between the local x axis and the global 

x axis (see Fig. 1). The two integrals (6) and (7) become 
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where 
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    TM ˆ ˆ,x yf k k B   ˆ,     k v k u k v   (12) 

and 

    TE ˆ ˆ,x yf k k B   ˆ,     k u k u k v   (13) 

The kx integration in (11) should be performed in the 
complex kx plane along the Sommerfeld path in Fig. 2: it 
consists in a suitable deformation of the real axis in order to 
avoid the possible singularity on the real axis. As 

 
J

mx xk k   

Jxk
e

 , the kernel of the integrand decays 

exponentially as . On the other hand, the functions 
D

f  



PAPER NUMBER: AP1303-0003.R1 
 

3

  
 

Fig. 2. Complex kx plane where the integrand in (11) is defined. The residues 

at  2
TM/TE 2

xk  yk  are shown. The integration along the Sommerfeld 

path (solid line) is equivalent to the residue in the lower half plane (encircled), 
since the half circle at infinity (dashed line) gives no contribution to the 
integration if D > max(L,W)/2. 

 

increase exponentially as ; this 

follows from the exponential behavior  of the 

sin functions of imaginary arguments in 

 
J L
ˆ ˆ ˆexp / 2xk L W   x u v

 sin / 2xjx e



(8) and from the 
relation among ku, kv and kx (algebraic terms are neglected in 
all these asymptotic evaluations). Provided 
that , the exponential decay of the 

integrand kernel is faster than the exponential rise of

 L
ˆ ˆ ˆ / 2D L W  x u v

f

 m xk 

, and 

the overall integrand is infinitesimal as . If 

, this convergence conditions is certainly fulfilled if D 
> L/2. Note that different choices of the current in 



W L�

 

(5) could 
lead to different lower limits for the distance D. However, the 
method here proposed will always hold in the correct 
convergence region for D. The exponential decay of the 
integrand on the semicircle at infinity grants the equivalence 
between the Sommerfeld integration and the integration along 
the closed path formed by the Sommerfeld path and the 
semicircle. The kx integral is then equal to the sum of the 
residues of the singularities enclosed by this closed path. In 
our case, the only singularity is the pole present in the lower 

plane at 
2TM/TE 2

x ykk  . The integrals (11) are then 

transformed in one-dimensional ky-integrals 
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 (14) 

The integration in (14) is performed along a Sommerfeld 
integration path of the same shape as the one shown in Fig. 2, 
avoiding the pair of branch points at yk   . Such an 

integration path lies on the Riemann sheet defined by 
2 2m yk 0   , in order to grant convergence for large D. 

A suitable change of variable can transform the integrand and 
the Sommerfeld integration path into a new function having 
Gaussian decay along the new integration path. This new path 
would correspond to the SDP of the integrand in (14); it 
would be particularly attractive since it allows for an easy 
numerical evaluation of (14), with a reduced number of 
quadrature points. The SDP is the path passing through the so 
called “saddle point” (SP) of the integrand. The SP is the point 
in the ky complex plane where the phase gradient of the 
integrand is zero (i.e., the stationary point of the phase). Once 
the SP location is determined, the SDP crosses the SP with a 
slope aligned along the direction of constant phase and 
maximum decay of the integrand. 

If an asymptotic evaluation for large D of the integral were 
attempted, both the integrand value and the SDP slope at the 
SP would be required. Specifically, the SP would be located 
by finding the stationary point of the phase of the exponential 
factor in (14), the term providing the dominant phase variation 
for large D. 

However, our aim is here the exact computation of the 
integral for moderate D. In this connection, we define the SP 
point as the stationary point of the phase of the complete 

kernel in (14). Only the phase variation of f is neglected, 

since the slot dimensions are assumed to be small if compared 

to the distance D. In this case, the phase of the current  will 
be almost constant over a wide spectral region. As a 
consequence of this hypothesis, the obtained results will be 
independent on the choice of B. 

B

Furthermore, the result and the performance of the 
numerical integration will be unchanged even if the path is 
slightly moved from the exact SDP, provided no singularities 
are crossed and the Gaussian decay is met on the integrand 
tail. For this reason, the exact direction of the SDP at the SP 
will not be investigated in the following subsections. 

As said, the requested path is obtained by performing 
suitable change of variables, depending on the value of the 
radial wavenumber  . The two cases of real value 

(propagating radial mode) and imaginary value (evanescent 
radial mode) are analyzed separately in the following. 

A. Propagating radial mode 

With the substitution 22yk s j s  , implicitly defining 

the complex variable s, it follows that  21xk j  s  and 

    TM/TE TM/TE2 ,j D

n x dy nI j je f k k K s s






     , (15) 

where the kernel nK  is 

   
2

2 2

2
1 sgn( ) 2 d .

1 / 2

Dsn

n

e
K s j s n s j s

js


       

 s  (16) 

The ky Sommerfeld integration path in (14) is mapped into 

the real s axis in (15), provided that 2m 2 0j s    in the 
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Fig. 3. Complex s plane where the integrand in (15) is defined. The 
trajectories of the point s0 are shown for positive and negative n in green and 
blue, respectively, as the magnitude of the index n increases. The integration 
path C is shown for a given s0 in the case n > 0. 

 

definition of ky. The condition 2 2m yk   0   must not be 

enforced problems since kx is not defined through any square 
root. This is due to the fact that the change of variable has 
removed the branch point present in (14).  

However, in this transformed complex s plane, a new pair 

of branch points is present at b 2s j   , due to the square 

root in the denominator. This square root arises from a ky term 
in the differential dky in (14), and its determination should 
then be chosen accordingly. From the definition of ky, 

2m 2 0j s   , and consequently 2e 1 / 2 0js   . This 

condition leads to define branch cuts along the lines sR = sJ, 
sRsJ < 1 (where s= sR +j sJ), i.e., along the bisecting line of 
the second and fourth quadrant (the cuts are shown in Fig. 3 in 
wavy lines). Any deformation of the real-axis integration path 
cannot cross these lines. 

 

The SP s0 of the kernel K can be easily determined: the 
kernel is expressed in the exponential form exp[(s)], through 
a suitable function (s): 
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2

ln 1 sign( ) 2

1
ln 1

2 2

s Ds n j s n s j s

s
j

          

 
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 

2

1

(17) 

If , the point s0 can be found in closed form as a 

solution of the equation d/ds=0: 

4 D �

  
2

4
0 sgn 1 1

j n
s n e

D




  

     
 

, (18) 

The integral (15) can then be evaluated with the simple 
substitution 0s s s  , and the integration can be kept along 

the horizontal line with constant imaginary parts C, granting a 

Gaussian convergence. Indeed, the correct SDP should cross 
the point s0 with a certain slope possibly depending on n. 
However, according to the previous comments we will be 
content to use a path C which crosses the SP s0 and grants a 
Gaussian convergence on the integrand tail. Such a path will 
be referenced here as the SDP of the integral. In Fig. 3 the 
SDP C is named C+ or C according to the sign of n. 

Of course, the SP s0 moves on the complex s plane as the 
value of /n  D  changes. The curve described by s0 is 

shown in Fig. 3: the two branches in green and blue refer to 
the cases n > 0 and n < 0, respectively. The arrows refer to the 
directions of the SP as |n| increases. If n  D  , the SP 

moves on the bisecting line of the second and fourth quadrant, 
and the horizontal integration path does not crosses the branch 

cut. However, as |n| increases, eventually    0 bIm Ims s , 

when 5 /n D 4 . For higher values of |n|, the horizontal 

integration path cannot be chosen, since it would cross one of 
the branch cuts. An SDP path could still be rigorously 
obtained by a suitable deformation around the branch cut. 
However, such a problem is not addressed here, since the 

corresponding range of values of   5 / 4n D  is beyond 

the limit of usual applications of interest. 
It should be highlighted that the trajectories described in 

Fig. 3 as |n| increases, can be alternatively regarded as the 
trajectories of the SP as the electrical distance D  between 

the vertical source and the slot decreases. 

B. Evanescent radial mode 

A similar approach can be adopted for the evaluation of the  
integral (14) when   is imaginary: the cylindrical mode 

considered decays exponentially along radial directions. 

The change of variable required is 22yk j . It 

follows that 

s s 

 21xk s   and 

    TM/TE TM/TE2 ,j D
n x dy nI e f k k K s






     s , (19) 

with 

    
2

2 2

2
1 sign( ) 2

1 / 2

Dsn

n

e
dK s s n s s

s



   


 s . (20) 

The Sommerfeld ky integration path in (14) (equivalent to 
the real axis in this case) becomes the real axis on the s 

complex plane, provided that 2m 2 0s    in the definition 

of ky. As in the previous subsection, the branch cuts in (14) 
vanish due to the change of variable. 

However, a new pair of branch points is present at 

b 2j  s , due to the square root in the denominator. Since 

these square roots originate from the differential dky in (14), 
its determination should be chosen accordingly. From the 

expression of ky, 
2m 2 0s    is required. This condition 
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Fig. 4. Complex s plane where the integrand in (19) is defined. The point s0 is 
shown for positive and negative n values, in blue and green, respectively The 
point s0 = 0, corresponding to the case n = 0, is also shown. 

 

leads to define branch cuts along the lines sR = 0, J 2s   

(where s= sR +jsJ), i.e., along the imaginary axis (the cuts are 
shown in Fig. 4 in wavy lines). Any deformation of the real-
axis integration path cannot cross these lines. 

The SP s0 of the kernel K  can be easily determined as done 
in the previous subsection. The kernel is expressed in the 
exponential form exp[(s)], through a suitable function (s): 

 

  2 2

2

ln 1 sign( ) 2

1
ln 1

2 2

2s Ds n s n s s

s

          
 

   
 

 (21) 

Again in the hypothesis 4 D � 1 , we obtain from the 

equation d/ds=0: 

 

2

0 sign( ) 1 1
n

s n
D

 
   

 




 (22) 

lying on the real axis for every azimuthal mode and for any 
electrical distance between the slot and the vertical post. The 
integration path is chosen in this case as the real axis itself, 
around the point s0, by performing the simple change of 
variable 0s s s  . No issues are encountered in this case due 

to the crossing of the branch cut, and no limit of validity 
exists. 
Further manipulation of both integrals (15) and (19) could 
yield suitable asymptotic evaluations and so avoid any 
numerical integration. However, this study is not addressed 
here in order to keep the final results independent on the 
choice of the current B. In fact, an asymptotic evaluation will 
require the computation of first- and second-order derivatives 
of the integrand, which can be expressed in closed forms once 
the functional dependence of B is determined. Indeed, these 
derivatives could also be performed through numerical 
differentiation. Unfortunately, this strategy would require the 

 
(a) 

 
(b) 

Fig. 5. Integrand of (15) in the complex s plane. Geometric and physical 
parameters: f = 5 GHz,  D = , =,  n = 3, W = 0.5 mm, L = 3 mm. (a) phase 
in degrees, (b) magnitude in dB. 

 

computation of a certain number of samples of B  in order to 
implement finite differences. The computational effort would 



then be moved from the computation of integrand samples for 
the direct integration on the SDP, to the computation of 

samples of  for the numerical differences needed for the 
asymptotic evaluation. 

B

III. NUMERICAL RESULTS 

Numerical results are discussed here in order to validate the 
theoretical analysis presented in the previous section. 

TMThe phase and magnitude of the integrand of  for 
typical values of geometrical parameters is shown in Fig. 5 for 
a propagating radial mode, and in Fig. 6 for an evanescent 
radial mode. The SP s0 is also highlighted. A constant-phase 
path is well approximated on a curve with constant imaginary 
part (horizontal line). Such a curve will be used for the 
numerical evaluation of the integral. The Gaussian decay is 
also evident in the magnitude plot along the horizontal 

/TEI
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(a) 

 

 
(b) 

 
Fig. 6. Integrand of (19) in the complex s plane. Geometric and physical 
parameters: f = 5 GHz, D = j3, n = 3, W = 0.5 mm, L = 3 mm. (a) phase in 
degrees, (b) magnitude in dB. 
 
direction, while a Gaussian amplification is shown along the 
vertical axis as expected. 

The integrals have been computed through the spectral 
forms (15), (19), and their spatial counterparts (1), (2). The 
spectral integrals are computed through Gaussian-Hermite 
integration scheme, in order to take advantage of the Gaussian 
decay of the integrand. The spatial integrals are computed 
through a Gaussian integration scheme [19]. 
The results are compared in Fig. 7 for different distances 
between the slot and the vertical post. For propagating modes, 
distances D are restricted in the interval 

 max 4 / 5 , / 2D n L 

The perfect agreement between the two computation methods 

Fig. 7. Integral (19) computed with the spatial and the spectral integration, for 

confirms the validity of the proposed approach. 
 for the two 

in

, in order to prevent the crossing 

between the integration path and a branch cut, and to grant the 
validity of (14). This condition covers most of the cases of 
practical interest even for moderate values of |n|. For 
evanescent modes, the range of distances  is chosen. 

c

/ 2D L

 
(a) 

 

(b) 

 

different values of the mutual distance  between the slot and the line source. 
Geometric and physical parameters: f = 5 GHz, n = 3, W = 0.5 mm, L = 3 mm, 
L = /3 (a) TM propagating mode, (b) TM and TE evanescent modes. 

 

D

A study on the quadrature points required
tegration methods has been performed. Its results are 

summarized in Fig. 8, where the relative error is shown for 
two typical cases of small and average-sized slot, with 
reference to a propagating TM radial mode. The error is 
omputed by assuming as an exact result the spectral 

expression integrated with 300 points. A very small number of 
points is always sufficient to obtain a satisfactory accuracy 
with the spectral approach for a very wide of geometrical 
parameters. Of course, convergence improves as the mutual 
normalized distance D increases, and as the size of the slot 
decreases. 
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(a)

 
(b) 

 
Fig. 8. Relative error vs. number of quadrature points used to compute the 

This is due to the fact that for large D the spectral integral 
is 

(solid 

As expected, the number of quadrature points of the spatial 
in

spatial points is 
al

grand 
in

on has been implemented in a full-
w

 
Fig. 9. Computation time to numerically integrate the spectral integral 

spectral integral (15) (solid lines) and the spatial integral (1) (dashed lines) for 
a TM propagating mode. A propagating radial mode is considered. Different 
distances are examined as explained in the pictures: D = 4 (green line), 
D = 2 (red line), D = 1.6  (blue line), D =   (pink line). Geometric 
and physical parameters: f = 5 GHz, n = 3, L = /3. (a) Small slot:  W = 0.5 
mm, L = 3 mm. (b) Large slot: W = 2 mm, L = 30 mm. 
 
 

better approximated by the integrand behavior in the 
neighborhood of the SP while the tails become less 
significant. In this limit, the integral is approaching to its 
asymptotic estimation, depending on the local behavior of the 
integrand in the SP. On the other hand, as the slot size is 
reduced, the spectrum of the current B is more uniform and 
does not perturb the SP location, here determined neglecting 

the phase of B  [see the discussion after (14)]. 
 

line) and the spatial integral (dashed line) when varying the number of 
quadrature points used. Geometric and physical parameters as in Fig. 8(b), and 
D = . 

 
 

tegral depends on the size of the slot considered, while they 
are quite independent on the normalized distance D. This is 
due to the fact that the accuracy of the spatial integration 
depends on the spatial smoothness of the integrand: provided 
the slot is sufficiently far from the origin of the cylindrical 
wave in order to avoid near-singular fields, the field 
variability is mainly dictated by the slot size. 

For reasonable accuracies, the number of 
ways considerably larger than the number of spectral points, 

unless the slot size is extremely small and the distance D is 
smaller than half a wavelength [pink curve in Fig. 8(a)]. 

The computation of the kernel in the spatial inte
volves various special functions (Hankel functions and 

complex exponentials), while the computation of the kernel in 
the spectral integrand only requires algebraic operations. For 
this reason a comparison is necessary between the 
computation time of the two integrals, once the number of 
quadrature points is chosen. The relevant results are shown in 
Fig. 9, where the computation time in ms is measured on a 
Xeon E5540 2.83 GHZ with 64 GB RAM. As expected, a 
remarkable improvement is obtained when computing the 
spectral integral. This improvement holds even when the 
number of points required is multiplied by a factor five with 
respect to the spatial integration, a limiting case never 
encountered in practical problems as shown in Figs. 8. 
Combining the results in Figs. 8 and 9, an average speed-up 
factor of 30 is obtained through the novel spectral formulation 
in most cases of interest. 

The spectral computati
ave code modeling SIW slot antennas [17]. As a final 

example, the speed-up factor and the accuracy obtained in the 
analysis of a complete structure is here presented. The 
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structure consists of 23 rectangular waveguides whose side 
walls are realized through a series of vertical metallic posts. 
All the waveguides are fed in phase with a coaxial cable, and 
a matching metallic post is placed close to each cable for 
matching purposes. Radiation is achieved through slots etched 
in the top wall (see Fig. 10). A total number of 2223 metallic 
posts and 184 slots are present (8 per waveguide). Three 
azimuthal modes are retained on each post (n = 0, ±1), and 
only the m = 0 parallel-plate-waveguide vertical mode is 
considered, with = k. In Fig. 11, the normalized radiation 
patterns at 24.4 GHz are compared on the two principal 
planes. The results obtained with the spectral and with the 
spatial computation of the post-slot coupling are perfectly 
superimposed, thus validating once more the accuracy of the 
approach. In Table I, the total computation time of the 
analysis is shown with the spatial and the spectral integrals. 
This leads to a total speed-up factor of 2, obtained as the ratio 
between the spatial and spectral computation times. 
Specifically, also the computation time required to compute 
only the coupling integrals is also shown, where a sped-up 
factor of 25 is obtained. This confirms the results previously 
discussed in this section. 

 

 
Fig. 11.  Normalized radiation patterns of the structure in Fig. 10 vs. elevation 
angle  at 24.15 GHz. All the coaxial feeds are simultaneously excited in 

 
TABLE I 

CPU SIMULATION TIME ON A XE 83GHZ WITH 64 GBYTE RAM 

 
integration integration 

ON E5540 2.

Spatial Spectral Speed-up 
factor 

Int ral 
co  

eg
mputation

504.36 s 19.78 s 25.5 

Complete 
simulation 

901.89 s 416.53 s 2.17 

 

Fig. 1 op view of the SIW structure considered for the full-wave analysis. 

IV. CONCLUSION 

We have r the computation of 
the 

The Fourier transform vector functions 
(3)

 

 
 

0.  T
Physical and geometrical parameters: thickness of the substrate h = 0.508 mm, 
dielectric constant r =2.2. Each waveguide is 66.4 mm long and 5.6 mm wide. 
The slots are in shown in blue. The radius of each post is 0.2 mm. 

phase. Computation of spatial integrals (red lines), computation of spectral 
integrals (blue lines). Principal planes  = 0° (thick lines) and  = 90° (thin 
lines). 

proposed a novel approach fo
coupling between a cylindrical wave with arbitrary 

azimuthal dependence, and a slot placed on a plane orthogonal 
to the exciting line source. The spatial integral defining the 
coupling is replaced by an equivalent spectral integral 
performed along a SDP-like path in a transformed complex 
domain. A rigorous motivation of the approach has been 
described, together with the limit of validity of the final 
theoretical results. Numerical results have been shown to 
confirm the analysis and to investigate the convergence 
feature of the novel spectral integral. The proposed approach 
has been implemented in a hybrid MoM-MM code optimized 
for SIW antennas, in order to shown the acceleration obtained 
with respect to the simple spatial integration. 

APPENDIX 

s of the cylindrical 
 are here rigorously computed. We start from the Fourier 

transform of the cylindrical scalar functions (4). As concerns 
the scalar functions, the two polarization only differ for their 
z-dependence. Since the transform is performed on a plane 
orthogonal to z, only one transformation is required. The 
transformation is performed in the local reference system 
(xL,yL), L C L L L L L Lˆ ˆcos sin      ρ ρ ρ x y L L L Lˆ ˆx y x y . 

The radial dependence of   is easily expressed in the local 

system, since the local radial coordinate is L C  ρ ρ . The 

global azimuth angle   can be expressed in stem 

as L G

 the local sy

    . We have 

   
     

G

L LL2
L L

;

d dx y

jn
n

j k x k yjn
n

z e, ;z

 
LH e e x y






   

 
 

 

 

  

 
 

k

 (23) 
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The above integral can be performed in cylindrical 
coordinates as 

L L

L L Ld

d


  (24) 

where

    2
nH



 

     

   

     

L LL

2
cos2

L L

0 0

L

0

2
L L L L

0

d d

2

2

jkjn
n

n jn
n

n jn
n n

H e e

j e J k

j e H J k




  




 


 

    

     

     


 







 



 



[6] T. S. Bird and D. G. Bateman, “Mutual coupling between rotated horns 
in a ground plane,” IEEE Trans. Antennas Propag., vol. 42, pp. 1000–
1006, Jul. 1994. 

2 2
L L L+x y  , cosxk k  , and sinyk k 

closed formula in 

. The 

L-integral can be solved through the [19]
valid for 
 

, 
0n  . The final result is 

 

   

   

G
2

2

n

n

jn n jn
kj

z e j e 

G

2 2

1
2 2

, , ;

;

sgn 1
4 ,

x y

n

n

x yjnn

n
x y

k k z

k

k j n k
j e z

k k






  


 2





 

 



  







  
 

 (25) 

since

 







 sgn
nn jn

x yk e k j n k


     . 

The component of the transform of the vector wave 
along the direction  can be easily obtained from

ectral form of the  operator; i.e., 

functions  û  

the sp  ˆj
z


   


k z , 

thus obtaining 

 

    
 

Gˆ ˆ ˆ, , 4 ;

sgn 1

jnn
n x yk k z j e z

k j n k


     

  

u M u k z

2 2 2

n

x y

n
x yk k 





 

 (26) 

and 

 

  

 

G

2 2 2

1 d
ˆ ˆ, , 4 ;

d

sgn 1

jnn
n x y

n

x y

n
x y

k k z j e z
k z

k j n k

k k


 



 



  

  
 

u N u k

 (27) 

as reported in (9). 
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