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Abiotic stresses, such as salinity, are important factors 

limiting plant productivity. Over millions of years, 

extremo phile plants have evolved eicient ways of sus

taining growth in challenging environments, and the 

study of these plants can provide valuable insights into 

the underlying mechanisms of their stress tolerance [1].

Exploring natural genomic variability
Until recently, studies of extremophiles focused on 

physiological parameters as well as targeted and medium

throughput gene expression analysis. he development of 

rapid and costeicient nextgeneration sequencing tech

nologies has cleared the way for studying both the 

molecular bases of these adaptations on a global scale 

and the evolutionary mechanisms driving them. In this 

context, comparisons of closely related extremophile and 

nonextremophile species are particularly valuable, 

because their genomes can be easily and reliably aligned, 

allowing genomic changes to be pinpointed at high 

resolution. he family of Brassicaceae is especially suited 

for this type of study, because of the development of 

Arabidopsis thaliana as a model organism, and because 

of the availability of a number of closely related extremo

philes in possession of many of the characteristics that 

make Arabidopsis a good model (including a small 

genome, the possibility of genetic transformation, and a 

short lifecycle). he utility of Brassicaceae genomics in 

the study of stress tolerance was illustrated in 2011 by the 

publication of Arabidopsis lyrata [2] and hellungiella 

parvula [3] genomes. Very recently, the sequencing of 

hellungiella salsuginea [4] has complemented this set of 

resources. hese three species have evolved to difer from 

A. thaliana in their stress tolerance within the last 7 to 

12  million years (Figure  1). heir study has focused on 

structural changes as witnesses of forces driving the 

evolution of these genomes [24], as well as relating these 

structural changes to functions that may be related to 

stress tolerance [3,4].

Structural changes and evolutionary forces
Structural genomic comparisons show that, despite signi

i cant diferences in genome sizes, large regions of co

linearity are present between the four species [2,4,5]. 

Diferences in genome size could be explained mainly by 

diferences in the intergenic regions, where repeated 

sequences and transposable elements are commonly 

found. While in A.  thaliana large numbers of micro

deletions in these areas are suspected, resulting in a 

reduction of genome size [2], recent activity of 

transposable elements is thought to be one of the main 

reasons for the expansion of the T.   salsuginea [4] and 

A.  lyrata [2] genomes. he latter elements are also 

thought to be one of the factors at the origin of socalled 

taxonomically restricted, or orphan, genes and gene 

families, which are new genes that have recently arisen in 

a taxon. Wu et al. [4] show the T. salsuginea genome to 

contain 984 families of such genes, the functions of which 

still remain to be explored. Finally, tandem duplication, 

segmental duplication and retrotransposonrelated gene 

duplication may act on genome structure, and also may 

be related to functional adaptation, both via modifying 

gene expression and by providing an opportunity for 

functional diversiication. Retrotransposition as a source 

of gene duplication is found to be especially common in 

the extremophile T. salsuginea, relative to A. thaliana [4].

How genomic changes impact stress tolerance
To elucidate how and which structural genomic changes 

may inluence the stress tolerance of extremophile 
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organisms, both Dassanayake et al. [3] and Wu et al. [4] 

take advantage of a priori knowledge of gene function, as 

inferred through sequence homology, by applying this 

functional information to a focus on copy number 

variations. A simple method for identifying the functional 

categories whose constituent genes are subject to recent 

expansion is to perform gene set enrichment analyses. 

hese analyses are frequently based on gene ontology 

annotations and can be used to identify functional groups 

of genes (or annotations) that are statistically over or 

underrepresented in one genome compared with another. 

In both hellungiella studies [3,4], gene set enrichment 

analysis shows that numerous categories of genes already 

known to be related to abiotic stress, including ‘response 

to salt stress’, ‘abscisic acid stimulus’, ‘transporter activity’ 

and ‘development’, are indeed overrepresented in the 

genomes of these halophytes compared with A. thaliana. 

his inding is of fundamental importance, as it demon

strates that positive selection for duplications of existing 

stressresponse genes is likely to play a part in the 

adaptation to high abiotic stress environments.

Manual analysis and annotation of gene families that 

have undergone selective expansion in extremophiles is 

then used by Wu et al. [4] in T. salsuginea to highlight 

speciic genes and processes involved in stress tolerance, 

including genes encoding transcription factors, abscisic 

acid biosynthetic enzymes, a key enzyme involved in wax 

production, and the sodium transporter HKT1. he latter 

gene is of particular interest in T. salsuginea as HKT1 has 

not only been triplicated with respect to A. thaliana, but 

one of the three copies has also undergone a signiicant 

increase in expression, most likely related to changes in 

the cisregulatory region. Such changes have also been 

recorded for another sodium transporter encoded by the 

salt overly sensitive 1 (SOS1) gene. For this gene, both 

T. parvula and T.  salsuginea copies exhibit homologous 

promoter regions and high expression, whereas the 

A. thaliana transporter difers in promoter sequence and 

is expressed at lower levels [5], providing an example of 

how genomic changes in noncoding sequences may 

afect physiology.

Future challenges and directions
he recent work on hellungiella [3,4] shows that, even 

for closely related species, successful adaptation to 

abiotic stress is likely to involve the combination of 

numer ous genomic changes related to known but also to 

novel genes, which are driven by various evolutionary 

mechanisms. he studies provide a starting point for a 

fresh approach, namely the genomewide, and thus 

holistic, study of the molecular bases of adaptation, and 

pave the way for the use of systems biology tools to 

construct and model metabolic and regulatory networks. 

hese models can, in a next step, be expanded to combine 

other forms of highthroughput data, such as metabo

lomic results and/or observations on small RNAs, DNA 

methylation and other forms of epigenetic regulation [6]. 

At the same time, targeted approaches aiming to identify 

the function of individual genes are still needed, as even 

the best models will be incomplete until they are able to 

incorporate and understand the numerous orphan genes 

and gene families, which may well be the most innovative 

features of extremophile genomes. In the same vein, the 

most complete regulatory networks would remain hypo

thetical until backed up by experimental evidence.

We anticipate that the discussed studies, exploiting 

natural genetic variability of land plants to study the 

evolutionary processes of adaptation to extreme environ

ments, will be inspirational for the development of 

similar approaches in other organisms. For instance, 

algae have also colonized environments spanning a wide 

range of abiotic factors. Metacomparisons of the evolu

tion ary mechanisms underlying adaptation across lineages 

and kingdoms will then provide insights into both con

served and speciic mechanisms, and increase our under

standing of the general principles underlying adaptation.
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Figure 1. Phylogenetic relationships between selected genome-

sequenced Brassicaceae species relevant for the study of 

adaptation to extreme abiotic conditions. The phylogeny was 

constructed with sequences corresponding to the nuclear ribosomal 

ITS-1, 5.8S ribosomal RNA, and ITS-2 region identiied in ive species: 

Arabidopsis thaliana (U43225), Arabidopsis lyrata (DQ165338), 

Thellungiella parvula (Blast search on T. parvula transcriptome version 

1.1, available at [7]), Thellungiella salsuginea (AF137564), and Carica 

papaya (AY461547), which serves as the outgroup. Alignments were 

performed with MAFFT, reined in BioEdit, and used for construction 

of the tree by neighbor joining in Mega 5. Mya, million years ago.
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