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Abstract: This paper proposes a modeling of the energy consumption of a class of small
convertible VTOL-UAVs (Vertical Take-Off and Landing Unmanned Aerial Vehicles). We
consider systems composed of a set of coplanar propellers for propulsion and wing(s) to improve
energy efficiency. Aerodynamics of propellers is modeled from standard momentum and blade
element theories. In order to obtain simple closed-form expressions, modeling simplifications are
made and a six-parameter-analytical model is proposed. The model parameters are identified
from the experimental data reported in the literature. As for the wing(s), a NACA profile is
selected and an approximate model of lift and drag coefficients over the entire flight domain
is defined. Based on these models, the calculation of energy consumption reduces to solving a
minimization problem in two variables. As an application, we compare the energy consumption
of different convertible structures in the horizontal-flight range of [0, 20]m/s. This comparison
provides useful guidelines for both conception and control of convertible UAVs.
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1. INTRODUCTION

Vertical Take-Off and Landing - Unmanned Aerial Vehi-
cles (VTOL-UAVs) are becoming increasingly important
in civilian and military applications. Recent years have
seen the emergence of small and low-cost VTOL-UAVs
(a few kilograms and a few thousand dollars), like the
popular quadrotor (Hamel et al., 2002; Hoffmann et al.,
2007; Guenard, 2007; Pounds et al., 2010). The quadrotor
is optimized for hover flight but its energy efficiency in
cruising flight is generally poor. This limits the duration
of a typical mission. For example, a quadrotor like the
one described in the article by Aleksandrov and Penkov
(2012) has dimensions 500 mm × 500 mm × 90 mm and
its weight is 1.4 kg. Its battery capacity is 4900mAh at
11.1 V, the power of all four motors is 130 W, and it can
fly for only 20 min. Convertible aerial vehicles, which use
both fixed and rotary wing(s), constitute an alternative
to the quadrotor with the goal of improving energy ef-
ficiency in cruising flight. The versatility of these aerial
vehicles explains the growing interest in the modeling
and control of such systems (Pflimlin, 2006; Naldi and
Marconi, 2010; Bhanja C. et al., 2012). To our knowledge
there are few works on the energy consumption of these
systems despite the fact that energy efficiency is the main
incentive for using a convertible VTOL-UAV in place of
a more classical structure. There exists a large literature
on the modeling and energy consumption of helicopters
(Stepniewski and Keys, 1979; Newman, 1994; Bramwell
et al., 2001). In these references, momentum and blade
element theories are the main ingredients for propellers
modeling and these tools can be used for convertible UAVs

⋆ This work is supported by the "Chaire d’excellence en Robotique
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as well. However, the case of small convertible UAVs needs
to be specifically addressed. First, lift forces acting on
the wing(s) of a convertible vehicle can be important and
must be taken into account in the analysis since they
modify substantially the thrust necessary to sustain the
vehicle’s weight and impact on the vehicle’s orientation.
By contrast, energy evaluation for helicopters typically
assumes that the propellers must sustain the vehicle’s
weight. Then, the power decomposition in term of induced
power, profile power, and parasite power is always used
for helicopters but its justification for convertible vehicles
is not clear due to the aforementioned large variations of
thrust and vehicle orientation. Also, we are interested here
by fixed-pitch propellers so that changes in thrust are ac-
complished by changing the propeller’s rotational velocity.
This contrasts with the case of helicopters. For example,
Newman (1994) presents the procedure to calculate the
energy of helicopters while assuming that the propeller’s
velocity (blade tip velocity) is constant. Finally, one must
also account for a degradation in performance of propellers
at low Reynolds number compared to larger propellers
for full-scale airplanes, as mentioned by Brandt and Selig
(2011). Focusing on small VTOL-UAVs with fixed-pitch
propellers (like the classical quadrotor), Aleksandrov and
Penkov (2012) compare the energy consumption of vehicles
with different numbers of rotors. The power calculation is
very simplified and does not take into account the influence
of the flying speed on the induced velocity and rotor drag.
Furthermore, the UAVs considered in Aleksandrov and
Penkov (2012) are multi-rotor systems but they do not
include wing(s). Hoffmann et al. (2007) take into account
the effect of thrust change in forward flight but the rotor
drag is not taken into account and, like in Aleksandrov and
Penkov (2012), the considered systems are not convertible.



The objective of this work is to propose an approach for
the energy evaluation of a class of convertible VTOL-
UAVs. The approach consists of three steps. The first
step concerns the aerodynamic modeling of propellers and
wing(s). For propellers, the modeling relies on classical
methods from momentum and blade element theories, as
found in helicopter literature (Newman, 1994; Stepniewski
and Keys, 1979; Bramwell et al., 2001). In particular,
a simplified six-parameter-analytical model is proposed
and model parameters are identified from experimental
data reported in literature. Concerning the wing(s) a
recently proposed analytical model of aerodynamic forces
acting on the wing for possible large angles of attack is
used (Pucci et al., 2011). The second step consists in
determining propellers’ speed and UAV’s orientation for
a given flight speed. The third step is a straightforward
calculation of the power and energy consumption from
the propellers’ speed and the torque needed to drive
each propeller. Behind the fact that lift forces are here
explicitly taken into account, this approach also differs
from the standard approach used for helicopters. Indeed,
we do not rely on the commonly used (but rarely justified)
"superposition principle" to express power as the sum of
induced, profile, and parasite power. Application of the
present work essentially concerns convertible UAVs’ design
and control. Concerning the design issue, we compare
some convertible structures and evaluate the impact of
the inclination angle of the wing(s) with respect to the
propellers’ plane on the energy consumption at different
flying velocities. As for the control issue, it is not addressed
in this paper but the energy evaluation provides useful
guidelines for the control of wing(s)’ angles of attack.

The paper is organized as follows. Section 2 provides a
preliminary description of the problem together with a
sketch of the modeling approach. The proposed model
is detailed in section 3. Using momentum and blade
element theories, a simplified analytical model to compute
propellers’ power is proposed and the model parameters
are identified from experimental data. By completing this
model with an aerodynamic model for the wing(s), one
can then determine the energy consumption for a given
airspeed. Based on this modeling, we compare in Section 4
the energy consumption of different UAV configurations.
Section 5 provides a brief summary of the paper and
perspectives.

2. PRELIMINARIES AND MODELING APPROACH

We consider a VTOL-UAV composed of a set of N copla-
nar propellers of same size and characteristics and a main
body, as depicted in vertical projection on the left part of
fig. 1. The following notation is used: 1

• I = {O, i0, j0,k0} is an inertial frame with k0

pointing downward. This choice is consistent with the
common use of NED (North-East-Down) frames in
aeronautics.

• B = {G, i, j,k} denotes a body frame with G the
vehicle’s center of mass and {i, j,k} coinciding with

1 Throughout the paper, bold letters are used for vectors in Eu-
clidean space whereas ordinary letters are used for coordinates of
these vectors in a basis.
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Fig. 1. 2-D Model

{i0, j0,k0} when the vehicle is in hover. The plane
(G, i, j) also coincides with the propellers’ plane.

• ẋa denotes the linear air-velocity of the UAV and the
vector of coordinates of ẋa in I is denoted as ẋa, i.e.
ẋa = ẋa,1i0 + ẋa,2j0 + ẋa,3k0.

Assumptions: Throughout the paper we focus on a 2D
motion 2 in the plane (O, j0, k0) = (G, j,k) spanned by
the gravity vector and the UAV’s linear velocity vector. It
is assumed that the vehicle moves at zero angular velocity
and constant linear velocity. It is also assumed that all
aerodynamic forces acting on the UAV are tangent to the
motion plane (O, j0, k0). This requires in particular the
wind velocity to be parallel to the plane (O, j0, k0).

From these assumptions, the vehicle’s orientation is fully
determined by the angle θ 3 between k0 and k. The
following forces, orthogonal to i0, act on the vehicle (see
the right part of fig. 1):

• The vehicle’s weight W = mg k0 with m the vehicle’s
mass and g the gravity constant;

• The aerodynamic force Fa = Fa,2 j0 + Fa,3 k0 acting
on the vehicle’s main body;

• The thrust forces Ti = −Ti k (i = 1, · · · , N) acting
on the propellers, with Ti ≥ 0 the intensities of these
forces;

• The in-plane forces Hi = Hi j (i = 1, · · · , N) acting
on the propellers, with Hi ≥ 0 the intensities of these
forces.

Since the vehicle moves at constant linear velocity, New-
ton’s law implies that the following two relations are sat-
isfied: 4

N
∑

i=1

Ti = (mg + Fa,3)cθ − Fa,2sθ (1)

N
∑

i=1

Hi =−Fa,2cθ − (mg + Fa,3)sθ (2)

In order to satisfy the assumption of motion with zero
angular velocity, the moment of external forces must also
be zero. On a multi-rotor system this is typically achieved
by a proper choice of Ti, consistent with Eq. (1). For

2 This work can be extended to the general 3D case, for example to
take into account lateral forces induced by a non-zero side-slip angle,
at the expense of a notably more complicated exposition.
3 Note that θ is measured positively from j0 to k0, i.e. θ in fig. 1 is
negative.
4 The following shorthand notation for trigonometric function is
used: cθ , cos θ, sθ , sin θ.



simplicity we assume that this property is satisfied with
Ti = T, ∀i, i.e. all propellers deliver the same thrust. This
is usually satisfied with a good degree of accuracy for a
well-built quadrotor. Then, Eq. (1) and Eq. (2) reduce to:

T =
1

N

[

(mg + Fa,3)cθ − Fa,2sθ

]

(3)

H =
1

N

[

− Fa,2cθ − (mg + Fa,3)sθ

]

(4)

with T and H the respective thrust and in-plane force
intensities on each propeller.

The approach used to model the energy consumption
proceeds as follows.

(1) Analytic modeling of aerodynamic forces: Us-
ing momentum and blade element theories, analytical
models of T,H, and the torque Q needed to drive each
propeller are derived:

{

T = fT (θ, ẋa, ̟, νind)
H = fH(θ, ẋa, ̟, νind)
Q = fQ(θ, ẋa, ̟, νind)

(5)

where ̟ is the rotational speed of a propeller and the
so-called "induced velocity" νind is the solution of an
implicit analytic equation:

fν(θ, ẋa, T, νind) = 0 (6)

As for the modeling of aerodynamic forces acting on
the wing(s), an analytical model recently proposed in
Pucci et al. (2011) is used:

Fa = fa(θ, ẋa) (7)

where the function fa will be specified further. Note
that, by assuming Fa does not depend on ̟ and
νind, we implicitly neglect interactions between the
flow induced by the propellers and the flow along the
wing(s).

(2) Determination of the orientation equilibrium
and propellers’ speed: Using the fact that the
function fT is invertible with respect to ̟ ≥ 0, ̟
can be expressed as a function of θ, ẋa, T , and νind:

̟ = f̟(θ, ẋa, T, νind) (8)

where the function f̟ is obtained by inversion of fT
with respect to ̟. From Eq. (5), (7), and (8), Eq. (3)
and Eq. (4) can be written as:

T =
1

N

[

(

mg + fa,3(θ, ẋa)
)

cθ − fa,2(θ, ẋa)sθ

]

(9)

fH

(

θ, ẋa, f̟(θ, ẋa, T, νind), νind

)

=

1

N

[

− fa,2(θ, ẋa)cθ −
(

mg + fa,3(θ, ẋa)
)

sθ

]

(10)

Replacing T in Eq. (6) and Eq. (10) by the right-hand
side of Eq. (9), one obtains two implicit equations in
two unknowns θ and νind. This system of equations
is solved numerically to obtain the equilibrium orien-
tation θ and the induced velocity νind. The value of
T is then given by Eq. (9) and the propeller speed ̟
by Eq. (8).

(3) Energy consumption: The torque Q is obtained
directly from Eq. (5). This allows one to compute
the power P = NQ̟ and subsequently the energy
consumption.

Before proceeding with the details, a few remarks are
necessary.
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Fig. 2. Actuator disk streamtube in forward flight (adapted
from figure 5.1 page 64 in Newman, 1994)

i) The proposed approach can be simplified by neglect-
ing the in-plane forces Hi which are typically small
w.r.t. the aerodynamic forces acting on the wing. This
corresponds to setting H = 0 in Eq. (4) (i.e. fH = 0 in
Eq. (10)). Then, θ is first determined by numerically
solving Eq. (10) and νind is determined next from
Eq. (6) using expression Eq. (9) for T . In this way
solving a system of two equations in two unknowns is
reduced to solving independently two systems of one
equation in one unknown.

ii) Concerning Step 2, there may exist several solutions
(θ, νind) to Eq. (10). In particular, even when the
in-plane force H is neglected, strong lift forces and
the associated stall phenomenon can lead to several
orientation equilibriums for a given airspeed ẋa. The
reader is referred to Pucci (2012) for more details on
this issue. In practice, being essentially interested in
minimizing the energy consumption, only the equilib-
rium orientation associated with the minimum energy
consumption is of interest.

3. PROPOSED MODEL

We now detail the modeling procedure sketched in the
previous section. The main objective is to determine the
functions fT , fH , fQ, fν , and fa that can approximate the
associated physical quantities with good accuracy. The
analytical model for the propellers is presented hereafter.

3.1 Analytical Model for the Propellers

Momentum theory is used to obtain the velocity induced
by the propeller (Newman, 1994). Assume that the pro-
peller is flying at (air-)velocity ẋa. The diagram of the
flow streamtube is illustrated in fig. 2. The flow velocity
is ν = −ẋa. The vector ν is decomposed along the
vectors j and k attached to the propeller: ν = ν2j + ν3k.
The velocity intensity of the total flow across the disk is

thus: ν′ =
√

ν22 + (ν3 + νind)2. The well-known Glauert’s

formula to find the induced velocity is:

νind −
T

2ρA

1
√

ν22 + (ν3 + νind)2
= 0 (11)

where ρ is the air density, A = πR2 is the area swept by the
propeller blades, and R is the propeller radius. Expressing
ν in term of ẋa and θ, i.e.

ν2 = −(ẋa,2cθ + ẋa,3sθ) , ν3 = ẋa,2sθ − ẋa,3cθ
it follows from Eq. (11) that Eq. (6) is satisfied with:

fν(θ, ẋa, T, νind) = νind

−
T

2ρA
√

|ẋa|2 + ν2ind + 2νind(ẋa,2sθ − ẋa,3cθ)
(12)



Now we review some aspects of blade element theory
to develop our modeling expressions. In order to obtain
simple closed-form expressions, modeling assumptions are
made as follows:

• The chord length and the pitch angle of the propeller
blades vary along the blade. It is shown in Newman
(1994) that one can take the chord length cP and the
pitch angle θP at 75% radius to have good average
values. This amounts to assuming that the propeller
blade has rectangular shape with width cP and fixed
pitch θP .

• It is assumed that the rotational speed of the rotor
is high w.r.t. the air-velocity (̟ ∈ [3000, 6000] RPM
at normal operating conditions). This allows us to
neglect the reverse flow region and assume that the
angle of attack αP of the blade is always small.

• The tip loss factor (Bramwell et al., 2001), which
accounts for only about 5% thrust loss, is ignored in
our modeling.

To non-dimensionalize the equations, the following nota-
tion is used with the rotor tip speed νT = ̟R:

ν̄ =
ν

νT
, ν̄2 =

ν2
νT

, ν̄3 =
ν3
νT

, ν̄3,ind =
ν3 + νind

νT

The blade lift coefficient is modeled as a linear function of
the blade’s angle of attack αP :

CLP (αP ) = CL0 + aαP (13)

where CL0 is lift coefficient at zero angle attack and a
is the lift curve slope. This model takes into account the
lift coefficient at zero angle attack, which can modify the
blade lift force significantly because propeller blades usu-
ally have non-symmetric cross-section airfoil. By contrast,
most helicopter’s models like in Bramwell et al. (2001) do
not include CL0. The blade drag coefficient is modeled as
a quadratic function of αP :

CDP (αP ) = b0 + b1αP + b2α
2
P (14)

where bi with i ∈ {0, 1, 2} are constant values. Equa-
tion (14) gives a fairly accurate curve that models the
parabolic evolution of drag coefficient in non-symmetric
airfoil. For comparison, in almost every works on helicopter
modelings (Stepniewski and Keys, 1979; Newman, 1994;
Bramwell et al., 2001), CDP is modeled as a simple con-
stant. Based on classical blade element theory, 5 the thrust
expression is:

T =
ρNP cPR

4

[

CLt

(

2

3
+ ν̄22

)

− aν̄3,ind

]

ν2T (15)

where CLt = CL0 + aθP is the value of the blade lift
coefficient at the fixed pitch angle and NP is the number
of blades on a propeller. We can simplify Eq. (15) further
by noting that ν̄2 = ν2/νT is small in normal conditions
since it is assumed that |ν2| ∈ [0, 20] m/s, whereas νT is
typically in the range [60, 115] m/s and increases when |ν2|
increases. Typically ν̄2 ≤ 0.2 so that one can neglect the
ν̄22 term:

T =
ρNP cPR

4

(

2

3
CLt − aν̄3,ind

)

ν2T (16)

Let us define constants βi with i ∈ {0, 1, 2} as follows:

5 The calculation steps, although more general, are very similar to
the ones in Newman (1994) Chapter 5.

β0 = b2 − a

β1 = CLt − 2θP b2 − b1
β2 = b2θ

2
P + b1θP + b0 (17)

Then, the in-plane drag force is: 5

H =
ρNP cPR

4
ν̄2(β1ν̄3,ind + β2)ν

2
T (18)

Finally, the torque expression is: 5

Q =
ρNP cPR

2

4

[

ν̄3,ind

(

2

3
β1 + β0ν̄3,ind

)

+
β2

2
(1 + ν̄22)

]

ν2T

≈
ρNP cPR

2

4

[

ν̄3,ind

(

2

3
β1 + β0ν̄3,ind

)

+
β2

2

]

ν2T (19)

Our modeling equations are more general than the ones in
Newman (1994) since we make use of more accurate model
of the blade aerodynamic coefficients. From Eq. (16),
(18), and (19), we can express T, H, Q as functions of
θ, ẋa, ̟, νind. Therefore, Eq. (5) is satisfied with:

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

















fT (θ, ẋa, ̟, νind) =
ρNP cPR

2

4

[2

3
CLtR̟2

−a(ẋa,2sθ − ẋa,3cθ + νind)̟
]

fH(θ, ẋa, ̟, νind) =
ρNP cPR

4
(ẋa,2cθ + ẋa,3sθ)

[

β1(ẋa,2sθ − ẋa,3cθ + νind) + β2R̟
]

fQ(θ, ẋa, ̟, νind) =
ρNP cPR

2

4

{

(ẋa,2sθ − ẋa,3cθ + νind)

[

2

3
β1R̟ + β0(ẋa,2sθ − ẋa,3cθ + νind)

]

+ β2R
2̟2

}

(20)

3.2 Six-parameter Model and Identification

Let us recall the definitions of non-dimensional coefficients
used for the characterization of propellers (see, e.g. New-
man, 1994):

CT ,
T

1
2ρAν2T

, CH ,
H

1
2ρAν2T

, CP = CQ ,
Q

1
2ρARν2T

(21)
From Eq. (16) and Eq. (21),

CT =
s

2

(

2

3
CLt − aν̄3,ind

)

(22)

where s is the solidity of the propeller, which is the ratio
of the area of the blades over the area of the propeller
disk: s = NP cPR/A. From Eq. (18) and Eq. (21), the
drag coefficient for H force is:

CH =
sν̄2
2

(β1ν̄3,ind + β2) (23)

From Eq. (19) and Eq. (21), the power (torque) coefficient
is:

CP = CQ =
s

2
ν̄3,ind

(

2

3
β1 + β0ν̄3,ind

)

+
s

4
β2 (24)

The propeller power can be calculated from the power

coefficient and the tip velocity: P =
1

2
ρACP ν

3
T /ηM where

the factor ηM is introduced in this expression as motor
efficiency. In addition, we define the axial advance ratio
as the ratio of the vehicle air speed along the thrust
(axial) direction over the tip velocity: Ja = π|ν3|/νT . The
efficiency of a propeller is defined as: ηP = JaCT /CP .



The model defined by equations (22), (23), and (24)
depends on six parameters associated with the propellers’
blades:

• a geometric parameter: s
• five coefficients related to aerodynamic parameters:
CLt, a, β0, β1, β2.

The geometric parameter s (and θP ) can be easily ob-
tained from direct measurements on the blade (or from
data available by manufacturers) and one is left with the
determination of five parameters characterizing the blade
aerodynamic coefficients. These parameters are usually not
available by the propellers manufacturers. It is possible
to manually measure each blade profile at different radius
stations on the blade, and then use a vortex panel program
like XFoil (Drela, 2008) (see Moffitt et al., 2008 for more
information on the procedure). This is complicated and
time consuming, however, and the result may be signifi-
cantly affected by measurement errors. A better solution,
when possible, is to use five thrust and torque (or power)
measurements. One essentially needs five measurements.
Two of them can be easily obtained from thrust and torque
measurements on a static test bench (corresponding to
stationary flight). This can be complemented by three
measurements in axial flight. We illustrate this on the
APC 11x4.7 propeller. 6 For simplicity and consistence, we
make use of UIUC wind tunnel measurements to identify
the five aerodynamic coefficients. It is worth noting that
increasing the Reynolds number improves propeller per-
formance, as mentioned in many studies, including Brandt
and Selig (2011). We do not try to model this effect here
because propellers typically operate relatively close to a
given angular speed. On the thrust coefficient CT versus
the axial advance ratio Ja curve, at each angular speed
̟, 2 points are selected: a point at minimum Ja and
another point at maximum Ja. Then from Eq. (22), we
can easily solve 2 equations for 2 unknowns CL0 and a.
For each rotor angular speed ̟, we obtain a pair of CL0

and a. For example, CL0 = [0.418; 0.457; 0.499; 0.540] at
corresponding ̟ = [3000; 4000; 5000; 6000]. We can take
the average value CL0 = 0.478 for the mean value of
lift coefficient at zero angle of attack at angular speed
̟ ∈ [3000 − 6000]. Similarly, using the power coefficient
CP versus the axial advance ratio Ja curve at each angular
speed ̟, taking 3 points (2 points at the extremes and
1 point in the middle), we can obtain the blade drag
coefficients b0, b1, and b2. The values of β0, β1, and β2

are directly obtained from Eq. (17).

In order to validate our six-parameter-analytical model,
we compare our result at rotor angular speed 6000 RPM
with the manufacturer data, experimental data from liter-
ature, and a propeller calculation software called PropCalc
(Schenk, 2012). Fig. 3 shows the axial efficiency of the pro-
peller versus the axial advance ratio. Compared to UIUC
data, PropCalc results shows similar trends but different
values of the efficiency. APC data gives different trends for
small advance ratio and significantly different amplitudes

6 We have chosen the propeller APC SlowFlyer 11 × 4.7 for our
application because among more than 140 propellers from the UIUC
database (Brandt and Selig, 2012), it has one of the highest efficiency
(max ηP ≈ 0.6 for angular speed of 6000 RPM) and its efficient
operating region falls in the suitable range of advance ratio Ja ∈

[0.2, 0.5].
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Fig. 3. Comparison of efficiencies of propeller APC
SlowFlyer 11 × 4.7 vs the axial advance ratio - with
rotor angular speed of 6000 RPM
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also. Compared to UIUC, this yields a different efficiency
curve, shifted to the right. Finally, our model provides
values close to UIUC. This is of course not a surprise
since we made use of UIUC data to identify our model
parameters. The only value of this comparison is to show
that with very few measurements, we can obtain a model
that fits well to measurements in a large range of advance
ratio and angular speed (recall that the identification was
not made from the 6000 RPM rotor angular speed here
considered).

3.3 Analytical Model for the Main Body

The material of this section is based on Pucci et al. (2011)
and Chapter 6 of Pucci (2013). The objective is to provide
a model for the aerodynamic force Fa acting on the UAV’s
main body valid in a large operating domain. In fig. 4,
we denote the angle between the zero-lift line and the
propellers’ thrust direction k as µ and the angle of the
airspeed with respect to the fixed vertical direction k0

as ξ(ẋa) = −atan2(ẋa2
, ẋa3

). The angle of attack is then
calculated as:

α(ẋa, θ, µ) = π + θ − ξ(ẋa)− µ (25)

According to Pucci et al. (2011), the model of aerodynamic
forces Fa acting on the main body can be written as
(assuming no lift on the main body):

Fa(α, ẋa)=ka|ẋa|
[

cL(α,Re)ẋ
⊥

a − cD(α,Re)ẋa

]

−kparacpara|ẋa|ẋa (26)



with ẋ⊥

a obtained by rotating clockwise vector ẋa by 90◦

in the plane (O, j0,k0), i.e. ẋ⊥

a = −ẋa,3j0 + ẋa,2k0. The
first term in Eq. (26) represents the aerodynamic forces
acting on the wing. One has ka = ρΣ/2 with Σ the area
of the wing(s). The Reynolds number is Re = ρ|ẋa|c/µv

where c is the wing chord length and µv is air viscosity.
The term cL(α,Re) and cD(α,Re) > 0 denote respectively
the lift and drag aerodynamic coefficients of the wing. The
second term in Eq. (26) represents the parasite drag acting
on the UAV’s main body (i.e. UAV’s body except wing(s)
and propellers). One has kpara = ρΣpara/2 with Σpara the
effective parasite area and cpara is a parasite constant.

For any fixed value of µ, Eq. (7) is satisfied by substituting
Eq. (25) into Eq. (26):

fa(θ, ẋa) = ka|ẋa|
[

cL
(

π + θ − ξ(ẋa)− µ, |ẋa|
)

ẋ⊥

a

−cD
(

π + θ − ξ(ẋa)− µ, |ẋa|
)

ẋa

]

− kparacpara|ẋa|ẋa(27)

In this project, NACA0018 wing symmetric airfoil is se-
lected for our model because of its moderate stall zone and
rather high lift over drag ratio. By using a sigmoid function
σ
(

α, α0(Re)
)

= (1+eα−α0(Re))−1+(1+e180
◦
−α−α0(Re))−1

where α0(Re) is the angle where the stall zone starts, the
lift coefficient can be formulated as:

cL(α,Re) = c2T sin(2α)σ
(

α, α0(Re)
)

+c2 sin(2α)
(

1− σ
(

α, α0(Re)
)

)

(28)

where c2T is the lift constant for small angles of attack,
c2 is an "average" lift constant. The drag coefficient is
modeled as:

cD(α,Re) ≈ cD(α) = c1 + 2c2 sin
2(α) (29)

The coefficients c1 and c2 are estimated following the
method described in Pucci et al. (2011) for minimizing
the cost function between the measured and estimated
aerodynamic coefficients. c2T is estimated by the linear
interpolation of the lift curve at low angle of attack. Fig. 5
shows the comparison result between the modeled aerody-
namic coefficients and those obtained from experiments.
The modeled values are fairly close to the measured data.
At the end of the stall region or at some high angle attack,
the lift data are slightly different.

4. COMPARISON BETWEEN DIFFERENT UAV
CONFIGURATIONS

Based on the previous modeling, in this section differ-
ent UAV configurations are considered and evaluated in
term of their energy consumption at constant velocity
in horizontal cruising flight. We are primarily interested
in evaluating the importance of the inclination angle µ
between the propellers’ plane and the wing (see fig. 4). All
physical dimensions of the simulated UAVs are detailed
in appendix A. As suggested in section 2, the energy
consumption calculation in this section is simplified by
neglecting the small in-plane force H.

4.1 Power Evaluation of Different UAV Configurations

Following the notation of fig. 4, five UAV configurations
are considered:

(1) Case 1: µ minimizes the thrust force,
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Fig. 5. Measured and modeled lift coefficients versus angle
of attack at Re = 160000 for NACA0018 airfoil
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Fig. 6. The configuration in 5 cases for V = 10 m/s

(2) Case 2: µ minimizes the propellers power,
(3) Case 3: µ = 0,
(4) Case 4: µ = π/4,
(5) Case 5: no wing on the UAV (standard quadrotor).

Fig. 6 illustrates the UAV configuration of these five
different cases at flying velocity V = 10 m/s. Fig. 7
shows the evolution of total power in these different cases.
Case 1 (thrust minimization) power consumption is higher
than Case 5 for speeds smaller than 8 m/s. In fact, at
low speed Case 5 spends the least power because the
UAV is evidently lighter without the wing(s). At speed
V ∈ [8, 13] m/s, Case 1 and Case 2 are very similar.
Beyond that speed, Case 1 decreases rapidly in efficiency
to approach the inefficient Case 3 (µ = 0). At high speed
indeed, the lift force in Case 1 is among the highest
which translates into the lowest thrust force but the drag
force is large. With large drag, the propellers incline at
a large angle θ from the horizontal line. Generally when
the magnitude of θ increases, the rotor angular speed ̟
increases fast. The propeller power is a function of the
cube of the rotor angular speed, hence the variation of ̟
dictates the variation of P . Since ̟ in Case 1 is larger than
in Case 2, the propeller power of the former case is also
larger. We can conclude that optimization of the thrust
is not always the best strategy to optimize the power. By
contrast, for the optimal Case 2, the thrust is larger but
the drag is kept at the lowest value. One could of course
argue that the use of propellers better suited to high-speed
flight could lead to better results at high speed for Case
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| ẋ a ,2| (m/s)

P
o
w

e
r 

S
a
v
in

g
(%

)

Fig. 8. The percentage of power saving versus the speed

1. The choice of the propeller, however, is constrained by
the requirement of good efficiency in stationary flight.

Concerning the optimal Case 2, fig. 8 shows the percentage
of power saving w.r.t. Case 5 at different horizontal speeds.
Adding the wing(s) significantly saves energy at "medium"
speed. The configuration in Case 2 will save energy for a
flying forward UAV at velocity between 6 and 19 m/s.
The power saving is 42% at climax. One can note that
the power saving varies with the forward speed in a "bell-
curve" fashion: the gain of power is negative at very low
speed, small at very high speed, but significant in between.

Case 3 is quite inefficient. The lift force acting on the wing
is high. However, the drag force is also high. Therefore,
the required thrust is one of the highest.

Finally, Case 4 is an example of a configuration with
constant µ that achieves relatively satisfactory results.
Although not as efficient as Case 2, it compares favorably
with Case 5 in a significant range of velocities.

Fig. 9 shows the evolution of the angle µ for Cases 1 and 2.
In Case 1, the angle µ is oriented to minimize the thrust,
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regardless of whether the drag is high. In contrast, in Case
2 the angle µ is oriented so as to reduce the thrust but also
keep the drag at a small value. Fig. 10 demonstrates that
at low speed, the wing(s) angles of attack α are different
in the four considered cases. However, at high speed, the
angles of attack in all cases are reduced to similar small
values. At very high speed, even a small change in angle
attack has great impact on the energy performance, as
shown in fig. 7.

5. CONCLUSION

We have proposed a method to evaluate the energy con-
sumption of VTOL-UAVs composed of coplanar propellers
and a main body that may include wing(s). This method
makes use of two analytical models of aerodynamic coef-
ficients: a model of the propellers derived by combining
momentum and blade element theories, and a model of
the wing(s) recently proposed in the literature. From these
models, energy evaluation is reduced to solving numeri-
cally a simple optimization problem. Energy consumption
for five UAV configurations is then compared and ana-



lyzed in detail, allowing to determine the most efficient
configuration in term of the inclination angle between
the propellers’ plane and the wing(s). It is shown that
the optimal value of this angle depends on the airspeed
and that adding wing(s) may be detrimental for energy
consumption if this angle is poorly chosen. It is also veri-
fied that the configuration that minimizes the (propellers)
thrust force does not necessarily minimizes energy. Indeed,
adding wing(s) reduces the thrust force but increases the
drag force, thereby yielding a larger inclination angle of the
propellers’ plane - which is not efficient from the energy
point of view. Thus, the most efficient configuration is the
one that provides the best trade-off between small thrust
force and low drag force. Future work includes experiments
to validate the proposed models on UAV prototypes, "en-
ergy efficient" control design, and studying the interaction
between wing(s) and propellers.
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Appendix A. SIMULATED MODEL

The physical dimensions of the UAV are as follows:

• wing chord length c = 0.15 m,
• wing(s) area Σ = 0.21 m2,
• wing density ρ2 = 30 kg/m3 (EEP Foam 1.9),
• mass of the wing(s), the actuated servo(s), and link-

age(s) to rotate the wing(s) m2 = ρ2Σ(18%c) +
0.1 = 0.27 kg,

• mass of the UAV except the wing(s) m1 = 2.3 kg,
• total mass of the UAV m = m1 +m2 = 2.57 kg.

The aerodynamic parameters of NACA0018 wing(s):

• drag constant c1 = 0.0128,
• average lift constant c2 = 0.9595,
• high lift constant c2T = 2.6749,

The propellers chosen are APC SlowFlyer 11× 4.7, which
have the following parameters:

• number of propellers N = 4,
• number of blades per propeller NP = 2,
• propeller radius R = 0.1397 m,
• propeller area A = πR2 = 0.061 m2,
• mean chord of a propeller blade at 75% radius cP =
0.028 m,

• solidity of the propeller s = NP cPR/A = 0.127,
• pitch angle at 75% radius of the propeller blade
θP = 0.1794 rad,

• blade aerodynamic coefficients
[CL0, a, b0, b1, b2] = [0.48, 4.53, 0.02, 0.02, 2.21].

The standard constants are:

• air density ρ = 1.225 kg/m3,
• air viscosity µv = 1.789× 10−5,
• gravity constant g = 9.8 m/s2.

The parasite drag coefficient is cpara = 0.4 and the effective

parasite drag area is Σpara = 0.1 m2. The propeller motor
efficiency is assumed to be ηM = 0.7.


