
HAL Id: hal-00926160
https://hal.sorbonne-universite.fr/hal-00926160v1

Submitted on 9 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tools to foster a global federation of testbeds
Jordan Auge, Thierry Parmentelat, Nicolas Turro, Sandrine Avakian, Loïc

Baron, Mohamed Amine Larabi, Mohammed Yasin Rahman, Timur
Friedman, Serge Fdida

To cite this version:
Jordan Auge, Thierry Parmentelat, Nicolas Turro, Sandrine Avakian, Loïc Baron, et al.. Tools to
foster a global federation of testbeds. Computer Networks, 2014, Special issue on Future Internet
Testbeds – Part II, 63, pp.205-220. �10.1016/j.bjp.2013.12.038�. �hal-00926160�

https://hal.sorbonne-universite.fr/hal-00926160v1
https://hal.archives-ouvertes.fr


Tools to foster a global federation of testbeds

Jordan Augéa,∗, Thierry Parmentelatb, Nicolas Turroc, Sandrine Avakianc, Loic Barond, Mohamed Amine Larabib,
Mohammed Yasin Rahmana, Timur Friedmana, Serge Fdidaa

aSorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France.
bINRIA, Sophia-Antipolis, France

cINRIA, Grenoble, France
dCNRS, LIP6 laboratory, Paris, France

Abstract

A global federation of experimental facilities in computer networking is being built on the basis of a thin waist, the
Slice-based Federation Architecture (SFA), for managing testbed resources in a secure and efficient way. Its success will
depend on the existence of tools that allow testbeds to expose their local resources and users to browse and select the
resources most appropriate for their experiments. This paper presents two such tools. First, SFAWrap, which makes it
relatively easy for a testbed owner to provide an SFA interface for their testbed. Second, MySlice, a tool that allows
experimenters to browse and reserve testbed resources via SFA, and that is extensible through a system of plug-ins.
Together, these tools should lower the barriers to entry for testbed owners who wish to join the global federation.

Keywords: Future Internet; testbeds; tools; GUI; federation

1. Introduction

The internet is an old network, based upon protocols
that were developed forty years ago. Its design choices
were not made with current needs, such as mobility, wire-
less communications, real-time interactions, audio and
video transmission, contemporary security concerns, etc.,
in mind. Applications such as the web, peer-to-peer com-
munications, video streaming services, and many others
were not anticipated. As we look to the future, with an
explosion in the number of communicating agents using
the network, and an increasing heterogeneity in the way
the network is used, there will be a growing incoherence
between the underlying technology and the uses to which
it is put.

The shortcomings of the current internet architecture
have prompted research initiatives to develop the so-called
Future Internet, either through a continuation of incre-
mental deployments or via a clean-slate approach based
upon a complete rethinking of the internet’s architecture.
Testbeds have emerged from the need to explore this range
of possibilities experimentally. They allow for experimen-
tation on a multitude of existing and emerging technologies

∗Corresponding author
Email addresses: jordan.auge@lip6.fr (Jordan Augé),

thierry.parmentelat@inria.fr (Thierry Parmentelat),
nicolas.turro@inrialpes.fr (Nicolas Turro),
sandrine.avakian@inria.fr (Sandrine Avakian),
loic.baron@lip6.fr (Loic Baron), mohamed.larabi@inria.fr
(Mohamed Amine Larabi), mohammed-yasin.rahman@lip6.fr
(Mohammed Yasin Rahman), timur.friedman@upmc.fr (Timur
Friedman), serge.fdida@lip6.fr (Serge Fdida)

(sensor networks, wireless access, distributed computing
clusters, switches, optical networking, etc.).

A great challenge in the development of these testbeds
is to make them both highly capable and easily accessi-
ble to experimenters. The capabilities that we seek in-
clude great flexibility (for instance, to try radically new
approaches at all layers of the protocol stack), global scale,
an access to real end-users, high performance, and the abil-
ity to test cutting edge technologies. Such capable test-
beds are complicated and expensive to put in place, and
any given type of testbed might exist at only a few in-
stitutions, requiring experimenters to cross administrative
boundaries in order to access them.

Because of scarcity, there is a need to share testbed
resources among many different experimenters, granting
each one what is termed a slice of the whole. Slicing can
be achieved through sharing, either through virtualization,
where this is possible; through other forms of simultaneous
resource division (spatial, frequential); or through tempo-
ral division of resources, granting them to different users
at different times.

Efforts are underway in Europe (the FIRE initiative),
the United States (GENI [1]), and elsewhere in the world
to promote the widespread availability of Future Internet
testbeds through federation. In a federated system, ex-
perimenters at one institution can be authenticated and
authorized to gain access to testbed resources hosted by
other institutions. In addition, if physical interconnections
exist between testbeds, a highly capable federation has the
potential to allow experiments that span multiple testbeds
at once.

Preprint submitted to Computer Networks December 23, 2013



Figure 1: Positioning of the MySlice and SFAWrap tools presented
in this article, illustrated by an experimenter browsing the list of
available resources provided by an SFA-based federated testbed en-
vironment.

The de facto standard for testbed federation today is
the Slice-based Federation Architecture, or SFA. A testbed
owner who wishes to enter their testbed into the global
federation needs to provide that testbed with an SFA in-
terface. However, this is not necessarily an easy task. Sev-
eral variants of SFA exist, both in the form of working code
and written specifications [2, 3, 4]. Some aspects of SFA,
such as its authentication mechanisms, require specialized
knowledge to implement. Other aspects, such as parsing
capabilities for resource descriptions, can be laborious to
put in place.

The contribution of this paper is the introduction of
two tools, SFAWrap and MySlice, that lower the barriers
to entry for testbed owners who wish to join the global
federation. SFAWrap enables an owner to easily provide
an SFA interface for their testbed, and MySlice is a tool
for experimenters that accepts plug-ins that understand
the semantics of individual testbeds. Both tools follow
an open community development model and are released
under free and opensource licenses.

Figure 1 shows both tools in relationship to the exper-
imenter (on the left), the testbed and its resources (on the
right), SFA (in the middle), and other federated testbeds
(below). Section references in the figure describe the or-
ganization of this paper. Sec. 2 provides background on
SFA. Sec. 3 describes SFAWrap. And Sec. 4 describes My-
Slice. Sec. 5, not shown on the figure, draws conclusions
and points to future work.

The technologies and tools introduced in this article
have a broad range of applications. We are specifically
using them as the building blocks of the OneLab experi-
mental facility [5], a federation of major testbeds for ex-
perimentation in computer networking.

2. The Slice-Based Federation Architecture (SFA)

To set the context for understanding the two major
contributions of this paper, the SFAWrap and MySlice
tools, this section describes the Slice-based Federation Ar-
chitecture (SFA) that they support.

2.1. Overview

SFA has been designed to provide a minimal set of func-
tionalities, a ‘thin waist’, that a testbed can implement in
order to enter into a global federation. An experimenter
in an SFA-based environment can transparently browse re-
sources on any federated testbed, and allocate and reserve
those resources.

Because of the potential for a very large number of
testbeds, a global federation architecture faces a serious
scalability issue. SFA introduces a fully distributed solu-
tion in which each peer testbed serves as the authority of
reference for the resources that it brings, and each user
community, along with its experiments, is represented by
an authority (possibly, but not necessarily identified with
an individual testbed). Authorities agree to recognize each
other. By eliminating any requirement for a central com-
ponent, beyond an agreed naming hierarchy, SFA scales
with hardly any practical limit.

Under the SFA architecture, there is a separation
between what is generic and what is testbed-specific.
Testbed-specific information is captured in a resource
model, called a resource specification (RSpec), which is
a XML file transported by the SFA layer. SFA itself does
not cover such aspects as resource models, policies, reser-
vations or measurements. These are implemented on top
of SFA. The following subsections detail important aspects
of SFA.

2.2. History

The first federation of computer networking testbeds
was set up between Princeton’s PlanetLab Central and
UPMC’s and INRIA’s PlanetLab Europe, starting in 2006,
as part of the European Union’s (EU) OneLab project,
prior to the start of the FIRE or GENI initiatives. This
initial federation was based on the pragmatic solution of
synchronizing the central databases of each of the feder-
ated entities. In this way, users of each testbed gained full
access to the resources of the other. This solution worked
in the context of two peers, but was clearly not scalable.

Larry Peterson, of Princeton University, together with
others who were preparing the GENI initiative, conceived
of SFA as a way forward, for PlanetLab and network-
ing testbeds in general. Developers at Princeton, to-
gether with Thierry Parmentelat at INRIA, created the
first working deployment of SFA code. Starting in 2008,
SFA was used to extend PlanetLab federation to other
peers, such as PlanetLab Japan and EmanicsLab. De-
velopment work on the European side was supported by
the newly created FIRE initiative through the OneLab2
project. Simultaneously, SFA was adopted as a control

2



plane architecture by GENI, in which context written spec-
ifications [2] were drafted. (In addition to the authors of
this draft, Jay Lepreau and John Wroclawski contributed
to defining SFA.)

This article’s description of SFA draws upon both the
working code (from PlanetLab and from other, more re-
cent, SFA implementations) and the written specification.
These differ somewhat in their details, but agree on most
of the main aspects.

2.3. SFA design principles
SFA is designed around a set of base objects:

Authorities: These represent testbeds, parts of testbeds
to which trust or rights may be delegated, and/or
communities of users.

Resources: These consist of nodes, links, or any other
experimental resource exposed to the users.

Users: These are experimenters wanting access to re-
sources.

Slices: A slice is the basic unit of interaction between
users and resources. One can think of a slice as cor-
responding to an experiment, and encompassing all
users and resources associated with that experiment.

SFA defines a set of functionalities to manage the dif-
ferent entities involved in a federation. The remainder of
this section describes these functionalities, as well as how
they are abstracted into various managers.

2.3.1. Naming

In SFA, each object is uniquely identified by a (type,
HRN) pair, where the HRN is a Human-Readable Name.
They are stored as records in a database, called the reg-
istry, alongside associated information. The registry man-
ager is a component dedicated to the manipulation of this
registry: creating, displaying, updating, deleting and list-
ing objects.

SFA objects exist in a shared namespace, organized ac-
cording to a hierarchy of authorities and sub-authorities.
Trust relationships are based upon this hierarchy, with au-
thorities vouching for the objects further down in the hi-
erarchy. Figure 2 represents a part of the object hierarchy
in the PlanetLab federation. We see the PlanetLab Eu-
rope (ple) and PlanetLab Central (plc) root authorities.
We also see the sub-authorities, such as upmc and inria,
princeton and columbia, that represent PlanetLab sites,
which are the different universities and research labs that
contribute resources to the testbed. These sub-authorities
delegate the management of their own users to the root
authorities. The figure highlights a user, represented by
the HRN ple.upmc.userA, who has been vetted by the
UPMC site under the PlanetLab Europe root authority.
A registry is responsible for managing all of the objects
for a given authority. It can delegate management to reg-
istries further down in the hierarchy. It will either handle
requests itself, or route them to the responsible authority.

Figure 2: Hierarchy of objects and their naming, highlighting the
naming of ple.upmc.userA in the context of federation between Plan-
etLab Europe (ple) and PlanetLab Central (plc).

2.4. Authentication, authorization, accounting and trust

SFA’s authentication mechanism is based on a pub-
lic key infrastructure, where each object has a keypair (a
public and a private key) and is associated with a signed
certificate, called a GID, that is stored in a registry. (Awk-
wardly, for a global federation scheme that is based on the
notion that there is no one central authority, the term GID
is said in some documents to stand for GENI identifier,
perhaps Global identifier would be a better name.) The
certificate is used for authentication, following the same
principles as user and website authentication on the web.
It is an X.509 certificate that associates the object’s HRN
with its public key, and that is signed recursively by each
parent authority up to the root.

A user (U) can bootstrap the process by generating a
self-signed certificate from its keypair, and getting it signed
by its home authority (H) to form a GID. For H to be able
to recognize U as its own user, a preliminary registration
procedure is necessary so that H knows U’s public key. U
proves its identify by ciphering the communication with
H with his private key thanks to the SSL protocol. U is
then able to get authenticated to a third-party authority
(A) via the same mechanism, but using the GID instead of
the self-signed certificate. Even though A does not know
U’s public key, if U’s root authority (H) is trusted by A,
the chain of signatures in the GID is trusted as proof that
the owner of this keypair is really U. In addition to users,
authorities and resources can be authenticated using the
same process.

SFA separates authentication from authorization. The
latter depends on the local policies in use on the various
testbeds, to determine which resources can be accessed, or
which actions can be performed. An authorization creden-
tial is a signed XML document, that proves that an entity
has a set of rights and states whether or not it has the pos-
sibility to delegate those rights. Such credentials can be
used to establish the various trust relationships necessary
to run a federated platform. For example, a slice creden-
tial might allow a privileged user to create a slice, while

3



a less privileged user might only be allowed to perform
operations on an existing slice.

There is currently a debate in the SFA community as
to whether to move to an attribute-based access control
(ABAC) authorization mechanism, in which a user could
assemble a set of signed clauses from various entities, and
use them to construct a proof that they (the user) indeed
have the rights that they claim. Shibboleth [6], which
is used to manage a federation of identity providers for
national research networks (NRENs), is also a candidate
for a future authorization system.

Because authentication requires the possession of a pri-
vate key, a delegation mechanism has been implemented
in SFA so that a user could perform actions for which they
have been delegated the rights, on behalf of another user.
A delegated credential states that the delegee has some
rights on an entity and is signed by the delegating user. It
also encloses the original credential, proving that the orig-
inal user has both the delegated privileges and the right to
delegate them. Sec. 4 describes how this mechanism can
be used to perform authentication and authorization by a
remotely hosted tool.

2.5. Common API

SFA defines a minimal set of API calls to enable inter-
action between the different actors of the federation. The
API calls can be grouped into three main categories:

Object management: These calls manipulate registry
objects through the classical list, create, read, up-
date and delete functions.

Resource browsing and slice management: These calls
associate resources to slices, as well as starting, stop-
ping or getting the status of slices.

Federation discovery: There is an API call that is used
to obtain detailed information about the different
federation services that are running, and to recur-
sively discover peer platforms.

Different components that are used in the federation
can provide different subsets of this API, depending upon
their role. Three commonly deployed components are:

Registry manager (R): This accepts API calls to man-
age authorities, users, slices, and resources. A reg-
istry would typically be run by an authority to man-
age all of these items.

Aggregate manager (AM): This accepts API calls to
browse and reserve resources. An AM would typi-
cally be deployed by an individual testbed.

Slice manager (SM): This is a convenience service that
exposes the same set of API calls as an AM, but
across multiple testbeds. A user would typically con-
nect to an SM to get access to a range of federated
testbeds.

Figure 3: The SFA hourglass: SFA and RSpec provide the glue
between heterogeneous testbeds and user tools.

SFA is based on a web services API. To issue a call, a
user must connect to a manager’s XML-RPC interface via
HTTPS, using their private key as a cypher, and passing
as a first parameter the credential that shows that they
are authorized to perform the operation.

2.6. Resource model

Because it is impossible to predefine the different re-
sources that will be made available by all testbeds, SFA
has been designed to abstract everything that is testbed
specific into a resource specification, or RSpec, an XML
file that is transported over SFA. Fig. 3 illustrates how
SFA and RSpecs provide the glue between heterogeneous
testbeds and user tools. SFA is agnostic to the choosen in-
formation model while user tools and aggregate managers
must be aware of RSpec formats.

2.7. Joining the federation

In order for a testbed to become part of the current
global federation enabled through SFA, given that a trust
relationship has been established with at least one cur-
rent member of the federation, there are two important
technical requirements that need to be fulfilled. First, the
local testbed resources must be described in an RSpec that
the testbed’s aggregate manager can both send and under-
stand. Second, a friendly user interface must be available
for researchers to be able to browse the available resources,
express their requirements, and reserve the desired set of
resources of this testbed in a fashion that is consistent with
the rest of the federation.

3. SFAWrap

3.1. Motivations

The aim of both SFAWrap, discussed in this section,
and MySlice, discussed in Section 4, is to lower the barri-
ers to entry into the global testbed federation for testbed
owners. These owners know their equipment, they know
how to describe it, the ways in which it can be reserved

4



and provisioned, the types of experiments that their test-
beds can support. They should be allowed to focus their
development efforts on the aspects of the control and ex-
perimental planes that directly relate to these issues, and
leave other issues to be handled by others.

In achieving this aim, SFAWrap handles the server side,
while MySlice handles the client side. On the server, which
is to say the testbed, side, an owner may find themself in
one of three possible situations: (1) they are building a
testbed from scratch, (2) they have an existing testbed,
but it is not yet federated via SFA, or (3) they have a
testbed that already offers an SFA interface. SFAWrap is
designed primarily to ease federation for owners in the first
two situations, but it can potentially be of use to those in
the third situation.

SFAWrap is written in Python. If someone is building
a testbed from scratch, they can extend the tool’s API
calls in order to manage their testbed. A cleaner architec-
ture would be to write their own testbed API (for example
based on a RPC interface such as REST or XML-RPC),
and have SFAWrap access the testbed through it. In this
setup, the testbed’s API can use any semantics that the
testbed owner desires and it can be implemented in any
language, on any operating system, using any database
technology.

For the owner of a testbed that does not yet speak
SFA, making their testbed SFA-compliant would be some-
what daunting without SFAWrap. They would first need
to understand SFA, which, at the time of writing, is a mov-
ing target. Written specifications exist, but working code
implementations do not necessarily adhere to them in all
respects. And the working implementations diverge from
each other. Delve into the code, and you might find stubs
for procedures that are intended to be developed one day,
or perhaps are legacy items that have been abandoned.
Those in the United States can refer to a GENI reference
implementation, but there is no international consensus to
adopt this version rather than another.

Even if the owner does gain a good understanding of
SFA, there are elements that are complicated or laborious
to develop. The code that handles authentication and au-
thorization is a notable example. The cryptographic basis
for this functionality is a specialized area, well outside of
most testbed domain specific expertise. It is true that one
can use libraries that have built in functions for handling
keys and certificates. Still, mastering these libraries and
debugging an implementation that is based upon one of
them, is a nontrivial task. RSpec generation and parsing
is another example. Of course any competent programmer
can write code to do this, but it can be laborious.

Rather than writing their own code, it is easier for a
testbed owner to use existing code that already handles
SFA-based authentication and authorization, that already
has built in capacities for generating and parsing RSpecs,
and that handles other aspects of the SFA interface. The
benefit is not simply a one-off; since SFA is evolving, test-
bed interfaces will likely need to be recoded several times

Figure 4: SFAWrap architecture

before the specifications settle into a standard. Recogniz-
ing this, an owner of a testbed with a native SFA interface
might conceivably wish to drop it in favor of SFAWrap.

3.2. The development of SFAWrap

SFAWrap’s origins are in PlanetLab’s SFA implementa-
tion which was developed jointly by Princeton University
and INRIA, as described in Section 2.2. This code was de-
veloped as a wrapper around the PlanetLab API. Once the
utility of a wrapper was established, it was clear that other
testbeds could be wrapped in a similar way. UPMC’s and
INRIA’s involvement in several projects aimed at heteroge-
neous testbed federation provided the motivation. Devel-
opers from the two institutions then refactored the Plan-
etLab SFA wrapper to create SFAWrap.

SFAWrap has a proven track record in supporting fed-
erated testbeds with large numbers of users, as it continues
to be the PlanetLab wrapper. It is now being applied to
IoTLAB (formerly SensLAB) [7] (wireless sensor nodes)
in the context of the French F-Lab project [8], to FED-
ERICA [9] (routed IP circuits, servers and routers) in the
EU’s NOVI project [10], to NITOS [11] (OMF-based wire-
less mesh nodes) and FITeagle [12] (various resources) in
the EU’s OpenLab project [13], and to OFELIA [14] is-
lands (diverse openflow components) in the FIBRE and
FED4FIRE EU projects. Each of these wrappings involves
completely different testbed architectures.

3.3. Architecture

Figure 4 portrays the overall architecture of SFAWrap.
It consists of a server that can be specialized into ei-
ther a registry, an aggregate manager, or a slice manager.
The codebase is structured around the different functional
blocks represented in the picture:

Managers and API: These modules implement the logic
of the different managers. They differ mainly through
the set of API methods that each one exposes
through its XML-RPC interface.

5



Storage: The registry database stores the various SFA-
level objects (authorities, resources, users, slices)
and their properties. This data is accessible through
the registry manager API. Since the testbed main-
tains its own testbed-specific database, testbed-
dependent importer scripts are used to initialize
and/or synchronize the SFAWrap database with the
testbed’s own database.

Trust: Trust mechanisms are at the core of SFAWrap, and
make up most of its codebase. These modules im-
plement the various objects (certificates, credentials,
etc.) that are required for SFA’s authentication and
authorization mechanisms.

RSpecs: A resource specification (RSpec) describes the
set of resources made available by a testbed. SFA-
Wrap provides helper classes for the parsing and ma-
nipulation of these specifications. The structure of
these XML files is specified by means of an XSD
schema.

Communication with the wrapped testbed is ensured
by the virtual driver interface. It abstracts the necessary
interactions into a set of hooks that make up the structure
of the testbed drivers. They consist basically in the trans-
lation between the requests coming from the SFA layer
into native testbed commands or API calls.

A basic client library is also provided, to help users
to configure their access to the SFA federation, and to
bootstrap the necessary credentials. On top of it, the sfi
command line client allows a simple interaction with the
connected testbeds, and can for example be used for re-
trieving RSpecs. Helper scripts are also provided to edit
RSpecs (marking a resource to be added to a slice, for
instance), or to perform actions on the registry.

The colored boxes in Fig. 4 highlight the different
places where a testbed owner will intervene to make their
testbed SFA-compliant. These are the driver and importer
script, as we have described. Furthermore, a new RSpec
XSD schema might also prove necessary. The following
subsection describes the steps required in order for a new
testbed to use SFAWrap.

3.4. Steps to wrap a testbed

A series of four simple steps is all that are required to
wrap a testbed with SFAWrap, allowing it to expose its
resources to the global federation. A detailed tutorial can
be found on the SFAWrap website, http://www.sfawrap.
info/.

(1) Mapping and naming SFA objects. All that is required
is to assign a unique prefix to the testbed, define a nam-
ing hierarchy, and name all the objects, as illustrated in
Figure 2.

(2) Installation and configuration. If a testbed owner
adopts an already supported API, then all they are re-
quired to do is implement that API on their testbed. If no
existing API is suitable, but the testbed uses an already
supported RSpec, then the only additional required step
is to write a driver in Python to translate between SFA
calls and calls that are native to the testbed’s API. (For
example, translating an SFA-based list resources call into
testbed API calls for list nodes and list links calls, for a
testbed that is structured into nodes and links.) Finally, if
the testbed introduces a new RSpec then a final required
step is to extend the RSpec generation and parsing module
to support the features unique to that RSpec.

(3) RSpecs. For exposing resource information, either an
existing RSpec will suffice, or it will be possible to pro-
pose a new one. A new RSpec will not be entirely new; it
will reuse as much as possible structures that have already
been defined in existing RSpecs. At the moment, there are
two coexisting flavors of RSpec, that each have their own
characteristics and that might eventually converge. SFA-
Wrap supports them both. The so-called SFA RSpec is
the original PlanetLab RSpec, extended to allow for other
testbeds. Some high-level structures have started to be
harmonized across testbeds, to allow different RSpecs to
more easily be merged. The parts of this RSpec related
to resource reservation are also being defined so that they
work across testbeds. The ProtoGENI RSpec is based on
a mechanism of schema extensions. Once the schema is
defined, the user can extend the editing and parsing capa-
bilities of the RSpec modules. Future work will focus on
making RSpec format changes as transparent as possible
to testbeds.

While there is still room for improvement, the recent
move from Aggregate Manager API version 2 to version
3 illustrates the benefits of using SFAWrap, both testbed
developers and users, since this could be handled almost
transparently. No change was required on testbed drivers,
and the clients could continue to use the same tools, either
the commandline version, or those using the client library
integrated into the software package.

(4) Federation. Once the SFA interface is ready, the final
step is to create federation links to one or more author-
ities that provide credentials for users. This is done by
installing the certificates of those authorities and config-
uring local policies for the degree of access to provide to
each authority’s users.

In today’s testbed environment, we observe that au-
thorities are tightly coupled to individual testbeds1. Thus,
a federation link to another authority corresponds to a fed-
eration link to another testbed. (By ‘link’ here, we mean

1They might as well represent groups of users, for instance an
institution in the PlanetLab Europe case, illustrated in Figure 2.
Also, the OneLab Experimental Facility, presented at the end of
the introduction, consists an authority which has only users, and no
resources.

6

http://www.sfawrap.info/
http://www.sfawrap.info/


the formalization of a trust relationship, not a physical
link.) A convenience function in SFAWrap allows one to
list both the aggregate manager and the registry of feder-
ated peers. When trust relationships have been configured
transitively, one can recursively discover the full set of fed-
erated testbeds.

3.5. The IoTLAB case

Wrapping the testbed. There are four IoTLAB testbeds [7]
in France. Each is a large scale open wireless sensor net-
working platform. The IoTLAB control framework was
based on a homemade portal, using LDAP to store its
users and ssh keys. The reservation and effective sharing
of resources among users is managed by the OAR [15] job
scheduler tool, popular in the Grid community.

From the SFAWrap point of view, IoTLAB brought
both a new platform architecture and new hardware with
its own characteristics: finegrained localization informa-
tion in the form of (x, y, z) coordinates that are important
for the knowledge of the radio topology, a binary mobility
property, and leases related to reservable nodes. The suc-
cessful integration of this new platform into SFAWrap is
a demonstration of the framework’s efficiency and adapt-
ability, and should help pave the way for the further inte-
gration of new testbeds.

The testbed driver for IoTLAB was developed by cus-
tomizing an existing skeleton driver. The driver issues
LDAP queries and interacts with the OAR reservation sys-
tem through its RESTful API. The IoTLAB RSpec was
developed by extending existing RSpecs to accommodate
some new fields. Most of the development work has con-
sisted in adding node reservation capabilities, as existing
RSpecs, based upon virtualizable resources, did not allow
for timeslot-based reservations to be expressed. Care was
taken to discuss the matter extensively with other test-
beds that had similar requirements so that the solutions
could be generic enough to be written once and reused in
different contexts.

Reservation capabilities. Exposing reservation informa-
tion in SFAWrap consisted in addressing three different
aspects: (1) developing a tool that is able to connect to
SFAWrap and enable an experiment to manage reserva-
tions, (2) elaborating an RSpec format for transporting
reservation information, and (3) creating the right inter-
face on the SFAWrap side.

The first item is based on MySlice and will be described
further in Section 4.4.2. RSpecs have been extended with
a new section storing leases, that correspond to the times-
lots granted to a slice. A lease is characterized by the slice
identifier, a start time and a duration; it contains a list of
references to the resources it holds. Note that the dura-
tion of the lease is necessarity a multiple of the reservation
granularity of the different resources. Finally, the third as-
pect has been handled by an SFAWrap component that is
able to exchange reservation information with OAR. The

LDAP and OAR modules developed for wrapping a IoT-
LAB testbed can be reused by any other testbed owner
willing to integrate such functionalities. They can also
serve as a model for bridging any other reservation tool to
SFAWrap.

Discussion. In addition to being a pioneer in adopting
SFAWrap, initially developed for PlanetLab, the IoTLAB
testbed is the perfect illustration of the versatility of the
tool since it was built on a completely different model of
slices and experiments (the notion of leases), as well as
a different technical architecture (LDAP and OAR). As
such, it involved writing extensions to the 3 different mod-
ules mentioned in Figure 4. Experience gained from this
process has allowed for several improvements, paving the
way for the large number of different testbeds that have
followed.

Finally, the community-driven model that has been
chosen has fostered the collaboration between the different
teams, the adoption of common solutions for such issues as
resource reservation, and the sharing of best practises. Fu-
ture envisioned extensions, such as mobility, will certainly
deserve a similar approach.

3.6. Related tools

Besides SFAWrap, we know of only two examples of
SFA interfaces that are meant to be generic, rather than
testbed-specific. One is the reference implementation of
the GENI Aggregate Manager API [3]. As we under-
stand it, this implementation, written in Python, serves
as a working example of the AM portion of the SFA API.
(Associated code also implements a command-line SFA
client called omni and another server-side API for an en-
tity called the GENI Clearinghouse.) It can be used for
interoperability testing, and code can be freely borrowed,
but this code is not intended for wrapping testbeds, and
is not used for that purpose.

The other example is the AMSoil component [16] devel-
oped within the European Union’s OFELIA project. This
is positioned like SFAWrap, to make it easy for a testbed
to offer an SFA interface. We are not in a position to as-
sess it relative to SFAWrap, as, to our knowledge, it has
yet to be deployed to wrap a testbed.

4. MySlice

4.1. Motivations

As does SFAWrap, MySlice aims to lower the barriers
to entry to the global testbed federation for testbed own-
ers. Whereas SFAWrap handles the server side, MySlice
handles the client side. Federated environments pose a
challenge to testbeds, since tools that work across a feder-
ation do not necessarily adapt easily to heterogeneity. My-
Slice’s architecture allows testbed owners to design plug-
ins that expose the unique features of a facility to exper-
imenters, thereby making it easier to bring that facility
into federation.

7



Up until recently, each computer networking testbed
had its own separate user community. In the most com-
mon case, the testbed owner would build the facility for
themself, and so the community would consist of, say, the
owner’s students and engineers. Some more costly facili-
ties have attracted experimenters from outside their home
institutions. Notable examples are the ORBIT wireless
testbed [17] at Rutgers University’s WINLAB, the multi-
ple Emulab instances [18], and the global PlanetLab fed-
eration [19]. But despite the communities being larger,
each one is still very much tied to its respective testbed. If
we want to enable one testbed’s users to easily use other
testbeds, providing them with a single familiar tool that
works across platforms will help. MySlice is designed to
be such a tool.

We have designed MySlice to meet a number of goals
that we describe in the following subsections. These are:
achieving a proper balance between the need to present
experimenters with uniform interfaces and the need to ex-
pose to those experimenters the full richness of hetero-
geneous environments; allowing for the synthesis of mul-
tiple sources of data about a testbed, in some cases be-
yond what is provided by the testbed itself; hiding SFA’s
complexity from users; providing a graphical user interface
for new users, combined with a web services interface for
power users, and a programmable library-style interface
for those who wish to incorporate MySlice’s features into
a larger tool; and ensuring the ease of development for
testbed owners who are designing plug-ins. This section
concludes with a brief account of how MySlice came to be
developed.

The code for MySlice is available from the project web-
site at http://www.myslice.info.

4.1.1. Balancing uniformity and heterogeneity

A cross-platform tool for experimenters faces conflict-
ing imperatives: it should represent the full variety of het-
erogeneous environments to its users (the real value of the
testbed), while at the same time offering those users a fa-
miliar interface that is homogeneous across environments.
Any resolution of this conflict is necessarily a compromise.
MySlice’s system of plug-ins strikes a balance that com-
bines ways of representing testbed resources that are com-
mon across all testbeds with the ability to represent fea-
tures that are specific to an individual testbed or type of
testbed.

To give an example of commonality, any set of simi-
lar testbed resources (a set of Wi-Fi nodes, say, or a set
of virtual servers) can be represented in a table: each line
lists a different resource and each column describes a char-
acteristic of that resource (its ID, its location, how many
interfaces it has, etc.) MySlice offers experimenters with a
tabular view of testbed resources for all testbeds. Indeed,
even when faced with an unfamiliar RSpec, for which all
the semantics are not known, MySlice does its best to pro-
vide a tabular representation. When the semantics are
known (for instance, that node reliability is a real value

between zero and one), MySlice improves the representa-
tion to take them into account.

An example of heterogeneity arises with testbed node
layout in Cartesian space. When selecting wireless nodes,
location is very important; one typically wishes to have
nodes that are relatively close to each other, to ensure
connectivity. The experimenter should have access to the
location in three-dimensional space of the nodes. For Plan-
etLab nodes, location is also important, but these are coor-
dinates with the two dimensions of longitude and latitude.
In comparison, when selecting nodes in an emulation test-
bed such as Emulab, the location of a given server in the
rack is irrelevant.

As part of its effort in the F-Lab project [8] to make
the IoTLAB sensor networking testbeds available to exper-
imenters through MySlice, INRIA has developed a plug-in
for the MySlice GUI that shows nodes in three-dimensional
space. The visualisation can be rotated and nodes can be
selected and deselected. This plug-in can be used for any
IoTLAB testbed and indeed for any testbed that provides
three dimensional coordinates for its nodes. For Planet-
Lab and other geographically distributed testbeds, there
is a Google Maps plug-in, similar to what the Flack [20]
tool offers. For testbeds in which location is not a factor,
no such plug-in would be offered.

4.1.2. Combining multiple sources of data

As part of UPMC’s experience operating PlanetLab
Europe, we quickly became aware that users choose their
nodes on the basis of features that are not communicated
by MyPLC, the central PlanetLab server (the aggregate
manager, or AM, in SFA parlance). PlanetLab provides
a minimalist design [19], encouraging third parties to de-
velop services that run on top of it. So even basic infor-
mation about nodes, such as their load levels or uptime,
are not known to MyPLC. A service called CoMon [21]
measures such characteristics, and experimenters often
draw upon CoMon data to choose nodes that are lightly
loaded and reliable. Similarly, a measurement service that
UPMC has developed, TopHat, relying upon the TopHat
Dedicated Measurement Infrastructure (TDMI) [22] and
others, provides network-related information about nodes,
such as in which autonomous system they are located, and
pairwise data, such as the number of traceroute hops be-
tween nodes. Experimenters who wish to choose widely
spaced nodes can use this data in order to do so.

Prior to the development of MySlice, these sources of
data were disparate, and experimenters needed to seek
them out. In creating MySlice, we have aimed to synthe-
size multiple data sources for the user. We have described
this approach in a previous paper [22], which focused ex-
clusively on the TopHat system that does this for MySlice,
so we will not go into detail on it here. The main idea,
from the SFA perspective, is that an aggregate manager
provides a basic RSpec for a testbed, which TopHat can
then enrich through annotations from multiple measure-
ment sources. For some testbeds, in which the aggregate

8

http://www.myslice.info


manager is omniscient, this feature would not be needed,
but in the general case, and notably in the cases of open
testbeds (such as PlanetLab) or experimenter-originated
measurements, we believe it is useful.

4.1.3. Hiding complexity from users

Just as SFAWrap shelters testbed owners from the full
complexity of implementing an SFA interface, MySlice has
been conceived to hide some of the complexity of SFA from
experimenters. In particular, keys, certificates and creden-
tials can be tricky for users to manage, and MySlice aims
to manage these on users’ behalf.

A user’s private key should typically be stored in their
own account, preferably on a machine that they themselves
own. Accordingly, one would think that we could hide the
complexity of key and certificate management by placing
an SFA client tool on the user’s machine as well. But if we
do this, we run into the difficulty of developing a tool that
works across a variety of operating systems. There are
solutions, notably command-line tools based upon widely-
available languages such as Python or Ruby, or graphical
interfaces based on Java or Qt. For the greatest cross-
platform functionality, however, providing both graphical
and programmatic interfaces, a web-based tool is ideal.

MySlice aims to provide the ease of use of a web-based
service while at the same time sheltering experimenters
from the fussier aspects of the authentication and autho-
rization schemes. To do so, it uses SFA’s delegation fea-
ture, allowing the experimenter to keep their private key
private by delegating their authority to MySlice to carry
out actions on their behalf. Another proposed option a
user has is to trust the tool for fully managing his ac-
count, which might prove even more simple for him. In
this latter case, the tool will continue to use delegation for
accountability purposes with respect to the testbeds.

4.1.4. Providing a variety of user interfaces

Experimenters have a variety of styles for carrying out
their work. Some, typically new users, will want a nice
GUI through which to access testbeds. Others will want
the flexibility and power of a programmatic interface. My-
Slice has been conceived to cater to both types of experi-
menters, as well as providing a smooth transition path for
one type of user to become the other. Each time that an
experimenter uses MySlice GUI, they have the option of
seeing a snippet of code that will allow them to carry out
the same operation via XML-RPC. Fig. 7 shows an exam-
ple of this: the query code displayed at the bottom of the
page provides the data that is shown in the table further
up the page.

In addition to providing interfaces for experimenters,
MySlice provides a Python library for programmers of ex-
periment control tools. This allows other, more powerful,
tools to be built on top of the functionality provided by
MySlice.

4.1.5. Ensuring ease of development

Separate from the interfaces mentioned in the previ-
ous subsection is the interface presented to developers of
MySlice plug-ins. We wish to make it as easy as possi-
ble to create new plug-ins such as the three-dimensional
coordinate visualisation one mentioned above, a reserva-
tions plug-in that is under development, and many others.
We therefore based plug-in development on the most com-
monly found web GUI development skills: JavaScript and
Python/PHP programming. An alternative would have
been Flash, as used by the Flack tool [20], however we
were concerned by the lack of Flash support in certain
environments (such as iOS), and also the fact that Flash
development skills are not so widespread.

4.1.6. The development of MySlice

MySlice has its origins in MyPLC [19], the central
server for PlanetLab systems. As we have described in
earlier work on the TopHat measurement aggregation sys-
tem [22], we started by enriching MyPLC’s user interface
with measured characteristics of the nodes. Because of the
large number of measured features, this required a flexible
manner of presenting tabular data. This development was
joint work between UPMC, Princeton University and The
University of Tokyo, funded by the GENI Understanding
Federation grant.

Once a flexible manner of presenting the data had been
developed, it was a simple step to furnish data for systems
beyond PlanetLab. We extended the collaboration in the
French ANR’s F-Lab project [8] to encompass the IoTLAB
testbeds [7]. In this context, INRIA has developed the
three dimensional visualisation plug-in and is developing
the reservation plug-in.

4.2. MySlice architecture and design decisions

For reasons described above, MySlice provides two in-
terfaces for experimenters: the web-based GUI and the
programmatic XML-RPC API. In addition, it provides a
library in the form of a Python API for people who wish
to build tools on top of MySlice. These three interfaces
are supported by three separate components, illustrated
on Figure 5: the core functionalities are provided through
a Python library, which in turn is exposed through an
XML-RPC API for remote use, and by the web GUI.

The separation into separate components allows us to
better target different developer communities. The choice
of Python for the core is justified by its simplicity and ef-
ficiency for these more advanced tasks, as well as the large
community of Python developers and available Python
modules. The web interface is built with two flavours on
top of the widely-used Joomla and Django frameworks,
both allowing pages to be edited by non-specialized users.
The development is done respectively in PHP or Python
for the static parts, and JavaScript/jQuery for dynamic
parts, two technologies fitting the community of web de-
velopers and designers. Both are quite standard and easily
available for deploying the different components.

9



Figure 5: MySlice architecture

Behind the API, the library handles low-level interac-
tions with SFA-based entities (aggregate managers, slice
managers, and registries). Since SFA-based communica-
tion puts some common requirements on both the server
side and the client side, MySlice is able to reuse code from
SFAWrap. For RSpecs, MySlice borrows helpers that al-
low it to parse and edit RSpecs through a uniform API.
For SFA authentication, it borrows code that allows users
either to fully trust MySlice or delegate their rights to it.
Also supporting the API is code for persistent local stor-
age and caching of information, which improves request
efficiency and thus the user experience.

The web interface builds on this API and is dedicated
to providing an intuitive and efficient interface that al-
lows users to browse available resources and pick the most
appropriate ones for their experiments. It provides exper-
imenters with information about these resources, enriched
by multiple measurement sources if available, and allows
them to select, filter, and visualise this information.

4.3. The paradigm underneath MySlice

In order to understand MySlice versatility, we need to
give some insights into the data framework it builds upon,
denoted MANIFOLD, which will be described more thor-
oughly in subsequent work. MySlice fully inherits its archi-
tecture from this component; Figure 5 is annotated on the
right with the main functionality provided by each layer.

Data representation. MANIFOLD has been designed for
interconnecting heterogeneous data providers. It assumes
a uniform representation of data in a tabular format sim-
ilar to what is found in relational databases, and whose
flexibility has been much assessed in the literature. This
representation is a fundamental aspect of the framework
which makes it feasible and scalable. In particular, it as-
sumes that all data can be identified through an appro-
priate naming (and thus that an underlying semantic has
been adopted). The software does not need to know about
the naming schemes to transport and process the data; it is
thus evolutive and independent to evolutions of the data.

Let’s take the example of RSpecs to illustrate how in-
formation can be mapped. In SFA, RSpecs serves the pur-

pose of exposing detailed information about resource ob-
jects, holding several properties such as the unique name
of the resource, its type, the responsible authority, etc.
We can easily see the same information could be stored
inside a database, eventually creating references to other
relations for more complex data types. While RSpecs are
loosely defined, in practice they all tend to follow a similar
top-level structure, and only differ through some resource
attributes. Simple heuristics have been proved sufficient in
most cases. Furthermore, for testbeds wrapped with SFA-
Wrap, the parsing code can be reused and it produces an
appropriate structure. Finally, in the most extreme cases,
a manual intervention is still possible with a few lines of
code.

Platform adaptation. As existing platforms do not nec-
essarily stick to this representation scheme, it allows for
gateways to be developed, playing to role of an adaptation
layer abstracting the heterogeneity in technologies (and
eventually semantics). The SFA gateway is an example of
such an adapter. It consists in an advanced client for a SFA
aggregate or registry manager. The framework natively
supports multiple users and is able to provide support for
managing users’ accounts on the different platforms. The
handling of SFA authentication and authorization tokens
introduced in Section 4.1.3 is performed by the SFA gate-
ways as an instance of such functionality.

Query language. As part of its core library, MANIFOLD
proposes a simple query language, largely inspired from
SQL, allowing to request information aggregated from sev-
eral platforms, independenly of the format of the data,or
the technology behind.

Platforms just need to advertise the data they can pro-
vide, and the framework is able to make the necessary glu
to provide connectivity to all of them. Just like SQL does
not depend on the underlying database schema, our query
language makes it possible to address all advertised infor-
mation with a fixed set of API calls.

Data composition. Beyond the gateway, the component
does not require any knowledge of this underlying seman-
tic to transport and process the data. We nevertheless
encourange platforms to agree and share at least parts of
the semantics – through the use of ontologies for instance.
This will enable the component to transparently infer the
relationships in the data, and to compose the different
data sources. This architecture thus makes it possible to
enhance the value of existing platforms well beyond the
value of each platform considered individually, answering
queries overlapping two or more sources of information.

Building on this framework. The component advertises
available aggregated data as if it were a platform itself.
This allows the web interface to build on top of it to
allow users to browse, navigate and make sense of the
vast amount of available information. This is performed

10



Figure 6: Screenshot of the MySlice dashboard

through a set of visualization plugins or widgets guiding
users through some process. Our experience operating
PlanetLab Europe shows that such an interface is funda-
mental for users to exploit the full richness of the tool.

The framework is designed to be easily extensible via
its plugin mechanism, allowing both new parts of the in-
terface to be added, or even more complete applications
or workflows. The portal functionality described later is
such an example. Plugins benefit from several modules
making development easier such as full support for asyn-
chronous queries. The abstraction framework we have just
described allow them to be isolated from the heterogeneity
of the different interconnected platforms: they just need to
issue queries with the right semantic to be put in relation
with the right platforms and receive requested data.

As a general principle, the layering of functionalities
makes it possible to use them separately. The SFA client
embedded in the gateway can for example be used inde-
pendently, and the same holds for plugins.

The reader is invited to refer to the project website
for further technical insights into the component. The
rest of this section provides greater detail on the MySlice
web interface that has been built above this framework,
describing the ways in which it has been designed to meet
the needs of both users and testbed owners.

4.4. The MySlice web GUI

This subsection describes the functionality that is
available to experimenters through the MySlice GUI. This
includes both generic functionalities and extended and spe-
cialized functionalities that are available through plug-ins.

Services provided by the federation are typically cen-
tered around a single functionality (control plane, mea-
surements, policy enforcement, etc.). At the different steps
of their experiments though, users will have to contact sev-
eral such services. For instance, while browsing resources,
they might be interested both in the resources themselves
(from SFA) and in measurements originating from a third
party service, or even a stitching service to discover inter-
testbed connectivity. This GUI will make it possible to as-
semble user-oriented interfaces, answering a specific need,
and transparently involving the different services thanks
to the composition capabilities of the framework.

4.4.1. MySlice portal and dashboard

The first page users will be faced with is the MySlice
portal, allowing them to register and login, to create slices,
and to browse and reserve testbed resources. For some of
the more complex tasks, users will be guided through a
series of simple steps. During registration for example,
depending on their choices, they will be invited to gener-
ate a keypair that will be used for authentication to the
testbeds, or simply upload their public key and delegate
some of their rights to MySlice, as explained before. More
details about the portal functionality can be found in [23].

Once a user has been authenticated by MySlice and
authorized by a testbed, he can access testbed’s resources.
The MySlice dashboard (Fig. 6) is the page that welcomes
users upon login. It provides an overview of the user’s
account and authorization credentials, the various types
of resources that the user can access through the different
federated authorities, as well as a list of the slices with
which the user is associated. To generate this page, My-
Slice issues a series of queries to retrieve information about
the different SFA objects related to the user, as presented
in Sec. 2: users, authorities and slices.

4.4.2. The slice page and plug-ins

By clicking on the name of a slice in the dashboard,
the user accesses the slice page (Fig. 7). This page is the
heart of user interaction for the MySlice GUI, allowing an
experimenter to learn about available resources, to sort
and filter resources based upon their properties, and to
associate selected resources with their slice.

The slice page is where the plug-ins are displayed. The
page receives objects by issuing a query to SFA through
the API, for which the reply is recursively displayed. If a
given object (a slice, a list of resources, etc.) has a defined
plug-in, then it is displayed using that plug-in. Otherwise
a generic display is used.

Visualization. Different representations of the resources
are possible. The simplest one is a table where each
line represents a resource, and each column a property
of the resource. When latitude and longitude information
is present, the slice page offers a Google Maps plug-in. As
mentioned earlier, this helps an experimenter to exploit
the geographic diversity of a platform like PlanetLab.

Three-dimensional layout plug-in. In the context of the
F-Lab project, in order to federate the IoTLAB testbeds,
we developed the three-dimensional layout plug-in already
mentioned. Fig. 8 shows a screenshot. It portrays the
wireless sensor nodes of a IoTLAB platform, and allows
the user to rotate the layout as desired and to select and
deselect nodes. Though developed for IoTLAB, this plug-
in could easily be applied to any other testbed in which
three-dimensional coordinates are important.

Reservations plug-in. An effort currently underway is to
display reservation information for resources that cannot

11



Figure 7: Screenshot of the slice page

Figure 8: Screenshot of the 3D layout plug-in

Figure 9: Screenshot of the scheduler plug-in

be virtualized or that need to be shared in time. Fig. 9
shows a screenshot.

A publish-subscribe architecture. In practice, there will
be several possible representations of the data on the
page. They are all kept synchronized through a publish-
subscribe architecture, where different plug-ins subscribe
to updates on the results of a query.

When there are large numbers of resources, experi-
menters will need to define filters in order to reduce the
number of possibilities to a manageable number. The same
pub/sub mechanism makes it possible to have several con-
current plug-ins editing the same or different parts of a
query.

Additional features. A good GUI will not make users wait
before showing data. Indeed, it is often better to display
slightly out-of-date information quickly and then update
it as soon as possible. The slice page does just this, draw-
ing from its cache in order to display show data rapidly,
then, based upon timeliness information associated with
the data, launching queries for any information that might
be out of date.

In order to help experimenters transition from the web-
based GUI to a programmatic interface, the slice page in-
cludes a plug-in that displays the XML-RPC query that
allows one to retrieve the results presented on the current
page. Since such queries can be written in various lan-
guages, the plug-in offers a choice of languages so that the
user can see the one that they prefer to use. For instance,
the query shown at the bottom of Fig. 7 is in Python be-
cause that language has been chosen from the pull-down
menu. We hope this feature will help create more power
users: after navigating from the entry points provided by
the web interface to some information of interest, they
will be able to discover the related semantics, and how to
programmatically access the same information. A simple
copy-paste will provide a working example.

Finally, since all plug-ins are based on standard API
queries, these queries can be easily logged. We intend
to develop a plug-in that will monitor the way in which
experimenters make use of the system. This will help us
to answer such questions as which resources users value
and for what reasons, leading to better testbed design.

12



4.5. Supporting new testbeds

MySlice is easily extended to support new testbeds. If
SFAWrap was used to wrap the new testbed, then there
will be parser code for its RSpec, either because the code
already existed or because it was written as part of the
wrapping process. MySlice can reuse that code. Other-
wise, the testbed owner needs to write new parsing code,
which they can do based on existing examples.

Once it can parse an RSpec, the semantics might be
unfamiliar to MySlice. In that case, MySlice can display
unknown resource properties in a best effort manner in
tabular format. A new plug-in, or extension of an existing
plug-in, is required in order to have a more sophisticated
display. By fostering a community of contributors of free,
open-source plug-ins to MySlice, at the MySlice web site
(http://www.myslice.info), we make it possible for a de-
veloper to work from previous examples. The goal here
is to give as much control as possible to the owners and
users of testbeds, so that they can create interfaces that
best match their needs.

4.6. Related tools

As mentioned above, there are other SFA client tools.
The simplest one is sfi [24], a command line client that
allows communication with SFA entities and that also pro-
vides a set of command line tools for editing RSpecs that
respect known formats. The Sface [25] interface builds
on sfi to provides a simple Qt-based GUI that displays
information in tabular format. Omni [26] is a command
line client that is known to work across multiple control
frameworks, including different flavors of SFA.

Both OMF-F [27] and FSToolkit [28] present do-
main specific languages allowing users to write a program
describing experiments, and requesting services and re-
sources.

The only tool besides MySlice to go beyond the com-
mand line or a basic graphical interface is Flack [20]. It
is capable of processing a variety of RSpecs and is able to
represent resources on a world map. It allows users to cre-
ate slices by drawing nodes and links on a canvas. Flack
is written in Flash and is accessed over the web and runs
on the local host.

MySlice and Flack are similar in that they are both
open source clients that aim to provide a rich and user-
friendly interface, easily apprehendable by beginners. Both
clients abstract out the complexity of SFA and the diver-
sity of RSpecs to propose a unified interface.

There are, however, important differences between My-
Slice and Flack: (1) while Flack requires a certificate
and a private key, MySlice allows simpler authentica-
tion schemes. This is made possible by permitting ex-
perimenters to delegate their credentials to MySlice; (2)
Flack has a monolithic design that is more complex to ex-
tend than MySlice. MySlice has been conceived around a
modular architecture, offering different interfaces that are
adapted to different communities of developers and users.

We note that Flack currently offers an interesting GUI
for visualizing and editing network topologies. The plugin
system of MySlice has been designed so that such capa-
bilities are not a limit of the tool, but can be built as
extensions to the existing framework.

5. Conclusion and future work

We are at a point in time when SFA has emerged as
a de facto global standard for the federation of Future In-
ternet testbeds. However, for a testbed owner, providing
one’s testbed with an SFA interface can be a daunting
task. This is due to the complexity of some features (au-
thentication, parsing) and the still fluid nature of the SFA
specification, which will require regular code updates for
any implementation that needs to remain current.

Our objective is to facilitate the participation of new
testbeds in the global federation. For this, we have de-
signed and put into practice two tools that allow a test-
bed owner to expose their local resources through the SFA
API and that provide experimenters with interfaces suit-
able to the particular characteristics of each testbed. The
modular design of our tools and the open source devel-
opment paradigm that they follow create a framework in
which testbed owners worldwide can benefit from drivers
and plug-ins developed by others, and to which they can
contribute in turn.

Today, we are in the process of testing the applica-
tion of these tools to a small selection of existing testbeds
including SensLAB and FEDERICA. In the near-term fu-
ture, we plan to deploy scheduling capabilities, which will
allow experimenters to reserve non-virtualizable resources.
Over the longer term, we intend to roll out our tools for
numerous testbeds that do not yet provide SFA interfaces.

Acknowledgments

The research leading to these results has received
partial funding from a number of sources. The design
and development of these technologies is funded by the
European Commission’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 287581,
OpenLab. The application of our tools to different test-
bed technologies is funded by the European Commission’s
Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 257867, NOVI (for the FEDERICA
testbed), and by the French ANR project F-Lab under
grant agreement no. ANR-2010-VERS-002.

We are grateful to Panayotis Antoniadis for introduc-
ing the idea of MySlice and for implementing it as an
internal service of the PlanetLab web interface with the
help of Guthemberg Silvestre and Ahmed Arous at UPMC,
and in collaboration with Andy Bavier and Tony Mack at
Princeton and Aki Nakao at the University of Tokyo, to
all of whom we are also grateful. Panayotis Antoniadis
also helped with useful discussions during the preparation
of this manuscript.

13



[1] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott,
D. Raychaudhuri, R. Ricci, I. Seskar, Geni: A federated test-
bed for innovative network experiments, Computer Networks –
special issue on Future Internet Testbeds (????).

[2] L. Peterson, R. Ricci, A. Falk, J. Chase, Slice-based federation
architecture (sfa), 2010. Working draft, Version 2.0.

[3] GENI AMAPI, http://groups.geni.net/geni/wiki/GAPI AM API,
2013.

[4] OpenSFA, http://www.opensfa.info, 2013.
[5] S. Fdida, T. Friedman, T. Parmentelat, OneLab: An open

federated facility for experimentally driven future internet re-
search, in: Proc. Workshop on New Architectures for Future
Internet.

[6] R. Morgan, S. Cantor, S. Carmody, W. Hoehn, K. Klingenstein,
Federated Security: The Shibboleth Approach, EDUCAUSE
Quarterly 27 (2004) 12–17.

[7] SensLAB (project website), http://www.senslab.info, 2012.
[8] F-Lab: Federating Computing Resources (project website),

http://www.f-lab.fr, 2012.
[9] M. Campanella, F. Farina, The federica infrastructure and ex-

perience, Computer Networks – special issue on Future Internet
Testbeds (????).

[10] NOVI (project website), http://www.fp7-novi.eu, 2012.
[11] A.-C. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis,

L. Tassiulas, L. Rodriguez, M. Ott, A new slicing scheme for
efficient use of wireless testbeds, in: Proceedings of the 4th
ACM international workshop on Experimental evaluation and
characterization, ACM, pp. 83–84.

[12] Teagle (project website), http://www.fire-teagle.info, 2012.
[13] OpenLab (project website), http://www.ict-openlab.eu, 2012.
[14] M. Su, L. Bergesio, H. Woesner, T. Rothe, A. Kpsel, D. Colle,

B. Puype, D. Simeonidou, R. Nejabati, M. Channegowda,
M. Kind, T. Dietz, A. Autenrieth, V. Kotronis, E. Salvadori,
S. Salsano, M. Krner, S. Sharma, Design and implementa-
tion of the ofelia fp7 facility: The european openflow testbed,
Computer Networks – special issue on Future Internet Testbeds
(????).

[15] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mounie, P. Neyron, O. Richard, A batch scheduler with
high level components, in: Proceedings of the Fifth IEEE Inter-
national Symposium on Cluster Computing and the Grid (CC-
Grid’05) - Volume 2 - Volume 02, CCGRID ’05, IEEE Computer
Society, Washington, DC, USA, 2005, pp. 776–783.

[16] AMSoil, https://github.com/fp7-ofelia/AMsoil#readme,
2013.

[17] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachan-
dran, H. Kremo, R. Siracusa, H. Liu, M. Singh, Overview of the
ORBIT Radio Grid Testbed for Evaluation of Next-Generation
Wireless Network Protocols, WCNC’05 (2005).

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, A. Joglekar, An integrated ex-
perimental environment for distributed systems and networks,
in: Proc. of the Fifth Symposium on Operating Systems De-
sign and Implementation, USENIX Association, Boston, MA,
pp. 255–270.

[19] L. Peterson, T. Anderson, D. Culler, T. Roscoe, A Blueprint for
Introducing Disruptive Technology into the Internet, HotNets-I
’02 (2002).

[20] Flack, http://protogeni.net/flack.html, 2012.
[21] K. Park, V. S. Pai, Comon: a mostly-scalable monitoring sys-

tem for planetlab, SIGOPS Oper. Syst. Rev. 40 (2006) 65–74.
[22] T. Bourgeau, J. Augé, T. Friedman, Tophat: supporting ex-

periments through measurement infrastructure federation, Pro-
ceedings of TridentCom’2010 (2010).

[23] L. Baron, J. Augé, T. Friedman, S. Fdida, Towards an inte-
grated portal for networking testbed federation, an open plat-
form approach, FIRE Engineering workshop, Ghent, Belgium
(2012).

[24] SFA git repository, http://git.onelab.eu/?p=sfa.git, 2012.
[25] Sface git repository, http://git.onelab.eu/?p=sface.git,

2012.

[26] Omni, http://trac.gpolab.bbn.com/gcf/wiki/Omni, 2012.
[27] T. Rakotoarivelo, G. Jourjon, M. Ott, Designing and Orches-

trating Reproducible Experiments on Federated Networking
Testbeds, Technical Report, NICTA, 2012.

[28] FSToolkit, http://nam.ece.upatras.gr/fstoolkit/trac/,
2013.

14


	Introduction
	The Slice-Based Federation Architecture (SFA)
	Overview
	History
	SFA design principles
	Naming

	Authentication, authorization, accounting and trust
	Common API
	Resource model
	Joining the federation

	SFAWrap
	Motivations
	The development of SFAWrap
	Architecture
	Steps to wrap a testbed
	The IoTLAB case
	Related tools

	MySlice
	Motivations
	Balancing uniformity and heterogeneity
	Combining multiple sources of data
	Hiding complexity from users
	Providing a variety of user interfaces
	Ensuring ease of development
	The development of MySlice

	MySlice architecture and design decisions
	The paradigm underneath MySlice
	The MySlice web GUI
	MySlice portal and dashboard
	The slice page and plug-ins

	Supporting new testbeds
	Related tools

	Conclusion and future work

