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Abstract. In this article, we discuss an approach for geometry and topology optimization of structures

which benefits from an accurate description of shapes at each stage of the iterative process - by means of
a mesh amenable for mechanical analyses - while retaining the whole versatility of the level set method

when it comes to accounting for their evolution. The key ingredients of this method are two operators for
switching from a meshed representation of a domain to an implicit one, and conversely; this notably brings
into play an algorithm for generating the signed distance function to an arbitrary discrete domain, and a
mesh generation algorithm for implicitly-defined geometries.
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1. Introduction

In the simulation of a free or moving boundary problem driven by a physical motion, one usually has to
reconcile numerical accuracy with robustness: the more faithful the representation of the tracked boundary,
the more accurate the computation of the motion (i.e. the velocity field driving the motion), and unfortu-
nately, the more tedious the numerical implementation. This issue is especially critical in shape optimization
which features problems where the changes in geometry and topology of shapes in the course of the evolution
are often dramatic.
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Roughly speaking, in the field of shape and topology optimization, three main classes of techniques can
be distinguished, depending on the description of shapes they involve:

• Density-based methods, such as the SIMP method [17] or the homogenization method [3, 16], trans-
form the problem of finding the optimal shape Ω ⊂ Rd with respect to a mechanical criterion J(Ω)
into that of finding the optimal density function ρ : D → [0, 1] of a mixture of material and void
inside a fixed working domain D. The shape optimization problem has to be translated into this
rather different setting, but the main difficulties are the absence of a clear definition of the shape
boundary and the penalization process which, in the end, should deliver a ‘classical’ shape without
intermediate densities.

• Eulerian methods, such as the phase field method [18], or the level set method [11, 53, 60, 66]
account for shapes in an implicit way; for instance, in the latter case, a large, fixed working domain
D, meshed once and for all is introduced, and a shape Ω ⊂ D is described in terms of a scalar
function φ : D → R whose negative subdomain matches with Ω. Finite element analyses cannot
be performed directly on Ω since it is not meshed exactly, and approximations have to be made to
trade mechanical problems posed on Ω for problems posed on D. The most notorious of them is the
so-called Ersatz material approach, which consists in filling the ‘void’ D \Ω with a very soft material
to avoid degeneracy in the stiffness matrix (however, alternatives exist, which are based on e.g. the
immersed boundary method [60], or the XFEM method [36, 47]).

• Lagrangian methods are perhaps the most natural ones and date back to the early hours of compu-
tational structural optimization [54, 69]; shapes are represented by means of a computational mesh
(or a CAD model [19]), which enables accurate mechanical analyses. The general drawback of this
class of methods lies in that this mesh (or whatever explicit representation of shapes is used) has
to be updated in the course of the optimization process, which is a notoriously difficult operation,
especially in 3d. Note that there is still ongoing research in this direction [13, 26, 50].

Of course, this rough classification ignores the numerous particular instances of each category of methods
and combinations between them (see the recent review papers [31, 33] for a stronger emphasis on level-set
based structural optimization).

In the present paper, we describe in details our work, briefly announced in [6, 7], and propose a shape
optimization strategy which benefits from the flexibility of the level set method for tracking evolution of
shapes, including topological changes, while enjoying an exact, meshed description of shapes.

Admittedly, this idea of combining an implicit domain evolution method with an explicit type of shape
representation is not new: in the two-dimensional work [68], the evolution of shapes is tracked on a triangular
mesh T of a working domain D owing to the level set method, and at each iteration of the process, an exact
mesh of the current shape Ω is obtained by relocating vertices of T onto ∂Ω. In [67], a similar strategy is
applied for dealing with the motion of shapes; a computational mesh for any shape Ω arising during the
process is then constructed by first identifying the intersection points of the implicitly-defined boundary
∂Ω with the edges of the computational mesh T of D, then using them as an input for a Delaunay-based
mesh generation algorithm. Last but not least, let us mention the work in [57] (Chap. 5), taken over in
[46], in which the evolution of shapes is dealt with by using the level set method on a finite difference
grid of the working domain D, and an original meshing algorithm for implicit geometries is used to get an
exact representation of shapes. The precisely calculated shape gradient must then be projected back to the
Cartesian grid of D to close the loop.

Our method has something in common with this last work: a computational domain D is defined, and is
equipped with an unstructured mesh which is modified from one iteration of the algorithm to the next, in
such a way that any shape Ω arising in the course of the process is explicitly discretized in this mesh - i.e.
the vertices, edges, faces (and tetrahedra in 3d) of a mesh of Ω also exist as elements of the ambient mesh
of D. In such a configuration, we shall also say that (a mesh of) Ω exists as a submesh of that of D. This
kind of representation allows for accurate finite element analyses, held on a well-defined, high-quality mesh
of Ω (which is possibly adapted to an error estimate for the mechanical problem at stake), and lends itself to
the use of the level set method in an unstructured mesh framework, to account for large shape deformations
(including possible topological changes). It relies crucially on efficient algorithms for moving back and forth,
from a situation where a shape Ω is known as a submesh of the computational mesh of D to a level set
description of Ω on a (unstructured) mesh of D.
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This strategy presents several attractive assets; first, no projection between different meshes is needed
between the computation of a descent direction for the considered objective function of the domain (which
occurs when the shape is in a meshed description), and the further deformation of the shape (which is carried
out using the level set method). Most importantly, the proposed method does not pose any theoretical
obstruction to the extension from the two-dimensional case to the three-dimensional one (even if it is then
considerably more tedious to implement). This is an important and non trivial feature insofar as meshing
algorithms are involved, and meshing issues (e.g. Delaunay-based mesh generation) are well-known to be far
more difficult to deal with in 3d than in 2d. The only mesh generation operation involved in our strategy is a
purely logical (thus very robust) one, and most of the difficulty of the problem is transferred to a remeshing1

problem, which always starts from an existing - possibly very ill-shaped mesh - and proceeds ‘in the best
possible way’.

In this article, we are mostly interested in the three-dimensional setting; consequently, most of the de-
scriptions will be held bearing this case in mind (especially as far as meshing issues are concerned), except
when the 2d and 3d settings are completely equivalent. The proposed approach relies on meshing algorithms
which may find other applications (like e.g. in the field of fluid-structure interaction) and have therefore
been published in [29], independently from a particular physical or mechanical setting. The novelty of the
present paper lies therefore in the interaction of these meshing devices with other level set type algorithms
and shape optimization techniques.

This article is organized as follows. The next section presents the model linearized elasticity problem and
the basic material from shape-sensitivity analysis (based on Hadamard’s method) involved in the gradient
optimization algorithm. Section 3 is the central section of the paper and describes the two different rep-
resentations of shapes used in our method - namely the level set one, and the meshed one - as well as the
algorithms for switching from one of these representations to the other. Then, Section 4 describes how the
velocity field driving the motion of shapes is computed and how the level set method is used to account for
this motion. The global mesh evolution strategy is summed up in Section 5 and several numerical examples
are discussed in Section 6. Eventually, we draw some conclusions around the present study in Section 7 and
outline a few possible topics for future work.

2. A model problem in shape optimization of elastic structures

In this article, we are interested in shapes, that is, bounded open sets Ω ⊂ Rd (d = 2, 3 in our applications)
with at least Lipschitz regularity, filled with a linear isotropic elastic material with Hooke’s law A:

∀ξ ∈ S(Rd), Aξ = 2µξ + λtr(ξ),

where S(Rd) stands for the set of real d × d symmetric matrices, and λ and µ are the Lamé coefficients of
the material, which satisfy µ > 0 and λ+ 2µ/d > 0. These shapes are clamped on a part ΓD ⊂ ∂Ω of their
boundaries. They are submitted to body forces f , as well as to traction loads g, applied on a part ΓN ⊂ ∂Ω
disjoint from ΓD. The remaining, traction-free region Γ := ∂Ω \ (ΓD ∪ ΓN ) is called the free boundary of Ω.

Provided f ∈ L2(Rd)d, g ∈ H1(Rd)d, and that ΓD 6= ∅ (unless an equilibrium condition between f and g
is fulfilled), the displacement of a shape Ω is the unique solution uΩ ∈ H1(Ω)d to the linear elasticity system:

(1)





−div(Ae(u)) = f in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN

Ae(u)n = 0 on Γ

,

where e(u) :=
(
∇uT +∇u

)
/2 is the linearized strain tensor, and n is the unit normal vector to ∂Ω (pointing

outward Ω).

Our purpose is to minimize a given functional J(Ω) of the domain. This classically demands some
knowledge about the derivatives of J , hence the need to account for variations of shapes. In this perspective,
we rely on Hadamard’s boundary variation method [2, 45, 51, 62]: variations of a smooth shape Ω ⊂ Rd

1Depending on the authors, this term may either refer to the operation of creating a whole new mesh, or to that of modifying

an existing one by means of local mesh operations. In this paper, the latter meaning is retained.
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of the form Ωθ := (I + θ)(Ω) are considered, for θ ∈ W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1. It is indeed well-

known that under such conditions, (I + θ) is a Lipschitz diffeomorphism of Rd. The induced notion of shape
differentiation is then the following:

Definition 1. A real-valued function J(Ω) of the domain is shape differentiable at a particular shape Ω if
the underlying function θ 7→ J((I+ θ)(Ω)) from W 1,∞(Rd,Rd) into R is Fréchet differentiable at θ = 0. The
associated derivative J ′(Ω) is called the shape derivative of J at Ω, and the following asymptotic expansion
holds in the neighborhood of 0 ∈ W 1,∞(Rd,Rd):

(2) J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where
o(θ)

||θ||W 1,∞(Rd,Rd)

θ→0
−→ 0.

Let us now specify the setting of our study. The parts ΓD and ΓN of the boundaries of shapes where
they are respectively clamped and submitted to surface loads are given a priori, and are not subject to
optimization. The minimization of J(Ω) is thus investigated over the set Uad of admissible shapes defined
as:

Uad =
{
Ω ⊂ Rd is an open, Lipschitz bounded set, ΓD ∪ ΓN ⊂ ∂Ω

}
.

The corresponding set for admissible variations of shapes is:

Θad =
{
θ ∈ W 1,∞(Rd,Rd), θ = 0 on ΓD ∪ ΓN

}
.

Throughout this chapter, we shall consider integral functionals J(Ω), which bring into play the solution
uΩ to the linear elasticity system (1). The shape derivative of such state-constrained functionals can be
computed thanks to techniques from optimal control theory (such as Céa’s method [23]).

To set ideas, let us recall a classical result, devoted to functionals of the form (see e.g. [11] for details):

(3) ∀Ω ∈ Uad, J(Ω) =

∫

Ω

j(x, uΩ(x)) dx+

∫

Γ∪ΓN

k(x, uΩ(x)) ds,

where j, k : Rd
x × Rd

u → R are two smooth functions satisfying adequate growth conditions (we shall meet
several instances of such objective functions in Section 6).

Theorem 1. Provided f , g and Ω are smooth enough, the function J(Ω) defined by (3) is shape differentiable
at any Ω ∈ Uad, and its shape derivative reads:

(4) ∀θ ∈ Θad, J ′(Ω)(θ) =

∫

Γ

(
j(x, uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ +

∂

∂n
(k(x, uΩ)) + κk(x, uΩ)

)
θ · n ds,

where κ is the mean curvature of ∂Ω (oriented in the sense that κ(x) is positive when Ω is locally convex
around x), and pΩ ∈ H1(Ω)d is the adjoint state, unique solution to:

(5)





−div(Ae(p)) = −j′(x, uΩ) in Ω
p = 0 on ΓD

Ae(p)n = −k′(x, uΩ) on Γ ∪ ΓN

.

More generally, in good agreement with the structure theorem (see [32], Th 9.3.6), the shape derivatives
of all the considered functionals J(Ω) in this paper will turn out to be of the form:

(6) ∀θ ∈ Θad, J ′(Ω)(θ) =

∫

Γ

wΩ θ · n ds,

for a certain scalar field wΩ on Γ, which depends on uΩ, and possibly on some adjoint state pΩ. A descent
direction θ for J is then easily revealed as −wΩn, since letting

(7) θ = −t wΩn

in (2) yields, for small t > 0 (provided wΩ 6= 0):

J(Ωtθ) = J(Ω)− t

∫

Γ

w2
Ω ds+ o(t) < J(Ω).

Actually, for both theoretical and numerical reasons, one cannot take directly (7) as a descent direction; we
shall come back to this issue in Section 4.3.
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Remark 1. We have hitherto been discussing the unconstrained minimization of a function J(Ω) over Uad.
For the sake of simplicity, in this paper, we shall limit ourselves with imposing a volume constraint on shapes,
to be enforced by trading J(Ω) for a weighted sum L(Ω) of J(Ω) and the volume of shapes Vol(Ω), so that
the problem boils down to the following constraint-free problem:

(8) min
Ω∈Uad

L(Ω), L(Ω) := J(Ω) + ℓVol(Ω),

where ℓ is a fixed Lagrange multiplier. Note that this very rough understanding of constraints already con-
tains some degree of generality, since many efficient optimization algorithms (e.g. the augmented Lagrangian
method) impose constraints by using formulations of the form (8) in combination with an update strategy
for the Lagrange multiplier ℓ.

3. Two complementary ways for representing shapes

From now on, let D be a fixed, large computational domain that encloses all the considered shapes. The
central point of the proposed method consists in juggling with two different ways for describing a shape
Ω ⊂ D during the optimization process (see Figure 1), using alternatively one or the other depending on the
nature of the ongoing operation:

• The level set description: Ω is implicitly defined by a scalar ‘level set’ function φ : D → R, in the
sense that the following holds:

(9) ∀x ∈ D,





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈ cΩ

.

From the numerical standpoint, φ is discretized as a P1 Lagrange finite element function on a
(simplicial) mesh ofD. As we shall recall in Section 4, this way of representating shapes is particularly
well-suited when its comes to tracking their evolutions.

• The meshed description: the whole computational domain D is equipped with a simplicial (conform-
ing) mesh TΩ, which encloses a mesh T ′

Ω of Ω as a submesh, i.e. the elements (points, edges, faces,
and tetrahedra in 3d) of T ′

Ω also exist as elements of the larger mesh TΩ.
This description of Ω is convenient when it comes to performing mechanical computations on it

(e.g. using the finite element method): to achieve this, one only has to forget the ‘exterior’ part
TΩ \ T ′

Ω of TΩ, i.e. that corresponding to D \ Ω, and retain only the computational mesh T ′
Ω of Ω.

At this point, one may question our choice of systematically meshing a shape Ω together with its
complementary part D \ Ω, but the need to do so will become apparent in the next sections.

Let us now describe the two operators at our disposal for switching from one representation to the other.

3.1. Generating the signed distance function to a discrete domain.

The first operation under scrutiny consists in generating a level set function for a domain Ω ⊂ Rd, at the
vertices of a mesh TΩ of D in which Ω is explicitly discretized. Such a function is computed as the signed
distance function dΩ to Ω, which is defined by:

∀x ∈ Rd, dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ cΩ
,

where d(., ∂Ω) is the Euclidean distance function to ∂Ω. Indeed, since [25], several properties of the signed
distance function - the most crucial of them being that its gradient is of unit norm wherever it is defined,
i.e. |∇dΩ|= 1 a.e. on Rd - have proved to tremendously increase the numerical accuracy and stability of
computations performed within a process making use of the level set method.

It is well-known [14], [52], [59] that dΩ can be obtained as the stationary state of the unsteady Eikonal
equation:

(10)

{
∂φ
∂t (t, x) + sgn(φ0) (|∇φ|−1) = 0 for (t, x) ∈ (0,∞)× Rd

φ(t = 0, x) = φ0(x) for x ∈ Rd ,
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Figure 1. (Left) graph of a level set function φ associated to a shape Ω; (right) a corre-
sponding meshed description: the whole computational box D is equipped with a mesh TΩ
(composed of the yellow and green elements), and the submesh T ′

Ω is composed of the yellow
triangles.

where φ0 is any level set function associated to Ω. Note that such a function is easily generated in practice,
e.g. by defining φ0(x) as the exact signed distance function to Ω at ‘close’ vertices x ∈ TΩ to ∂Ω (which is
then inexpensive), and with an arbitrarily large value at the remaining points of TΩ.

Since computing the solution of (10) proves useful in many problems with applications outside from the
field of structural optimization, we proposed a numerical scheme which was independently published in [30].
It relies on an explicit formula [14] for the solution to (10). It is implemented as an iterative algorithm on
unstructured meshes which ‘straightens up’ an initial level set function φ0 for Ω into the signed distance
function, updating the values of the function from a neighbourhood of ∂Ω to further regions.

Remark 2. The above assumption, whereby Ω should be explicitly discretized in the computational mesh
of D is not mandatory for this operation: Ω could actually be supplied via any mesh, independently from
that of D; see [30] for details.

3.2. Meshing the negative subdomain of a scalar function.

The second operation of interest assumes the data of a simplicial mesh T of D and a level set function
φ, discretized at the vertices of T , associated to a domain Ω ⊂ D. The aim is to modify T into a new
well-shaped and adapted mesh TΩ of D in which Ω is explicitly discretized.

We impose two additional features to the new mesh TΩ:

• The mesh TΩ should be well-shaped, in terms of the qualities of its element. Depending on the desired
application, there are many different ways for measuring the quality of an element. Since we plan
to perform mechanical analyses on TΩ, in particular by using the finite element method, a natural
choice would consist in evaluating a simplex K in terms of its eccentricity σK = ρK/hK (where ρK
is the inradius of K, and hK is its diameter), which is a quantity involved in many finite element a
priori estimates (see e.g. [27]). We rather rely on another function Q(K) of a simplex K with edges
e1, ..., ed(d+1)/2, whose meaning is close to that of σK , but which shows a better numerical ability in
discriminating ‘good’ from ‘average’, or ‘bad’ elements:

Q(K) = α
Vol(K)

(
d(d+1)/2∑

i=1

|ei|2

) d
2

,

where α > 0 is a normalization factor, defined so that Q(K) = 1 if K is a regular simplex.
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• The submesh T ′
Ω of TΩ should be adapted to the geometrical features of Ω, in particular show smaller

elements around the regions of ∂Ω where curvature is high. This requirement might seem a bit
loose at first glance, since in our framework, φ and Ω are only known in a discrete way - and are
respectively a piecewise linear function and a polyhedral domain (thus, strictly speaking, there is
no such thing as curvature as far as Ω is concerned). Actually, for a number of reasons, it proves
convenient to rely consistently on a continuous geometric model for Ω; such a model can be inferred
from the datum of any mesh of Ω, by first inferring local geometric information about this continuous
model from the discrete data at hand (for instance, normal vectors at the vertices of the mesh can
be computed from the normal vectors the the surrounding surface triangles), and then by following
rules to generate a local portion of an underlying continuous surface to ∂Ω - hereafter denoted as
Γ - from any given discrete surface triangle T of ∂Ω. In our setting, as suggested in [65], this piece
of surface is parametrized as a cubic Bézier patch σ : T → Γ, which interpolates the three vertices
of T , together with the three associated normal vectors. This local model serves then as a guide
when it comes to introducing new points on ∂Ω, and results in simple predicates over the vertices
and normal vectors of the surface mesh when it comes to measuring whether such or such operation
degrades too much the geometrical features of Ω.

Modifying T into such a mesh TΩ is achieved within two steps, which we now briefly outline: at first, a
mesh Ttemp of D is obtained, in which Ω is explicitly discretized, but which may be very ill-shaped, or may
be a poor representative of the geometry of Ω. In a second step, this intermediate mesh Ttemp is remeshed
into a high-quality mesh TΩ, which is a fine representative of Ω. For the many technical details the reader
is refered to [28, 29]. Remark that these meshing operations have many other applications, as described in
[29].

3.2.1. Step 1: discretization of the 0 level set of a scalar function into a simplicial mesh.

If no particular attention is paid to the qualities of its elements, obtaining a mesh Ttemp of D in which Ω
is explicitly discretized is a fairly easy matter: we use a marching tetrahedra approach [39] - a variant of the
well-known marching cubes algorithm which assumes a Cartesian computational support [48].

The simplices of T intersecting ∂Ω = {x ∈ D, φ(x) = 0} are exactly those bearing at least two vertices
where φ takes different signs. For any such simplex K ∈ T , as φ|K is linear, ∂Ω ∩K is a portion of plane
passing through those points mi of the edges of K where φ vanishes. Once the positions of these points have
been computed, depending on the relative signs of φ at the vertices of K, a pattern is chosen for splitting
K into several simplices in such a way that a triangulation of ∂Ω ∩K explicitly appears (see Figure 2 for a
three-dimensional example). There are two such patterns in two dimensions, four in three dimensions, up to
rotations of the configuration.

This step is unfortunately very likely to produce a severely ill-shaped mesh Ttemp, with very small or nearly
degenerate elements, since the intersections of the simplices K ∈ T with ∂Ω are arbitrary (for instance, in the
configuration of Figure 2, if the portion of plane ∂Ω∩K lies very close to the vertex a3, the new tetrahedron
a3m0m1m2 will be too small and a0m0m1m2 will be almost flat).

Nevertheless, let us note that this purely logical step will be the only mesh generation operation involved in
the mesh evolution method at stake in this paper. It is very robust in delivering valid simplicial meshes. The
remaining meshing ingredients, whose descriptions follow, only consider, modify and deliver valid meshes,
doing their utmost in increasing their qualities. This commitment in reducing to a minimum the true mesh
generation component in our approach is the main reason for its robustness.

3.2.2. Step 2: local mesh modifications for quality and geometric approximation improvements.

We are now left with the problem of remeshing a possibly ill-shaped simplicial mesh Ttemp of D, enclosing
an explicit discretization of Ω (which may be poor as a geometric approximation of the continuous underlying
model).

To achieve this, we rely on the four usual local mesh modification operators (see [40], or [28, 29] for more
details around the actual implementation), which are briefly described hereafter (see Figure 3). Note that,
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Figure 2. One possible pattern for splitting a simplex K so that the 0 level set (red face)
of a linear function φ in K explicitly appears in the resulting decomposition. Here, φ takes
a positive value at the red vertex of K, and negative ones at the blue vertices.

in our application, each one of them exists under two different forms depending on whether it is applied to
a surface configuration, or to a completely internal one.

(a) Edge split: an edge pq of Ttemp which is ‘too long’ is split by introducing a new vertex m in the mesh,
and replacing pq by pm and qm, updating the connectivities of the mesh accordingly. An edge may
be deemed ‘too long’ if it is too long with respect to a user-defined size prescription, or if it entails
too large a gap between ∂Ω and the underlying continuous surface Γ. The new vertex m is inserted
either on Γ if pq is an edge of ∂Ω, or as the midpoint of pq if it is an internal edge.

(b) Edge collapse: the two endpoints of a ‘too short’ edge pq of Ttemp are merged. This operator should
be cautiously monitored: not only is it likely to degrade the quality of the representation of the
geometrical features of Ω, but it may also invalidate elements of the mesh (i.e. cause overlappings),
or provoke topologically invalid (e.g. non manifold) surface configurations.

(c) Edge swap: An edge is removed in Ttemp, and the connectivities of the mesh are updated accordingly.
The modus operandi of this operator is easy to apprehend when it is applied to 2d or 3d surface
configurations: in this case, a configuration of two triangles T1 = apq and T2 = bpq sharing the

common edge pq is simply replaced by the alternate configuration of triangles T̃1 = pab and T̃2 = qab,
sharing the edge ab (see Figure 3 (c)); however, it becomes much more combinatorial and tedious
in 3d, as regards the necessary reconnections in Ttemp (see [34, 42], or [29] for further details). In
either case, this operator too should be carefully controlled, as it may invalidate Ttemp, or degrade
the geometric features of ∂Ω.

(d) Vertex relocation: A vertex p ∈ Ttemp is relocated to an improving position p̃, leaving the connectiv-
ities of T unchanged. The choice as for the improving position p̃ depends on whether p belongs to
∂Ω or it is an internal vertex. In the former case, p̃ should lie on the continuous model Γ associated
to ∂Ω, whereas in the latter case, it is simply chosen as the centroid of the simplices sharing p as a
vertex (see however [40, 38] for other possibilities as for the relocation position).

These local remeshing operators serve different purposes: the first two ones (a) and (b) are mainly
‘sampling operators’, insofar as they make it possible to reach a desired element density in terms of a
user-defined size prescription, or of geometric approximation concerns. The last two ones (c) and (d) are
essentially quality improvement operators.

The way to combine these four operators - however completely heuristic an issue - turns out to be at least
as important as their individual performances in a remeshing algorithm. Without delving into details, here
is the outline of the global strategy which showed the best efficiency in our study.

(1) In a first stage, operations are focused on modifying Ttemp into a ‘geometric mesh’ T̃temp of D,

with respect to Ω: T̃temp may still be very ill-shaped, but it encloses a discretization of a close
8
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Figure 3. The four local remeshing operators, applied to a boundary configuration. In all
four pictures, the initial configuration is shown in black, and the final one in red: (a) split
of an edge a0a2 of a surface triangle T , (b) collapse of a boundary edge pq; (c) swap of a
boundary edge pq; (d) relocation of a vertex p to an improving position p̃.

approximation to the continuous geometric model for Ω. This stage mostly involves edge split and
collapse operations.

(2) A size map h : D → R is computed (it is actually stored at the vertices of T̃temp), which describes
the local desired size features for remeshing, based on curvature estimates at the vertices of ∂Ω, and
taking into account user-defined bounds for the minimal and maximal authorized edge lengths.

(3) The intermediate mesh T̃temp is modified into the high-quality mesh TΩ: edge splits and collapses
are performed to reach the size feature enclosed in the size map h; at first, only the configurations
which are ‘very much’ deviant from the size prescription are considered, then the criteria become
increasingly strict. These operations are intertwined with massive uses of edge swaps and vertex
relocations, whenever they help in improving the overall quality of the mesh.

Remark 3. This remeshing algorithm can serve two additional purposes, illustrations of which are provided
in the numerical examples of Section 6.

• When using the ‘classical’ level set method of [11, 66] on a fixed mesh of D, it allows the user to
obtain a mesh of the resulting optimal shape. From this point, the user could carry on a new shape
optimization procedure using the method presented here, hopefully leading to a more accurate result.

• It can produce a high-quality mesh of the final shape of the presented shape optimization process, as
a first step towards its post-processing (e.g. in reverse engineering, or when it comes to converting
it into a CAD model).

4. Accounting for shape evolution

4.1. A brief reminder of the level set method.

9



The evolution of shapes is numerically tracked while they are under implicit representation, by using the
level set method [56], originally introduced in the context of shape optimization in [11, 66].

Roughly speaking (see also [52, 59] for more details), let Ω(t) ⊂ Rd be a domain, whose motion over a
time period [0, T ] is driven by a velocity field V : [Rd → Rd. At any time t ∈ [0, T ], let also φ(t, .) be a level
set function associated to Ω(t). The motion of Ω(t) is translated in terms of φ into the following level set
advection equation:

(11)
∂φ

∂t
(t, x) + V (t, x) · ∇φ(t, x) = 0 on (0, T )× Rd.

If in addition V is consistently oriented along the normal to Ω(t), say V (t, x) = v(t, x)nΩ(t)(x), for a certain

scalar field v, where nΩ(t) =
∇φ(t,.)
|∇φ(t,.)| denotes (an extension of) the outer unit normal vector to ∂Ω(t), (11)

is best rewritten as a Hamilton-Jacobi equation:

(12)
∂φ

∂t
(t, x) + v(t, x)|∇φ(t, x)|= 0 on (0, T )× Rd.

Since in the present context the time interval (0, T ) stands for a ‘small’ generic time period between two
optimization iterates, we shall assume that the velocity does not depend on time or ‘freeze’ it at its initial
value, namely V (t, x) ≈ V (0, x) =: V (x) over [0, T ], so that (11) becomes a passive transport equation:

(13)
∂φ

∂t
(t, x) + V (x) · ∇φ(t, x) = 0 on (0, T )× Rd.

When V (t, x) = v(t, x) nΩ(t)(x) is oriented along the normal to Ω(t), another possibility consists in freezing
only the scalar field v over [0, T ], i.e. assuming v(t, x) ≈ v(0, x) =: v(x). Thus (12) becomes a passive (still
non linear) Hamilton-Jacobi equation:

∂φ

∂t
(t, x) + v(x)|∇φ(t, x)|= 0 on (0, T )× Rd,

a structure which preserves the information that the velocity has a normal direction to ∂Ω(t) at any time.
Of course, all the above transport equations are equiped with an initial condition

φ(t = 0, x) = φ0(x) for x ∈ Rd.

4.2. Resolution of the level set advection equation on an unstructured mesh.

In the present work we choose to solve (13) by the method of characteristics, following an idea of [63].
It has the advantage of being well adapted to unstructured meshes and to be unconditionally stable. The
principle of this approach (see [58]) is that, under suitable regularity and growth hypotheses on V and φ0,
the unique C1 solution φ to (13) is

(14) φ(t, x) = φ0 (X(0, t, x)) ,

where s 7→ X(s, t, x) is the characteristic curve of V passing at x at time t, defined as the solution to the
ODE:

(15)

{
dX
ds (s, t, x) = V (X(s, t, x)) for s ∈ R

X(t, t, x) = x
,

which describes the trajectory of a particle driven be the velocity field V standing at x at time t.
In the numerical setting of this paper, V and φ0 are discretized as P1 Lagrange finite element functions

on a (simplicial) mesh T of the computational domain D, and an approximation φT of the solution φ to
(13) at time t = T is sought under the same form. To achieve this, we simply mimic formula (14): φT is
computed at the vertices of T , using the following formula:

∀ vertex x ∈ T , φT (x) = φ0(X̃(0, t, x)),

where X̃(0, t, x) is a numerical approximation to X(0, t, x), provided by a numerical integration of the ODE
(15), e.g. using a first-order Euler’s method, or a more accurate Runge-Kutta scheme (see [20] for details
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about the actual implementation).

4.3. Computation of a descent direction.

From a given shape Ω ∈ Uad, a descent direction VΩ ∈ Θad for the considered objective function J(Ω) is
computed on a whole mesh TΩ of D which encloses an explicit discretization of Ω.

The generic expression (6) for the shape derivative of J suggests the immediate choice:

(16) ∀x ∈ ∂Ω, VΩ(x) = −wΩ(x) n(x).

As we have seen, vΩ depends on the solution to one or several systems of the form (1) posed on Ω, which
can be accurately solved on the submesh T ′

Ω of D by using the finite element method. Unfortunately, the
choice (16) for a descent direction turns out to be hazardous for two independent reasons:

• Formula (16) makes sense only on ∂Ω, whereas VΩ should be defined in D or at least in a vicinity of
∂Ω. This feature is imposed by the theoretical requirement that VΩ should belong to Θad, and by
the numerical setting of the level set method.

• As exemplified by Theorem 1, the scalar field wΩ generally depends on (traces of) derivatives of the
solution uΩ to (1) (and possibly on those of the adjoint state pΩ), which may lack smoothness, both
from the theoretical and numerical standpoints. This feature may endanger the numerical stability
of the process.

As advocated by [21, 43], an efficient way to address both problems at the same time consists in using as a
descent direction the gradient of J associated to a different scalar product from the canonical one of L2(Γ).

More accurately, let α > 0 be a small ‘extension - regularization’ parameter, and let us introduce the
functional space

H1
ΓD∪ΓN

(D) =
{
w ∈ H1(D), w = 0 on ΓD ∪ ΓN

}
.

Let also w̃ ∈ H1
ΓD∪ΓN

(D) be the unique solution to the variational problem (see [21] for alternative choices):

(17) ∀z ∈ H1
ΓD∪ΓN

(D),

∫

D

(w̃z + α∇w̃ · ∇z) dx = J ′(Ω)(zn)

(
=

∫

Γ

wΩz ds

)
.

Consider now the choice:

(18) ∀x ∈ D, ṼΩ(x) = −w̃(x) n(x),

where n stands for (an extension to D of ) the normal vector field to ∂Ω. Combining (17) with the asymptotic

expansion (2) shows that ṼΩ is also a descent direction for J . However, ṼΩ intrinsically enjoys more regularity
than VΩ owing to the classical regularity theory for elliptic equations, and is inherently defined on the whole
domain D.

In the numerical setting, w̃ can be easily computed by solving (17) with the classical finite element method,
performed on mesh TΩ, after wΩ has been computed. Note that the discretization of the right-hand side
in (17) is straightforward since the computational mesh TΩ encloses an explicit discretization of ∂Ω. The

(vector) velocity field ṼΩ is eventually derived once Ω has been associated a level set function φ, by using

the usual extension of the normal vector field n = ∇φ
|∇φ| . In practice we use the value of α given by 4h2 where

h is the minimal size of elements (prescribed in the remeshing process).

5. The global algorithm

Gathering the ingredients of the previous sections, we are now in a position to describe our general strat-
egy for handling mesh evolution in the context of shape optimization (see Figure 4 for an illustration).

Start with an initial shape Ω0, and a simplicial mesh TΩ0 of D in which Ω0 is explicitly discretized.

For k = 0, ... until convergence, the current shape Ωk is known via a mesh TΩk of D, a submesh T ′
Ωk of

which is a mesh of Ωk.
11



(1) Compute the value of the scalar field wΩk appearing in the shape derivative of the considered func-
tional (6). This may involve one, or several finite element analyses for solving the state (1) and
(possibly) adjoint systems, to be held on the part T ′

Ωk of the mesh TΩk corresponding to Ωk. The

quantity wΩk is defined only on ∂Ωk, i.e. in the numerically setting, on the discretization of ∂Ωk

which explicitly appears in both TΩk and T ′
Ωk .

(2) Generate the signed distance function dΩk to Ωk on the whole mesh TΩk of D.
(3) Extend wΩk to a vector field VΩk defined on the whole mesh TΩk of D, by using formula (18).
(4) Choose a descent step τk > 0, and solve the following level set advection equation on TΩk :

{
∂φ
∂t (t, x) + VΩk(x) · ∇φ(t, x) for (t, x) ∈ (0, τk)×D

φ(t = 0, x) = dΩk(x) for x ∈ D
.

This produces a new level set function φk+1 := φ(τk, .) associated to the new shape Ωk+1.
(5) Obtain the meshed representation of Ωk+1 by using the algorithm of Section 3.2 from the set of data

(TΩk , φk+1): a new mesh TΩk+1 of D is produced, which encloses a mesh T ′
Ωk+1 of Ωk+1.

(6) Evaluate J(Ωk+1). If J(Ωk+1) < J(Ωk), Ωk+1 is retained as the new shape; else Ωk+1 = Ωk. In this
last case, go back to stage (5), using a time step τk+1 < τk.

Remarks 4.

• Of course, the previous description is merely a synthetic, computationally non efficient sketch of the
proposed method; depending on the type of objective function J and its derivative, several quantities
(such as the solution uΩk to the state equation (1)) may be computed only when evaluating J(Ωk)
at step (6), then stored for further use when it comes to computing the velocity field VΩk during the
subsequent step (1).

• This strategy can also be applied to different physical models involving free or moving boundaries
[29, 64].

• In numerical practice we did not try to optimize the choice of the descent step. We content ourselves
in slightly increasing its value when the objective function is decreasing and, on the contrary, halving
it when the objective function is increasing. Note also that it sometimes helps in allowing a small
increase of the objective function.

6. Numerical examples

In this section, we present and discuss several numerical test cases, in two and three space dimensions,
to assess the interest of the proposed mesh evolution method for shape optimization and illustrate some
of its features. All the discussed computations were performed on a laptop computer (MacBook Pro, 2.66
GHz), and, unless stated otherwise, the coefficients of the elastic material at stake are set to E = 1 (Young
modulus), ν = 0.3 (Poisson ratio).

6.1. Minimization of the compliance.

For the sake of simplicity, in all this section, we assume that no body forces are applied, i.e. f = 0.

6.1.1. Two-dimensional examples.

Our first (simple) examples are concerned with the design of elastic structures with maximal rigidity. The
objective function J(Ω) is thus the compliance:

(19) J(Ω) =

∫

Ω

Ae(uΩ) : e(uΩ) dx =

∫

ΓN

g · uΩ ds,

where uΩ is the solution to (1). This objective function is of the general form (3) with j = 0, k(x, u) = g ·u on
ΓN , and k(x, u) = 0 on Γ. It is well-known that, in this case, the minimization problem for J is self-adjoint,
i.e. the adjoint pΩ involved in the expression (4) of J ′(Ω), solution to (5), is none other than pΩ = −uΩ. So
that the problem is not trivial, a volume constraint is imposed under the form of a penalization by a fixed

12



(a) (b)

(c) (d)

(e)

Figure 4. (a) The mesh TΩk of D accounting for a shape Ωk; (b) the graph of the corre-
sponding level set function φk; (c) advection of φk according to the velocity field VΩk on
TΩk ; the 0 isoline of the level set function φk+1 for the new shape Ωk+1 is shown in red and
is not yet discretized in the computational mesh; (d) explicit discretization of this 0 level
set; the obtained mesh Ttemp is very ill-shaped; (e) high-quality mesh TΩk+1 in which the
new shape Ωk+1 is discretized.
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Figure 5. (From top to bottom) Initial (with boundary conditions), 100th, 114th and final
iterations of the 2d cantilever test case. The ‘inner’ domains Ωk are displayed in yellow, and

the ‘outer’ ones D\Ωk in green. Note the ongoing topological change at the 114th iteration.

Lagrange multiplier ℓ, as explained in Remark 1.

We start with the benchmark cantilever test case: in a working domain D of dimensions 2× 1, a beam is
clamped around its top and bottom left corners, and surface loads g = (0,−1) are applied on a small area lo-
cated at the centre of its right-hand side (see the details on Figure 5). The Lagrange multiplier associated to
the volume constraint is set to ℓ = 3, and 200 iterations of the algorithm described in Section 5 are performed.
Each mesh TΩk of D arising in the course of the process has approximately 1500 vertices (and twice as many
triangles), and the whole computation takes about 3 minutes. Several intermediate shapes are displayed on
Figure 5, and the convergence history for the aggregated objective functional L(Ω) := J(Ω) + ℓ Vol(Ω) is
reported on Figure 7 (left picture). We observe that the shape has been able to change topology without
any trouble, while it is exactly meshed at each iteration of the process.

The very same strategy is applied to another benchmark example in structural optimization, namely that
of the optimal mast : in a T-shaped working domain D, of height 120, width 80 at the top and 40 at the
bottom, a mast is clamped around its bottom-left and bottom-right corners, and submitted to surface loads
g = (0,−1) around the corners on its arms (see Figure 6). Here, the Lagrange multiplier associated to
the volume constraint is set to ℓ = 1, and 100 iterations of the proposed algorithm are performed. Each
intermediate mesh has about 8000 vertices, and the whole computation takes about 5 minutes. Results are
shown on Figure 6, and the convergence history for the weighted sum of the compliance and the volume of
shapes is reported on Figure 7 (right picture).

6.1.2. A two-dimensional example using the topological derivative.

Hadamard’s boundary variation method allows to describe the evolution of shapes via deformations of
their boundaries. Theoretically speaking, the various shapes obtained in the course of such an evolution
process are all diffeomorphic to one another; in particular, they share the same topology. In numerical
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Figure 6. (From left to right) Initial (together with boundary conditions), 30th and final
iterations of the optimal mast test case.
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Figure 7. (Left) convergence history for the 2d cantilever test case, (right) convergence
history for the 2d mast test case.

practice, a small abuse in this setting allows holes to merge (in 2d), or walls to collide into handles (in 3d),
but holes can never be nucleated in the bulk parts of shapes; this results in a strong dependency of the final
design on the topology of the initial one, mostly in 2d. To circumvent this difficulty, the works [8, 22], based
on results of [37, 41, 61], proposed to add an altogether different information to the shape optimization
process, namely that of the sensitivity of a shape with respect to the nucleation of a small hole, which we
briefly outline now.

Definition 2. Let Ω be a shape, x ∈ Ω a fixed point. For ρ > 0 small enough, denote Ωρ := Ω \ (x + ρω),
where ω stands for the unit ball in Rd. A real-valued function J of the domain admits a topological derivative
DTJ(Ω)(x) at x if there exists a continuous function f : R → R, with f(0) = 0 such that the following
asymptotic expansion holds in the neighborhood of ρ = 0:

J(Ωρ) = J(Ω) +DTJ(Ω)(x) f(ρ) + o (f(ρ)) , with
o(f(ρ))

f(p)

ρ→0
−→ 0.
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Figure 8. (From left to right) Initial (together with boundary conditions), 60th and final
iterations of the 2d optimal bridge test case, taking advantage of the information supplied
by the topological derivative.

The following result, proved in [41], gives the topological derivative of the compliance.

Theorem 2. The compliance functional J(Ω) defined by (19) admits a topological derivative at any point
x ∈ Ω, given by the following formula:

DTJ(Ω)(x) =
π(λ+ 2µ)

2µ(λ+ µ)
(4µAe(uΩ) : e(uΩ) + (λ− µ)tr (Ae(uΩ)) tr (e(uΩ))) (x)

By definition, nucleating an infinitesimally small hole in a shape Ω at a point x where DTJ(Ω)(x) is
negative decreases the value of J . As proposed in [8], we couple the shape optimization method of Section 5
with a periodic use of this topological sensitivity information: every ntop iterations, the topological derivative
DTJ(Ω

k) of the actual shape Ωk is evaluated, and a small percentage (typically, we took the value of 2%)
of the elements where it is most negative are removed from Ωk.

As an example, consider the optimal bridge test case, as depicted on Figure 8: a bridge, enclosed in
a rectangle D of dimensions 2 × 1.2 is clamped around its bottom-left and bottom-right corners, and is
submitted to surface loads g = (0,−1), applied on a small region around the middle of its bottom side. The
Lagrange multiplier for the volume constraint is set to ℓ = 0.1, and 500 iterations of the aforementioned
coupling strategy are performed, with a stage of topological sensitivity analysis replacing the sensitivity
analysis using Hadamard’s method every ntop = 10 iterations. Each mesh of D has about 2500 vertices, and
the computation takes less than 10 minutes. Results are displayed on Figure 8, and the convergence history is
that of Figure 9. The convergence is not monotone because of the topological gradient steps. Conspicuously,
several holes have been nucleated in the course of evolution. Note also that the initial symmetry in the
shape has been lost. We shall repeatedly witness this phenomenon in the following (in a less spectacular
way however).

6.1.3. 3d examples.

We now turn to three-dimensional examples, still minimizing a weighted sum of compliance and volume.
Our first example is a cantilever; the computational domain D is a rectangle of dimensions 2.4× 5× 3, and
the considered shapes are clamped at their right-hand side, while being subject to surface loads, applied on
a small area near the centre of their left-hand side (see Figure 10). The Lagrange multiplier for the volume
constraint is ℓ = 0.05 and 80 iterations of the strategy presented in Section 5 are performed. Each mesh has
about 16000 vertices (thus approximately six times as many tetrahedra), and the whole computation takes
about an hour. Results are displayed on Figure 10, and the associated convergence history is reported to
Figure 13 (left picture). Note that some intermediate shapes may show dramatic stretching and that the
final shape is nevertheless very regular.

Second, consider the bridge model, depicted in Figure 11: in a working domain D of dimensions 40 ×
200 × 50, the considered shapes are clamped on two symmetric parts of their bottom side, and surface
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Figure 9. Convergence history for the 2d optimal bridge test case, using the coupling
strategy between shape and topological sensitivity analyses.

loads are applied all over their superior part. The Lagrange multiplier for the volume constraint is ℓ = 100
and 70 iterations of our algorithm are performed. The average number of vertices of the considered meshes
is 9000, an the computation takes about 45 minutes. See Figure 13 (right picture) for the convergence history.

Figure 12 exemplifies Remark 3, that the remeshing algorithm presented in Section 3.2.2 can be used
to produce a high-resolution mesh of the optimal shape: in this particular case, the final shape (or more
accurately, the last mesh of D) is enriched into a now one enjoying about 70000 vertices.

6.2. Multi-loads compliance minimization.

Still in the context of compliance minimization, we now consider several independent load cases in the
optimization process. More specifically, in the general context of Section 2, let fi ∈ L2(Rd)d, i = 1, ..., N be
N body forces, and gi ∈ H1(Rd)d be N surface loads, all of them being applied on the same non-optimizable
subset ΓN of the boundaries of shapes in Uad (of course, each gi may vanish on a different subset of ΓN ).
For any Ω ∈ Uad, denote by uΩ,i ∈ H1(Ω)d the unique solution to:





−div(Ae(u)) = fi in Ω
u = 0 on ΓD

Ae(u)n = gi on ΓN

Ae(u)n = 0 on Γ

.

As in [9], the problem of finding the most rigid shape with respect to the N load cases is expressed as that
of minimizing the sum of the individual compliances associated to each load case; the considered objective
function thus reads:

(20) J(Ω) =

N∑

i=1

∫

Ω

Ae(uΩ,i) : e(uΩ,i) dx =

N∑

i=1

(∫

Ω

fi · uΩ,i dx

∫

ΓN

gi · uΩ,i ds

)
.

As an example, we consider the optimal chair test case, as represented in Figure 14: shapes are embedded
in a box of dimensions 0.7× 0.5× 1, and submitted to two independent load case: the first one g1 = (0,−1)
is applied on the seat of the chair, and the second one g2 = (−1, 0) is applied on the back (in both cases,
no body forces are applied). Function (20) is minimized after a volume constraint has been incorporated
under the form of a fixed Lagrange multiplier ℓ = 200: 100 iterations of our algorithm are performed, for a
total computational time of approximately 90 minutes (each mesh enjoying about 11000 vertices). Results
are displayed on Figure 14 (see also Figure 15 for the convergence history).

6.3. Chaining topological and geometric optimization.
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Figure 10. (From top to bottom) Initial (with boundary conditions), 30th and final (80th)
iterations of the 3d cantilever test case. Only the boundary ∂Ωk of each shape Ωk is displayed
in the left column, and only half of the interior part of each mesh TΩk is displayed in the
right column.
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Figure 11. (From top to bottom) Initial (with boundary conditions), 30th and final (70th)
iterations of the 3d bridge test case.

Figure 12. (Left) High-resolution mesh of the final shape obtained in the 3d bridge exam-
ple, (right) zoom on the surface mesh.
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Figure 13. (Left) convergence history for the 3d cantilever test-case, (right) convergence
history for the 3d bridge test-case.

In this section, we elaborate on the first point of Remark 3 about the possibility and benefits of combining
the mesh evolution method for shape optimization of this article with the ‘classical’ level-set based structural
optimization method on a fixed mesh, as in [11, 66]. The reasons for chaining these two methods are the
following. First, the classical level-set optimization method may be faster on a structured mesh (this is
not fully obvious since the proposed mesh evolution method is performing FEM analysis only on a smaller
adapted submesh). Second, the classical level-set optimization method may have distinct features which
make it preferable for a first try. For example, when cartesian meshes are used, it may guarantee symmetric
designs. It is also quite insensitive to the complexity of the resulting optimal shapes. On the other hand, the
proposed mesh evolution method definitely yields a better evaluation of the mechanical properties since the
shapes are exactly meshed (this may be especially crucial for computing bounds on the Von Mises stress).

More precisely, we examine the following two-stage strategy for minimizing a function J(Ω):

(1) Optimization of the shape using the ‘classical’ level set method: the working domain D is endowed
with a fixed mesh T (which may be simplicial, Cartesian, etc...), and shapes Ω ⊂ D are consistently
described by a corresponding level set function φ (discretized on T ). The main source of approxi-
mation of this class of shape gradient algorithms (which is also its fundamental difference with the
method of this paper) is that no mesh of a shape Ω ⊂ D is available when it comes to performing
the necessary computation of the solution uΩ to (1) (or the adjoint state pΩ) for the derivation of a
descent direction for J . Hence, the Ersatz material approach is used, whereby the void part D \Ω is
filled with a ‘very soft’ material of Hooke’s law εA, ε ≪ 1, so that the problem (1) is approximated
by the following one, posed on D:





−div (AΩe(u)) = f in D
u = 0 on ΓD

AΩe(u)n = g on ΓN

,

where the total Hooke’s tensor AΩ is defined as:

∀x ∈ D, AΩ(x) =

{
A if x ∈ Ω
εA if x ∈ D \ Ω

.

This step ends with a temporary ‘optimal’ shape Ω̃, known as a level set function φ̃, defined on mesh
T .

(2) Optimization of the shape using the mesh evolution method: The resulting shape Ω̃ from the first step
is explicitly discretized in the computational mesh T , which produces a new mesh TΩ̃ of D in which

Ω̃ is enclosed as a submesh. From this point, the algorithm of Section 5 is applied, retaining exactly
the same parameters (loads, Lagrange multipliers, etc...) as in the first stage (except of course for
the Ersatz coefficient ε which no longer serves any purpose), and produces a new ‘optimal’ shape,
say Ω∗.
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Figure 14. (From left to right) Initial (with boundary conditions), 50th and final (100th)
iterations of the 3d optimal chair test case. To help visualization, the whole boundaries of
shapes (and not only that corresponding to the 0 level set of the evolving implicit function)
are displayed on the lower row.

To appraise this procedure, we limit ourselves to the case of the aggregated sum L(Ω) of the compliance
(19) and the volume Vol(Ω) as an objective function of the domain, and first consider the two-dimensional
cantilever example of Section 6.1.1, using the same parameters as those introduced then.

The first stage is performed on a fixed triangular mesh T of the working domain D containing 6518
vertices. The coefficient for the weak material is ε = 1.e−3, and 200 iterations of the fixed mesh level set

method are performed using FreeFem++ [55] to produce the intermediate ‘optimal’ shape Ω̃.
As for the second stage, we apply the algorithm of Section 5 for another 200 iterations, using the exact

same parameters as in the first stage. All the meshes of this second sequence have more or less 3500 vertices.
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Figure 15. Convergence history for the optimal chair test case.

Figure 16. (Top) Initial and final iterations of the 2d Cantilever test case, using the level
set method for shape optimization on a fixed unstructured mesh. The 0 level set accounting
for the shape of interest is displayed in red. (Bottom-left) The 0 level set of obtained during
the first stage is discretized into the computational mesh; (Bottom-right) final result of the
combination of both methods.

Results are displayed on Figure 16 (see Figure 17 for the convergence histories). Note that the respective

shapes Ω̃ and Ω∗ obtained at the end of stage (1) and (2) are qualitatively different, and that the final Ω∗ is

a noticeable improvement of the first ‘optimal shape’ Ω̃. Note also the non negligible gap between the values

of L(Ω̃) depending on whether it is computed by using the Ersatz material approximation or not (see Table 1).

The same strategy is applied to the 3d cantilever test case. Here, the setting of the problem is slightly
different from that of Section 6.1.3: the working domain D is now a 2 × 1 × 1 box; shapes are clamped at
their left-hand side and a point load is applied at the centre of the right-hand side.

During stage (1), D is equipped with a Cartesian mesh of size 40 × 20 × 20 (18081 vertices), and the
resulting optimal shapes are courtesy of G. Michailidis [49]. Two examples are presented, associated to
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Figure 17. Convergence histories for the shape optimization procedure performed on (left)
a fixed computational mesh, and (right) using the proposed mesh evolution procedure.

different Lagrange multipliers ℓ = 100 and ℓ = 200 for the volume constraint. Results are displayed on
Figure 18. In both cases, stage (2) converges within only ten iterations (hence, only the final values of

the objective functions are recorded in Table 1), and the intermediate ‘optimal’ shapes Ω̃ are significantly
improved (even topological changes occurred !) by the respective final ‘optimal’ shapes Ω∗. In the case
ℓ = 100 (resp. ℓ = 200), the average number of vertices of the meshes arising during stage (2) is 15000
(resp.12000).

L(Ω̃) with the Ersatz L(Ω̃) without the Ersatz L(Ω∗)

material approximation material approximation

2d Cantilever 1.41182 1.632306 1.090604

3d Cantilever, ℓ = 100 188.5576 191.876896 162.661392

3d Cantilever, ℓ = 200 259.2133 258.723087 221.106033

Table 1. Values of the objective functions at different stages of the chaining strategy of
the ‘classical’ level set method and the mesh evolution method for structural optimization.

6.4. Multi-materials compliance minimization.

In this section, we discuss a model which generalizes the framework of Section 2, namely that of multi-
phase shape optimization. Let D be a fixed working domain containing two materials, referred to as 0 and
1, with different properties reflected by their respective Hooke’s tensor A0 and A1. They occupy two smooth
subdomains Ω0 and Ω1, with Ω1 = D \Ω0, and for the sake of simplicity we assume that Ω0 does not touch
the boundary ∂D, i.e. ∂Ω0 ∩ ∂D = ∅. The domain D is clamped on a region ΓD of its boundary ∂D,
and surface loads g ∈ H1(Rd)d are applied on another subset ΓN ⊂ ∂D, disjoint from ΓD. Body forces
f ∈ L2(Rd)d are also applied and the induced displacement uΩ0 ∈ H1(D)d is the unique solution to:

(21)





−div (AΩ0e(u)) = f in D
u = 0 on ΓD

AΩ0e(u)n = g on ΓN

,

where the total Hooke’s tensor AΩ0 is defined over D as:

∀x ∈ D, AΩ0(x) =

{
A0 if x ∈ Ω0

A1 if x ∈ Ω1 .

We consider the compliance J(Ω0) of the structure as an objective function of the subdomain Ω0:

(22) J(Ω0) =

∫

D

AΩ0e(uΩ0) : e(uΩ0) dx =

∫

D

f · uΩ0 dx+

∫

ΓN

g · uΩ0 ds.

In truth, the new optimization variable is the interface Γ between the two phases, defined by Γ = ∂Ω0∩∂Ω1.
The shape derivative of (22) was computed in [12].
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Figure 18. (From top to bottom): 0 level set of the implicit function for Ω̃, associated
discretization in the mesh ofD, and final shape Ω∗, (left column) using a Lagrange multiplier
ℓ = 100, (right column) using a Lagrange multiplier ℓ = 200.

Theorem 3. The shape derivative of the compliance J defined by (22) reads

J ′(Ω0)(θ) =

∫

Γ

D(uΩ0 , uΩ0) θ · nds,

(23) D(u, u) = −σ(u)nn[e(u)nn]− 2σ(u)nτ · [e(u)nτ ] + [σ(u)ττ ] : e(u)ττ .

where Mnn, Mnτ and Mττ are the minors of a tensor field M =

(
Mττ Mτn

Mnτ Mnn

)
expressed in an orthonor-

mal basis of Rd obtained by assembling an orthonormal basis of tangent vectors τ to Γ with its normal vector
n, [·] = ·1 − ·0 denotes the jump through Γ, and σ(u) = AΩ0 e(u).

As explained in [5], this problem is very difficult to handle in a fixed mesh framework where the interface
Γ is not exactly meshed (at least without any change in the formulation). The difficulty is that formula (23)
brings into play the transmission conditions at the interface Γ, which cannot be accurately approximated
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using Lagrange finite element methods for solving (21) since the interface is merely captured but not tracked.
On the contrary, when Γ is explicitly discretized in a mesh of D, then the jump of the derivatives [e(u)nn],
[e(u)nτ ], [σ(u)ττ ] can be accurately computed by standard Lagrange finite element methods. Therefore, it is
a unique feature of our proposed method to be able to handle this type of multiphase geometric optimization
problem without any additional ingredients.

As a test case, we consider a 3d box of dimensions 40× 200× 60 as D, which is clamped around its four
bottom corners, and submitted to surface loads on a region near the center of its upper side. It is filled with
two materials: material 0 with Young modulus E0 = 1 and a weaker material 1 with E1 = 0.3 (both have
the same Poisson ratio ν1 = ν0 = 0.3). The compliance (22) of the total structure D is minimized, and a
constraint over the volume Vol(Ω0) of the stronger phase is imposed by means of a fixed Lagrange multiplier
ℓ = 0.02. After 100 iterations of our algorithm the results are displayed on Figure 19 (see also Figure 20
for the convergence history). As expected, the stronger material connects the regions where the shape is
clamped to the one where loads are applied. A portion of the stronger material at the bottom of the beam
allows it to withstand bending.

6.5. Application to worst-case design in shape optimization.

The goal of this subsection is to apply our method to a worst-case design optimization. We choose the
framework introduced in [4] to deal with the shape optimization of the worst-case compliance when ‘small’
perturbations are expected on the applied body forces to the structures.

Let us briefly outline the main ideas of this setting. Still in the context of Section 2, we now foresee
that unknown perturbations of ‘small’ amplitude m may alter the body force term f , which then becomes
(f + χξe), where:

• χ ∈ L∞(Rd) is the (known) characteristic function of the zone where perturbations are expected,
• ξ ∈ L2(Rd) is the amplitude of perturbations, which we only know to satisfy ||ξ||L2(Rd)≤ m,

• ê ∈ Rd is a unit vector (fixed for simplicity), indicating the direction of the expected perturbations.

For any perturbation term ξ ∈ L2(Rd) with ||ξ||L2(Rd)≤ m, denote as uΩ,f+χξê the solution to the perturbed
linear elasticity system: 




−div(Ae(u)) = f + χξê in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN

Ae(u)n = 0 on Γ

.

We would like to minimize the worst (maximal) possible compliance over the set of all admissible perturba-
tions. Thus we introduce the ‘worst-case’ functional J (Ω), defined by

(24) J (Ω) = sup
ξ∈L2(Rd)

||ξ||
L2(Rd)

≤m

(∫

Ω

(f + χξê) · uΩ,f+χξê dx+

∫

ΓN

g · uΩ,f+χξê ds

)
.

If the perturbation amplitude m is small, a fair approximation of J (Ω) is obtained by linearizing the
compliance

ξ 7→

(∫

Ω

(f + χξê) · uΩ,f+χξê dx+

∫

ΓN

g · uΩ,f+χξê ds

)
,

then taking the supremum of the linearized quantity over ||ξ||L2(Rd)≤ m, which can be computed explic-
itly. This leads (after some computations) to considering the following approximate worst-case functional,
hereafter denotes as J(Ω), defined by:

J(Ω) =

∫

Ω

f · uΩ dx+

∫

ΓN

g · uΩ ds+ 2m||χuΩ · ê||L2(Rd),

where uΩ := uΩ,f stands for the solution to the unperturbed system. This formula is easily put under the
general form (3).

Remark 5. Note that this problem of minimizing the worst-case compliance (24) has actually already been
addressed in [24, 44] by a completely different method, which allows to work directly with the exact worst-
case function J (Ω) given by (24) (and is thus certainly more accurate than the presented approximation).

25



Figure 19. (From top to bottom) Initial (with boundary conditions), 50th and final (100th)
iterations of the multiphase beam test case. The stronger material is the one displayed in
yellow in the right-hand column.
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Figure 20. Convergence history for the multi-material 3d Beam test case.

26



Figure 21. (Left) initial shape in the perturbed optimal mast test-case, together with
boundary conditions for the test-case; (right) a cut in the corresponding 3d mesh.

However, the above process of linearized worst-case design is easily extended to more general objective func-
tions [4].

As an illustration, consider the model of Figure 21, which is a variation of the well-known optimal mast
test case: a mast, enclosed in a T-shaped box of dimensions 40 × 80 × 126 is clamped on its bottom side,
and submitted to surface loads g = (0, 0,−1) on two areas at the extremities of its arms. Body forces in
the unperturbed state are set to f = 0, and vertical perturbations (i.e. ê = (0, 0,−1)) are expected, which
are localized on the two yellow regions on the arms. We perform 100 iterations of the proposed algorithm
for three different values of m, namely m = 0, 5, 10, using, for the sake of simplicity, the same Lagrange
multiplier ℓ = 5 in the three cases, which is then associated to different volume constraints. Each mesh
produced in the course of the process is approximately worth 12000 vertices, and the total computational
time is about 90 minutes for m = 5, 10, and less than an hour for m = 0 (since no adjoint state is involved
then). Results are reported in Figure 22, and convergence histories lie in Figure 23.

6.6. Stress criterion minimization.

Our last example is concerned with the design of structures minimizing their stress. The objective function
at stake is then:

J(Ω) =

∫

Ω

k(x)|σ(uΩ)|
2 dx,

where k ∈ L∞(Rd) is a localization factor, σ(u) := Ae(u) is the stress tensor associated to a displacement u
and |.| stands for the Frobenius matrix norm. Strictly speaking, this objective function is not of the form (3),
since it depends on the derivatives of the displacement uΩ rather than on the displacement itself. However,
the computation of its shape derivative proves very similar to that of (3) and has been performed e.g. in
[10]: it notably features an adjoint state pΩ, which differs from that involved in the test cases of section 6.5
(see[10] for details).

As an example, let us consider the 3d L-Beam test case, as depicted on Figure 24: shapes enclosed in a
L-shaped box of dimensions 2×1×2 are clamped on their upper side, and submitted to a pointwise unit load,
applied at the centre of their front side (once again, no body forces are applied). The localization factor k(x)
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Figure 22. (Upper range) optimal shapes in the perturbed optimal mast test case for
perturbations of amplitude m = 0, 5, 10; (lower range) cuts in the corresponding 3d meshes.

is chosen to be 1 everywhere, except on a small region around the application point of the load; it is thus
expected that the considered objective function does not emphasize the importance of the stress singularity
arising in the region. A volume constraint is enforced by means of a fixed Lagrange multiplier ℓ = 200, and
100 iterations of our algorithm are performed. Each mesh arising in the optimization sequence has about
17000 vertices, and the whole computation takes about 100 minutes. Results are depicted in Figure 24 (see
Figure 25 for the convergence history).
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Figure 23. Convergence histories for the robust mast test case.

Figure 24. (From top to bottom) Initial (with boundary conditions), 50th and final itera-
tions of the 3d L-Beam test case.

7. Conclusions and perspectives

In light of our numerical experience we make the following general comments on our method for dealing
with mesh evolution in shape optimization.

• The proposed method is able to handle dramatic changes in shapes (even topological changes), while
keeping an explicit mesh of them at each iteration of the evolution process. Some intermediate shapes
may show very stretched features (especially when a topological change occurs), which ineluctably are
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Figure 25. Convergence history for the 3d L-Beam test-case.

meshed with stretched elements. Surprisingly, it does not cause any trouble for solving the linearized
elasticity system although it might be more delicate for other mechanical models like geometrically
nonlinear elasticity.

• By definition the mesh is changing at each iteration. Therefore, any comparison of two sucessive
evaluations of the objective function is prone to systematic approximation errors. In some sense, it
makes our method slightly more sensitive to numerical errors than the ‘classical’ level set method,
working on a fixed mesh. This may explain the rough behavior of some of the convergence histories in
our numerical test cases. Nevertheless, it did not cause any serious trouble in the final convergence.

• It also features a greater accuracy. This is especially crucial in the case of objective functions where
an explicit discretization of the boundaries of shapes is helpful (e.g. when it comes to computing the
stress developed in shapes. This feature is also especially patent in the example of Section 6.4 where
the transmission conditions between two phases can be properly discretized since the interface is
explicitly meshed. Even for extremely simple benchmark, like the 2d minimal compliance cantilever,
Section 6.3 demonstrated that the mesh evolution method manages to improve ‘optimal’ results
produced by the fixed mesh level set method.

• The proposed method does not allow to retain the symmetry of shapes, as can be observed on several
of the above examples (however, it sometimes happens that the evolution is non symmetric, and the
final result miraculously is !). It seems very difficult to enforce any symmetry in shapes with our
fully unstructured method unless all the computations are held only on a representative subdomain,
which is replicated by symmetry to get the corresponding shape.

Eventually, we believe that, among others, the following topics could be worth some further investigations
in future works.

• As we have seen, shapes can become quite noisy at some iterations of the optimization. Therefore,
devising a process for ‘smoothing out’ shapes could prove to be of interest. As far as this issue is
concerned, at first sight, it seems easier to carry out denoising directly on the level set function (i.e.
before performing the meshing step for the associated negative subdomain).

• It is very tempting to use the proposed method in combination with a mesh adaptation process.
Actually, two different types of mesh adaptation could be considered. At first, a ‘geometrical’ mesh
adaptation method could be devised so that, during the evolution step of the level set function,
an increased resolution of the capture of the new shape is possible (see the work [30, 20] in this
direction). A different mesh adaptation method, based e.g. on a posteriori error estimates for finite
element methods [1], could be aimed at getting a sharper resolution of the linearized elasticity system
involved in the computation of a descent direction for the given objective functional.

• It is also very natural to apply this method to other models (still in the framework of shape optimiza-
tion) which could take advantage of an explicit discretization of the boundary of shapes (geometrical
constraints - e.g. minimum and maximum thickness constraints - are of this nature). Many other
mechanical problems could also benefit from the mesh evolution aspect of our method, e.g. fluid-solid
interactions.
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• Eventually, it could be worth considering a simpler, less costly, mesh deformation method in the spirit
of [15, 35, 50] for the last iterations of the optimization procedure, where shapes can be assumed to
undergo very small changes from one iteration to the next (in particular, their topology is fixed).
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is a member of the DEFI project at INRIA Saclay Ile-de-France.

References

[1] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Meths. Appl. Mech.
Engrg., 142, (1997), pp. 1–88.
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