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Abstract

We consider the problem of transmitting information reliably from a source node to a sink
node in a dynamic multihop network, in spite of the presence of Byzantine nodes. Byzantine
nodes behave arbitrarily, and can tamper with messages or forward spurious ones. Previous
work has shown that reliable communication in the presence of k Byzantine failures is possible
if and only if there are 2k + 1 node-disjoint paths from the source to the sink. However, this
result relies on Menger’s theorem (the equivalence between node cut and connectivity), which
only holds in static networks. In this paper, we prove the necessary and sufficient condition for
reliable communication in dynamic networks, where the topology can vary with time. We then
check if this condition is satisfied in several cases of study (robots moving on a grid, participants
interacting in a conference, mobile agents in the subway...) and show the interest of this multihop
approach for reliable communication in dynamic networks.

1 Introduction

As modern networks grow larger, they become more likely to fail. Indeed, nodes can be subject to
crashes, attacks, transient bit flips, etc. Many failure and attack models have been proposed, but
one of the most general one is the Byzantine model proposed by Lamport et al. [16]. The model
assumes that faulty nodes can have a totally arbitrary behavior.

In this paper, we study the problem of reliably communicating in a network despite the presence of
Byzantine faults. This is a difficult problem since a single Byzantine node, if not neutralized, can
lie to the entire network. Our objective is to design communication protocols that can prevent the
diffusion of malicious messages.

Related works. Many Byzantine-robust protocols are based on cryptography [5, 9]. In such
protocols, nodes rely on a public key infrastructure and digital signatures to authenticate the sender
across multiple hops. There are several drawbacks associated with the use of digital signatures.

First, digital signatures rely on asymmetric cryptography, which is notoriously prohibitive in terms
of computation overhead. Second, this limits scalability since, in order to be able to verify a sig-
nature, every destination must ideally store the public key of every potential source. Third, the
approach relies on the assumption that cryptographic secrets of correct nodes have not been com-
promised, which limits the strength of the Byzantine adversary. Fourth, key distribution generally
requires a trusted infrastructure which may come up as a single point of failure / attacks.
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Figure 1: Counterexample to Menger’s theorem in dynamic graphs. Black arrows represent arcs
that are present at that time. Minimal node cut is 2, whereas connectivity is 1.

In contrast, cryptography-free protocols do not have these shortcomings, but this typically comes
at the price of needing more redundancy in communication. In this paper, we aim at scalable and
totally decentralized solutions. Thus, we focus only on cryptography-free protocols.

Beginning with the seminal paper of Lamport et al. [16], many papers [1, 17, 18, 24] study agreement
and reliable communication using cryptography-free protocols in networks that are both static
and fully connected. One notable exception to fully connected topologies in Byzantine agreement
protocols is the recent work of Tseung, Vaidya and Liang [29, 30] which considers specific classes
of static directed graphs (i.e., graphs with a particularly high clustering coefficient) and considers
approximate and iterative protocols.

Two notable classes of algorithms use some locality property to tolerate Byzantine faults: space
local and time local algorithms. Space local algorithms [20, 25, 28] try to contain the fault (or
its effect) as close to its source as possible. This is useful for problems where information from
remote nodes is unimportant (such as vertex coloring, link coloring, or dining philosophers). Time
local algorithms [19, 13, 12, 11, 10] try to limit over time the effect of Byzantine faults. Time
local algorithms presented so far can tolerate the presence of at most a single Byzantine node, and
are unable to mask the effect of Byzantine actions. Thus, neither approach is suitable to reliable
communication.

A first line of work assumes that there is a bound on the fraction of Byzantine nodes among the
neighbors of each node. Protocols have been proposed for nodes organized on a lattice [15, 2].
These results were later generalized to other topologies [27], assuming that each node knows the
global topology. However, this approach requires that all nodes have a large degree, which is not
always available.

Yet another line of work considers a uniform random distribution of Byzantine failures [21, 23, 22].
This model is realistic provided that one can assume independent nodes failures. Additionally,
the assumption seems also valid for some structured overlay networks. The identifier of a new
node joining the network is assigned randomly: Byzantine nodes are thus randomly located in the
overlay.

Previous works on the same topic. It was shown that, for reliable communication in the
presence of up to k Byzantine failures, it is necessary and sufficient to have 2k + 1 node-disjoint
paths from the source to the sink [7, 8, 26]. A first solution assumes that each nodes knows the
global network topology [7]. A second solution relaxes that assumption, but only tolerates a single
Byzantine fault [26].

However, these results assume a static network: the topology always remains the same. It implic-
itly relies on Menger’s theorem [3] which ensures the equivalence between minimal node-cut and
connectivity. In this paper, we consider a strongly dynamic model of network [4], where only a few
communication channels may be available at any given time.

Unfortunately, Menger’s theorem cannot be generalized to this model of network [14]. A simple
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counterexample is given in Figure 1. In this network, the minimal node cut is 2, meaning that at
least two nodes must be removed in order to disconnect the source from the sink. However, since
the connectivity is only 1, it is impossible to find two node-disjoint paths between the source and
the sink. Therefore, we can only reason in terms of node cuts to solve this problem in dynamic
networks.

Our contribution. In this paper, we consider a dynamic network subject to up to k Byzantine
failures. We prove the necessary and sufficient condition for reliable communication between two
given nodes (Theorem 1). To prove the sufficient condition, we provide a general Byzantine-resilient
broadcast protocol.

In a second part, we apply this condition to several cases of study: robots moving on a grid,
participants interacting in a conference, mobile agents in the subway... In both deterministic and
probabilistic cases, we show that this multihop solution enables an important gain of performances
compared to the basic solution (waiting that the source meets the sink).

Organization of the paper. The paper is organized as follows. In Section 2, we present the
model and give basic definitions. In Section 3, we describe our Byzantine-resilient broadcast pro-
tocol, then prove the necessary and sufficient condition for reliable communication. We present
deterministic cases of study in Section 4, and probabilistic cases of study in Section 5. Section 6
concludes the paper.
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2 Preliminaries

In this section, we present the network model, state our hypotheses and give some definitions.

2.1 Network model

We consider a continuous temporal domain R+ in which dates are positive real numbers. We
model the system as a time varying graph, as defined by Casteigts, Flocchini, Quattrociocchi and
Santoro [4], in which vertices represent the processes and edges the communication links. A time
varying graph is a dynamic graph represented by a tuple G = (V,E, ρ, ζ) where:

• V is the set of nodes.

• E ⊆ V × V is the set of edges.

• ρ : E × R+ → {0, 1} is the presence function: ρ(e, t) = 1 indicates that edge e is present at
date t.

• ζ : E × R+ → R+ is the latency function: ζ(e, t) = T indicates that a message sent at date t
takes T time units to cross edge e.

Note that the discrete time model is simply a special case, where time and latency have restricted
to integer values.

2.2 Hypotheses

We make the same hypotheses as in previous work on the subject [15, 2, 27, 21, 23, 22, 7, 26]:

• Each node has a unique identifier.

• We assume authenticated channels (or oral model), that is, when a node q receives a message
through channel (p, q), it knows the identity of p.

• An omniscient adversary can select up to k nodes as Byzantine. These nodes can then have
a totally arbitrary and unpredictable behavior defined by the arbitrary, including tampering
or dropping messages, or simply crashing.

• Other nodes are correct and behave as specified by the algorithm. Correct nodes are unable
to know a priori which nodes are Byzantine.

2.3 Definitions

First, let us define the notion a dynamic path. Informally, a dynamic path is a sequence of nodes
along which a message can broadcast, with regards to the dynamicity of the network.

Definition 1 (Dynamic path). A sequence of distinct nodes (u1, . . . , un) is a dynamic path from
u1 to un if and only if there exists a sequence of dates (t1, . . . , tn) such that, ∀i ∈ {1, . . . , n− 1} we
have that

• ei = (ui, ui+1) ∈ V : there exists an edge connecting ui to ui+1.

• ∀t ∈ [ti, ti + ζ(ei, ti)], ρ(ei, t) = 1: ui can send a message to ui+1 at date ti.

• ζ(ei, ti) ≤ ti+1 − ti: the aforementioned message is received at date ti+1.
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Now, let us define the following sets and values:

• Let Dyn (p, q) be the set of nodes {u1, . . . , un} such that (p, u1, . . . , un, q) is a dynamic path.

• For a multiset of node sets Ω = {S1, . . . , Sn}, let Cut (Ω) be a set of nodes C such that,
∀i ∈ {1, . . . , n}, C ∩ Si 6= ∅ (C contains at least one node from each set Si).

• Let MinCut (Ω) = minC∈Cut(Ω) card(C) (the size of the smallest element of Cut (Ω)). If
Cut(Ω) is empty, we assume that MinCut (Ω) = +∞.

• Let MinCut (p, q) = MinCut (Dyn (p, q)).

The local topology of a node u at a given date t is the set of nodes v such that ρ((u, v), t) = 1.

We say that a node multicasts a message m when it sends m to all nodes in its current local
topology. We say that a node u accepts a message m from v when it considers that v is the author
of this message.

At last, let us define the notion of reliable communication.

Definition 2 (Reliable communication). Let p and q be two correct nodes. We say that an algorithm
ensures reliable communication from p to q when the following two conditions are satisfied:

• When q accepts a message from p, p is necessarily the author of this message.

• When p sends a message, q eventually receives and accepts this message from p.

3 Our algorithm

In this section, we describe our Byzantine-resilient broadcast protocol. This algorithm is used to
prove the sufficient condition for reliable communication. Then, in 3.4, we prove the necessary and
sufficient condition for reliable communication between two correct nodes.

3.1 Informal description

Consider that each correct node p wants to broadcast a message m0 to the rest of the network.
Let us first discuss why a naive solution fails. A naive first idea would be to send a tuple (p,m0)
through all possible dynamic paths: thus, each node receiving this message knows that p broadcast
m0.

In our settings however, some nodes are Byzantine, and can forward false messages. For instance,
a Byzantine node could forward the tuple (p,m1), with m1 6= m0, to make the network believe that
p broadcast m1.

To prevent this from happening, instead of using tuples (p,m0), we use tuples (p,m, S), where S is
a set of nodes visited by this message. A node accepts a message when it has been received through
a collection of dynamic paths that cannot be cut by k nodes. The sufficient condition for reliable
communication is demonstrated in Lemma 2 (see appendix).

Nesterenko and Tixeuil [26] proposed an algorithm for reliable communication in the presence of a
single Byzantine fault and in static networks. Our algorithm extends this algorithm as follows.

• While the NT09 algorithm [26] can only tolerate a single Byzantine fault, ours can tolerate
up to k Byzantine faults, where k is a parameter of the system.

• Our algorithm can handle dynamic topology updates.
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• While the NT09 algorithm [26] checks if the received paths are disjoint, our algorithm checks
the minimal cut on these paths.

Note that, although the NT09 algorithm [26] was designed for topology discovery in static networks,
it can also be used for reliable broadcast: each node broadcasts the identifier of its neighbors, but
it could also broadcast arbitrary information.

3.2 Variables

Each correct node u contains the following variables:

• u.m0, the message that u wants to broadcast.

• u.Ω, a dynamic set registering the tuples (s,m, S) received by u.

• u.Acc, a dynamic set of confirmed tuples (s,m). When we have (s,m) ∈ u.Acc, u accepts m
from s.

Initially, u.Ω = {(u, u.m0, ø)} and u.Acc = {(u, u.m0)}.

3.3 Description of the algorithm

Each correct node u obeys the 3 following rules:

1. Initially, and each time u.Ω or the local topology change: multicast u.Ω.

2. When Ω′ is received through a channel (v, u): ∀(s,m, S) ∈ Ω′, if v /∈ S append (s,m, S ∪{v})
to u.Ω.

3. When there exist s, m and {S1, . . . , Sn} such that ∀i ∈ {1, . . . , n}, (s,m, Si ∪ {s}) ∈ u.Ω and
MinCut ({S1, . . . , Sn}) > k: append (s,m) to u.Acc.

3.4 Condition for reliable communication

Let us consider a given dynamic graph, and two given correct nodes p and q.

Theorem 1. We can ensure k-Byzantine tolerant reliable communication from p to q if and only
if MinCut (p, q) > 2k.

Proof. We prove the necessary condition in Lemma 1, and the sufficient condition in Lemma 2.

Lemma 1 (Necessary condition). Let us suppose that there exists an algorithm ensuring reliable
communication from p to q. Then, we necessarily have MinCut (p, q) > 2k.

Proof. Let us suppose the opposite: there exists an algorithm ensuring reliable communication
from p to q, and yet, MinCut (p, q) ≤ 2k. Let us show that it leads to a contradiction.

As we have MinCut (p, q) = MinCut (Dyn (p, q)) ≤ 2k and MinCut (Dyn (p, q)) = minC∈Cut(Dyn(p,q))

card(C), there exists an element C of Cut (Dyn (p, q)) such that card(C) ≤ 2k. Let C1 be a sub-
set of C containing k′ elements, with k′ = min(k, card(C)). Let C2 = C − C1. Thus, we have
card(C1) ≤ k and card(C2) ≤ k.
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According to the definition of Cut (Dyn (p, q)), C contains a node of each possible dynamic path
from p to q. Therefore, the information that q receives about p are completely determined by the
behavior of the nodes in C.

Let us consider two possible placements of Byzantine nodes, and show that they lead to a contra-
diction:

• First, suppose that all nodes in C1 are Byzantine, and that all other nodes are correct. This
is possible since card(C1) ≤ k.

Suppose now that p broadcasts a message m. Then, according to our hypothesis, since the
algorithm ensures reliable communication, q eventually accepts m from p, regardless of what
the behavior of the nodes in C1 may be.

• Now, suppose that all nodes in C2 are Byzantine, and that all other nodes are correct. This
is also possible since card(C2) ≤ k.

Then, suppose that p broadcasts a message m′ 6= m, and that the Byzantine nodes have
exactly the same behavior as the nodes of C2 had in the previous case.

Thus, as the information that q receives about p is completely determined by the behavior
of the nodes of C, from the point of view of q, this situation is indistinguishable from the
previous one: the nodes of C2 have the same behavior, and the behavior of the nodes of C1

is unimportant. Thus, similarly to the previous case, q eventually accepts m from p.

Therefore, in the second situation, p broadcasts m, and q eventually accepts m′ 6= m. Thus,
according to Definition 2, the algorithm does not ensure reliable communication, which contradicts
our initial hypothesis. Hence, the result.

Lemma 2 (Sufficient condition). If MinCut (p, q) > 2k, our algorithm ensure reliable communica-
tion from p to q.

Proof. Let us suppose that the correct nodes follow our algorithm, as described in Section 3.

• According to Lemma 3, if (p,m) ∈ q.Acc, then m = p.m0. Thus, when q accepts a message
from p, p is necessarily the author of this message.

• According to Lemma 4, we eventually have (p, p.m0) ∈ q.Acc. Thus, q eventually receives
and accepts the message broadcast by p.

Therefore, according to Definition 2, our algorithm ensures reliable communication from p to q.

Lemma 3 (Safety). Let us suppose that the correct nodes follow our algorithm. If (p,m) ∈ q.Acc,
then m = p.m0.

Proof. As (p,m) ∈ q.Acc, according to rule 3 of our algorithm, there exists {S1, . . . , Sn} such that,
∀i ∈ {1, . . . , n}, (p,m, Si ∪ {p}) ∈ q.Ω, and MinCut ({S1, . . . , Sn}) > k.

Suppose that each node set S ∈ {S1, . . . , Sn} contains at least one Byzantine node. If C is the
set of Byzantine nodes, then C ∈ Cut ({S1, . . . , Sn}) and card(C) ≤ k. This is impossible because
MinCut ({S1, . . . , Sn}) > k. Therefore, there exists S ∈ {S1, . . . , Sn} such that S does not contain
any Byzantine node.

Now, let us use the correct dynamic path corresponding to S to show that m = m0.

Let n′ = card(S ∪ {p}). Let us show the following property Pi by induction, ∀i ∈ {0, . . . , n′}:
there exists a correct node ui and a set of correct nodes Xi such that (p,m,Xi) ∈ ui.Ω and
card(Xi) = card(S ∪ {p})− i.
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• As S ∈ {S1, . . . , Sn}, (p,m, S∪{p}) ∈ q.Ω. Thus, P0 is true if we take u0 = q andX0 = S∪{p}.

• Let us suppose that Pi+1 is true, for i < n′. As (p,m,Xi) ∈ ui.Ω, according to rule 2 of
our algorithm, it implies that ui received Ω′ from a node v, with (p,m,X) ∈ Ω′, v /∈ X and
Xi = X ∪ {v}. Thus, card(X) = card(Xi)− 1 = card(S ∪ {p})− (i+ 1).

As v ∈ Xi and Xi is a set of correct nodes, v is correct and behaves according to our algorithm.
Then, as v sent Ω′, according to rule 1 of our algorithm, we necessarily have Ω′ ⊆ v.Ω. Thus,
as (p,m,X) ∈ Ω′, (p,m,X) ∈ v.Ω. Thus, Pi+1 is true if we take ui+1 = v and Xi+1 = X.

Therefore, Pn′ is true. As card(Xn′) = 0, Xn′ = ø and (p,m, ø) ∈ un′ . As un′ is a correct node and
follows our algorithm, the only possibility to have (p,m, ø) ∈ un′ .Ω is that un′ = p and m = p.m0.
Thus, the result.

Lemma 4 (Communication). Let us suppose that MinCut (p, q) > 2k, and that the correct nodes
follow our algorithm. Then, we eventually have (p, p.m0) ∈ q.Acc.

Proof. Let {S1, . . . , Sn} be the set of node sets S ∈ Dyn (p, q) that only contain correct nodes. Let
{X1, . . . , Xn′} be the set of node sets X ∈ Dyn (p, q) that contain at least one Byzantine node.

Let us suppose that MinCut ({S1, . . . , Sn}) ≤ k. Then, there exists C ∈ Cut ({S1, . . . , Sn})
such that card(C) ≤ k. Let C ′ be the set containing the nodes of C and the Byzantine nodes.
Thus, and C ′ ∈ Cut ({S1, . . . , Sn} ∪ {X1, . . . , Xn′}) = Cut (Dyn (p, q)), and card(C ′) ≤ 2k. Thus,
MinCut (Dyn (p, q)) ≤ 2k, which contradicts our hypothesis. Therefore, MinCut ({S1, . . . , Sn}) >
k.

In the following, we show that ∀S ∈ {S1, . . . , Sn}, we eventually have (p, p.m0, S ∪ {p}) ∈ q.Ω,
ensuring that q eventually accepts p.m0 from p.

Let S ∈ {S1, . . . , Sn}. As S ∈ Dyn (p, q), let (u1, . . . , uN ) be the dynamic path such that p =
u1, q = uN and S = {u2, . . . , uN−1}. Let (t1, . . . , tN ) be the corresponding dates, according to
Definition 1. Let us show the following property Pi by induction, ∀i ∈ {1, . . . , N}: at date ti,
(p, p.m0, Xi) ∈ ui.Ω, with Xi = ø if i = 1 and {u1, . . . , ui−1} otherwise.

• P1 is true, as we initially have (p, p.m0, ø) ∈ p.Ω.

• Let us suppose that Pi is true, for i < N . According to Definition 1, ∀t ∈ [ti, ti + ζ(ti, ui)],
ρ(ei, t) = 1, ei being the edge connecting ui to ui+1.

– Let tA ≤ ti be the earliest date such that, ∀t ∈ [tA, ti + ζ(ti, ui)], ρ(ei, t) = 1.

– Let tB ≤ ti be the date where (p,m,Xi) is added to ui.Ω.

– Let tC = max(tA, tB).

Then, at date tC , either ui.Ω or the local topology topology of ui changes. Thus, according
to rule 1 of our algorithm, ui multicasts Ω′ = ui.Ω at date tC , with (p, p.m0, Xi) ∈ Ω′.

As ζ(ei, ti) ≤ ti+1− ti ≤ ti+1− tC , ui+1 receives Ω′ from ui at date tC + ζ(ei, ti) ≤ ti+1. Then,
according to rule 2 of our algorithm, (p, p.m0, Xi ∪ {ui}) is added to ui+1.Ω.

Thus, Pi+1 is true if we take Xi+1 = Xi ∪ {ui}.

Therefore, PN is true. As u1 = p, XN = {u1, . . . , uN−1} = S ∪ {p}, and we eventually have
(p, p.m0, S ∪ {p}) ∈ q.Ω.

Thus, ∀S ∈ {S1, . . . , Sn}, we eventually have (p, p.m0, S∪{p}) ∈ q.Ω. Then, as MinCut ({S1, . . . , Sn}) >
k, according to rule 3 of our algorithm, (p, p.m0) is added to q.Acc.
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Figure 2: Case of study: dynamic network for n = 4

4 Deterministic cases of study

In this section, we apply our condition for reliable communication to deterministic cases of study.
We study a simple theoretical network (see 4.1), then a real-life network that corresponds to the
interactions of participants in a conference (see 4.2).

4.1 Theoretical network

Let n > 0, and let (p1, . . . , pn) and (q1, . . . , qn) be two sequences of nodes. We consider a dynamic
network where, at date t ∈ {0, 1, 2, . . . }, pi is connected to qi+t mod n. This is illustrated in Figure 2.

Theorem 2. In the aforementioned network, to ensure reliable communication from any correct
node to any correct node, it is necessary and sufficient that n > 2k and t ≥ 2k + n− 1.

Proof. Let P = {p1, . . . , pn} and Q = {q1, . . . , qn}. Let u and v be two nodes.

• If u ∈ P and v ∈ Q, let i and d be such that u = pi and v = qi+d mod n. Thus, MinCut(u, v) =
0 if t < d, and +∞ otherwise. Same thing if u ∈ Q and v ∈ P (by symmetry).

• If u ∈ Q and v ∈ Q, let i and d be such that u = qi and v = qi+d mod n. Thus, MinCut(u, v) =
0 if t < d, and min(t− d+ 1, n) otherwise. Same thing if u ∈ P and v ∈ P (by symmetry).

Thus, as the maximal value of d is n − 1 (for instance, if u = q1 and v = qn), m = min(u,v)∈V×V
MinCut(u, v) = 0 if t < n− 1, and min(t− n+ 2, n) otherwise.

According to Theorem 1, to ensure reliable communication from any correct node to any correct
node, it is necessary and sufficient that m > 2k.

First, let us show that the condition of Theorem 2 is necessary. Let us suppose the opposite: n ≤ 2k
or t < 2k + n− 1, and m > 2k. If n ≤ 2k, as m ≤ n, m ≤ 2k: contradiction. If t < 2k + n− 1 and
k = 0, t < n− 1 and m = 0: contradiction. Thus, the condition is necessary.

Now, let us show that the condition of Theorem 2 is sufficient. As t ≥ 2k + n − 1 ≥ n − 1,
m = min(t − n + 2, n). Besides, as t ≥ 2k + n − 1, t − n + 2 ≥ 2k. Thus, as n > 2k, we have
m > 2k, and the condition is sufficient.

In particular, at t = 2n, we can tolerate roughly one fourth of Byzantine nodes.
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Figure 3: Reliable communication between 10 nodes of the Infocom 2005 dataset

4.2 Real-life network: the Infocom 2005 dataset

We consider the Infocom 2005 dataset [6], which is obtained in a conference scenario by iMotes
capturing contacts between participants. This dataset can represent a dynamic network where each
participant is a node.

We consider a 8-hour period of the second day of conference. On this period, we consider the
dynamic network formed by the 10 more “sociable” nodes (our criteria of sociability is the total
number of contacts initiated). We assume that one on these nodes may be Byzantine (k = 1).

Let p and q be two nodes. Let us suppose that p wants to transmit a message to q within a period
of 10 minutes. After 10 minutes, three types of communication can be achieved:

• Simple communication: there exists a dynamic path from p to q.

• Reliable communication: the condition for reliable communication from p to q is satisfied.

• Direct communication: p meets q directly.

If we want to ensure reliable communication despite one Byzantine node, the simplest strategy
is to wait that p meets q directly. Let us show that our approach enables a significant gain of
performance.

On Figure 3, we represented the percent of pairs of nodes (p, q) that communicate within 10
minutes, varying the date of beginning of the communication. We observe several peaks that can
be correlated with morning arrivals, lunch and afternoon break. It appears that many pairs of
nodes that do not meet directly achieve reliable communication. At t = 1.5 hours, for instance, all
pairs of nodes communicate reliably, whereas only two thirds communicate directly.

5 Probabilistic cases of study

In this section, we apply our condition for reliable communication to probabilistic cases of study.
We study a network of robots moving on a grid (see 5.1), then a network of mobile agents moving
in the subway (see 5.2).

5.1 Robots moving on a grid

We consider a network of 10 mobile robots randomly scattered on a square grid.

Definition 3 (Grid). An N ×N grid is a topology such that:

• Each vertex has a unique identifier (i, j), with 1 ≤ i ≤ N and 1 ≤ j ≤ N .

• Two vertices (i1, j1) and (i2, j2) are neighbors if and only if: |j1 − j2|+ |i1 − i2| = 1
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Figure 5: Probability to satisfy the condition
for reliable communication (10× 10 grid)

At each time unit, a robot randomly moves to a neighbor vertex, or does not move (each new
position has the same probability to be chosen). Let position(u, t) be the current vertex of the
robot u at date t. Two robots can communicate if and only if they are on the same vertex. We thus
have the following dynamic graph G = (V,E, ρ, ζ): V = {u1, . . . , u10}, E = V × V , ρ((u, v), t) = 1
when position(u, t) = position(v, t) and ζ((u, v), t) = 0.

Let p and q be two correct robots, and suppose that up to k other robots are Byzantine. We would
like to evaluate the communication time, that is: the mean time to have MinCut (p, q) > 2k (the
condition for reliable communication established in Theorem 1). For this purpose, we ran a large
number of simulations, and represented the results on Figure 4, 5, 6 and 7. Let us comment on
these results.

• Figure 4 represents the mean communication time on a 10 × 10 grid, for all possible values
of k. This time first increases with k, then stabilizes for k > 3. Indeed, for k > 3, due to the
number of robots, the condition MinCut (p, q) > 2k is satisfied if and only if p and q are on
the same vertex: reliable multihop communication is impossible.

• Figure 5 represents the probability to satisfy the condition on a 10 × 10 grid, varying the
time. As expected, this probability decreases with k. We also notice that this probability
first increases linearly.

• In Figure 6, we represented the mean communication time varying the number of robots. With
only 2 robots, we must wait that the source meets the sink directly. However, when the number
of robots increases, multihop communication becomes more and more interesting. Also, we
notice that each time we add 2 robots, it becomes possible to tolerate one more Byzantine
failure in multihop communication. This illustrates the condition MinCut (p, q) > 2k.

• At last, we studied the influence of the size of the grid. We noticed that the mean communi-
cation was roughly proportional to the number of vertices of the grid (which is N2 for a grid
of width N). In Figure 7, we represented the ratio between the communication time and the
number of vertices. This value seems to converge, or at least to increase very slowly with the
size of the grid.

As we can see, this multihop approach for reliable communication can be an interesting compromise.
For instance, let us consider a 10× 10 grid. The basic communication time is 63 time units. Now,
let us suppose that we want to tolerate one Byzantine failure. If we wait for the source to meet
directly with the sink, the mean communication times increases by 194%. If we use our algorithm,
the increase is only by 81%.
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Figure 9: Probability to satisfy the condition
for reliable communication (subway)

5.2 Mobile agents in the subway

We consider a network of 10 mobile agents moving in the parisian subway.

The agents can use the classical subway lines (we exclude tramways and regional trains). Each
agent is initially located at a randomly chosen junction station – that is, a station that connects
at least two lines. Then, it randomly choses a neighbor junction station, waits for the next train,
moves to this station, and repeats the process. We use the train schedule provided by the local
subway company (http://data.ratp.fr). The time is given in minutes from the departure of the first
train (i.e., around 5:30 AM).

We consider that two agents can communicate in the two following cases:

• They are staying together at the same station.

• They cross each other in trains. For instance, if at a given time, one agent is in a train moving
from station A to station B while the other agent moves from B to A, then we consider that
they can communicate.

We provide the same plots as in 5.1: the mean communication time (see Figure 8). and the
probability to satisfy the condition for reliable communication (see Figure 9). The results are very
similar to those of 5.1, which suggests that the topology used for the simulations has only a minor
qualitative influence.

The basic communication time is of 131 minutes. Again, let us suppose that we want to tolerate
one Byzantine failure. If we wait for the source to meet the sink directly, the mean communication
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time increases by 174%. If we use our algorithm, it increases only by 75%, which shows that there
is a benefit in terms of latency.

6 Conclusion

In this paper, we gave the necessary and sufficient condition for reliable communication in a dynamic
network, for a given number of Byzantine failures. We then showed the interest of this multihop
approach for reliable communication in several cases of study.

To go further, note that our result implicitly considers a worst-case placement of k Byzantine nodes,
which is the classical approach to study Byzantine faults. However, an interesting problem would
be to obtain the necessary and sufficient condition for reliable communication for a given set of
Byzantine nodes. Such a result would have interesting probabilistic applications. For instance, if
each node has a given probability to be Byzantine, we could precisely determine the probability to
achieve reliable communication between two nodes.
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