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(Dated: February 3, 2014)

In order to simulate the exact universal density functional, approximations are nowadays con-
structed by permitting more flexibility in its ansatz. In view of the difficulty of defining a systemat-
ically improvable form for it, this paper argues that an alternative way could be considered. It falls
within the class of hybrid functionals with multi-determinant wave functions. The parameter con-
trolling the hybridization is considered as variable. The invariance of the exact result with respect
to changes in this variable is used to introduce information about the system under consideration,
and to correct the density functional result. The construction considered in this paper accelerates
convergence from the model system to the physical one, in the vicinity of the latter. The method,
at the present level of implementation, should be seen as a starting point for further development,
and not necessarily as a computationally advantageous tool.

INTRODUCTION

The celebrated Hohenberg and Kohn paper [1] sug-
gested that there was a systematic way of going beyond
the local density approximation by using a gradient ex-
pansion. However, it turned out quickly that the first
correction, the gradient expansion approximation, did
not produce an improvement [2]. It took more than a
decade to make progress, using generalized gradient ex-
pansions [3], and even more to arrive at hybrid meth-
ods [4]. Presently, the wide-spread strategy to improve
density functionals is to use parameters (as a rule fitted
on experimental data), and validate the newly produced
functional by comparing the result with large sets of ex-
perimental reference data. The initial goal of a method
providing a systematic improvement has thus been trans-
formed into that of finding a more flexible ansatz that
hopefully approaches the exact functional.

The aim of the present paper is less ambitious, in
the sense that no approximation for the universal den-
sity functional is searched. However, it retains a density
functional approximation as a starting point, and tries to
improve on it systematically. Whether such an approach
can lead to a practical method needs yet to be shown.

The approach considered in this paper consists in the
following steps:

1. construct a model Hamiltonian, using a hybrid den-
sity functional approximation,

2. calculate the energy of this model system, and its
first derivative with respect to a parameter defining
the hybridization,

3. make an estimate of the correction to the density
functional approximation using the first derivative.

This sequence can be continued by either using higher
derivatives, or by considering new values of the parame-
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ter. Thus, an improvement is achieved by adding more
information of the specific system under study, that can
be provided by the family produced by the variation of
the parameter of the model.

The structure of the paper is the following. First, the
method is described. Next, some simple numerical ex-
amples are given. Finally, other similar approaches are
mentioned.

The central result of the paper is given by the equations
24 and 25.

METHOD

Model Hamiltonian from density functional
calculation

In hybrid density functional calculations, the ground
state energy is computed via:

E0 = min
Ψ

(〈Ψ|T + Vne +W (µ)|Ψ〉+ Ēhxc[nΨ, µ]) (1)

T is the operator for the kinetic energy, Vne is the local
one-particle operator for external potential (for the in-
teraction between electrons and nuclei), and W is a local
two-particle operator. Ēhxc is an approximation to the
universal Hartree-exchange-correlation functional, calcu-
lated from the density n. The subscript to n indicates
that is obtained from the N -electron wave function Ψ.
Notice the presence of the parameter µ. As W depends
on it, Ēhxc depends not only on n, but also on µ.

In the Kohn-Sham method, W = 0. In the present
formalism, as one considers W 6= 0, the minimizing wave
function Ψ gets a multi-determinant character. For prac-
tical applications it will be important to use such forms
of W that do not introduce large errors when only a
few determinants are used. For example, already a weak
interaction can switch on the coupling between nearly
degenerate states of the non-interacting system. In this
paper, Ψ has, for W 6= 0, multi-determinant character,
although in literature the term “hybrid” is often used for
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the approximation in which Ψ is described by a single
Slater determinant.

The stationarity condition with normalization con-
straint for Ψ gives a Schrödinger equation:

H(µ)Ψ(µ) = E(µ)Ψ(µ) (2)

The eigenfunction Ψ(µ) is the solution to the minimiza-
tion problem eq 1. The Hamilton operator

H(µ) = T + V (µ) +W (µ) (3)

contains a local one-particle operator,

V (µ) = Vne +

N∑
i

vhxc(ri, µ) (4)

the local potential vhxc being obtained from a functional
derivative,

vhxc(r, µ) = δĒhxc[n, µ]/δn(r) (5)

In the following, it will be assumed that W → 0 for
µ → 0, and that W → Vee, the electron-electron inter-
action, when µ → ∞. A correctly constructed approx-
imation Ēhxc vanishes when µ → ∞, and in this limit,
E0 becomes the exact ground state energy. Please notice
that the model system described by the above Hamilto-
nian also produces excited states, and that in the limit
µ→∞ these become the exact excited states.

For exemplification,

W (µ) =
∑
i<j

erf(µrij)/rij (6)

is used in this paper; rij is the distance between electrons.
A local density approximation (µ-dependent LDA [5–7])
is used for the exchange-correlation functional.

Improving the estimate of the exact energy

As the potential V (µ) is known once an approximation
was chosen for Ēhxc (eqs 4, 5), we can assume that E(µ),
eq 2, can be obtained accurately. For example, for W =
0 (in a Kohn-Sham calculation using some approximate
exchange-correlation potential) it is simply a sum over
occupied orbital eigenvalues. As E(µ) is, in general, not
equal to the exact energy, E(∞), a correction

Ē(µ) = E(∞)− E(µ) (7)

is needed. The correction given by the density functional
approximation,

Ē(µ) = E0 − E(µ) (8)

= Ēhxc[nΨ(µ), µ]−
∫
d3r n(r)vhxc(r, µ) (9)

Ē(µ) is only an estimate of Ē(µ) because Ēhxc used in
eq 1 is not exact.

We discuss now how to obtain some information about
the correction, Ē(µ), without using the density functional
approximation Ēhxc for it. We choose to make the correc-
tion accurate for large, but finite µ by using the derivative
of Ē(µ) with respect to µ, Ē′(µ). We first notice that the
Hellmann-Feynman theorem permits a relatively cheap
accurate determination of E′(µ) without re-computing
Ψ(µ),

E′(µ) = 〈Ψ(µ)|∂µV (µ) + ∂µW (µ)|Ψ(µ)〉 (10)

Second, we notice that E(µ) + Ē(µ) = E(∞) does not
depend on µ, and thus, although Ē(µ) is not known,
accurate information about Ē′(µ) is available through
the derivative of E(µ) with respect to µ, E′(µ),

E′(µ) + Ē′(µ) = 0 (11)

We can gain in accuracy if we posses information about
the behavior of Ē(µ). For example, assume that around
a given µ, we know how the exact correction behaves,

Ē(µ) = cf(µ) + . . . (12)

where f is a known function, and the constant c is
system-dependent. In particular, we not only know that
for W of eq 6, at large µ, Ē(µ) vanishes, but also know
the decay rate with µ (see, e.g., [5, 8, 9]),

Ē(µ) = cµ−2 +O(µ−3) (13)

We now use the derivative of Ē(µ) with respect to µ,

Ē′(µ) = cf ′(µ) + . . . (14)

to extract the coefficient c = Ē′(µ)/f ′(µ), and obtain [10]

Ē(µ) =
f(µ)

f ′(µ)
Ē′(µ) + . . . (15)

For our specific example, W of eq 6, at large µ,

Ē′(µ) = −2cµ−3 +O(µ−4) (16)

and

Ē(µ) = −1

2
µĒ′(µ)+O(µ−3) =

1

2
µE′(µ)+O(µ−3) (17)

where eq 11 has been used for the last equality.
Let us now consider the behavior at large µ when ap-

proximations are used, Ē(µ → ∞), eq 9. For our choice
of interaction, eq 6, we know that the correction to the
electron-electron interaction term,

〈Ψ(µ→∞)|Vee −W (µ→∞)|Ψ(µ→∞)〉

is proportional to

µ−2〈Ψ(∞)|
∑
i 6=j

δ(|ri − rj |)|Ψ(∞)〉 (18)
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i.e., to µ−2, and to the system average of the on-top
pair density of the exact system (see, e.g., [8, 9]). Let us
consider µ-dependent approximations for Ēhxc that model
pair-densities (like LDA). In them, the error originates
from using the system-average of the model pair density,
instead of that of the system under consideration. Thus,
Ēhxc is proportional to µ−2,

Ēhxc ∝ µ−2 +O(µ−3) (19)

Eq 9 also contains vhxc , eq 5. The proportionality to
µ−2 remains after taking the functional derivative wrt
the density, in order to produce vhxc. It follows that Ē
also decays as µ−2, and we can use, for Ē(µ → ∞), the
same expression as for the exact correction, eq 17, viz.,

Ē(µ) = −1

2
µĒ ′(µ) +O(µ−3) (20)

In this expression, too, the derivative has introduced the
information about the proportionality constant.

In order to analyze the error of Ēhxc when µ → ∞ we
decompose it into a Hartree, an exchange and a correla-
tion part. In this regime, the approximation probes the
on-top pair density of the model, cf. eq 18. The Hartree
part is evidently given by the density. At coalescence, the
reduced first-order density matrix becomes equal to the
density, and thus, for a closed shell, the exchange part of
the pair density is also determined by the density. For
a closed shell, the only error shows up in the correlation
part of the pair density [5, 9, 11]. For open shells, how-
ever, the exchange component is not determined by the
density alone, but by the spin-components of the density.
This is why density functional approximations rely not
on the density alone, but also on spin-density. It is well-
known, however, that the dependence on spin-density,
introduces new problems related to size-consistency (see,
e.g., [6, 12, 13]). One thus has the dilemma of either
seriously losing numerical accuracy, or size-consistency.
In the present paper, spin-density is not used, in order
to favor size-consistency. For describing the correlation
part of Ēhxc errors are present. In LDA, it is modeled us-
ing the correlation hole of the uniform electron gas. This
is a good approximation, but only an approximation as
becomes evident, e.g., for one-electron systems.

We can try to introduce some correct information
about the system obtained from the energy derivative,
as in eq 17, to replace the false one contained in the
model system used in the density functional approxima-
tion. First, we consider expanding both Ē and Ē in some
(complete) basis,

Ē(µ) =
∑
i

c̄iχi(µ) (21)

Ē(µ) =
∑
i

c̄iχi(µ) (22)

We now identify the basis function, χj , that is respon-
sible for the behavior we are interested in (at large µ).

As we can consider that we can obtain its coefficient c̄j
accurately, we replace the approximate coefficient in the
expression of Ē by an accurate estimate of one of the
coefficients, c̄j ,

Ē(µ) ≈ Ē(µ) + (c̄j − c̄j)χj(µ) (23)

To determine the coefficients, we use the derivatives,
eq 15, and write

Ē(µ) ≈ Ē(µ) +
χj(µ)

χ′j(µ)

(
Ē′(µ)− Ē ′(µ)

)
(24)

When choosing W as in eq 6, and making the approxi-
mation valid for large µ, by eqs 17 and 20,

Ē(µ) ≈ Ē(µ)− 1

2
µ
(
Ē′(µ)− Ē ′(µ)

)
(25)

The same equation could be produced by requesting that
the approximation deviates minimally from the density
functional approximation, in a least-squares sense, with
the constraint that the derivative of the approximation
with respect to µ corresponds to the exact one.

Please notice that in the present construction, density
functional approximations were used to construct model
systems. The consistency between the correction to the
energy and the potential present in density functional
theory is not needed. Thus, the present approach can be
applied to ground state, and to excited states, as well.

The derivative is an additional information from which
we can infer from E in a given point µ the behavior in
the vicinity of it. This procedure can be continued with
higher derivatives, or in a computationally more conve-
nient way, repeated for different µ points, in order to
improve the accuracy in a systematic way. However, in
the present paper, only the first correction, using only
E′(µ) in a single point will be presented.

NUMERICAL RESULTS

In this section, the approximation of eq 25 is tested for
some two-electron systems. We know that this approx-
imation becomes exact for large µ. The computations
explore the behavior outside this regime. Its importance
is related to the ansatz made for W : as long as W is
weak, the computational effort is expected to be small.

In order not to bias the results, relatively large atomic
basis sets were used (cc-pV5Z [14]). Furthermore, the
wave function Ψ(µ) was computed with a full configu-
ration interaction calculation (range-separated configu-
ration interaction program of the Molpro code [15–24]).
All the plots show the error done by approximating Ē(µ)
by using eq 25, instead of E(∞)−E(µ), for different val-
ues of µ. By construction, the errors vanish at large µ.
As the correction is based on an expansion at large µ, one
will not expect it to work for µ smaller than ≈ 1. As ev-
ident from eq 25, no correction to the density functional
expression is present at µ = 0.
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FIG. 1: Error of the approximation, eq 25, as a function of
the parameter of the model Hamiltonian (µ) for the hydrogen
molecule, in its ground state, at the equilibrium distance (full
curve), and error of the LDA functional (dashed curve). The
horizontal dotted lines show the limits of “chemical accuracy”
(±1 kcal/mol).

FIG. 2: Same as fig 1, but the bond is now stretched to three
times the equilibrium distance.

The first example is that of the hydrogen molecule at
the equilibrium distance (fig 1). It shows exactly the fea-
tures expected. We can see in fig 1 that the approxima-
tion has a quality comparable to that short-range LDA,
known to work well for larger values of µ.

However, when the hydrogen molecule is stretched,
the broken symmetry solution and spin-density has to
be introduced in LDA to describe the potential energy
curve at LDA level. We see in fig 2 that keeping a
correct (zero) spin-density, the LDA error is relatively
large when the distance between the hydrogen nuclei in-
creases. In this case, the approximation of eq 25 provides
improved results. In the limit of dissociation, the error
would be twice that obtained for hydrogen atoms, as size-
consistency is respected.

FIG. 3: Same as fig 1, but the hydrogen molecule is now in
the E,F 1Σ+

g excited state, around the outer minimum of the
potential energy curve, 4.2 bohr [25].

The next example treats an excited state of the hydro-
gen molecule, E,F 1Σ+

g . It corresponds to the resonance

structure H+ . . .H− ↔ H− . . .H+. In this case, LDA
is not expected to work, because electrons are brought
together by correlation, while a transfer of the pair func-
tion from the ground state of the uniform electron gas
keeps the electrons apart (see fig 3). Furthermore, sym-
metry breaking cannot help in its standard implemen-
tation. However, when using eq 25 the quality is com-
parable to that seen previously, as long as µ is not too
small.

Finally, let us discuss a problem, known to show up
for the forms of W (µ), where µ appears as multiplied
by the distance between electrons, µr12 [26]. In such an
ansatz one expects a scaling of the error: the error ob-
served for a given µ for the more diffuse system show up
at a larger µ for a compact system (because, on average,
r12 is reduced). This can be illustrated by the behav-
ior of the approximation for the He atom (that can be
seen as the hydrogen molecule at zero internuclear sep-
aration), fig 4. One can see that the shape of the curve
in fig 4 is similar to that of the hydrogen molecule at the
equilibrium distance. The point where the large-µ ap-
proximation becomes critical is marked by oscillations.
For He, they show up at a larger value of µ than for
H2, and and they are more important (also for µ = 0,
the Kohn-Sham system, the LDA errors are larger). The
curve for the hydrogen molecule and that for the helium
atom can be made to be almost superimposed by using
a scaling factor of ≈ 2 for one of them.

As for the hydrogen molecule, the method does not
bring any correction over the density functional approx-
imation at µ = 0. However, one may notice an improve-
ment over the LDA for small values of µ, also for He.
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FIG. 4: Same as fig 1, but now for the helium atom.

SUMMARY AND COMPARISONS

It is proposed to consider density functionals as mod-
els for producing model energies, E(µ), eq 2. To obtain
E(µ), the potential produced by the density functional
is used, not the functional itself. To obtain the energy
of the physical system, a correction is needed. It is pro-
posed to correct the approximate density functional ex-
pression by considering changes in the model obtained
by changing µ, introducing this way system-dependent
information (see the constant c in eq 12). In particu-
lar, one can use the derivative of the model energy with
respect to µ, as in eq 15. The same procedure can be
applied also for approximations, and the the wrong be-
havior of the approximation (in the regime considered)

can be eliminated (eq 24, or eq 25). It is a first step in
correcting approximate density functionals, by introduc-
ing more information from model systems.

The approximation introduced in this paper does not
require the use of spin-density, and is not restricted to
ground states.

In order to produce numerical examples, a Hamil-
tonian containing long-range interaction (erf(µr12)/r12)
was used. The correction introduced becomes exact as
this interaction approaches the physical one, 1/r12.

In the regime where the approximation becomes exact,
one could as well use eq 17 (as in [10]). The advantage of
eq 25 is that, in contrast to eq 17, a correction is active
even for small µ. However, for the important limit µ =
0, there is no improvement over the density functional
approximation.

Of course, this approach can be extended to density
functionals that work better than LDA. One can thus
expect improving the quality of the approximation when
the interaction is weak.

Finally, it should be mentioned that the form of H(µ)
used in this paper is not the only one of interest. For
example one could consider model Hamiltonians of the
form T (µ) + V (µ) + Vee where T (µ) is a non-local one-
particle operator. It has be shown that it can lead to
good approximations [27–31].
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