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ABSTRACT

This paper presents the first large-scale automatic voice casting

system, and explores the adaptation of speaker recognition tech-

niques to measure voice similarities. The proposed system is ba-

sed on the representation of a voice by classes (e.g., age/gender,

voice quality, emotion). First, a multi-label system is used to clas-

sify speech into classes. Then, the output probabilities for each class

are concatenated to form a vector that represents the vocal signature

of a speech recording. Finally, a similarity search is performed on

the vocal signatures to determine the set of target actors that are the

most similar to a speech recording of a source actor. In a subjective

experiment conducted in the real-context of voice casting for video

games, the multi-label system clearly outperforms standard speaker

recognition systems. This indicates evidence that speech classes suc-

cessfully capture the principal directions that are used in the percep-

tion of voice similarity.

Index Terms : voice casting, voice similarity, speaker recognition,

speech classification.

1. INTRODUCTION

Voice casting is used to transfer a video game (or a film) from

a source language (typically, American-English and Japanese) to

a target language (typically, French, German, Spanish, Mandarin)

with a small amount of available voices for each language. In this

context, the notion of VOICE SIMILARITY is central : voice casting

requires defining a measure of voice similarity that reflects the

perception of the similarity between voices : the smaller/larger

the distance of a source voice to a target voices is measured,

the closer/farther they are perceived. However, the definition of

what defines voice similarity is vague. Recently, the role of voice

quality in the perception of voice similarity has been suggested [1].

Also, recent research in speaker clustering (speaker content graphs

[2, 3], and speech synthesis [4, 5]) addresses to some extent the

measurement of speaker/voice similarities.

Accordingly, the objective of a voice casting system differs qua-

litatively from standard speaker recognition applications [6, 7, 8] :

speaker recognition tends to determine similarity measures that are

extremely accurate in the local neighbourhood of a speaker - in the

sense that a speaker can be authenticated in the presence of close

impostor speakers. However, there is no evidence that this similarity

measure can be extended to the entire acoustic space. Voice casting

raises two challenging issues over speaker recognition systems :

†This study was supported by the European FEDER project
VOICE4GAMES.

� voice similarity : the measure of voice similarity must reflect the

perception of voice similarity (i.e., the principal directions used in

the perception of voice similarity) ;

� tags : a semantic representation of speech recordings is additio-

nally desired to tag a database of actors (e.g., in order to query a

45-year-old male with a breathy/tense voice).

Also, the variability in duration of the speech recordings (from 0.1

s to 15 s with an average duration of 5 s) differs significantly from

standard speaker recognition applications, and the similarity must

be determined from a single - and generally short - speech recording.

The original contribution of this paper is the representation of

speech by classes (e.g., age/gender, voice quality, emotion), which

will further be used to measure voice similarity - in place of the

standard acoustic models used in speaker recognition. First, a multi-

label classifier is used to classify the speech recordings into speech

classes. Then, the output probabilities to each class are concatenated

to form a vector that represents the vocal signature of the speech

recording. Finally, the similarity search is performed on the vocal

signature vectors in order to determine the set of target actors that

are the most similar to a speech recording of a source actor. The

main assumption is that the representation of speech by classes (e.g.,

age/gender, voice quality, emotion) captures the principal directions

used in the perception of voice similarity [1]. The proposed system

is subjectively compared to a speaker recognition system in the real

context of voice casting in video games.

2. SPEECH ANNOTATION

The representation of speech by classes has been widely studied

through the literature : from the representation of the physiological

characteristics of a speaker (e.g., age and gender), to voice quality

[9] and emotions [10]. Also, a large number of studies have

investigated the automatic classification of speech into classes.

The classification accuracy significantly depends on the class :

the classification of the gender of a speaker is extremely accurate

(around 90% for adult speakers [11]), the age can be reasonably

determined (within 10 years, [12]), while emotion remains an open

issue (from 70% for happiness to 90% and 95% for anger and

sadness [13]). More recently, the classification of voice quality

has been raised as a novel topic in speech classification [14]. The

present study assumes that current technologies for the automatic

classification of speech are sufficiently accurate to design a voice

casting system that is based on the representation of speech by

classes.

The representation of speech that has been retained in this

study is based on the following constraints : existing research in



GENERAL DESCRIPTION CLASS LABELS

PHYSIOLOGICAL GENDER male, female
AGE child, teenager, young adult, adult, old, very old

PHONATION VOICE QUALITY breathy, creaky, hoarse
TENSION relaxed, normal, tensed, pressed
VOCAL EFFORT whispered/soft, normal, loud/shouted

TIMBRE TIMBRE clear, dark
ARTICULATION ARTICULATION hypo, normal, hyper
PROSODY F0 REGISTER extreme-low, low, medium, high, extreme-high

F0 RANGE flat, normal, extended
SPEECH RATE slow, normal, fast

ACTING ATTITUDE affirmation, confirmation, exclamation, interrogation, order, other
EMOTION tender, excited, happy, neutral, sad, angry, scared, stressed, surprise, other
SITUATION action, conversation, information, monologue, other
ARCHETYPE announcer, artificial intelligence, basic soldier, brute, commander, hero

neutral, old wise, rookie soldier, sensual, suffer, veteran soldier, other

Table 1. Representation of speech used for the automatic voice casting system.

speech, specific needs of professional voice casting operators, and

time constraints related to the large-scale annotation of speech. The

final representation is decomposed into speech dimensions (e.g.,

physiological, phonation, acting), speech classes (e.g., for phona-

tion : breathy, creaky, hoarse, tension), and speech labels (e.g., for

tension : relaxed, normal, tense, pressed). The final representation

includes : 6 dimensions, 14 classes, and 68 labels. The exhaustive

glossary for the representation of speech is presented in table 1.

The annotation consisted of the definition of guidelines and the

training of a naive annotator. The guidelines were defined by 2 ex-

perts in speech technologies, which include : definitions for each

class and label, and speech examples representative of each class and

label. First, pilot annotations were conducted on small sets of speech

recordings (around 50-100) by the naive annotator and the two ex-

pert annotators, until the naive annotator presents a sufficiently satis-

factory agreement with the expert annotators. Then, the large-scale

annotation was conducted on a selection of 4,000 speech recordings

extracted from the 20,000 speech recordings of the French version of

the MASS EFFECT 3 video game, covering 54 speakers interpreting

500 roles, with a maximum of 10 speech recordings for each role.

3. SPEAKER RECOGNITION : PARADIGMS

This section summarizes the main paradigms of speaker recogni-

tion, which will be further used for the training of the speaker recog-

nition and the multi-label speech classification systems. All systems

are based on the IRCAMCLASSIFIER [15] system developed in the

context of Music Information Retrieval (MIR) [16, 17]. This system

includes the ALIZÉE 3.0 speaker recognition [18] and the LIBSVM

[19] SVM libraries.

3.1. Acoustic Space Modeling : Universal Background Model

and GMM supervector

The Universal Background Model (UBM) is used to model the

distribution of the entire acoustic space [18], which is usually achie-

ved with a standard Gaussian Mixture Model (GMM-UBM). Then,

the means parameters of the UBM are adapted to each speech recor-

ding by using maximum a posteriori (MAP) adaptation. Finally, each

speech recording is represented by the mean vectors of the adapted

mixture components :

µ = [µ1, . . . ,µM
]T (1)

where µ - referred to as a GMM SUPERVECTOR - is the concatena-

tion of all the mean vectors of the M mixture components.

3.2. Factor Analysis : Total Variability Space and i-vector

An i-vector is the compact representation of a high-dimensional

speech recording into a low-dimensional space called Total Variabi-

lity space [8] - assuming an affine linear model (i.e., factor analysis) :

µ = mµ + Tx (2)

where : µ is the adapted GMM-supervector of a speech recording,

mµ is the GMM-supervector corresponding to the UBM mean pa-

rameters, T is the (M × p) total variability matrix, and x is a p

normally-distributed vector - referred to as an I-VECTOR. The total

variability matrix T is modelled by Maximum-Likelihood (ML) and

Expectation-Maximization (EM). The i-vector of a speech recording

is determined by MAP adaptation [8].

3.3. Inter-Session Compensation : i-vector Transformation

The i-vector transformation is used to account for the total

variability of the high-dimensional acoustic space (i.e., speaker/class

information and session/channel information) in a low-dimensional

space - in which the i-vectors distribution is assumed to be normal

for each speaker/class. In order to compensate explicitly for the ses-

sion/channel information, and to constrain the i-vector distribution

to be normally distributed for each speaker/class, a large number of

methods have been proposed : from Linear Discriminant Analysis

[8] for inter-session compensation, to Within-Class Covariance

Normalization (WCCN, [20]), Length Normalization (L-norm,

[21]), Eigen Factor Radial Normalization (EFR, [22]), and Sphere

Nuisance Normalization (sphNorm, [22, 23]), depending on the

speaker/class.

The Eigen Factor Radial Normalization and Sphere Nuisance

Normalization are recursively determined as :

x
(i+1) =

Σ(i)−
1

2 (x(i) − µ
(i)
x )

||Σ(i)−
1

2 (x(i) − µ
(i)
x )||

(3)

where : µ
(i)
x and Σ(i) denote the total mean vector and covariance

matrix at iteration i (EFR), and the within speaker/class mean vector

and covariance matrix at iteration i (sphNorm), respectively.

3.4. Scoring

3.4.1. Discriminative Model : SVM

Among the number of classifiers for speaker/class recognition,

the Support Vector Machine (SVM) is historically a milestone in

speaker recognition [7], and is still popular for speech classification.



For each label, the classification of a vector x (e.g., supervector, i-

vector) corresponding to a speech recording is obtained with regard

to the decision function :

f(x) =
N

X

i=1

ωiK(x,xi) + b , f ∈ [−1, 1] (4)

where : < wi,xi, b >N

i=1 are the parameters of the maximum-

margin hyperplane determined during training (respectively :

weights, support vectors, and offset), and K(., .) the SVM kernel

[24].

3.4.2. Direct Scoring : Cosine Distance

More recently, direct cosine distance scoring ([25]) has been

proved to be extremely efficient for speaker recognition. The cosine

distance directly measures the similarity between two speech recor-

dings xsrc and xtgt in the i-vector acoustic space :

K(xsrc,xtgt) =
〈xsrc,xtgt〉

||xsrc|| ||xgt||
(5)

Importantly, the cosine distance considers only the angle between

the two i-vectors and not their magnitudes, which are assumed to

convey non-speaker information (i.e., session, channel) only.

3.4.3. Generative Model : PLDA

The last advance is the introduction of generative models for

speaker recognition [26]. Among them, the Probabilistic Linear Dis-

criminant Analysis (PLDA) [27] is the most popular generative mo-

del currently used for speaker recognition. In the original form,

PLDA linearly decomposes an i-vector in eigen-speaker and eigen-

channel subspaces (respectively of rankNspeaker andNchannel). In the

case where the eigen-channel is assumed to be full-rank (Nchannel =
p), each i-vector x of a speaker s can be decomposed as [28] :

x = mx + Φys + ǫ (6)

where : mx is the overall mean of the i-vectors, Φ is a (Nspeaker×p)
eigen-speaker matrix, ys is the normally distributed p vector decom-

position of the i-vector along the speaker basis Φ, and ǫ is a p resi-

dual vector with a full covariance matrix. Methods for the estimation

of the PLDA parameters and scoring are described in [27] and [28].

4. VOICE CASTING : MULTI-LABEL SCORING

The originality of the contribution of this paper is to introduce

a representation of speech by classes in place of the scoring

directly performed in the acoustic space as for standard speaker

recognition. First, the speech recordings are classified into a number

of speech classes ; then the resulting classification is used to score

the similarity between speech recordings.

To do so, a multi-label system is constructed by converting

the classification of multiple labels into multiple binary classifica-

tions [16]. First, each label of the speech representation (e.g., the

speech recording is creaky) is turned into a binary representation

(i.e., yes/no). Then, a classifier is trained for each label separately,

which results into C independent classifiers. Each speech recording

is then represented by the affinity vector corresponding to the affinity

of the speech recording to each label :

Ψ = [ψ1, . . . , ψC ]T (7)

where : ψc is the affinity of the observation vector x to the c-th label.

This affinity vector reflects the likelihood of the speech recording to

the labels, and is referred to the VOCAL SIGNATURE of the speech

recording. Similarly to the GMM SUPERVECTOR and the I-VECTOR,

the vector Ψ representing the VOCAL SIGNATURE of a speech

recording is a single vector summarizing each speech recording.

Finally, the similarity of a source to a target speech recording is

defined as the distance of their vocal signatures :

d(Ψsrc,Ψtgt) = 〈Ψsrc,Ψtgt〉 (8)

In the context of voice casting, the advantage of the multi-label

scoring is double : first, the multi-label scoring can be used to au-

tomatically tag speech databases ; secondly, the main difference to

speaker recognition systems is that the representation of speakers

in the acoustic space is replaced by a representation of speech by a

number of classes that are assumed to reflect explicitly the percep-

tion of voice similarity.

5. EXPERIMENTS

Two experiments were conducted to compare speaker recogni-

tion and multi-label speech classification in the context of voice cas-

ting. First, an objective experiment was conducted to determine the

parameters of the optimal configurations of the speaker recognition

and multi-label systems. Then, a subjective experiment was conduc-

ted to compare the optimal speaker recognition and multi-label sys-

tems in the real context of voice casting for video games.

5.1. Objective Experiment

The aim of the objective experiment is to determine the optimal

configurations for speaker recognition and speech classification that

will be further used for the subjective comparison. At this point, no

comparison is conducted - but separate optimization, only (one for

speaker recognition, one for speech classification).

The objective experiment was conducted on the French version

of the MASS EFFECT 3 video game containing 20,000 speech

recordings, around 500 roles, around 50 speakers, and around 20

hours of speech of professional actors. A subset of 4,000 speech

recordings was used for the annotation of speech classes. Each

speech recording were recorded in professional conditions, and

encoded into a 48 kHz-16 bits format. The duration of speech

recording varies from 0.1 s to 15 s. Speech recordings shorter than 1

s were removed from the speech database.

The front-end processing consisted in the extraction of

short-term acoustic features (20 ms. Hanning window with 50%

overlapping) : Mel-Frequency Cepstral Coefficients (MFCC, 13

cepstral coefficient determined on 25 Mel-frequency bands). The

system setups were defined as follows : NGMM = 8 to 2048

(GMM-UBM), p = 10 to 800 (i-vector), and shared among the

speaker recognition and multi-label systems. For the speaker

recognition system : NLDA = 10 to 200 (LDA), Nit = 1 for EFR

(length normalization), Nit=3 for sphNorm, Nspeaker = 10 to 400

and Nchannel = p (PLDA). For the cosine and PLDA scoring, the

scoring was performed by using the mean i-vector of the speaker

[23]. For the speech classification, a standard SVM system with a

Gaussian kernel [29] was used - in the absence of further studies on

the use of cosine and PLDA for speech classification -, and trained



on the subset of manually annotated speech recordings. For EFR and

SphNorm : two versions were compared, with (norm) and without

(noNorm) the length normalization performed in the equation 3. The

experiment was conducted in a form of a 2-fold cross validation. For

speaker recognition, the standard Equal Error Rate (EER) was used

to measure the performance. For speech classification system, the

Balanced Accuracy (B-ACC) - which manages unbalanced classes -

was used to measure the performance.

The performance obtained for speaker recognition is presented

in table 2. The optimal performance was obtained with the i-vector

+ sphNorm + PLDA method with the following configuration :

512 GMM (UBM), p = 400 (i-vector), Nspeaker = 50 and Nchannel

= 400 (full-rank) (PLDA). The speaker recognition performance is

proved to be robust to expressive variability of the speaker, and to

variability in duration of the speech recordings.

METHOD EER (%)

i-vector + cosine 4.04

i-vector + LDA/WCCN + cosine 3.02

i-vector + PLDA 2.80

i-vector + EFR + PLDA 2.73

i-vector + sphNorm + PLDA 2.50

Table 2. Performance of speaker recognition systems.

The performance obtained for speech classification - for cla-

rity, averaged over all labels and all classes - is presented in table

3. The optimal performance was obtained with the i-vector + EFR

(noNorm) + SVM method with the following configuration : 512

GMM (UBM), and p = 50 (i-vector), which is the only transforma-

tion method that outperforms the standard i-vector + SVM. In all

cases, the i-vector classification significantly outperforms the super-

vector classification. Also, the noNorm outperforms the norm me-

thod in all cases for speech classification.

METHOD B-ACC (%)

super-vector + SVM 67.60

i-vector + sphNorm (norm) + SVM 71.96

i-vector + WCCN + SVM 72.29

i-vector + sphNorm (noNorm) + SVM 72.49

i-vector + EFR (norm) + SVM 72.59

i-vector + SVM 72.62

i-vector + EFR (noNorm) + SVM 73.05

Table 3. Average performance of speech classification systems.

The optimal configurations were further retained for the sub-

jective comparison of speaker recognition and speech classification

systems for voice casting in the real study-case of video games.

5.2. Subjective Experiment

The subjective experiment consisted of the comparison of the 2

optimal systems previously determined in the real condition of voice

casting from English-American to French. The English-American

(source language) and the French (target language) versions of the

MASS EFFECT 3 video game were used for the experiment. First, 50

speech samples were selected from the English-American version :

one speech recording for each of the 50 speakers (around 5 sec. in

duration, and representative of the speaker). For each source speech

sample, the 3 most similar samples were determined in the target

speech database for each system. Then, the source speech sample

and the 3 target speech samples determined by the 2 systems were

presented to the listener. For each source speech sample, the listener

was asked to rate the overall similarity of the target speech samples

to the source speech sample on a 5 degree scale : very dissimi-

lar, fairly dissimilar, slightly similar, fairly similar, very similar. 30

French native individuals participated in the experiment (20 males/

10 females, 20-35 years old, same headphones, same professional

listening room, paid experiment). The comparison of the 2 methods

is presented in figure 1.

MULTI
LABEL

SPEAKER
RECO

slightly similar fairly similar

Fig. 1. Mean similarity score and 95% confidence interval for the

2 systems. The score is focused on the +0 (slightly similar) to +1

(fairly similar) interval, on a similarity scale that ranges from -2

(very dissimilar) to +2 (very similar).

The multi-label system significantly outperforms standard

speech recognition systems for voice casting. For compa-

rison, the target speech samples determined by the spea-

ker recognition (i-vector + sphNorm + PLDA) and multi-label

(i-vector + EFR (noNorm) + SVM) systems are considered as

slightly similar and fairly similar to the source sample in average,

respectively. This almost constitutes a one degree difference on the

5 degree scale. These observations support evidence that speech

classes successfully capture the principal directions that are used in

the perception of voice similarity.

6. CONCLUSION

In this paper, the first large-scale automatic voice casting sys-

tem was presented, with a main focus on the measurement of voice

similarity. The originality of the contribution is to introduce a repre-

sentation of speech by classes in place of the measurement of voice

similarity directly in the acoustic space as performed in standard

speaker recognition systems. In a subjective experiment conducted

in the real-context of voice casting, the multi-label system clearly

outperformed standard speaker recognition systems. Further studies

will investigate the used of short-term glottal source [30, 31] and

long-term characteristics (prosody) [32, 33] for speaker recognition

and speech classification. Also, research will focus on the determi-

nation of the principal speech classes used for the measurement of

voice similarity, in order to reduce the number of classes required to

perform voice casting.
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