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When a falling jet of fluid strikes a horizontal fluid layer, a hydraulic jump arises

downstream of the point of impact, provided a critical flow rate is exceeded. We here

examine a phenomenon that arises below this jump threshold, a circular deflection of

relatively small amplitude on the free surface that we call the hydraulic bump. The

form of the circular bump can be simply understood in terms of the underlying vortex

structure and its height simply deduced with Bernoulli arguments. As the incoming

flux increases, a breaking of axial symmetry leads to polygonal hydraulic bumps.

The relation between this polygonal instability and that arising in the hydraulic jump

is discussed. The coexistence of hydraulic jumps and bumps can give rise to striking

nested structures with polygonal jumps bound within polygonal bumps. The absence

of a pronounced surface signature on the hydraulic bump indicates the dominant

influence of the subsurface vorticity on its instability. C© 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821360]

I. INTRODUCTION

When a falling jet of fluid strikes a horizontal fluid layer, several flow regimes may arise.

The most distinctive phenomenon, the hydraulic jump, arises above a critical flow rate, and con-

sists of a large-amplitude increase in fluid depth at a critical distance from the site of jet impact

(Figure 1(a)). The circular hydraulic jump was first reported by Bélanger1 and Rayleigh,2 and sub-

sequently studied theoretically and experimentally by a number of investigators (see Refs. 3–9 and

references therein).

Bohr et al.6 and Watanabe et al.10 distinguished between circular hydraulic jumps of types I

and II. The type I jump (see Figures 1(a) and 1(d)) exhibits a single toroidal vortex downstream of

the jump, henceforth “primary vortex.” As the outer depth is increased progressively, a separation

of this vortex11 is observed, giving rise to a surface roller, henceforth “secondary vortex” and a

type II jump (Figures 1(e) and 1(f)). Yokoi and Xiao12 presented a numerical investigation of the

link between this vortex dynamics and the underlying pressure distribution in the type II jumps,

and remarked upon the importance of surface tension in the transition from type I to II. The type II

jumps are further classified13 according to whether there is a substantial change in surface elevation

downstream of the jump: if not, the jump is referred to as type IIa (Figures 1(b) and 1(e)); if so, type

IIb (Figures 1(c) and 1(f)). Andersen et al.11 and Bush et al.14 also reported the emergence of double

jump structures in certain parameters regimes, wherein the free surface is marked by two discrete

changes in depth.

Remarkably, in certain parameter regimes, the circular hydraulic jump becomes unstable to

polygons (Figure 1(b)), a phenomenon first reported by Ellegaard,15, 16 and subsequently examined

by Bohr and co-workers11, 17 and Bush et al.14 Watanabe et al.10 noted that the polygonal jumps arise

exclusively with type II jumps, that is, when both primary and secondary vortices are present. Bush

et al.14 highlighted the importance of surface tension in the polygonal instability of such jumps,
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FIG. 1. (a) The circular hydraulic jump.8 (b) A pentagonal hydraulic jump.14 (c) A clover-shaped jump inside a square

bump.14 (d)–(f) Schematics illustration of the hydraulic jump of types I (d), IIa (e), and IIb (f). (g) A circular hydraulic bump.

(h) A pentagonal hydraulic bump. (i) A square hydraulic jump inside a hexagonal bump. (a) Reproduced by permission from

J. W. M. Bush and J. M. Aristoff, J. Fluid Mech. 489, 229–238 (2003). Copyright 2003, Cambridge University Press. (b)

and (c) Reproduced by permission from J. W. M. Bush, J. M. Aristoff, and A. E. Hosoi, J. Fluid Mech. 558, 33–52 (2006).

Copyright 2006, Cambridge University Press.

suggesting that a modified Rayleigh-Plateau-like instability might be responsible. By considering a

balance between the viscous stresses associated with the secondary vortex and the hydrostatic and

curvature pressure, Martens et al.17 developed a theoretical model for the jump shape that yields

polygons similar to those observed experimentally. When surface tension dominates, they demon-

strate that the wavelength of the instability is consistent with that of Rayleigh-Plateau. Nevertheless,

they did not consider the potentially destabilizing influence of the pressure induced by the secondary

roller vortex.

Plateau18 examined the capillary pinch-off of a fluid jet into droplets, a theoretical description

of which was provided by Rayleigh.19 This Rayleigh-Plateau instability was extended to the case of

a rotating fluid jet by several investigators,20–22 who demonstrated that the destabilizing influence

of surface tension is enhanced by fluid inertia. While vortex rings were initially thought to be

indestructible,23, 24 subsequent experimental, theoretical,25–27 and numerical28 studies indicate that

they are unstable to azimuthal wavelength disturbances at high Reynolds numbers, resulting in

polygonal forms. We here explore the possible relevance of such instabilities to the stability of the

hydraulic jump and bump.

Bush et al.14 briefly mentioned the emergence of polygonal forms in the absence of hydraulic

jumps, when a jet plunges into a relatively deep fluid. Perrard et al.29 recently reported that a heated

toroidal fluid puddle bound in a circular channel and levitated via the Leidenfrost effect is also

susceptible to polygonal instabilities. The axial symmetry breaking only arises in the presence of

poloidal convection within the torus, again suggesting the importance of the vortical motion on the

mechanism of instability.
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We here report a phenomenon that occurs well below the hydraulic jump threshold, when the

free surface is only weakly perturbed by the plunging jet. When the fluid layer is sufficiently deep,

a small-amplitude circular deflection arises at the free surface, a phenomenon that we christen the

hydraulic bump (Figure 1(g)). As is the case for the hydraulic jump, as the incoming flux increases,

the bump radius expands until a breaking of axial symmetry results in polygonal forms (Figure 1(h)).

In Sec. II, we report the results of our experimental investigation, and describe the flows observed.

We rationalize the radius of the bump via simple scaling laws. Finally, in Sec. III, we explore the

connection between the polygonal instabilities on the hydraulic bump and their counterparts on the

hydraulic jump.

II. EXPERIMENTS

The experimental apparatus is shown in Figure 2. A glycerine-water solution with density ρ,

kinematic viscosity ν, and a surface tension γ is pumped from the tank through a flow meter and

a source nozzle of radius Rn = 2.5 mm. The resulting jet has a flux Q and a radius at impact rj

that differs from Rn, and varies weakly with flow rate and height in a manner detailed by Bush and

Aristoff.8 The jet impacts the center of a flat plate of radius Rp = 16.8 cm surrounded by an outer

wall whose height can be adjusted in order to control the outer fluid depth H. Radial gradations on

the base plate indicate 0.5 cm increments. Special care is taken to level the plate by adjusting its

three supports and measuring the level along two perpendicular directions. The plate is horizontal

to within ±0.1◦. We note that the flow structure is extremely sensitive to the levelling of the plate;

indeed, an inclination of 1◦–2◦ completely destroys the polygonal bump and jump forms.

The working fluid is a glycerine-water solution with viscosity ranging from 58 to 96 cS. During

the course of the experiments, water was added to compensate for evaporative losses. For the fluids

considered, surface tension is roughly constant and equal to 68 mN m−1. The average depth is

determined by measuring the volume Vt above the impact plate, which is known with a precision

±δVt = 2 ml. Typically, Vt ≃ 500 ml and H ≃ 5 mm, so the error in depth, (δVt H )/Vt ≃ 0.02 mm,

is sufficient for our experiments and smaller than would arise from a direct measurement. We

visualize the flow structure by injecting submillimetric bubbles into the jet inlet with a syringe and

taking photos that yield streak images of the bubble circulation. In passing through the pump and the

flowmeter, these bubbles are generally fractured into microbubbles that do not appreciably perturb

the flow. We denote by Rbump the bump radius, δH its height, and Hint the height just upstream of

the bump. We denote the fluid velocity by v and its speed by v. This suggests the introduction of

the Reynolds number Re = v j H/ν, with the jet speed v j = Q/(π R2
n) being evaluated at the nozzle

output, and a local Weber number W e = ρQ2/(γπ2 H R2), with R being the radius of the jump or

the bump.

FIG. 2. Schematic illustration of the experimental apparatus and the hydraulic bump.
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FIG. 3. Evolution of the flow generated by a plunging jet with increasing Q. Here, ν = 68 cS, H = 6.65 mm. Accompanying

schematic illustrations of the subsurface flows induced from streak images are displayed. (a) Below the bump transition

(Q = 6.6 ml s−1). (b) The circular bump is marked by a toroidal vortex (Q = 13.3 ml s−1). (c) and (d) At a critical flux

(Q = 18.3 ml s−1), the bump becomes susceptible to instabilities that result in a polygonal form.

Figure 3 illustrates the evolution of the flow generated by a plunging jet as the flux increases,

and the fluid depth H is held constant. We note that the flux of the impacting jet is not sufficiently

high to entrain air.30, 31 Initially (Figure 3(a)), the plunging jet induces a slight circular deflection,

perceptible only from an oblique angle, and the subsurface flow is predominantly radial. At a critical

flow rate, a recirculation eddy emerges, and with it the hydraulic bump (Figure 3(b)). We note

that this subsurface recirculation eddy, or primary vortex, is accompanied by a small corotating

secondary vortex with a surface signature that corresponds to the bump. As the flux increases, the

bump increases in both amplitude and radius. At a critical flux, azimuthal instabilities develop along

its perimeter (Figure 3(c)), giving rise to a stable polygonal bump (Figure 3(d)). As the bump has

a very modest surface signature, much less than the jump, we infer that the subsurface vortical

structure is critical in its instability.

The height and radius of the circular bump are readily rationalized via scaling arguments. We

consider a point A at the surface near the plunging jet and a point B on the bump (see Figure 3(b)). We

denote by δH the amplitude of the bump. Since B can be considered as a stagnation point and since

curvature pressures are expected to be negligible with respect to the hydrostatic pressure within the

bump, Bernoulli’s theorem dictates that v2
A/2 − gδH = const., so we expect that δH = c1v

2
A/2g

with vA ≃ Q/(2π Rn H ). Figure 4(a) illustrates the dependence of 2gδH on Q2/(4π2 R2
n H 2) over

the parameter range in which circular bumps arise. This simple scaling is roughly validated, and a

proportionality constant of c1 = 0.41 is indicated.

Figure 4(b) illustrates the dependence of the bump radius Rbump on the flux Q and the kinematic

viscosity ν of the fluid over the range of Weber and Reynolds numbers in which circular bumps

emerge. The characteristic radius of the inner vortex can be deduced by considering the azimuthal

component of the vorticity equation. In a steady state, the balance of convection and diffusion of

vorticity ω requires that (v · ∇) ω ∼ ν△ω. The typical scale of the vertical flow is Hint, the inner

depth. Thus, balancing (v · ∇) ω ∼ vω/Hint and ν△ω ∼ νω/H 2
int and using v ∼ Q/

(

2π Rbump Hint

)

indicates that Rbump = c2Q/(2πν). Figure 4(b) lends support to this scaling argument, and suggests

a proportionality coefficient of c2 = 2.5.

As illustrated in Figures 1(c) and 1(i), non-circular bumps may also arise downstream of

polygonal hydraulic jumps. Similar nested jump-bump structures have been reported by Andersen

et al.11 and Bush et al.14 We note that the number of sides of the outer bump and inner jump polygons

are not necessarily the same. Figure 1(i) illustrates a square jump within a pentagonal bump.

Figure 5 indicates where the various flow structures, specifically circular and polygonal hydraulic

jumps and bumps, arise in the (W e, Re) plane. In addition to our new data, this regime diagram

includes data from Bush et al.,14 with due care given to their different definitions of the Weber and

Reynolds numbers. In our experiments, as Q is increased, the data necessarily traverse a path on

the regime diagram along which Re ∝
√

W e. The dependence of the flow structure on viscosity

was examined by progressively diluting the solution. We note that in sufficiently dilute solutions,
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FIG. 4. (a) The dependence of the circular bump amplitude, 2gδH (m2 s−2), on v2
A = Q2/(4π2 R2

n H2) (m2 s−2). The

uncertainties on δH are approximately 20%. (b) The observed dependence of the bump radius Rbump (mm) on Q/(2πν) (mm).

The bumps are formed with glycerine-water solutions, with viscosity ranging from 58 to 96 cS.

the polygonal forms are unstable owing to the onset of turbulence. Viscosity is thus critical in the

suppression of turbulence, and the sustenance of stable jumps, which only arise in the moderate

Reynolds number range: Re ≃ 20–100.

III. CONCLUSION

We have characterized the flows generated by a laminar fluid jet plunging into a bath of the same

fluid, giving particular attention to the accompanying subsurface vortex structure and its instability.

We have reported and rationalized a new interfacial structure, the circular hydraulic bump, the small

surface deflection that arises prior to the onset of the hydraulic jump. The bump coincides with the

stagnation point associated with the subsurface vortex generated by the plunging jet and consists

of a small toroidal vortex with a surface signature. Simple scaling arguments have allowed us to

rationalize both the radius and amplitude of the bump.

We have also reported that, as the flux increases, the circular bump goes unstable to a polygonal

form reminiscent of that arising in the hydraulic jump.14 We note that the polygonal instabilities of

both the jump and bump are associated with a toroidal vortex with a surface signature. Since the
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FIG. 5. The dependence of the flow structure on Reynolds number Re = (v j H )/ν and Weber number W e

= ρQ2/(γπ2 H R2), where v j = Q/(2π Rn) is the jet speed, and R the radius of the bump or jump. (⋄): Circular bumps

observed for viscosities in the range of ν = 58–96 cS. (�): Polygonal bumps (ν = 58–96 cS) with number of sides ranging

from 5 to 10. (△): The double jump structure for which a polygonal jump is enclosed by a polygonal bump. (×): Circular

type I jumps (ν = 10 cS from Bush et al.14). (◦): Polygonal jumps with 3 to 10 sides (ν = 10 cS, data from Bush et al.14).

Reprinted with permission from J. W. M. Bush, J. M. Aristoff, and A. E. Hosoi, J. Fluid Mech. 558, 33–52 (2006). Copyright

2006, Cambridge University Press.

bump has a relatively small surface signature, we expect its accompanying subsurface vorticity to

provide the dominant mechanism for its instability. This surface vortex instability mechanism, and

its relation to the hydraulic bump, the hydraulic jump, and the toroidal Leidenfrost vortex,29 will be

the subject of a theoretical investigation to be reported elsewhere.
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