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Abstract

In astrophysical N -body simulations, Dehnen’s algorithm, implemented in the serial
falcON code and based on a dual tree traversal, is faster than serial Barnes-Hut tree-codes,
but outperformed by parallel CPU and GPU tree-codes. In this paper, we present a parallel
dual tree traversal, implemented in the pfalcON code, targeting multi-core CPUs and many-
core architectures (Xeon Phi). We focus here on both performance and portability, while
preserving Dehnen’s original algorithm. We first use task parallelism, with either OpenMP or
Intel TBB, for the dual tree traversal. We then rely on the SPMD (single-program, multiple-
data) model for the SIMD vectorization of the near field part thanks to the Intel SPMD
Program Compiler. We compare the pfalcON performance to related work, and finally
obtain performance results that match one of the best current tree-code implementations
on GPU.

Keywords: dual tree traversal, task parallelism, SIMD, SPMD model, N -body problem

1 Introduction

The N -body problem describes the computation of all pairwise interactions among N bodies
(or particles). Once computed, the corresponding forces are used to update the body positions
and velocities for the next time-step. In astrophysics, such N -body simulations are essential
and widely used for galactic dynamics studies. The gravitational force computation is the
most time-consuming part and limits in practice the number of bodies, which is currently much
smaller than the number of stars in a real galaxy.

The direct computation of all pairwise interactions among N bodies leads to a prohibitive
O(N2) runtime complexity. Hierarchical methods [2,5] have therefore been introduced to reduce

∗This work undertaken (partially) in the CALSIMLAB framework is supported by the public grant ANR-11-
LABX-0037-01 of the French National Research Agency (ANR) as part of the “Investissements dAvenir” program
(ANR-11-IDEX-0004-02).
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this runtime complexity: thanks to an octree data structure, the force field is decomposed in a
near field part, directly computed, and a far field part approximated with various expansions.
In astrophysics, the Barnes-Hut tree-code is one of the most used algorithms for serial and
parallel CPU executions (see for example treecode1 in NEMO1 and GADGET-2 [12]). Recently,
parallel implementations on GPUs (Graphics Processing Units) [3, 4] have also been developed
which outperform multi-core CPUs.

Dehnen’s algorithm [6], implemented in the serial falcON code (Force ALgorithm with Com-
plexity O(N)), is one order of magnitude faster than serial executions of Barnes-Hut tree-
codes [6, 9], mainly thanks to its dual tree traversal (DTT). But parallel tree-codes implemen-
tations, on one or two multi-core CPUs or on one GPU, then manage to outperform falcON [9].
The parallelization of falcON is therefore crucial to exploit its algorithmic asset on current par-
allel architectures. But contrary to tree-codes algorithms, this DTT does not exhibit natural
parallelism.

In this paper, we present a parallel dual tree traversal, implemented in the pfalcON (parallel
falcON) code, that efficiently exploits two levels of parallelism on one single shared-memory
node (we do not consider distributed-memory parallelism here). We first target multi-core
parallelism on CPUs whose number of cores is constantly increasing, as well as on new many-core
architectures like the Intel Xeon Phi whose compute power is similar to high end GPUs. We also
target SIMD parallelism because of its increasing importance in the overall CPU performance:
128-bit SSE, 256-bit AVX, and 512-bit Xeon Phi vector units.

Contributions. Our contributions are thus two-fold. Firstly, we use task parallelism for the
DTT on both multi-core CPUs and on the Xeon Phi. This requires a recursive formulation
of the falcON code, as well as adequate atomic operations and memory barriers in order to
obtain an efficient implementation. We detail how this can be achieved for both OpenMP tasks
and Intel TBB (Threading Building Blocks) tasks, and how we manage to preserve Dehnen’s
original algorithm in the parallel tree traversal. Secondly, we use Intel SPMD Program Compiler
(ispc) and its SPMD (single-program, multiple-data) model for the SIMD vectorization of the
direct computation required for the near field part. We show that such approach enables us to
have one single portable source code for this direct computation which is very efficient on both
SSE and AVX, as well as on Xeon Phi vector instructions. Best performance is here obtained
via a hybrid strategy that efficiently combines scalar and vector code. In the end, we show
performance results that match the GPU Bonsai code which is currently one of the fastest
GPU tree-codes [3].

Related work. An MPI parallelization of Dehnen’s algorithm has been briefly presented
in [10], but is based on a complete rewriting of the algorithm in Fortran 90, not on the highly
optimized C++ falcON code. Recently, the exaFMM-dev software has included an implemen-
tation of Dehnen’s algorithm that also uses task parallelism for the dual tree traversal [13, 15],
but in a different way that requires the rewriting of this traversal. As for SIMD programming,
exaFMM-dev uses C++ template metaprogramming for the hand-tuned kernel of the direct
computation part. In the following, we will thus highlight the differences between pfalcON and
exaFMM-dev and compare their performance.

In the rest of this paper, Sect. 2 describes N -body algorithms, especially Dehnen’s algo-
rithm. In Sect. 3, we detail how we have used task parallelism and SPMD programming in
the pfalcON code. Section 4 presents performance results and comparisons with other codes.
Finally, concluding remarks will be presented in Sect. 5.

1A Stellar Dynamics Toolbox: http://bima.astro.umd.edu/nemo
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Figure 1: Dual tree traversal in Dehnen’s algorithm.

2 N-body algorithms

We focus here on galactic simulations and on hierarchical N -body algorithms. We do not con-
sider other N -body algorithms such as those based on Particle-Mesh methods [12] for example.
In the hierarchical methods, the 3D particle space is hierarchically decomposed by means of an
octree. This octree is built by inserting particles one by one and by subdividing octree leafs
containing more than a given maximum number of particles, denoted by Ncrit.

The Barnes-Hut tree-code algorithm [2] computes the gravitational forces among N particles
with a O(N lnN) runtime complexity thanks to monopole (and possibly quadrupole) moments.
For each target body, the octree is here recursively traversed and “body-cell” or “body-body”
interactions are evaluated depending on the multipole acceptance criterion (MAC): D/r < θ,
where D denotes the octree cell side length, r is the distance from the target body to the cell
center of mass, and θ is an input parameter that balances accuracy and computation cost. Such
expansions are well-suited for the relatively low precisions required in astrophysical N -body
simulations, where a relative force error of few 10−3 is usually adequate. The loop on the target
bodies is parallel which enables CPU parallel implementations with multi-threading and/or with
MPI [12,14]. Recently, this inherent parallelism has been efficiently exploited to develop GPU
implementations that run entirely on the GPU [3, 4]. For example, the Bonsai code, which
relies on monopole and quadrupole moments and on a specific MAC, enables speedups around
20 on GPU compared to a multi-core CPU implementation [3].

Dehnen’s algorithm [6] can be considered as a nontraditional fast multipole method [5],
specific to the relatively low precisions required in astrophysics. This O(N) algorithm indeed
relies on “cell-cell” interactions. This requires specific, low precision local expansions based on
cartesian Taylor expansions, and a specific MAC that can balance (along with the expansion
order, which is fixed to 3) the accuracy and the computation cost. This MAC is defined for two
cells (A,B) (see Fig. 1(a)) as:

rA,max+rB,max

R
< θ , where rC,max denotes an upper limit for the

distance of any body within the node C from its center of mass [6]. Once the octree has been
built and the multipole moments have been calculated, the interactions are computed in two
steps.

The first step (interaction phase) is presented in Algorithm 1 and relies on the dual tree
traversal (DTT) presented in Figs. 1(a),1(b),1(c). If the MAC succeeds between two cells (A,B),

3



Algorithm 1 Interact(cell A, cell B)
1: if (MAC fails between A and B) then

2: if (A = B) then

3: for all pairs {a, aa} of children of A do

4: Interact(a, aa)
5: end for

6: else if rA,max > rB,max then

7: for all children a of A do

8: Interact(a, B)
9: end for

10: else

11: for all children b of B do

12: Interact(A, b)
13: end for

14: end if

15: else

16: Approximate interaction (A, B)
17: end if

Algorithm 2 Evaluate(cell A, local expan-
sion L0)
1: translate L0 to center of mass of A
2: add L0 to LA (local expansion of A)
3: if A is a leaf then

4: for all bodies b in A do

5: evaluate LA at position of b
6: add it to potential and force of b
7: end for

8: else

9: for all children c of A do

10: Evaluate(c, LA)
11: end for

12: end if

their interactions can be approximated: both local expansions of A and B are updated thanks
to the mutuality of gravity (see Fig. 1(a)). If the MAC fails, the larger cell (B here) is split and
the MAC is applied between A and all the children of B (see Fig. 1(b), with 8 children in 3D).
This is applied recursively, and A can then be split when the MAC fails with A as the larger
cell (see Fig. 1(c)). This thus leads to a dual recursive traversal of the octree. When the MAC
fails for two octree leafs, or when the number of particles is too low (depending on empirical
thresholds [6]), the direct computation is used instead of the expansions. Thanks to this DTT,
Dehnen’s algorithm consistently uses the mutuality of gravity to halve the computation cost in
the near field part as well as in the far field part. This DTT also enables to better preserve
the total momentum than tree-codes [6].

After the interaction phase, the evaluation phase is recursively used to evaluate the local
expansion of each cell for each body within this cell. This evaluation phase is presented in
Algorithm 2 and first called on the root cell with an empty local expansion.

All these features have been implemented in the falcON2 code (Force ALgorithm with Com-
plexity O(N)) which offers O(N) computation times one order of magnitude smaller than serial
executions of Barnes-Hut tree-codes [6,9]. Moreover, these computation times are much less sen-
sitive to the distribution of particles: this is very important for astrophysical simulations where
the particle distributions representing galaxies or groups of galaxies are highly non-uniform.

The interaction and evaluation steps correspond together to the most time consuming part.
The octree construction has a non-negligible computation time, but it does not have to be
performed at every time-step. Moreover, the interaction step represents around 95% of the
total time for both the interaction and evaluation steps, which makes it crucial for the overall
performance of falcON. In the following, we will thus see how the interaction and evaluation
steps of Dehnen’s algorithm can be efficiently parallelized in a new pfalcON code.

3 pfalcON: a parallel falcON

The dual tree traversal of the interaction step was described as a recursive algorithm in [6],
but was implemented using a stack-based approach in the falcON code. In practice when an
interaction fails the MAC, it is pushed in one of the available stacks according to its type (“cell-
cell”, “body-cell”. . . ). The stacks are then regularly popped in a specific order. When using

2Available in http://carma.astro.umd.edu/nemo/, version 3.6 . We use here the gyrfalcON full-fledged N -
body code (GalaxY simulatoR using falcON).
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tasks to process interactions, the task runtime will have to store the tasks (i.e. the interactions)
in memory. The original stacks in falcON then become redundant. We have thus removed
these stacks and rewritten falcON as a recursive code (more convenient for task parallelism),
where recursive calls process interactions in the same order as in falcON. This new code will be
hereafter referred to as rfalcON.

Besides, local Taylor expansions are allocated on the fly during the dual tree traversal in
the original falcON code. This enables to save memory by allocating these expansions only
when they are effectively required for each cell. In parallel executions, concurrent memory
allocations have to be serialized at the system level, which can become a performance bottleneck.
In rfalcON we thus allocate these expansions for each non-empty cell during the step which
computes multipole moments. This implies some memory overhead, which is not problematic
since current N -body simulations on one single node are more limited by the compute power
than by the available memory.

With such features, rfalcON is slightly faster than falcON (around 8%) for the interaction
step.

3.1 Task parallelism for the dual tree traversal

On multi-core CPUs, loop-based parallelism (like in OpenMP) is suitable for tree-codes, but
clearly not here for the DTT of the rfalcON interaction phase since there is no explicit parallel
loop. Task parallelism, firstly introduced in Cilk and now available in OpenMP (since version
3.0) and in Intel TBB, is here much more suitable for such recursive algorithm. Tasks are speci-
fied in the source code by the programmer, and then managed during the execution by a runtime
which dynamically schedules these tasks on the available threads. Such dynamic load balancing
is especially useful in astrophysical N -body simulations where the particle distributions, hence
the computation loads, are highly non-uniform.

In pfalcON, each time an interaction fails the MAC, we thus simply create one task for each
of the (up to) eight interactions involving the children of the larger cell: see Fig. 1(d). However,
due to the consistent use of the mutuality of gravity in Dehnen’s algorithm, a task updates both
cells A and B (either local expansions or particles) when the interaction is effectively computed.
Hence different tasks can update the same cells concurrently which requires synchronization
among the tasks to avoid conflicts. We need here the lightest synchronization mechanism to
have the smallest overhead on the parallel execution. That is why we use here atomic operations
and memory barriers on one specific flag per cell to indicate if the cell is already being updated
or not.

More precisely, we use here one bit (the Most Significant Bit - MSB) in one 32-bit integer
variable (named val in the falcON code). Such variable is stored in each octree cell to describe
various features of this cell, and only 25 bits are currently used. When a task needs to update
a given cell, it first has to set this bit to 1 while checking that the bit was not already set to
1 (by another task): the two operations must be performed atomically. In case the bit was
already set to 1, we use busy waiting since the cell update is a very fast operation. Another
possibility is to suspend the current task and make the underlying thread treat another task: no
performance gain was obtained in our tests in doing so. When the update is over, the bit is reset
to 0: such write must include a memory barrier to ensure that (i) the write is performed after
the computation and that (ii) subsequent reads are performed after this write. With OpenMP,
we use atomic capture and atomic update operations. With TBB, the whole field val is
declared as an atomic integer and we use a compare and swap operation to check the bit value
and set it to 1. In practice, we expect very few concurrent accesses to the same cells (which
may increase the overhead of using atomics operations) since the number of cells in the octree

5



is many orders of magnitude higher than the number of threads used.
In the exaFMM-dev software [13, 15], task parallelism is applied to the DTT differently. In

order to avoid conflicts, the traversal is strongly rewritten using one list of children cells for cell
A and one list for cell B [13]. These two lists are halved which results in up to four tasks that
must be computed among the four half-lists. Task barriers are then used to isolate tasks that
can be performed in parallel without conflicts. As mentioned in [13], this implies some extra
computations since cells A and B can be opened at the same time, whereas only one cell would
have been opened in the original Dehnen’s algorithm. Such parallel traversal has also been
recently used in [7]. On the contrary, in pfalcON we do not require a rewriting of the DTT and
we do not introduce extra computations.

Besides, we also have to control the task computation grain for efficient parallel executions.
Spawning too small tasks may not enable to offset the task creation overhead, whereas spawning
only large tasks may result in an overall load imbalance among threads. We thus introduce a
threshold (TCT, Task Creation Threshold) to stop task creation: when there are less than
TCT particles in the two cells A and B (or in the cell A if A = B) no task is created for the
remainder of this traversal (but atomic operations are still required). According to the O(N)
runtime complexity, such linear threshold is indeed well-suited to control the computation grain
size. Appropriate TCT values for OpenMP and TBB are around 1000 or 10000. It can be
noticed that a similar threshold is used in exaFMM-dev in order to reduce the number of extra
computations introduced by the exaFMM-dev task parallelism.

As far as the evaluation step is concerned, the task parallelism is straightforward to imple-
ment. We just have to spawn one task at each recursive call to Evaluate (at line 10 in Algorithm
2), since there is no conflict among the tasks. We also use a threshold like TCT in order to
control the task computation grain.

3.2 Portable and efficient SIMD direct computation

SPMD model. Many works have already been published on the efficient vectorization of the
direct computation for the near field part (see for example [1, 8, 15]). We target here both
efficiency and portability on various vector instruction sets (SSE, AVX, Xeon Phi). We thus
focus on the SPMD (single-program, multiple-data) model, where all computations are written
as scalar ones and it is up to the compiler to merge such scalar computations in SIMD instruc-
tions. The main advantages are the ease of programming and the portability: the programmer
needs neither to write the specific SIMD intrinsics for each architecture, nor to know the vector
width, nor to implement data padding with zeroes according to this vector width. On CPU,
such programming model is available in OpenCL (OpenCL implicit vectorization), as well as in
the Intel SPMD Program Compiler (ispc) [11]. Compared to OpenCL, ispc has especially the
following advantages [11]: (i) ispc kernel launches are faster and (ii) the same memory space
and data structures can be shared between the C/C++ code and the ispc code. These are
very important for pfalcON since SIMD computations are performed with small computation
grains (usually a few tens of particles per leaf) and require a tight integration in the dual tree
traversal and in the octree data structure. We will therefore rely here on the SPMD-on-SIMD
model of ispc.

ispc technical features. C++ classes and templates are not allowed in ispc code, which
is moreover compiled by a specific compiler. We have thus created in the ispc kernels a data
structure similar to the falcON one for storing particle arrays. The consistency between the
two data structures (structure sizes, field offsets, padding) is then checked at runtime. Data
alignment is also used like in the original falcON code.

In ispc, each scalar control flow corresponds to a program instance (similar to an OpenCL
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Cell$A$

Cell$B$

Figure 2: Pair computation: SIMD processing of the first gs particles in A (bounding box),
successively with each particle in B.

Figure 3: Own computation: pair computation (mutual) between the first particles and the
remaining ones, followed by pair computation (no mutual) among the first particles.

work-item). The group of program instances will be merged in one gang (similar to a CUDA
warp or to an AMD OpenCL wave-front) to be processed concurrently with SIMD instructions.
The gang size (denoted gs) of the gang is usually set to one or two time(s) the width of the
underlying SIMD vector. Depending on the available instruction level parallelism and on the
register pressure, it can be indeed more efficient (or not) to use twice the vector width. When
the number of items to process is greater than the gang size, the programmer implements the
mapping via an explicit loop over all items (contrary to CUDA and OpenCL, where warps/wave-
fronts are scheduled by the runtime) [11]. This gives us more control to efficiently and safely
implement the direct computation with the mutuality of gravity.

Direct computation kernels. We first focus on the direct computations between two different
leafs A and B (pair computations). We first determine the leaf with the greatest number of
particles (say A here). Each program instance is then in charge of one of the first gs particles
in A, which leads to a SIMD processing of these gs particles (see Fig. 2). Interactions between
these gs particles and the first particle of B are then processed concurrently: the first particle in
B is therefore replicated in the underlying SIMD vector. Force and potential are then updated
in A (no conflict among the program instances), as well as in the first particle of B (with ispc

reductions among the program instances in the gang). This is iterated over all particles in B.
Once all particles in B have been treated, the whole process is restarted for the next gs particles
in A.

We now focus on the direct computations among all particles within one given leaf (own
computations). In this case, we proceed as in [8] by using as much as possible the (efficient) pair
computation along with the mutuality of gravity, and we start by isolating the first gs particles.
Interactions between these first gs particles and the remaining particles are then computed
by the pair computation kernel (with the mutuality of gravity): see Fig. 3. After this, the
interactions among the first gs particles are then computed (similarly to the pair computation,
but without the mutuality of gravity here). The whole process is restarted with the remaining
particles, whose first gs particles are isolated.

Besides, moving from arrays of structures (AoS - as in the scalar falcON) to structures of
arrays (SoA - more efficient for vector loads and stores) in falcON would have required very
important programming efforts: we therefore keep the AoS data layout (like in exaFMM-dev

for example) and rely on the fact that for direct computations the O(N) memory access times
can be rapidly overlapped with the O(N2) computation times. Moreover, we also use software
pipelining in pfalcON with double buffering: we process two interactions at the same time, the
first one being computed while data for the next one are being loaded in registers. This has
been implemented in both the scalar pfalcON (referred to as pfalcON-scalar) and the SIMD
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Own Pair
T1 T2 TS,1 TB,1 TS,2 TB,2

SSE 8 7 3 10 3
AVX 6 72 8 2 32 13

Xeon Phi 3 4 2

Table 1: SIMD thresholds for each architecture.

code. Finally, we rely on the rsqrt ps intrinsic SIMD function as a floating-point reciprocal
square root estimate, followed by one Newton-Raphson iteration to match floating point single
precision.

4 Performance results

For performance tests, we use three compute servers: SSE-server with two Intel X5650 CPUs
(each having 6 SSE cores with 2-way SMT at 2.67 GHz) and 48 GB of memory, AVX-server
with two Intel E5-2660 CPUs (each having 8 AVX cores with 2-way SMT at 2.20 GHz) and 32
GB of memory, and Xeon-Phi which is a 5110P Xeon Phi (60 cores with 4-way SMT at 1.053
GHz) used in native mode as a distant server. For pfalcON, we use OpenMP (3.1) and TBB
(4.1) with GCC (4.7.3), since GCC specific optimizations are used in falcON, and with ICC
(14.0.0) on Xeon-Phi for the SIMD intrinsics. exaFMM-dev3 is used with ICC and TBB, and
Bonsai4 is run on NVIDIA GPUs (C2070 or K20c, both in SSE-server) with CUDA 5.0.

We will use two distributions of 10M particles: an artificial uniform distribution inside
a 3D cube, and a Plummer distribution as a classical (non-uniform) astrophysical model [9].
All codes compute both forces and potentials, for all particles, with single precision floating
point arithmetic. We also use in each code appropriate softenings for the near field part of the
gravity [9].

4.1 SIMD direct computation

Figure 4 presents the performance of different direct computation kernels presented in Sect. 3.2;
namely the original scalar implementation in falcON, pfalcON-scalar and two SIMD versions in
pfalcON: with the gang size set to the underlying vector width (pfalcON-ISPC) or to twice this
vector width (pfalcON-ISPCx2). On SSE for example, pfalcON-ISPC will rely via ispc on a
gang size of 4, and pfalcON-ISPCx2 on a gang size of 8. This last ispc feature is however not
yet available on the Xeon Phi, where we will therefore only use pfalcON-ISPC. The comparison
is here performed for numbers of particles that fit in the gang size.

When considering 1 flop for each division and each square root, our scalar code requires 25
flops to compute the forces and potentials between two particles (using the mutuality of gravity).
For the sake of the comparison, we use this same number of flops for the SIMD versions (as well
as for all subsequent tests).

Results in Fig. 4 implies that, depending on the number of particles, especially when there is
not enough particles to fill the SIMD vector, it may be better to use our scalar kernel pfalcON-
scalar, or the SIMD kernel of pfalcON-ISPC, instead of the SIMD kernel of pfalcON-ISPCx2.
We therefore propose, and use hereafter, the following hybrid strategy, based on the underlying
vector width (provided by an ispc function call).

For own computations of N particles, we first compute the number of particles Nm =
⌊N/w⌋×w that correspond to multiples of the vector width w, and the remainder Nr = N−Nm.

3https://bitbucket.org/rioyokota/exafmm-dev, commit 4bd77a5, 2013-09-12.
4https://github.com/treecode/Bonsai, version 8d8e4c0d19, 2013-04-21.
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Figure 4: Performance of the different kernels for direct computations on various SIMD in-
struction sets. For pair computations between cells A and B, only the number of particles NA

in cell A is indicated: for each value of NA, NB ranges from 1 to NA.

Then we apply specific thresholds for each SIMD architecture to process Nm and Nr. These
thresholds are presented in Table 1. For example for Nm, we use:

- pfalcON-ISPCx2 if T2 ≤ Nm ;
- pfalcON-ISPC if T1 ≤ Nm < T2 ;
- pfalcON-scalar if Nm < T1 .
For pair computations of cells A and B with NA and NB particles (NA ≥ NB), we first

compute Nm,A and Nr,A. We then apply specific thresholds presented in Table 1 following this
strategy (firstly for Nm,A and secondly for Nr,A):

- we use pfalcON-ISPCx2 if Nm,A ≥ 2×V ectorWidth and Nm,A +NB ≥ TS,2 and
NB ≥ TB,2 ;

- otherwise, we use pfalcON-ISPC if Nm,A +NB ≥ TS,1 and NB ≥ TB,1 ;
- otherwise we use pfalcON-scalar.
Figures 5(a),5(b),5(c) show that our ispc hybrid strategy leads on SSE and AVX to perfor-
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mance that is mainly similar or better than the hand-tuned kernels of exaFMM-dev [15] for low
numbers of particles. For higher numbers of particles, ispc clearly outperforms exaFMM-dev

thanks to a gang size set to twice the vector width. With N = 1024 (not shown here), we
hence reach for the pair computation 9.5 Gflop/s on SSE and 12.5 Gflop/s on AVX.

On the Xeon Phi, we also obtain similar or better performance than exaFMM-dev, except
for the high values of N with own computations: this is mainly due to the current lack of
pfalcON-ISPCx2 on the Xeon Phi. As soon as a gang size twice larger than the SIMD vector
width will be available, we will likely have better performance with ispc.

Finally, we evaluate in Fig. 6 the SIMD performance gain on the overall interaction step:
values on top of each bar correspond to the speedups of pfalcON with ispc over the scalar
rfalcON. We optimally choose here the Ncrit value for each code on each architecture: for
rfalcON the optimal Ncrit value is 8, whereas for the SIMD pfalcON code this is 32 for AVX
and Xeon Phi, and 8 for SSE. The SIMD pfalcON code offers thus performance gains over
rfalcON of 5% on one SSE core, but of up to 24% (resp. 92%) on one AVX (resp. Xeon Phi)
core.

4.2 Task parallelism

Figure 7 presents speedups of pfalcON over the serial rfalcON code. With both OpenMP and
TBB, and for both uniform and non-uniform distributions of particles, we obtain very good
speedups up to 15.8 on AVX-server and up to 60 on Xeon-Phi. Similar or better parallel
efficiencies have been obtained on SSE-server (speedups up to 13.8, not shown here). Once the
overhead of using task and atomic operations is taken into account (for 1 thread), we indeed
obtain linear speedups on up to 32 physical CPU cores. On the Xeon Phi, using two hardware
threads per core (denoted as 2-way SMT) enables us to improve the speedup from 50 (with 60
threads) to 60 (with 120 threads on 60 cores). Using two hardware threads is indeed required to
reach best performance on this architecture, but performance drops for too many threads (with
4 hardware threads per core - 4-way SMT). These results show that our task parallelism with
atomic operations is very well suited for multi-core CPUs, and scales well on the Xeon Phi.

For the evaluation step, good speedups (around 12 on AVX-server, and around 32 on Xeon-
Phi, not shown here) are obtained, these speedups being mainly limited by the very small
computation times of this step in our tests.

4.3 Comparison with exaFMM-dev and Bonsai

Finally, we now compare in Fig. 8 the following codes: (i) the original falcON, (ii) the SIMD pfal-
cON on AVX-server (GCC+OpenMP with 32 hardware threads) and on Xeon-Phi (ICC+TBB
with 120 hardware threads), (iii) the SIMD exaFMM-dev code with 1 or 32 threads on AVX-server
(ICC+TBB), (iv) and finally Bonsai on one C2070 GPU and on one K20c GPU. We compare
here two multi-core CPUs (AVX-server TDP: 2× 95W ) with one GPU (maximum power con-
sumption: 238W for C2070 and 225W for K20c) and with one Xeon Phi (TDP: 225W ), since
this corresponds to the same power consumption. Optimal Ncrit values are used for falcON,
pfalcON and exaFMM-dev, whereas Bonsai uses its own specific thresholds (Nleaf = 16 and
Ncrit = 64, see [3]). As recommanded for astrophysical N -body simulations [9], we use θ = 0.6
for falcON, pfalcON and exaFMM-dev, and θ = 0.75 for Bonsai (default value) whose expansions
and MAC are different [3]. For falcON, pfalcON and exaFMM-dev, we consider here only the
interaction and evaluation steps, and for Bonsai we consider the corresponding “tree-traverse”
step.

Speedups between pfalcON and exaFMM-dev are similar. Since falcON is somewhat faster for
serial executions, pfalcON is then also somewhat faster than exaFMM-dev for parallel executions.
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(c) On one Xeon Phi core.

Figure 5: Performance comparison for direct computations (only up to 256 particles because of
the Ncrit limit within each leaf). For pair computations, we use the same number of particles
in both cells.

As far as the Xeon Phi is concerned, there is no performance gain compared to the two multi-
core CPUs, mainly because astrophysical N -body simulations offer small computation grains
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Figure 7: Speedups obtained by pfalcON on multi-core and many-core architectures.

for the direct computations: there is usually too few particles per leaf to fill at best the vector
units of the Xeon Phi. The Xeon Phi however outperforms the C2070 for the non-uniform
Plummer distribution. Finally, pfalcON on AVX-server outperforms Bonsai on the C2070
GPU. Using the newer K20c GPU, Bonsai outperforms pfalcON on AVX-server for the uniform
distribution, but the performance results are much more closer for the more realistic Plummer
distribution. Non-uniform distributions are indeed more challenging for GPU codes, whereas
pfalcON on AVX-server is few sensitive to the particle distribution. Lastly, we emphasize that
50M distributions can be run on SSE-server and AVX-server, but not on any GPU.

5 Conclusion and future work

We have presented a parallel version of the dual tree traversal which is the most challenging
and time consuming part in Dehnen’s algorithm. Very good speedups are obtained, Dehnen’s
original algorithm is preserved, no extra computations are introduced, and the SPMD model
is shown to be suitable for efficient and portable SIMD vectorization. Since falcON is faster
than serial Barnes-Hut tree-codes, pfalcON with such parallel speedups should outperform any
parallel tree-code on one single node with multi-core CPUs. Besides, pfalcON is faster than or
almost as fast as GPU tree-codes like Bonsai for astrophysical distributions, but we emphasize
that GPU tree-codes are limited by the GPU memory, and MPI communications on multiple
nodes with GPU are usually penalized by the PCI bus. The pfalcON code is available at
https://pfalcon.lip6.fr .
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Figure 8: Computation times (interaction and evaluation steps) for various N -body codes.

Future work will be focused on the other parts of falcON (mainly the octree construction
[13]), on distributed-memory parallelism, and on applying such parallel algorithm to other
applications than astrophysics. Another (challenging) task would be to efficiently combine the
best algorithm, namely the dual tree traversal, with the most powerful hardware currently
available, namely GPUs.
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