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Some existence results for the modified binormal curvature flow

equation

Didier Smets 1, Haidar Mohamad 2

February 17, 2014

Abstract

We establish some existence results for the modified binormal curvature flow equation from
(R or T

l ) to R
3 where the velocity of the curve depends not only on the binormal vector but

the parametrization of the curve, the time and the position of the point in the space. We achieve
our objective via the Schrödinger map equation. A Local well-posedness result is proved for the
Schrödinger map equation in the space L∞(0, T1,H

3
loc(R)).

1 Introduction

The modified binormal curvature flow equation for γ : [0, T [×R → R
3 is

∂tγ = g
(

∂xγ ∧ ∂2xγ
)

, (1.1)

where T ∈ R
∗
+ ∪ {+∞}, x is the arc-length parameter of the curve γ(t, .) for all t ∈ [0, T [ and g is a

real function.
The first goal of this article will be to consider the case where g = g(t, x) and to prove the existence
of solution γ ∈ L∞([0, T [, H2

loc(R)). Then, we prove a well-posedness result in more regular space
(γ ∈ L∞([0, T [, H4

loc(R))) via the Schrödinger map equation

∂tu = ∂x (u ∧ g∂xu) = u ∧∆g(u), (1.2)

where ∆g(u) ≡ ∂x (g(x)∂xu) and u ≡ ∂xγ.
Finally, we consider the case where g = g(t, x, γ) and we prove a local existence result of solution
γ ∈ L∞([0, T1[, H

3
loc(R)), with T1 > 0 depending on γ0 ≡ γ(0, .) and g. The transition from results for

(1.2) to results for (1.1) occurs by Lemma 1.7.

Theorem 1.1 Let u0 : R → S2 be such that du0

dx
∈ L2(R), T > 0 and let g ∈ W 1,∞(R+, L∞(R)) be

such there exists α > 0 with g ≥ α. Then the equation (1.2) has a solution u ∈ L∞(0, T,H1
loc(R, S

2))
with u(0, .) = u0. Moreover, if g = g(x), then u ∈ L∞(R+, H1

loc(R, S
2))

Theorem 1.2 Let l > 0 and T > 0. We denote T
l ≃ R/lZ. Let u0 : T

l → S2, and let g ∈
W 1,∞(R+, L∞(Tl)) such that there exists α > 0 with g ≥ α. Then the equation (1.2) has a solution
u ∈ L∞(0, T,H1(Tl, S2)) with u(0, .) = u0. Moreover, if g = g(x), then u ∈ L∞(R+, H1

loc(T
l, S2)).
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Theorem 1.3 Let u0 : R → S2 be such that du0

dx
belongs to H2(R), and let g ∈ W 1,∞(R+,W 3,∞(R)).

Assume that there exists α > 0 with g ≥ α. Then there exists T1 = T1(g, u0) > 0 such that equation
(1.2) has a unique solution u ∈ L∞(0, T1, H

3
loc(R)) with u(0, .) = u0.

The uniqueness is deduced from the following quantitative theorem

Theorem 1.4 Let T > 0 and g : R → R be a function verifying the conditions of Theorem 1.3. Let u
and ũ be two solutions for (1.2) with initial datum u0, ũ0 : R → S2 respectively. Assume that ∂xu, ∂xũ
belong to L∞(0, T,H2(R)). There exists two positive constants C1, C2 depending on g, T and the H2

norm of ∂u0

∂x
and ∂ũ0

∂x
with

‖u(t, .)− ũ(t, .)‖H1(R) ≤ C1‖u0 − ũ0‖H1(R),

‖u(t, .)− ũ(t, .)‖H2(R) ≤ C2‖u0 − ũ0‖H2(R),

for almost every t ∈]0, T [.

In what concerns the case g = g(t, x, γ), we have

Theorem 1.5 Assume that g = g(t, x, γ) and let g ∈ W 1,∞(R+,W 2,∞(R3 × R). We further assume

that there exists α > 0 with g ≥ α. Let γ0 : R → R
3, be such that d2γ0

dx2 ∈ H1(R). There exists
T1 = T1(g, γ0) such that equation (1.1) has a solution γ ∈ L∞(0, T1, H

3
loc(R)) with γ(0, .) = γ0.

Equation (1.1) (with g ≡ 1) forms a model of the motion of a very thin vortex with radius ǫ and
arc-length parameter x in an incompressible fluid by its own induction. The original equation for this
model is given by

∂tγ = GκB, (1.3)

where κ is the curvature of γ, B is the binormal vector of the Frenet-Serret formula

∂x





T
N
B



 =





0 κ 0
−κ 0 τ
0 −τ 0









T
N
B



 , (1.4)

and

G =
Γ

4π

(

log

(

1

ǫ

)

+O(1)

)

,

is the coefficient of local induction which is proportional to the circulation Γ of the vortex and may
be regarded as constant if we neglect the slow variation of the logarithm with respect to ǫ−1. In this
approximation, the local motion is approximated by that of a very thin circular ring with the same
curvature and the tangential motion due to stretching is neglected. This model is called Localized
Induction Approximation (LIA). It was developed in 1965 by Arms and Hama [1]. More analysis
concerning the limitation of this model was realized in [3, 6].

Our aim in this paper is to prove some existence results for Cauchy problem associated to some
generalization of (1.1). Namely, in the formula (1.1) the velocity is proportional to the curvature with
identical coefficient in every point of the curve. In our case, we assume that this coefficient can be
depending on the time t, the arc-length parameter x and eventually on the position of the point in
the space γ(t, x) :

∂tγ = gκB, (1.5)

with (g = g(t, x, γ(t, x))). Since we have ∂xγ = T and B = N ∧ T, (1.5) becomes

∂tγ = g∂xγ ∧ ∂2xγ. (1.6)
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1.1 Reconstruction of flow γ

ǫ

ǫ

Figure 1: Approximation (LIA).

Equation (1.6) (with g ≡ 1) was presented in 1906 by Da Rios [5]. We denote u = ∂xγ, then by
deriving (1.6) with respect to x, we obtain at least formally

∂tu = u ∧ ∂x(g∂xu). (1.7)

When g = g(t, x) does not depend on γ, we use the last formula together with Lemme 1.7 in the next
part to study the Cauchy problem of (1.6). The case g ≡ 1 belongs to the Schrödinger map equation

∂tu = u ∧ ∂2xu, (1.8)

whose Cauchy problem was first studied by Zhou and Guo [4] in 1984 when u(t, .) is defined on an
interval I ⊂ R into S2 = {v ∈ R

3 s. t. |v| = 1}, and by Sulem, Sulem and Bardos [2] in 1986 when
u(t, .) is defined on R

N (N ≥ 1) into S2. They proved that (1.8) has a weak solution in L∞(H1
loc).

Namely,

Theorem 1.6 Let u0 : R
N → S2 to be such that ∇u0 ∈ (L2(RN ))N . Then there exists a weak solution

u : R+ × R
N → S2 for (1.8) such that ∇xu ∈ L∞(R+,RN ) with u(0, .) = u0.

1.1 Reconstruction of flow γ

Let I ⊂ R
+ be an interval containing 0, and let u ∈ L∞(I,H1

loc(R)) be a solution for (1.2). We define
the function Γu ∈ L∞(I,H2

loc(R)) by

Γu(t, x) =

∫ x

0

u(t, z)dz. (1.9)

We have, In the sense of distributions on I × R,

∂x
(

∂tΓu − g∂xΓu ∧ ∂2xΓu

)

= 0. (1.10)

By construction, the curves Γu(t, .) all have the same base point Γu(t, 0) fixed at the origin. If they
were smooth, equation (1.10) would directly imply the existence of a function cu = cu(t) such that
the function

γu(t, x) = Γu(t, x) + cu(t)

is a solution for (1.1) (with g = g(t, x)). In this case, we have

cu(t) = γu(t, x) − Γu(t, x)

= γu(0, x) +

∫ t

0

g(τ, x)u(τ, x) ∧ ∂xu(τ, x)dτ −
∫ x

0

u(t, z)dz

= γu(0, 0) +

∫ x

0

(u(0, z)− u(t, z))dz +

∫ t

0

g(τ, x)u(τ, x) ∧ ∂xu(τ, x)dτ.
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1.1 Reconstruction of flow γ

In fact, the function cu represents the evolution in time of the actual base point of the curves.

The relation between the modified binormal curvature flow equation and the Schrödinger map
equation is specified in the following lemma.

Lemma 1.7 Let ω ∈ L∞(I,H1
loc(R, S

1)) be a solution for (1.2) such that ∂xω ∈ L∞(I, L2(R, S1)).
Let Γω be defined by (1.9). Then there exists a unique continuous function cω : I → R

3 satisfying
cω(0) = 0 such that the function γω ∈ L∞(I,H2

loc(R,R
3)) defined by

γω(t, x) = Γω(t, x) + cω(t)

is a solution for equation (1.1) on I × R.

Proof. We define a ∈ D′(I × R,R3) by

a(t, x) =

∫ x

0

(ω(0, z)− ω(t, z))dz +

∫ t

0

g(τ, x)ω(τ, x) ∧ ∂xω(τ, x)dτ.

Let χ ∈ D(R,R) be such that
∫

R
χ(z)dz = 1. We set

cω(t) =

∫

R

χ(z)a(t, z)dz.

By construction, we have cω(0) = 0, and since ω ∈ W 1,∞(I,H−1(R)), we have cω ∈ C(I,R3). On the
other hand, we have

∂x(∂ta) = ∂t∂xΓω − ∂x (gω ∧ ∂xω)
= ∂tω − ω ∧∆gω

= 0, (1.11)

since ω is a solution to (1.2). Since ∂ta(t, x) does not depend on x, we have for all ϕ ∈ D(I,R3)
∫

I

cω(t) · ϕ′(t)dt =

∫

I

∫

R

χ(z)a(t, z) · ϕ′(t)dtdz

= −
∫

R

χ(z)

∫

I

∂ta(t, z) · ϕ(t)dtdz

= −
∫

I

∂ta(t, z) · ϕ(t)dt, (1.12)

Relation (1.12) means that

c′ω = ∂ta = −∂tΓ + gω ∧ ∂xω in D′(I,R3). (1.13)

We show now that the function γω, defined on I × R by

γω(t, x) = Γω(t, x) + cω(t),

is a solution to (1.1) on I × R. For this aim, assume that ψ ∈ D(I × R,R3) and

ϕ(t) =

∫

R

ψ(t, z)dz ∈ D(I,R3).

Using (1.13), we finally find that

〈∂tγω − g∂xγω ∧ ∂2xγω, ψ〉I×R = 〈∂tΓω − gω ∧ ∂xω, ψ〉I×R + 〈cω, ψ〉I×R

= −〈∂ta, ϕ〉I + 〈c′ω, ϕ〉I
= 0,

where 〈, 〉I×R is the duality pairing between D′(I ×R,R3) and D(I ×R,R3), and 〈, 〉I is that between
D′(I,R3) and D(I,R3). This proves the existence of cω. Since cω is required to be continuous with
cω(0) = 0 and since its distributional derivative c′ω = ∂ta, its uniqueness follows.
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1.2 Approximation by discretization of the Schrödinger map equation

1.2 Approximation by discretization of the Schrödinger map equation

We present here the strategy of proof of theorems 1.1, 1.2 and 1.3. We discretise, in space, the
continuous system

{

∂tu = ∂x (u ∧ g∂xu) = u ∧ ∂x (g∂xu) , t ≥ 0, x ∈ R,
u(0, .) = u0.

(1.14)

in the following sense:
For some h > 0, we consider the sequence uh ≡ {uh(t, xi)}i∈Z satisfying the semi-discrete system

{

duh

dt
= D+ (uh ∧ ghD−uh) = uh ∧D+ (ghD

−uh) , t ≥ 0,
uh(0, xi) = u0h(xi), i ∈ Z

(1.15)

where {xi}i∈Z, is a uniform subdivision of R with step h, gh ≡ {g(t, xi)}i∈Z, and D+, D− are two
operators approximating the derivative operator ∂x. The sequence {u0h(xi)}i∈Z is constructed such
that it converges to u0 in certain sense (for example: since u0 ∈ H1

loc(R), we can choose u0h(xi) =
u0(xi) ∀i ∈ Z). We solve the problem (1.15) in some space discretising the space L∞(R+, H1

loc(R))
where our research for solving the continuous problem (1.14) takes a place. Then, we prove the
boundedness properties for discrete derivatives (D+uh in the case of Theorems 1.1 and 1.2; and
D−D+uh, D

+D−D+uh in the case of Theorem 1.3) which allows us, using the compactness properties
in spaces L2(R) and H1

loc(R), to extract a subsequence {uh}h 1 converging to a solution of (1.14). The
proof of Theorem 1.4 is standard. It consists of considering two solutions u and ũ with initial datum
u0 and ũ0 respectively and then proving Grönwall-type inequalities for ‖u− ũ‖H1 and ‖u− ũ‖H2 . For
Theorem 1.5, we follow the same strategy followed in the proof of Theorem 1.3.

In what follows, we define the elements of the discrete problem (1.15). Then, we prove some
convergence properties before we skip to the proofs of previous theorems.

Definition 1.8 Let h > 0. Let

Zh = {xi ∈ R, xi+1 − xi = h ∀i ∈ Z}.

We define the two spaces L2
h and L∞

h by

L2
h = {vh = {vh(xi)}i ∈ (R3)Zh ,

∑

i

|vh(xi)|2 < +∞},

L∞
h = {vh = {vh(xi)}i ∈ (R3)Zh , sup

i

|vh(xi)| < +∞}.

We define the scalar product (, )h on L2
h by

(uh, vh)h = h
∑

i

vh(xi) · uh(xi), uh, vh ∈ L2
h.

Its associated norm |.|h is defined by

|vh|2h = h
∑

i

|vh(xi)|2.

Let l > 0, N ∈ N and h = l
N
. We define the space of N -periodic sequences

Pl,N = {vh ∈ (R3)Zh , vh(xi) = vh(xi+N ), i ∈ Z}.
1To give sense to the notation {uh}h, we can consider h : N → R+ to be a strictly decreasing function which goes to

zero when n → +∞. We have made this choice for its simplicity.
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1.2 Approximation by discretization of the Schrödinger map equation

We define the scalar product (, )l,N by

(uh, vh)l,N = h

N
∑

i=1

vh(xi) · uh(xi).

Its associated norm |.|l,N is defined by

|vh|2l,N = h

i=N
∑

i=1

|vh(xi)|2.

Let vh ∈ (R3)Zh . We define the left and the right approximations of the derivatives in xi by the form
{

D−vh(xi) =
vh(xi)−vh(xi−1)

h
,

D+vh(xi) =
vh(xi+1)−vh(xi)

h
.

It is clear that for two sequences uh = {uh(xi)}i and vh = {vh(xi)}i we have

D±(uhvh) = τ±uhD
±vh +D±uhvh,

with
τ±uh(xi) = uh(xi±1).

The two spaces L2
h and Pl,N verify the following property

Lemma 1.9 1) If vh ∈ L2
h, then we have D+vh ∈ L2

h, and

|D+vh|h ≤ 2

h
|vh|h.

2) If vh ∈ Pl,N , then we have also

|D+vh|l,N ≤ 2

h
|vh|l,N , h =

l

N
.

Proof. It follows directly from the inequality

|D+
h vh(xi)|2 ≤ 2

h2
(|vh(xi)|2 + |vh(xi+1)|2).

Definition 1.10 We define the norm

|vh|2H1
h
= |vh|2h + |D+vh|2h, vh ∈ L2

h,

and the space

H−1
h =

{

vh ∈ (R3)Zh , sup
uh∈L2

h

〈vh, uh〉h
|uh|H1

h

< +∞
}

.

Its clear that L2
h ⊂ H−1

h and the function vh 7→ |vh|H−1

h

≡ supuh∈L2
h

〈vh,uh〉h
|uh|H1

h

define a norm on H−1
h .

Similarly, we define the norms

|vh|2H1
l,N

= |vh|2l,N + |D+vh|2l,N ,

|vh|H−1

l,N
= sup

uh∈Pl,N

〈vh, uh〉l,N
|uh|H1

l,N

, vh ∈ Pl,N .

The two norms |.|H−1

h
and |.|H−1

l,N
are the dual norms of |.|H1

h
and |.|H1

l,N
with respect to scalar product

〈, 〉h et 〈, 〉l,N respectively.
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1.2 Approximation by discretization of the Schrödinger map equation

Lemma 1.11 For each (vh, uh) ∈ L∞
h × ∈ L2

h, we have (discrete integration by parts formula)

∑

i

vh(xi) ·D+uh(xi) = −
∑

i

uh(xi) ·D−vh(xi). (1.16)

Similarly, for all vh, uh ∈ Pl,N , we have

N
∑

i=1

vh(xi) ·D+uh(xi) = −
N
∑

i=1

uh(xi) ·D−vh(xi). (1.17)

Proof. Let vh ∈ L∞
h , uh ∈ L2

h and K ∈ N. We develop the sum
∑K

i=−K vh(xi) · D+uh(xi) and
we make a change in index, then (1.16) holds by using the property lim|i|→+∞ |uh(xi)| = 0 and the

assemption (vh ∈ L∞
h ). In the second case, we simply develop the sum

∑N
i=1 vh(xi) · D+uh(xi) and

make a change in index, then we use the periodicity of vh and uh.

Definition 1.12 Let h > 0. We set Ci = [xi, xi+1[, i ∈ Z. Let Ph and Qh be the two interpolation
operators defined, for all vh = {vh(xi)}i ∈ (R3)Zh , by the functions

Qhvh : R → R
3, x 7→ Qhvh(x) = vh(xi), ∀x ∈ Ci, ∀i ∈ Z,

Phvh : R → R
3, x 7→ Phvh(x) = vh(xi) +D+vh(xi)(x − xi), ∀x ∈ Ci, ∀i ∈ Z.

In all that follows we keep the notation of this definition. We have the following important lemma

Lemma 1.13 1) Let {vh}h be a sequence satisfying

{

vh ∈ H−1
h , ∀h > 0,

∃C > 0, |vh|H−1

h
< C

Then the sequence {Phvh}h is bounded in H−1(R).
2) Let l > 0 and {vh}h be a sequence satisfying







h = l
N
,

vh ∈ Pl,N , ∀N ∈ N,
∃C > 0, |vh|H−1

l,N
< C, ∀N ∈ N.

Then the sequence {Phvh}h is bounded in H−1(Tl).

Proof. 1) We have

‖Phvh‖H−1(R) = sup
ϕ∈D(R)

〈Phvh, ϕ〉L2(R)

‖ϕ‖H1(R)

≤ sup
ϕ∈D(R)

〈Phvh, Phϕh〉L2(R)

‖ϕ‖H1(R)
+ sup

ϕ∈D(R)

〈Phvh, ϕ− Phϕh〉L2(R)

‖ϕ‖H1(R)
, (1.18)

with ϕh = {ϕ(xi)}i. Since

‖ϕ− Phϕh‖L2(R) ≤ h‖(ϕ− Phϕh)
′‖L2(R) (Poincaré),

we have

‖ϕ‖2H1(R) = ‖Phϕh‖2H1(R) + ‖ϕ− Phϕh‖2H1(R) + 2

∫

R

(Phϕh).(ϕ− Phϕh)dx+ 2

∫

R

(Phϕh)
′.(ϕ − Phϕh)

′dx

≥ ‖Phϕh‖2H1(R) + ‖ϕ− Phϕh‖2H1(R) − 2h‖Phϕh‖L2(R)‖(ϕ− Phϕh)
′‖L2(R).
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1.2 Approximation by discretization of the Schrödinger map equation

Then there exists h0 > 0 such that for all h < h0, we have

‖ϕ‖2H1(R) ≥ 1

2

(

‖Phϕh‖2H1(R) + ‖ϕ− Phϕh‖2H1(R)

)

≥ 1

2
max

(

‖Phϕh‖2H1(R), ‖ϕ− Phϕh‖2H1(R)

)

.

We obtain by substituting in (1.18)

‖Phvh‖H−1(R) ≤ sup
ϕ∈D(R)

〈Phvh, Phϕh〉L2(R)

1√
2
‖Phϕh‖H1(R)

+
√
2h‖Phvh‖L2(R). (1.19)

Next, we have

‖Phϕh‖2H1(R) =
∑

i

∫ xi+1

xi

∣

∣

∣

∣

xi − x

h
ϕ(xi) +

x− xi
h

ϕ(xi+1)

∣

∣

∣

∣

2

dx+
∑

i

h

∣

∣

∣

∣

ϕ(xi)− ϕ(xi+1)

h

∣

∣

∣

∣

2

dx

=
∑

i

h

3

(

|ϕ(xi)|2 + |ϕ(xi+1)|2 + ϕ(xi+1)ϕ(xi)
)

+ |D+ϕh|2h

≥
∑

i

h

6

(

|ϕ(xi)|2 + |ϕ(xi+1)|2
)

+ |D+ϕh|2h,

from which we can write

‖Phϕh‖2H1(R) ≥
1

3
|ϕh|2h + |D+ϕh|2h ≥ 1

3
|ϕh|2H1

h
. (1.20)

We have on the one hand

〈Phvh, Phϕh〉L2(R) =
∑

i

∫ xi+1

xi

(vh(xi) +D+vh(xi)(x − xi)).(ϕ(xi) +D+ϕh(xi)(x − xi))dx

= (vh, ϕh)h +
h

2
(vh, D

+ϕh)h +
h

2
(D+vh, ϕh)h +

h2

3
(D+vh, D

+ϕh)h

= (vh, ϕh)h +
h

2
(vh, D

+ϕh)h − h

2
(vh, D

−ϕh)h +
h2

3
(D+vh, D

+ϕh)h

≤ (vh, ϕh)h + h|vh|h|D+ϕh|h +
h2

3
|D+vh|h|D+ϕh|h, (1.21)

and on the other hand

‖Phvh‖2L2(R) =
∑

i

∫ xi+1

xi

|vh(xi) +D+vh(xi)(x− xi)|2dx

≤ 2
∑

i

∫ xi+1

xi

(|vh(xi)|2 + |D+vh(xi)|2(x− xi)
2)dx

= 2|vh|2h +
2h2

3
|D+vh|2h. (1.22)

8



1.2 Approximation by discretization of the Schrödinger map equation

Then by combining (1.19), (1.20), (1.21) and (1.22) we get

‖Phvh‖H−1(R) ≤ sup
ϕ∈D(R)

(vh, ϕh)h + h|vh|h|D+ϕh|h + h2

3 |D+vh|h|D+ϕh|h
1√
6
|ϕh|H1

h

+ 2h|vh|h +
2h2√
3
|D+vh|h

≤
√
6(|vh|H−1

h
+ h|vh|h +

h2

3
|D+vh|h) + 2h|vh|h +

2h2√
3
|D+vh|h

≤
√
6|vh|H−1

h
+ (

√
6 + 2)h|vh|h + 2(

√
6

3
+

2√
3
)h|vh|h2

≤
√
6|vh|H−1

h
+ (

√
6 + 2 + 2

2 +
√
2√

3
)h|vh|h

≤ C|vh|H−1

h
,

since

|vh|H−1

h
= sup

uh

(vh, uh)h
|uh|H1

h

≥ sup
uh

(vh, uh)h

[|uh|2h + 4
h2 |uh|2h]

1
2

=
h√

h2 + 4
sup
uh

(vh, uh)h
|uh|h

≥ h
√

h20 + 4
|vh|h, ∀h ≥ h0.

The proof of 2) is similar to that of 1).

The following lemma shows that the space L2
h, equipped with the norm |.|H1

h
, is continuously

embedded in L∞
h .

Lemma 1.14 There exist two constants C1, C2 > 0 such that for all h > 0 and vh ∈ L2
h we have

C2|vh|h ≤ ‖Phvh‖L2(R) ≤ C1|vh|h.

Proof. Since
∫ xi+1

xi

|uh(xi) +D+uh(xi)(x− xi)|2dx = h|uh(xi)|2 +
1

2
h2uh(xi)D

+uh(xi) +
1

3
h3|D+uh(xi)|2

=
5

6
h|uh(xi)|2 −

1

6
huh(xi)D

+uh(xi) +
1

3
h|uh(xi+1)|2,

and

3

4
|uh(xi)|2+

1

4
|uh(xi+1)|2 ≤ 5

6
|uh(xi)|2−

1

6
uh(xi)D

+uh(xi)+
1

3
|uh(xi+1)|2 ≤ 11

12
|uh(xi)|2+

5

12
|uh(xi+1)|2,

we have

|vh|2h ≤ ‖Phvh‖2L2(R) ≤
4

3
|vh|2h.

Corollary 1.15 If vh ∈ L2
h ⊂ L∞

h , then Phvh ∈ H1(R) and there exists C > 0 (which does not depend
on h) such that

|vh|L∞

h
≤ C|vh|H1

h
.
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Proof. Since dPhvh
dx

= QhD
+vh ∈ L2(R), we have Phvh ∈ H1(R) (Lemma 1.9). On the other hand,

we have

‖Phvh‖L∞(R) = sup
i∈Z

sup
x∈[xi,xi+1[

|uh(xi) +D+uh(xi)(x− xi)|

= sup
i∈Z

max(|uh(xi)|, |uh(xi+1)|)

= |vh|L∞

h
.

The space L∞(R) is continuously embedded in the space H1(R) (Sobolev) and there exists C̃ > 0
such that

‖v|L∞(R) ≤ C̃‖v|H1(R), ∀v ∈ H1(R).

Consequently,

|vh|2L∞

h
= ‖Phvh‖2L∞(R)

≤ C̃2‖Phvh‖2H1(R)

≤ C̃2(C2
1 |vh|2h + ‖QhD

+vh‖2L2(R))

≤ C2|vh|2H1
h
.

2 Proofs of principal theorems

Let us first show some important properties.

2.1 Convergence properties

Lemma 2.1 1) Let {vh}h be a sequence satisfying

vh ∈ L2
h, ∀h,

and
∃C > 0, |vh|h ≤ C. (2.1)

Then the sequence {Phvh −Qhvh}h converges weakly to zero in L2(R).
2) Let l > 0 and {vh}h be a sequence satisfying

{

h = l
N
,

vh ∈ Pl,N , ∀N ∈ N,

and
∃C > 0, |vh|l,N ≤ C. (2.2)

Then {Phvh −Qhvh}h converges weakly to zero in L2(Tl). Moreover, if {Qhvh}h converges to v in L2

(L2(R) or L2(Tl)), then {Phvh}h converges to the same limit in L2.
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2.1 Convergence properties

Proof. 1) We write

‖Phvh −Qhvh‖2L2(R) =
∑

i

∫ xi+1

xi

|D+vh(xi)|2(x − xi)
2dx

≤ 1

3
h3
∑

i

|D+vh(xi)|2

=
1

3
h2|D+vh|2h

≤ 4

3
|vh|2h

≤ 4

3
C2. (2.3)

Furthermore, for all ϕ ∈ D(R), we have

|〈Phvh −Qhvh, ϕ〉L2(R)| ≤ |〈Phvh −Qhvh, Qhϕ〉L2(R)|
+‖Phvh −Qhvh‖L2(R)‖ϕ−Qhϕh‖L2(R), (2.4)

where ϕh = {ϕ(xi)}i. We have on the one hand

‖ϕ−Qhϕh‖2L2(R) =
∑

i

∫ xi+1

xi

|ϕ(x) − ϕ(xi)|2dx

=
∑

i

∫ xi+1

xi

|
∫ x

xi

ϕ′(s)ds|2dx

≤
∑

i

∫ xi+1

xi

(

∫ x

xi

|ϕ′(s)|2ds)(x− xi)dx

≤ h2

2

∑

i

∫ x

xi

|ϕ′(s)|2ds

=
h2

2
‖ϕ′‖2L2(R). (2.5)

On the other hand, we can write

|〈Phvh −Qhvh, Qhϕ〉L2(R)| =
h

2
|〈D+vh, ϕh〉h|

=
h

2
|〈vh, D−ϕh〉h|

≤ h

2
|vh|h|D−ϕh|h

≤ 1

2
C

[

h
∑

i

|
∫ xi

xi−1

ϕ′(s)ds|2
]

1
2

≤ 1

2
Ch‖ϕ′‖L2(R). (2.6)

Then combining (2.3), (2.4), (2.5) and (2.6), we obtain

|〈Phvh −Qhvh, ϕ〉L2(R)| ≤ (
2√
6
+

1

2
)C‖ϕ′‖L2(R)h.
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2.1 Convergence properties

Thus the proof of 1) is completed. The proof of 2) is similar to that of 1). To prove the strong
convergence property, let v ∈ L2, then it suffices to note that

‖Phvh −Qhvh‖2L2 =
∑

i

∫ xi+1

xi

|D+vh(xi)|2(x − xi)
2dx

=
1

3
h3
∑

i

|D+vh(xi)|2

=
1

3
‖τ−hQhvh −Qhvh‖2L2,

with τhw = w(· − h), and

‖τ−hQhvh −Qhvh‖L2 ≤ ‖τ−hQhvh − v‖L2 + ‖Qhvh − v‖L2

≤ ‖τhv − v‖L2 + 2‖Qhvh − v‖L2.

Thus the convergence limh→0 ‖τhv − v‖L2 = 0 completes the proof.

Lemma 2.2 1) Let v ∈ H−1(R), and {vh}h be a sequence such that the sequence {Qhvh}h converges
to v in H−1(R) weak star. Then the sequence {Phvh}h converges to v in H−1(R) weak star.
2) Let l > 0, vl ∈ H−1(Tl) and {vh}h be a sequence satisfying







h = l
N
,

vh ∈ lN , ∀N ∈ N,
Qhvh → vl in H−1(Tl) weak star.

Then {P l
hvh}h converges to vl in H−1(Tl) weak star.

Proof. 1) First, we prove that Phvh ∈ H−1(R), ∀h. To this end, we first write

Phvh = Qhvh + (Ph −Qh)vh.

Then it suffices to prove that (Ph −Qh)vh ∈ H−1(R), ∀h. Let ϕ ∈ D(R), and ϕh = {ϕ(xi)}i. We have

|〈Phvh −Qhvh, ϕ〉L2(R)| ≤ |〈Phvh −Qhvh, Qhϕ〉L2(R)|+ |〈Phvh −Qhvh, ϕ−Qhϕ〉L2(R)|

≤ h

2
|(D+vh, ϕh)h|+ |

∑

i

∫ xi+1

xi

(D+vh(xi).

∫ x

xi

ϕ′(s)ds)(x − xi)dx|

≤ h

2
|(vh, D−ϕh)h|+ |h2

√
h
∑

i

|D+vh(xi)|.
∫ xi+1

xi

|ϕ′(x)|2dx|

≤ h

2
|vh|h|D−ϕh|h + h2|D+vh|h‖ϕ′‖L2(R)

≤ h

2
|vh|h‖ϕ′‖L2(R) + 2h|vh|h‖ϕ′‖L2(R)

≤ 5

2
h|vh|h‖ϕ′‖L2(R),

where the sequence {h|vh|h}h is bounded. Indeed, the sequence {Qhvh}h converges to v in H−1(R)
weak star. Then there exists C > 0 such that ‖Qhvh‖H−1(R) ≤ C for all h, hence we have

〈Qhvh, R
N
h vh〉L2(R)

‖RN
h vh‖H1(R)

≤ C, ∀h, ∀N ∈ N, (2.7)
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2.1 Convergence properties

where RN
h vh is a piecwise function with compact support (hence RN

h vh ∈ H1(R)) such that

{

〈Qhvh, R
N
h vh〉L2(R) = h

∑N
−N |vi|2,

‖RN
h vh‖2H1(R) ≤ h−1

∑N
−N |vi|2.

(2.8)

For example, we can take

RN
h vh = Qhṽh +

∑

i

D+ṽhχ(x− xi),

where ṽh = {ṽh(xi)}i with ṽh(xi) =
{

vh(xi), |i| ≤ N
0, |i| > N,

and χ is given by

χ(x) =















0, x < 0 or x > h
− 3

2x, x ∈ [0, h3 [
3
2 (x− 2h

3 ), x ∈ [h3 ,
2h
3 [

3(x− 2h
3 ), x ∈ [ 2h3 , h[.

h
3

2h
3

h

h

−h
2

Figure 2: The function χ.

Since
h
∑N

N |vi|2
[

h−1
∑N

−N |vi|2
]

1
2

≤ C, ∀h, ∀N ∈ N,

we get h|vh|h ≤ C, ∀h. Finally, we have ‖(Ph −Qh)vh‖H−1(R) ≤ C, ∀h, then
‖Phvh‖H−1(R) ≤ C, ∀h.

To show that {Phvh}h converges to v in H−1(R) weak star, we need to prove that

Phvh ⇀ v, in D′(R).
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2.1 Convergence properties

To this end, let ϕ ∈ D(R). We denote τhϕ = 1
2 (ϕ+ ϕ(.− h)). Then we have

〈Phvh, ϕ〉L2(R) =
∑

i

∫ xi+1

xi

(vh(xi) +D+vh(xi)(x− xi)) · ϕ(x)dx

=
∑

i

∫ xi+1

xi

(

vh(xi) + vh(xi+1)

2
+D+vh(xi)(x− xi −

h

2
)

)

· ϕ(x)dx

= 〈Qhvv, τhϕ〉L2(R) +
∑

i

∫ xi+1

xi

(

D+vh(xi)(x− xi −
h

2
) ·
∫ x

xi

ϕ(t)dt

)

dx

= 〈Qhvv, τhϕ〉L2(R) +

∫ h

0

∫ s

0

(s− h

2
)

(

∑

i

D+vh(xi) · ϕ′(xi + ρ)

)

dρds

= 〈Qhvv, τhϕ〉L2(R) +
1

h

∫ h

0

∫ s

0

(s− h

2
)

(

∑

i

vh(xi) · (ϕ′(xi−1 + ρ)− ϕ′(xi + ρ))

)

dρds

= 〈Qhvv, τhϕ〉L2(R) +
1

h

∫ h

0

∫ s

0

(s− h

2
)

(

∑

i

vh(xi) ·
∫ xi+1

xi

ϕ′′(x+ ρ)dx

)

dρds,

where
{

Qhvh → v, dans H−1(R) weak star,
τhϕ→ ϕ, in H1(R);

(2.9)

hence 〈Qhvv, τhϕ〉L2(R) → 〈v, ϕ〉L2(R). On the other hand, we have

∑

i

vi ·
∫ xi+1

xi

ϕ′′(x+ ρ)dx ≤ |vh|h‖ϕ′′‖L2(R).

It follows that
∣

∣

∣

∣

∣

1

h

∫ h

0

∫ s

0

(s− h

2
)

(

∑

i

vh(xi) ·
∫ xi+1

xi

ϕ′′(x+ ρ)dx

)

dρds

∣

∣

∣

∣

∣

≤ h2|vh|h‖ϕ′′‖L2(R)

≤ Ch‖ϕ′′‖L2(R),

and thus the proof of 1) is completed. The proof of 2) is similar to that of 1).

We establish now a compactness result which will be useful in the proofs of principal theorems.

Lemma 2.3 Let T > 0 and {uh}h be a sequence whose elements belong to the space L∞(0, T,H1
loc(R)).

Assume that {uh}h is bounded in L∞(0, T,H1
loc(R)) and further the sequence {∂tuh}h is bounded in

L∞(0, T,H−1(R)). Then we can extract from {uh}h a subsequence converging in C(0, T, L2
loc(R)).

Proof. The proof is a consequence of the following proposition

Proposition 2.4 ([7]) Let X,B and Y be three Banach spaces such that X ⊂ B ⊂ Y. Assume that
the embedding X ⊂ B is compact. Let F be some bounded subset in L∞(0, T,X) such that the subset
G = {∂tf, f ∈ F} is bounded in Lr(0, T, Y ), with 1 < r ≤ ∞. Then F is relatively compact in
C(0, T, B).

We denote by Ik =] − k, k[ with k ∈ N. We consider the three spaces X = H1(Ik), B = L2(Ik) and
Y = H−1(Ik). The embedding H1(Ik) ⊂ L2(Ik) is compact, hence using previous proposition, we
can extract from {uh}h a subsequence (depending on k) which converges in C(0, T, L2(Ik)). Thus the
diagonal subsequence of Cantor converges in C(0, T, L2(Ik)) for all k ∈ N.
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2.2 Proof of Theorem 1.1

2.2 Proof of Theorem 1.1

We construct a weak solution for the system

{

∂tu = ∂x (u ∧ g(x)∂xu) = u ∧ ∂x (g∂xu) , t ≥ 0, x ∈ R,
u(0, x) = u0(x),

(2.10)

as a limit, when h→ 0, of a sequence {uh}h of solutions for the semi-discrete system

{

duh

dt
= D+ (uh ∧ ghD−uh) = uh ∧D+ (ghD

−uh) , t ≥ 0,
uh(0) = u0h,

(2.11)

where u0h = {u0h(xi)}i ∈ (R3)Zh with |u0h(xi)| = 1 and gh = {g(t, xi)}i.

Proposition 2.5 Let u0h = {u0h(xi)}i ∈ (R3)Zh be such that |u0h(xi)| = 1, and D+u0h ∈ L2
h. Let

g ∈ W 1,∞(R+, L∞(R)) such that there exists α > 0 with g ≥ α. Then equation (2.11) has a global
solution uh = {uh(xi)}i ∈ C1(R+, (R3)Zh) with |uh(t, xi)| = 1 and D+uh ∈ C1(R+, L2

h).

Proof. Let h > 0. We endow the space

Eh = {vh ∈ (R3)Zh , vh ∈ L∞
h and D+vh ∈ L2

h},

with the norm
‖vh‖h = |vh|L∞

h
+ |D+vh|h, ∀vh ∈ Eh,

for which the space (Eh, ‖.‖h) is a Banach space. Let R > 0 and Ω = BEh
(u0h, R). We define the

function
{

F : Ω → Eh : vh 7→ F (vh),
(F (vh))(xi) = D+(vh ∧ (ghD

−vh))(xi) =
1
h2 (g(xi)vh(xi) ∧ vh(xi−1)− gh(i+ 1)vh(xi+1) ∧ vh(xi)) .

In what follows we denote β = ‖g‖L∞(R). Let uh, vh ∈ Ω. We have on the one hand

F (uh)(xi)− F (vh)(xi) =
gh(xi)

h2
[uh(xi) ∧ (uh(xi−1)− vh(xi−1)) + (uh(xi)− vh(xi)) ∧ vh(xi)]

+
gh(xi+1)

h2
[(vh(xi+1)− uh(xi+1)) ∧ vh(xi) + uh(xi+1)(vh(xi)− uh(xi))] ,

then

|F (vh)− F (uh)|L∞

h
≤ 4β

h2
(R+ ‖u0h‖h)|vh − uh|L∞

h
, (2.12)

On the other hand, using Lemma 1.9 we get

|D+(F (vh)− F (uh))|h = |D+[D+(gh(vh ∧D−vh − uh ∧D−uh))]|h

≤ 4β

h2
|vh ∧D−vh − uh ∧D−uh|h

≤ 4β

h2
(|vh|L∞

h
|D−(vh − uh)|h + |D−uh|h|D−(vh − uh)|h

≤ 4β

h2
(R+ ‖u0h‖h)(|D−(vh − uh)|h + |D−(vh − uh)|h.

It follows that

|F (vh)− F (uh)|h ≤ 4β

h2
(R + ‖u0h‖)‖v − u‖h, (2.13)
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2.2 Proof of Theorem 1.1

where, combining (2.12) et (2.13), we deduce that

‖F (vh)− F (uh)‖h ≤ 8β

h2
(R+ ‖u0h‖h)‖vh − uh‖h.

Thus F is locally Lipschitz-continuous and Cauchy-Lipschitz theorem holds. Hence there exists T ∗ ∈
R

+
∗ ∪ {+∞} and uh : [0, T ∗[→ (Eh, ‖‖h) satisfying (2.11). Taking the usual R3−scalar product in

(2.11) with uh, we find that d
dt
|uh(t, xi)| = 0, hence |uh(t, xi)| = |u0h(xi)| = 1 on [0, T ∗[. Then we have

‖uh‖h = 1 + |D+uh|h which gives T ∗ the following characterisation

lim sup
t→T∗

|D+uh(t)|h = +∞ if T ∗ < +∞.

Taking the L2
h−scalar product in (2.11) with D+ (ghD

−uh) , we get

d

dt

∑

i

gh|D−uh(xi)|2(t, xi) =
∑

i

∂tg(t, xi)|D−uh(xi)|2(t, xi),

from which and by using the Grönwall lemma, we obtain

|D+uh(t)|h = |D−uh(t)|h ≤
√

β

α
|D+u0h|h exp

(

β1t

2α

)

∀t ∈ [0, T ∗[.

This means that limt→T∗ ‖uh‖h 6= +∞, hence we finally get T ∗ = +∞.

In what follows, we consider T > 0 fixed. For each sequence {vh}h of elements in L2
h, we have

(

duh

dt
, vh
)

h
= − (uh ∧ ghD−uh, D−vh)h , hence

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

H−1

h

≤ β

√

β

α
|D+u0h| exp

(

β1t

2α

)

. (2.14)

Let {u0h}h be a sequence satisfying

{

Qhu
0
h → u0 in L2

loc(R),

QhD
+u0h → du0

dx
in L2(R).

(2.15)

Then we have

Lemma 2.6 The sequence of solutions {uh}h satisfying (2.11), with initial data {u0h}h satisfying
(2.15), has the properties
i) {∂tPhuh}h is bounded in L∞(0, T,H−1(R)).
ii) {Phuh}h is bounded in L∞(0, T,H1

loc(R)).

Proof. Property i) is an immediate result of (2.14) and Lemma 1.13.
ii) Let I = [a, b] ⊂ R. Then we have

‖Phuh‖2H1(I) =
∑

i

∫ xi+1

xi

∣

∣

∣

∣

xi − x

h
uh(xi) +

x− xi
h

uh(xi+1)

∣

∣

∣

∣

2

dx+
∑

i

h

∣

∣

∣

∣

uh(xi)− uh(xi+1)

h

∣

∣

∣

∣

2

dx

≤
∑

i

h

3

(

|uh(xi)|2 + |uh(xi+1)|2 + uh(xi)uh(xi+1)
)

+ |D+uh|2h

≤ b− a+ 2h+ |D+u0h|2h,

where the sequence {|D+u0h|h}h is bounded, since QhD
+u0h → du0

dx
in L2(R).
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2.3 Proof of Theorem 1.2

Since {Phuh}h and {∂tPhuh}h are bounded in L∞(0, T,H1
loc(R)) and L∞(0, T,H−1(R)) respec-

tively and in view of Lemma 2.3, there exists a subsequence {uh}h and u such that {Phuh}h con-
verges to u in L2(0, T, L2

loc(R)) and almost everywhere. Moreover, {∂tPhuh}h converges to ∂tu in
L∞(0, T,H−1(R)) weak star. The sequence {Qhuh} converges also to u almost everywhere. To show
that the second member {PhD

+ (uh ∧ ghD−uh)}h converges to ∂x (u ∧ g(x)∂xu), we note first that by
Lemma 2.1, the two sequences {Ph(uh ∧ ghD−uh)}h and {Qh(uh ∧ ghD−uh)}h converge to the same
limit in L∞(0, T, L2(R)) weak star. Since

Qh(uh ∧ ghD−uh) = Qhuh ∧ (QhghQhD
−uh),

and






Qhgh → g almost everywhere,
Qhuh → u almost everywhere,
QhD

−uh → ∂xu in L∞(0, T, L2(R)) weak star,
(2.16)

we have
Qh(uh ∧ ghD−uh) → u ∧ (g∂xu) in L∞(0, T, L2(R)) weak star,

and
{

Ph(uh ∧ ghD−uh) → u ∧ (g∂xu) in L∞(0, T, L2(R)) weak star,
∂xPh(uh ∧ ghD−uh) → ∂x (u ∧ (g∂xu)) in L∞(0, T,H−1(R)) weak star.

(2.17)

It is clear that
QhD

+
(

uh ∧ ghD−uh
)

= ∂xPh(uh ∧ ghD−uh),

then using lemma 2.2, the sequence {PhD
+ (uh ∧ ghD−uh)}h converges to ∂x (u ∧ (g∂xu)) in L

∞(0, T,H−1(R))
weak star.

When g = g(x) does not depend on time, we have

d

dt

∫

R

g(x)|∂xu(t, x)|2dx = 0,

then

‖∂xu(t)‖2L2(R) ≤
‖g‖L∞(R)

α

∥

∥

∥

∥

du0
dx

∥

∥

∥

∥

L2(R)

,

and u ∈ L∞(R+, H1
loc(R)). Thus the proof of Theorem 1.1 is completed.

2.3 Proof of Theorem 1.2

In this proof we use, without details, the same techniques of previous proof. Let l > 0. We construct
a solution u ∈ L∞(R+, H1(Tl, S2)) for the system

{

∂tu = ∂x (u ∧ g∂xu) = u ∧ ∂x (g∂xu) , t ≥ 0, x ∈ T
l,

u(0, x) = u0(x).
(2.18)

as a limit, when h → 0, of a sequence {uh = {uh(xi)}i ∈ Pl,N}h (with h = l
N
) of solutions for the

semi-discrete system







duh

dt
= D+ (uh ∧ ghD−uh) = uh ∧D+ (ghD

−uh) , t > 0,
uh(0) = u0h,
uh(t, x0) = uh(t, xN ), t ≥ 0,

(2.19)

with |uh(xi)0| = 1, and gh = {g(xi)}i such that g(t, x0) = g(t, xN ).
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2.4 Proof of Theorem 1.3

Proposition 2.7 Let u0h ∈ Pl,N (with h = l
N
) be such that |u0h(xi)| = 1, and g ∈W 1,∞(R+, L∞(Tl))

be such that there exists α > 0 with g ≥ α. Then there exists a solution uh = {uh(xi)}i ∈ C1(R+, Pl,N )
for (2.19) with |uh(t, xi)| = 1 for every i.

Proof. Let l > 0 and N ∈ N. We denote h = l
N
. We endow the space Pl,N by the norm

|vh|L∞

h
= sup

i∈Z

|vh(xi)|, ∀vh ∈ Pl,N ,

which makes (Pl,N , |.|L∞

h
) a Banach space. Let R > 0 and Ω = BPl,N

(u0h, R). We define the function
F : Ω → Pl,N by

(F (vh))(xi) = D+(vh ∧ (ghD
−vh))(xi)

=
1

h2
(gh(xi)vh(xi) ∧ vh(xi−1)− gh(xi+1)vh(xi+1) ∧ vh(xi)) .

Then we follow the same steps followed to demonstrate Proposition 2.5.

The rest of proof is similar to that of Theorem 1.1 and requires property (1.17) and results of
Lemmas 1.13, 2.1 and 2.2.

2.4 Proof of Theorem 1.3

We denote

∆ghvh = D+(ghD
−vh) = D−(τ+ghD

+vh), D2 = D+D− = D+D−, D3 = D+D−D+,

and gth = {∂tg(t, xi)}i. Since g is given inW 1,∞(R+,W 3,∞(R,R)), then there exist β, β1, β
′, β′

1, β
′′, β′′

2

and β′′′ such that














|gh|L∞

h
≤ β, |gth|L∞

h
≤ β1

|D+gh|L∞

h
= |D−gh|L∞

h
≤ β′, |D+gth|L∞

h
= |D−gth|L∞

h
≤ β′

1

|D2gh|L∞

h
≤ β′′, |D2gth|L∞

h
≤ β′′

2

|D3gh|L∞

h
≤ β′′′.

Our proof consists of several steps

2.4.1 Step 1

In this step, we establish two a priori estimates in duh

dt
, D− duh

dt
, ∆ghuh and D−∆ghuh.

We start by proving that

d

dt

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|2h

)

≤ C1

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|2h

)2

+ C2, (2.20)

where C1 and C2 are two positive constants independent of h. For any two sequences uh = {uh(xi)}i
and vh = {uh(xi)}i, we have

∆gh(uhvh) = D+(ghτ
−vhD

−uh+ ghuhD
−vh)

= τ+τ−vh∆ghuh + ghD
+(τ−vh)D

−uh + τ+(ghD
−vh)D

+uh + uh∆ghvh

= vh∆ghuh+ ghD
−vhD

−uh + τ+ghD
+vhD

+uh + uh∆ghvh. (2.21)

We derive (2.11) with respect to t

d2uh
dt2

= (uh ∧∆ghuh) ∧∆ghuh + uh ∧∆gh(uh ∧∆ghuh) + uh ∧∆gt
h
uh. (2.22)
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2.4 Proof of Theorem 1.3

Using (2.21) and |uh(t, xi)| = 1, we deduce from equation (2.22) that

d2uh
dt2

= (uh ·∆ghuh)∆ghuh − |∆ghuh|2uh
+uh ∧ (ghD

−uh ∧D−∆ghuh + τ+ghD
+uh ∧D+∆ghuh + uh ∧∆2

gh
uh)

= uh ∧∆gt
h
uh + (uh ·∆ghuh)∆ghuh − |∆ghuh|2uh + (uh ·∆2

gh
uh)uh −∆2

gh
uh

+E, (2.23)

where

E = ghuh ∧ (D−uh ∧D−∆ghuh) + τ+ghuh ∧ (D+uh ∧D+∆ghuh)

= gh(uh ·D−∆ghuh)D
−uh + τ+gh(uh ·D+∆ghuh)D

+uh

−gh(uh ·D−uh)D
−∆ghuh − τ+gh(uh ·D+uh)D

+∆ghuh.

Furthermore, we have

uh ·D±uh = ∓h
2
(D±uh)

2,

hence

τ+gh(uh ·D+uh)D
+∆ghuh = −h

2
τ+gh(D

+uh)
2D+∆ghuh

= −h
2

{

D−[(D+uh)
2τ+(gh∆ghuh)]−D−(τ+gh(D

+uh)
2)∆ghuh

}

= −h
2

{

D+[gh(D
−uh)

2∆ghuh]−D+(gh(D
−uh)

2)∆ghuh
}

,

and

gh(uh ·D−uh)D
−∆ghuh =

h

2
gh(D

−uh)
2D−∆ghuh

=
h

2

{

D+[gh(D
−uh)

2τ−∆ghuh]−D+(gh(D
−uh)

2)∆ghuh
}

,

which together give

−τ+gh(uh ·D+uh)D
+∆ghuh − gh(uh ·D−uh)D

−∆ghuh =
h2

2
D+[gh(D

−uh)
2D−∆ghuh]. (2.24)

On the other hand, we have

uh ·∆ghuh = uh · (D+ghD
−uh + τ+ghD

+D−uh)

=
h

2
D+gh(D

−uh)
2 − 1

2
τ+gh((D

−uh)
2 + (D+uh)

2)

= −1

2
(gh(D

−uh)
2 + τ+gh(D

+uh)
2),

hence

uh ·D±∆ghuh = D±(uh ·∆ghuh)−D±uh · τ±(∆ghuh)

= −1

2
D± (gh(D

−uh)
2 + τ+gh(D

+uh)
2
)

−D±uh · τ±(∆ghuh). (2.25)

Combining (2.24) and (2.25) we find that

E =
h2

2
D+[gh(D

−uh)
2D−∆ghuh]

−1

2
ghD

− (gh(D
−uh)

2 + τ+gh(D
+uh)

2
)

D−uh − gh(D
−uh · τ−∆ghuh)D

−uh

−1

2
τ+ghD

+
(

gh(D
−uh)

2 + τ+gh(D
+uh)

2
)

D+uh − τ+gh(D
+uh · τ+∆ghuh)D

+uh.
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2.4 Proof of Theorem 1.3

Taking the L2
h−scalar product in (2.23) with duh

dt
and using uh · duh

dt
= 0, ∆ghuh · duh

dt
= 0 and

∆gh(
duh
dt

) =
d

dt
∆gh(uh)−∆gt

h
uh,

we obtain by integration by parts

1

2

d

dt

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|2h

)

= J1 + J2 + I1 + I+2 + I−2 + I+3 + I−3 ,

where
J1 = (∆gt

h
uh,∆ghuh)h,

J2 = (uh ∧∆gt
h
uh, uh ∧∆ghuh)h,

I1 =
h2

2

(

D+[gh(D
−uh)

2D−∆ghuh],
duh
dt

)

h

,

I+2 = −1

2

(

τ+ghD
+
(

gh(D
−uh)

2 + τ+gh(D
+uh)

2
)

D+uh,
duh
dt

)

h

,

I−2 = −1

2

(

ghD
− (gh(D

−uh)
2 + τ+gh(D

+uh)
2
)

D−uh,
duh
dt

)

h

,

I+3 = −1

2

(

τ+gh(D
+uh · τ+∆ghuh)D

+uh,
duh
dt

)

h

,

I−3 = −1

2

(

gh(D
−uh · τ−∆ghuh)D

−uh,
duh
dt

)

h

.

To bound from above these terms we apply essentially the Hölder inequality and Lemmas 1.9 and
1.15. We start by

J1 + J2 ≤ 2|∆gt
h
uh|h|∆ghuh|h

≤ 2(β′
1|D+uh|h + β1|D2uh|h)|∆ghuh|h. (2.26)

Then, we have on the one hand

I1 ≤ h2

2
|D+gh(D

−uh)
2D−∆ghuh|h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

≤ h|gh(D−uh)
2D−∆ghuh|h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

≤ hβ|D−uh|2L∞

h
|D−∆ghuh|h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

≤ 2Cβ|D−uh|2H1
h
|∆ghuh|h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

. (2.27)

and on the other hand I+2 = I+21 + I+22, with

I+21 = −1

2

(

τ+ghD
+(gh(D

−uh)
2)D+uh,

duh
dt

)

h

, I+22 = −1

2

(

τ+ghD
+(τ+gh(D

+uh)
2)D+uh,

duh
dt

)

h

.

Moreover,

I+21 = −1

2

(

τ+gh
(

D+gh(D
−uh)

2 + τ+gh(D
− + τ+D−)uh ·D+D−uh

)

D+uh,
duh
dt

)

h

,
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2.4 Proof of Theorem 1.3

hence

I+21 ≤ 1

2
β
(

β′|D−uh|h + 2β|D+D−uh|h
)

|D−uh|2L∞

h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

≤ 1

2
Cβ

(

β′|D−uh|h + 2
β

α
|∆ghuh|h

)

|D−uh|2H1
h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

.

Similarly, we find that

I+22 ≤ 1

2
Cβ

(

β′|D−uh|h + 2
β

α
|∆ghuh|h

)

|D−uh|2H1
h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

,

then

I+2 ≤ Cβ

(

β′|D−uh|h + 2
β

α
|∆ghuh|h

)

|D−uh|2H1
h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

. (2.28)

For I+3 we easily note that

I+3 ≤ 1

2
Cβ|D−uh|2H1

h
|∆ghuh|h

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

. (2.29)

The two terms I−3 and I−2 can be treated in the same way followed to bound I+3 and I+2 . Since

|D−uh|2H1
h

= |D−uh|2h + |D+D−uh|2h

≤ |D−uh|2h +
1

α2
|∆ghuh|2h, (2.30)

we get by combining (2.26), (2.27), (2.28), (2.29), (2.30) and (2.14)

d

dt

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|2h

)

≤ C1

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|2h

)2

+ C2, (2.31)

where C1, C2 > 0 are two constants depending on α, β, β1, β
′, β′

1 and |D+u0h|h. Then we establish an
a priori estimate in D− duh

dt
and D−∆ghuh. Let

Aghuh =
1

2
(gh(D

−uh)
2 + τ+g(D+uh)

2).

We have found that

d2uh
dt2

+∆2
gh
uh = (uh ·∆ghuh)∆ghuh − |∆ghuh|2uh + (uh ·∆2

gh
uh)uh + uh ∧∆gt

h
uh + E, (2.32)

where

E =
h2

2
D+[gh(D

−uh)
2D−∆ghuh]

−ghD−(Aghuh)D
−uh − gh(D

−uh · τ−∆ghuh)D
−uh

−τ+ghD+(Aghuh)D
+uh − τ+gh(D

+uh · τ+∆ghuh)D
+uh. (2.33)

Moreover, we deduce from (2.21) that

uh ·∆2
gh
(uh) = ∆gh(uh ·∆ghuh)− |∆ghuh|2 − ghD

−∆ghu ·D−uh − τ+ghD
+∆ghu ·D+uh

= −∆gh(Aghuh)− |∆ghuh|2 − ghD
−∆ghu ·D−uh

−τ+ghD+∆ghu ·D+uh. (2.34)
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Thus Combining (2.32), (2.33) and (2.34), we get

d2uh
dt2

+∆2
gh
uh = −∆gh(Aghuh)uh −Aghuh∆ghuh − τ+ghD

+(Aghuh)D
+uh − ghD

−(Aghuh)D
−uh

−gh(D−uh · τ−∆ghuh)D
−u− ghD

−∆ghu ·D−uh − |∆ghuh|2

−τ+gh(D+uh · τ+∆ghuh)D
+uh − τ+ghD

+∆ghu ·D+uh − |∆ghuh|2

+
h2

2
D+[gh(D

−uh)
2D−∆ghuh] + uh ∧∆gt

h
uh, (2.35)

where

−gh(D−uh · τ−∆ghuh)D
−u− ghD

−∆ghu ·D−uh − |∆ghuh|2 = −D−(τ+gh(D
+uh ·∆ghuh)uh),

−τ+gh(D+uh · τ+∆ghuh)D
+uh − τ+ghD

+∆ghu ·D+uh − |∆ghuh|2 = −D+(gh(D
−uh ·∆ghuh)uh).

We have
{

D+uh ·∆ghuh = D+gh|D+uh|2 + 1
2ghD

+(|D−uh|2) + h
2 gh|D+D−uh|2,

D−uh ·∆ghuh = D−gh|D−uh|2 + 1
2τ

+ghD
−(|D+uh|2) + h

2 τ
+gh|D+D−uh|2,

and
{

ghD
+(|D−uh|2)uh = D+(gh|D−uh|2uh)− τ+(|D−uh|2)D+(ghuh),

τ+ghD
−(|D+uh|2)uh = D−(τ+gh|D+uh|2uh)− τ−(|D+uh|2)D−(ghuh),

then

D−(τ+gh(D
+uh ·∆ghuh)uh) =

1

2
∆gh(gh|D−uh|2uh) +

1

2
D−(τ+gh|D−uh|2[D+ghuh − τ+ghD

+uh])

+
h

2
D−(τ+ghgh|D+D−uh|2),

and

D+(gh(D
−uh ·∆ghuh)uh) =

1

2
∆gh(τ

+gh|D+uh|2uh) +
1

2
D+(gh|D+uh|2[D+ghuh − ghD

−uh])

+
h

2
D+(τ+ghgh|D+D−uh|2).

Thus equation (2.35) can be rewritten as

d2uh
dt2

+∆2
gh
uh = −2∆gh((Aghuh)uh) + uh ∧∆gt

h
uh

+
1

2
D+

(

gh|D+uh|2[2ghD−uh −D+ghuh −D−ghτ
−uh]

)

−h
2
(D+ +D−)(τ+ghgh|D+D−uh|2) +

h2

2
D+

(

gh(D
−uh)

2D−∆ghuh
)

.(2.36)

Applying operator D− on (2.36) and taking the L2
h−scalar product with ghD

− duh

dt
, we get, after

integration by parts,

h

2

d

dt

∑

i

gh(xi)

(

∣

∣

∣

∣

D− duh
dt

(xi)

∣

∣

∣

∣

2

+ |D−∆ghuh(xi)|2
)

= I1 + I2 + I3 + I4 + J1 + J2 + J3,

with

I1 = −2

(

D−∆gh((Aghuh)uh), ghD
− duh
dt

)

h

,
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I2 =
1

2

(

D−D+(gh|D+uh|2[2ghD−uh −D+ghuh −D−ghτ
−uh]), ghD

− duh
dt

)

h

,

I3 = −1

2

(

hD−(D+ +D−)(τ+ghgh|D+D−uh|2), ghD− duh
dt

)

h

,

I4 =
1

2

(

h2D−D+[gh(D
−uh)

2D−∆ghuh], ghD
− duh
dt

)

h

,

J1 =

(

D−(uh ∧∆gt
h
uh, ghD

− duh
dt

)

)

h

,

J2 = (ghD
−∆ghuh, D

−∆gt
h
uh)h,

J3 =
h

2

d

dt

∑

i

gth(xi)

(

∣

∣

∣

∣

D− duh
dt

(xi)

∣

∣

∣

∣

2

+ |D−∆ghuh(xi)|2
)

.

We start by bounding J1, J2 and J3. We have

|J1| ≤ β|D−uh|L∞

h
(β1|D2uh|h + β′

1|D+uh|h)
∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

+β(2β′
1|D2uh|h + β′′

1 |D+uh|h + β|D3uh|h)
∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

, (2.37)

|J2| ≤ β(2β′
1|D2uh|h + β′′

1 |D+uh|h + β|D3uh|h)
∣

∣D−∆ghuh
∣

∣

h
, (2.38)

|J3| ≤
1

2
β1

(

∣

∣D−∆ghuh
∣

∣

2

h
+

∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

2

h

)

. (2.39)

For the term I2, we have

|I2| ≤ 1

2
β{2|D2(g2h|D+uh|2D−uh)|h + |D2(ghD

+gh|D+uh|2uh)|h

+|D2(ghD
−gh|D+uh|2τ−uh)|h}

∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

, (2.40)

and

|D2(g2h|D+uh|2D−uh)|h ≤ C{((β′2 + ββ′′)|D+uh|2L∞

h
+ β2|D2uh|2L∞

h
)|D+uh|h

+ββ′|D+uh|2L∞

h
|D2uh|h + β2|D+uh|2L∞

h
|D3uh|h}. (2.41)

We also have

|D2(ghD
+gh|D+uh|2uh)|h ≤ C{((ββ′′′ + 2β′β′′)|D+uh|L∞

h
+ (β′2 + ββ′′)|D+uh|2L∞

h
)|D+uh|h

+(ββ′|D+uh|2L∞

h
+ (β′2 + ββ′′)|D+uh|L∞

h
)|D2uh|h

+ββ′|D+uh|L∞

h
|D3uh|h}. (2.42)

The term |D2(ghD
−gh|D+uh|2τ−uh)|h can be bounded from above by the same term of the right-hand

side of (2.42). To find a suitable bound for I1, we write first

D−∆gh(gh|D−uh|2uh) = D2(ghD
−(gh|D−uh|2uh))

= D2(g2hτ
−|D−uh|2D−uh + ghD

−ghτ
−|D−uh|2τ−uh + g2hD

−(|D−uh|2)uh).
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Thus the two terms |D2(g2hτ
−|D−uh|2D−uh)|h and |D2(ghD

−ghτ−|D−uh|2τ−uh)|h can be bounded
from above by the members of right-hand side of (2.41) and (2.42) respectively. For the term
D2(g2hD

−(|D−uh|2)uh), we have

(

D2(g2hD
−(|D−uh|2)uh), ghD− duh

dt

)

h

= I21 +

(

D3(|D−uh|2)uh, g3hD− duh
dt

)

h

, (2.43)

with

I21 ≤ Cβ{β2|D2uh|2L∞

h
|D+uh|h+ ((ββ′′ + β′2)|D+uh|L∞

h
+ ββ′|D2uh|L∞

h
+ ββ′|D+uh|2L∞

h
)|D2uh|h

+(ββ′|D+uh|L∞

h
+ β2|D2uh|L∞

h
)|D3uh|h}|D− duh

dt
|h. (2.44)

Integrating by parts the second term of the right-hand side member of (2.43), we obtain
(

D3(|D−uh|2)uh, g3hD− duh
dt

)

h

= −
(

D2(|D−uh|2)uh, D+g3hD
− duh
dt

)

h

−h
∑

i

g3(xi)D
2(|D−uh|2)(xi)D+(uh ·D− duh

dt
)(xi).

Moreover, since uh · duh

dt
= 0, we have

D+(uh ·D− duh
dt

) = D+uh ·D+ duh
dt

+ uh ·D2 duh
dt

−D2(uh · duh
dt

)

= −D2uh · duh
dt

−D−uh ·D− duh
dt

.

Consequently, we get
(

D3(|D−uh|2)uh, g3hD− duh
dt

)

h

≤ C{β3|D2uh|2L∞

h
|D+uh|h + β′β2|D2uh|L∞

h
|D2uh|h

+(β′β2|D+uh|L∞

h
+ β3|D+uh|2L∞

h
)|D3uh|h}

∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

+β3{|D+uh|L∞

h
|D2uh|L∞

h
|D3uh|h

+|D2uh|2L∞

h
|D2uh|h}

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

h

. (2.45)

According to the definition of I3 and I4, we have

|I3| ≤ hβ|D2(ghτ
+gh|D2uh|2)|h

∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

,

and

|I4| ≤
1

2
h2β|D2(gh|D−uh|2D−∆ghuh)|h

∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

;

where, applying Lemma 1.9, we get

h|D2(ghτ
+gh|D2uh|2)|h ≤ 2|D+(ghτ

+gh|D2uh|2)|h,

and
h2|D2(gh|D2uh|2D−∆ghuh)|h ≤ 4|gh|D−uh|2D−∆ghuh|h,

which gives together with previous estimates of I3 and I4

|I3| ≤ Cβ2|D2uh|L∞

h
(β′|D2uh|h + β|D3uh|h)|D− duh

dt
|h, (2.46)
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and

|I4| ≤ 2β2|D−uh|2L∞

h
|D−∆ghuh|h|D− duh

dt
|h.

Since
D−∆ghuh = D2ghD

−uh + ghD
3uh +D+ghD

2uh +D−ghD
−D−uh, (2.47)

we obtain

|I4| ≤ 2β2|D−uh|2L∞

h
(β′′|D−uh|h + 2β′|D2uh|h + β|D3uh|h)

∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

. (2.48)

Combining (2.37 - 2.46) and (2.48), we finally get

1

2

d

dt
h
∑

i

gh(xi)

(

∣

∣

∣

∣

D− duh
dt

(xi)

∣

∣

∣

∣

2

+ |D−∆ghuh(xi)|2
)

≤ CA1A2, (2.49)

with A1 = |D+uh|L∞

h
+ |D+uh|2L∞

h
+ |D2uh|L∞

h
+ |D2uh|2L∞

h
, A2 = |duh

dt
|2
H1

h

+ |D2uh|2H1
h

+ |D+uh|2h and

C > 0 is some constant depending on β, β1β
′, β′

1, β
′′, β′′

1 and β′′′.

2.4.2 Step 2

We construct the sequence {u0h}h such that















Qhu
0
h → u0 in L2

loc(R),

QhD
+u0h → du0

dx
in L2(R),

QhD
2u0h → d2u0

dx2 in L2(R),

QhD
3u0h → d3u0

dx3 in L2(R),

(2.50)

then

Lemma 2.8 There exists T1 > 0 such that the sequences {∂tPhuh}h, {∂tPhD
−uh}h, {PhD

2uh}h and
{PhD

3uh}h are bounded in L∞(0, T1, L
2(R)).

Proof. Let T > 1√
C1C2

. For t ∈ [0, T ] we denote

G(t) = C2T +

∣

∣

∣

∣

duh
dt

(0)

∣

∣

∣

∣

2

h

+ |∆ghuh(0)|2h + C1

∫ t

0

(

∣

∣

∣

∣

duh
dt

(τ)

∣

∣

∣

∣

2

h

+ |∆ghuh(τ)|2h

)2

dτ,

where C1 and C2 are the constants of inequality (2.31), hence 1
G

∈ W 1,∞(0, T ) and in view of (2.31)
we have

(

1

G(t)

)′
≤ C1, for almost everywhere on ]0, T [.

then we have

C1t+
1

G(t)
≥ 1

G(0)
, ∀t ∈ [0, T [,

and

G(t) ≤ G(0)

1− C1G(0)t
, ∀t ∈ [0, (C1G(0))

−1[.

Since

G(0) = C2T +

∣

∣

∣

∣

duh
dt

(0)

∣

∣

∣

∣

2

h

+ |∆ghuh(0)|2h

≤ 2|∆ghuh(0)|2h + C2T

≤ 4β′2|D+u0h|2h + 4β2|D+D−u0h|2h + C2T,
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2.4 Proof of Theorem 1.3

the sequences {|D+u0h|h}h and {|D+D−u0h|h}h are bounded. Thus there exists M > 0 such that

4β′2|D+u0h|2h + 4β2|D+D−u0h|2h + C2T ≤M,

then
G(0)−1 ≥M−1 > 0.

Let T̃ = 1
2 (C1M)−1. Then, for all t ∈ [0, T̃ ], we have

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|2h ≤ G(t) ≤ M

1− 1
2M

−1G(0)
≤ 2M. (2.51)

According to Corollary 1.15, there exists C > 0 such that

|D+uh|L∞

h
≤ C|D+uh|H1

h
, |D2uh|L∞

h
≤ C|D2uh|H1

h
.

Thus combining (2.49) and (2.51), we have for all t ∈ [0, T̃ ]

1

2

d

dt
h
∑

i

gh(xi)

(

∣

∣

∣

∣

D− duh
dt

(xi)

∣

∣

∣

∣

2

+ |D−∆ghuh(xi)|2
)

≤ C1(|D− duh
dt

|2h + |D−∆ghuh|2h)2 + C2, (2.52)

where C1, C2 > 0 depend on β, β1, β
′, β′

1, β
′′, β′′

1 , β
′′′, α, and M. Following the same argument in the

previous part of this step, we find that there exists K > 0 and 0 < T1 ≤ T̃ such that, for all t ∈ [0, T1],
we have

∣

∣

∣

∣

D− duh
dt

∣

∣

∣

∣

h

+ |D−∆ghuh|h ≤ K. (2.53)

Since
∆ghuh = D+ghD

+uh + ghD
2uh,

D−∆ghuh = D2ghD
−uh + ghD

3uh +D+ghD
2uh +D−ghD

−D−uh,

we deduce from (2.51) and (2.53) that sequences {
∣

∣D− duh

dt

∣

∣

h
}h, {

∣

∣

duh

dt

∣

∣

h
}h, {|D2uh|h}h, and {|D3uh|h}h

are bounded in L∞(0, T1). The result then yields from Lemma 1.14.

2.4.3 Étape 3

We already proved, by Lemma (2.6), that there exists u ∈ L∞(0, T,H1
loc(R)) and a subsequence {uh}h

such that
PhD

−uh → ∂xu in L∞(0, T, L2(R)) weak star,

for all T > 0. According to lemma 2.8, there exist v, w ∈ L∞(0, T1, L
2(R)) and a subsequence {uh}h

such that
{

PhD
2uh → v in L∞(0, T1, L

2(R)) weak star,
PhD

3uh → w in L∞(0, T1, L
2(R)) weak star.

(2.54)

Consequently, the sequence {∂xPhD
−uh}h converges to ∂2xu in the sense of distributions. On the other

hand, ∂xPhD
−uh = QhD

2uh, and the two sequences {QhD
2uh}h and {PhD

2uh}h converge to the
same limit in L∞(0, T1, L

2(R)) weak star (Lemma 2.1). It follows that ∂2xu = v ∈ L∞(0, T1, L
2(R)),

hence {PhD
2uh}h converges to ∂2xu in L∞(0, T1, L

2(R)) weak star. A similar argument shows that
∂3xu ∈ L∞(0, T1, L

2(R)) and thus the proof is completed.
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2.5 Proof of Theorem 1.4

First, we establishing the following two lemmas

Lemma 2.9 Let g ∈ W 1,∞(R+,R) be such that there exists α > 0 with g ≥ α. Let T > 0 and
u : [0, T ] × R → S2 be some solution for (1.2) such that ∂xu ∈ L∞(0, T,H1(R)). Then there exist
C1, C2 > 0 depending on g and ‖∂xu(0, .)‖H1(R) such that for almost every t ∈ [0, T ] we have

‖∂tu‖2L2(R) + ‖∆gu‖2L2(R) ≤ C1 + C2

∫ t

0

(

‖∂tu(τ)‖2L2(R) + ‖∆gu(τ)‖2L2(R)

)

dτ. (2.55)

Proof. Taking the L2−scalar product in (1.2) with ∆gu and integrating by parts, we obtain

d

dt

∫

R

g(x)|∂xu|2dx =

∫

R

∂tg(x)|∂xu|2dx,

which gives

‖∂xu(t, .)‖L2(R) ≤
√

‖g‖L∞

α
‖∂xu(0, .)‖L2(R) exp

(‖∂tg‖L∞

2α

)

, ∀t ∈ [0, T ]. (2.56)

Since 2u · ∂xu = ∂x|u|2 = 0, and by deriving (1.2) with respect to t, we obtain

∂2t u = (u ∧∆gu) ∧∆gu+ u ∧∆g(u ∧∆gu) + u ∧∆∂tgu

= (u ·∆gu)∆gu− |∆gu|2u+ u ∧ (∆gu ∧∆gu+ 2g∂xu ∧ ∂x∆gu+ u ∧∆2
gu) + u ∧∆∂tg

= (u ·∆gu)∆gu− |∆gu|2u+ 2g(u · ∂x∆gu)∂xu+ (u ·∆2
gu)u−∆2

gu+ u ∧∆∂tgu. (2.57)

It is clear that ∂tu · u = 0, then we get by taking the L2−scalar product in (2.57) with ∂tu

d

dt

∫

R

(|∂tu|2 + |∆gu|2)dx = 4

∫

R

g(u · ∂x∆gu)(∂xu · ∂tu)dx

+2

∫

R

(u ∧∆∂tgu) · (u ∧∆gu)dx

+2

∫

R

∆∂tgu ·∆gudx.

Furthermore, we have

u · ∂x∆gu = ∂x(u ·∆gu)− ∂xu ·∆gu

= −3

2
∂x(g|∂xu|2)−

1

2
∂xg|∂xu|2, (2.58)

and

(u ∧∆∂tgu) · (u ∧∆gu) = ∆∂tgu ·∆gu− (u ·∆∂tgu)(u ·∆gu)

= ∆∂tgu ·∆gu− 1

2
∂tg

2|∂xu|4. (2.59)

Then, integrating by parts, we get

1

2

d

dt

∫

R

(|∂tu|2 + |∆g|2)dx =
3

4

d

dt

∫

R

g2|∂xu|4dx−
∫

R

g∂xg|∂xu|2(∂xu · ∂tu)dx

−5

4

∫

R

∂tg
2|∂xu|4dx+ 2

∫

R

∆∂tgu ·∆gudx (2.60)
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Let

I(u) = ‖∂tu‖2L2(R) + ‖∆gu‖2L2(R) −
3

2

∫

R

g2|∂xu|4dx,

J(u) = −
∫

R

g∂xg|∂xu|2(∂xu · ∂tu)dx− 5

4

∫

R

∂tg
2|∂xu|4dx + 2

∫

R

∆∂tgu ·∆gudx.

Relation (2.60) can be rewritten as

‖∂tu‖2L2(R) + ‖∆gu‖2L2(R) = I(u(0, .)) +
3

2

∫

R

g2|∂xu|4dx+ 2

∫ t

0

J(u(τ))dτ. (2.61)

Then applying Gagliardo-Nirenberg inequalities on ∂xu, we get







‖∂xu‖L6(R) ≤ K6‖∂xu‖
2
3

L2(R)‖∂2xu‖
1
3

L2(R),

‖∂xu‖L4(R) ≤ K4‖∂xu‖
3
4

L2(R)‖∂2xu‖
1
4

L2(R),
(2.62)

with K6,K4 > 0. On the other hand, we have

‖g∂2xu‖2L2(R) ≤ 2‖∆gu‖2L2(R) + 2‖∂xg∂xu‖2L2(R). (2.63)

To find a suitable uper bound for I(u(0, .)), we use the relation

|∂tu|2 = |u ∧∆gu|2 = |∆gu|2 − g2|∂xu|4,

which implies that

I(u(0, .)) = 2‖∆gu(0, .)‖2L2(R) −
5

2

∫

R

g2|∂xu(0, .)|4dx

≤ 2‖∆gu(0, .)‖2L2(R) +
5

2
K4

4‖∂xu(0, .)‖3L2(R)‖∂2xu(0, .)‖L2(R). (2.64)

Thus, inequalities (2.56), (2.62), (2.63) and (2.64) together with g ∈ W 1,∞(R+,R) allow, by using
Hölder inequality, to upper-bound the second member of (2.61) by

C1 + C2

∫ t

0

(

‖∂tu(τ)‖2L2(R) + ‖∆gu(τ)‖2L2(R)

)

dτ,

where the two constants above depend on g and ‖∂xu(0, .)‖H1(R).

Corollary 2.10 Under the assumptions of lemma 2.9, we have for all t ∈]0, T [

‖∂2xu(t, .)‖2L2(R) ≤ D1e
D2t,

where D1 and D2 are two positive constants depending on g and ‖∂xu(0, .)‖H1(R).

Proof. Let
ψ(t) = ‖∂tu(t)‖2L2(R) + ‖∂2xu(t)‖2L2(R).

Inequality (2.55) implies that

ψ(t) ≤ C1 + C2

∫ t

0

ψ(τ)dτ,

then conclusion follows from Grönwall lemma.
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Lemma 2.11 Let g ∈ W 1,∞(R+,W 3,∞(R)) be such that there exists α > 0 with g ≥ α. Let T > 0
and u : [0, T ] × R → S2 be a solution for (1.2) such that ∂xu ∈ L∞(0, T,H2(R)). Then there exist
C1, C2 > 0 depending on g and ‖∂xu(0, .)‖H2(R) such that for almost every t ∈]0, T [ we have

‖∂t∂xu‖2L2(R) + ‖∂3xu‖2L2(R) ≤ C1 + C2

∫ t

0

(

‖∂t∂xu(τ)‖2L2(R) + ‖∂3xu(τ)‖2L2(R)

)

dτ.

Proof. Since
u ·∆2

gu = ∆g(u ·∆gu)− 2g∂xu · ∂x∆gu− |∆gu|2, (2.65)

we get by combining (2.57), (2.58) and (2.65)

∂2t u+∆2
gu = u ∧∆∂tgu−∆g(g|∂xu|2)− g|∂xu|2∆gu− 2∂x(g|∂xu|2)∂xu

−2g(∂xu ·∆gu)∂xu− 2g(∂xu · ∂x∆gu)u− 2|∆gu|2

= u ∧∆∂tg −∆g(g|∂xu|2u)− 2∂x(g(∂xu ·∆gu)u)

= u ∧∆∂tg − 2∆g

(

|∂xu|2u
)

+ ∂x
(

|∂xu|2(g∂xu− ∂xgu)
)

. (2.66)

Deriving (2.66) with respect to x and taking the L2−scalar product with g∂t∂xu, we get by integrating
by parts

1

2

d

dt

∫

R

g
(

|∂t∂xu|2 + |∂x∆gu|2
)

dx = −2

∫

R

g∂x∆g

(

|∂xu|2u
)

· ∂t∂xudx

+

∫

R

g∂2x
(

|∂xu|2(g∂xu− g′u)
)

· ∂t∂xudx

+

∫

R

g∂x (u ∧∆∂tgu) · ∂t∂xudx

+

∫

R

g∂x∆∂tgu · ∂x∂t∆gudx+

∫

R

∂tg|∂x∆gu|2dx. (2.67)

We upper-bound the L2 norm of the right-hand side member of (2.66) by applying the chain rule on
operators ∂x∆g and ∂2x. All the terms of the right hand side member of (2.67) except for

J1 = −2

∫

R

g3∂3x(|∂xu|2)u · ∂t∂xudx,

can be upper-bounded by C
(

‖∂t∂xu(τ)‖2L2(R) + ‖∂3xu(τ)‖2L2(R)

)

. To upper-bound J1, we integrate by

parts hence we get

J1 = 2

∫

R

∂2x(|∂xu|2)∂x(g3u · ∂t∂xu)dx,

then we develop

∂x(u ·∂t∂xu) = ∂xu ·∂t∂xu+u ·∂t∂2xu = ∂xu ·∂t∂xu+u ·∂t∂2xu−∂2x(u ·∂tu) = −∂xu ·∂t∂xu−∂2xu ·∂tu.

Thus we get

J1 = 6

∫

R

g′g2∂2x(|∂xu|2)u · ∂t∂xudx− 2

∫

R

g3∂2x(|∂xu|2)(∂xu · ∂t∂xu+ ∂2xu · ∂tu)dx,

and the conclusion holds from Hölder inequality and Sobolev embedding.

Corollary 2.12 Under the assumptions of Lemma 2.11, we have for all t ∈]0, T [

‖∂3xu(t, .)‖2L2(R) ≤ D1e
D2t,

where D1 and D2 are two positive constants depending on g and ‖∂xu(0, .)‖H2(R).

Proof. The proof is an immediate result of Grönwall lemma.
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2.5.1 Proof of Theorem 1.4

Let u and ũ be two regular solutions for (1.2) with initial data u0 and ũ0 respectively such that
dũ0

dx
, du0

dx
∈ H2(R). We denote ω = u− ũ and ω0 = u0 − ũ0. In what follows, we prove that there exist

Ck > 0, k = 1, .., 5, depending on g and the H2 norm of dũ0

dx
and du0

dx
, such that for almost every

t ∈]0, T1[ we have

‖ω‖2H1(R) ≤ C1‖ω0‖2H1(R) + C2

∫ t

0

‖ω(τ)‖2H1(R)dτ, (2.68)

and

‖∂tω‖2L2(R) + ‖∂2xω‖2L2(R) ≤ C3‖ω0‖2H1(R) + C4

(

‖∂tω|t=0‖2L2(R) + ‖∂2xω0‖2L2(R)

)

+C5

∫ t

0

(

‖∂tω(τ)‖2L2(R) + ‖∂2xω(τ)‖2L2(R)

)

dτ. (2.69)

Applying (2.10) and (2.66) on u and ũ and subtracting, we get

∂tω = z ∧∆gω + ω ∧∆gz, (2.70)

and

∂2t ω +∆2
gω = z ∧∆∂tgω + ω ∧∆∂tgz − 2∆g(gQω) + ∂x (Q(g∂xω − ∂xgω))

−4∆g (g(∂xz · ∂xω)z) + 2∂x ((∂xz · ∂xω)(g∂xz − ∂xgz)) , (2.71)

with z = 1
2 (u + ũ) and Q = 1

2

(

|∂xu|2 + |∂xũ|2
)

. Multiplying (2.70) by ω, we find that |ω|2 = 2(z ∧
∆gω) · ω, which means that ω ∈ L2(R). Then, integrating by parts and using Hölder’s inequality, we
get

d

dt

∫

R

|ω|2 = −2

∫

R

g(ω ∧ ∂xz) · ∂xω

≤ 2‖g∂xz‖L∞(R)‖ω‖L2(R)‖∂xω‖L2(R)

≤ ‖g∂xz‖L∞(R)‖ω‖2H1(R). (2.72)

Next, we take the L2−scalar product in (2.70) with ∆gω. Integrating by parts and using Hölder’s
inequality, we get

d

dt

∫

R

g|∂xω|2 =

∫

R

∂t|∂xω|2 − 2

∫

R

g∂x(ω ∧∆gz) · ∂xω

=

∫

R

∂t|∂xω|2 − 2

∫

R

g(ω ∧ ∂x∆gz) · ∂xω

≤ (‖∂tg‖L∞(R) + ‖g∂x∆gz‖L∞(R))‖ω‖2H1(R). (2.73)

Thus, (2.68) holds from Corollaries 2.10 and 2.12 and from Sobolev’s embedding 3 after summing
(2.72) and (2.73).

Finally, taking the L2−scalar product in (2.71) with ∂tω and integrating by parts, we get

1

2

d

dt

∫

R

(|∂tω|2 + |∆gω|2) = I1 + I2 + I3 − 2E1 − 4E2 + E3 + 2E4,

3There exists C > 0 such that
‖u‖L∞(R) ≤ C‖u‖

H1(R),∀u ∈ H1(R).
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with

I1 =

∫

R

∆∂tgω ·∆gω,

I2 =

∫

R

z ∧∆∂tgω · ∂tω, I3 =

∫

R

ω ∧∆∂tgz · ∂tω,

E1 =

∫

R

∆g(gQω) · ∂tω, E3 =

∫

R

∂x (Q(g∂xω − g′ω)) · ∂tω,

E2 =

∫

R

∆g (g(∂xz · ∂xω)z) · ∂tω, E4 =

∫

R

∂x ((∂xz · ∂xω)(g∂xz − g′z)) · ∂tω.

The terms I1, I2, I3, E1, E3 and E4 can be treated by applying Hölder’s inequality and Sobolev’s
embedding H1(R) ⊂ L∞(R). Applying the chain rule on ∆g, the term E2 can be written

E2 =

∫

R

g2(∂xz · ∂3xω)(z · ∂tω) + E21,

where E21 can be treated by Hölder’s inequality and Sobolev’s embedding. Finally, we have z · ∂tω =
−ω · ∂tz (since |u|2 − |ũ|2 = 0) and

∫

R

g2(∂xz · ∂3xω)(z · ∂tω) = −2

∫

R

g′g(∂xz · ∂2xω)(z · ∂tω) +
∫

R

g2∂2xω · ∂x ((ω · ∂tz)∂xz) ,

which is now in a suitable form to be upper-bounded as above. This yields the desired claim at the
H2 level.

2.6 Proof of Theorem 1.5

We construct a solution γ ∈ L∞(0, T1, H
3
loc(R)) for the system

{

∂tγ = g(t, x, γ)∂xγ ∧ ∂2xγ,
γ(0, .) = γ0.

(2.74)

as a limit, when h→ 0 , of a sequence {γh}h of solutions for the semi-discrete system

{

dγh

dt
= ghD

+γh ∧D2γh, t > 0,
γh(0) = γ0h,

(2.75)

where γ0h = {γ0h(xi)}i ∈ (R3)Zh is such that |D+γ0h(xi)| = 1, and gh = {g(t, xi, γ0h(xi))}i. We denote
uh = D+γh, g

t
h = ∂tg(t, xi, γ(xi)) and ∆ghuh = D+(ghD

−uh). Then, applying D+ on (2.75), we get

duh
dt

= uh ∧∆ghuh. (2.76)

We have

d

dt

∑

i

(gγh|D−uh|2)(xi) =
∑

i

dγh(xi)

dt
· ∇γg(t, xi, γh(xi))|D−uh(xi)|2

+
∑

i

gth(xi)|D−uh(xi)|2 +
∑

i

(

ghD
−uh ·D− duh

dt

)

(xi).

Then, using Lemma 1.16, we obtain

h
∑

i

(ghD
−uh ·D− duh

dt
)(xi) = −

(

∆ghuh,
duh
dt

)

h

= 0.
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Thus, using dγh

dt
= ghuh ∧D−uh, we can write

d

dt

∑

i

(gh|D−uh|2)(xi) ≤ ‖∇γg‖L∞|D−uh|L∞

h

∑

i

(gh|D−uh|2)(xi)

+‖∂tg‖L∞

∑

i

|D−uh(xi)|2. (2.77)

To get another estimate in |∆gh |h, we derive (2.76) with respect to t. This yields

d2uh
dt2

=
duh
dt

∧∆ghuh+ uh ∧ d

dt
∆ghuh

= (uh ∧∆ghuh) ∧∆ghuh

+uh ∧
(

D+

(

dγh
dt

· ∇g(γh)D−uh

)

+∆gh

(

duh
dt

)

+∆gt
h
uh

)

. (2.78)

Next, we denote
∆̃ghuh = D+

(

gh(uh ∧D−uh · ∇g(γh))D−uh
)

,

then (2.78) becomes

d2uh
dt2

= (uh ∧∆ghuh) ∧∆ghuh + uh ∧∆gh(uh ∧∆ghuh) + uh ∧ (∆̃ghuh +∆gt
h
uh). (2.79)

Repeating the same calculus as in (2.32), we get

d2uh
dt2

+∆2
gh
uh = (uh ·∆ghuh)∆ghuh−|∆ghuh|2uh+(uh ·∆2

gh
uh)uh+uh∧(∆̃ghuh+∆gt

h
uh)+E, (2.80)

where

E =
h2

2
D+[gh(D

−uh)
2D−∆ghuh]

−ghD−(Aghuh)D
−uh − gh(D

−uh · τ−∆ghuh)D
−uh

−τ+ghD+(Aghuh)D
+uh − τ+gh(D

+uh · τ+∆ghuh)D
+uh.

Taking the L2
h−scalar product in (2.80) with duh

dt
and using both uh · duh

dt
= 0 and ∆ghuh · duh

dt
= 0,

we get by integration by parts

1

2

d

dt

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+

(

∆ghuh,∆gh

(

duh
dt

))

h

= I +

(

uh ∧ ∆̃ghuh,
duh
dt

)

h

.

where I =
(

E, duh

dt

)

h
. We have

∆gh

(

duh
dt

)

=
d

dt
∆ghuh − ∆̃ghuh −∆gt

h
uh.

Consequently,

1

2

d

dt

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|h
)

= I+
(

∆̃ghuh +∆gt
h
uh,∆ghuh

)

h
+
(

uh ∧ (∆̃ghuh +∆gt
h
uh), uh ∧∆ghuh

)

h
.

We know that gh and D+gh are upper-bounded in norm L∞(0, T, L∞
h ) by β = ‖g‖L∞(0,T,L∞) and

β′ = ‖∂xg‖L∞(0,T,L∞) + ‖∇γg‖L∞(0,T,L∞) respectively. Thus by following the same calculus in the
proof Theorem 1.3, we find that there exists C1 = C1(α, β, β

′) > 0 such that

I ≤ C1|D+uh|2L∞

h
(|∆ghuh|2h + |D+uh|2h +

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

). (2.81)
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To find a suitable upper bound for the term
(

∆̃ghuh,∆ghuh

)

h
, we first rewrite

∆̃ghuh = D+
(

gh(uh ∧D−uh · ∇γg(γh))D
−uh

)

= (uh ∧D−uh.∇γg(γh))∆ghuh + τ+ghD
+(uh ∧D−uh.∇γg(γh))D

+uh

= (uh ∧D−uh.∇γg(γh))∆ghuh + τ+gh(uh ∧D2uh.∇γg(γh))D
+uh

+τ+gh
(

uh ∧D−uh.D
+(∇γg(γh))

)

D+uh.

The term D+(∇γg(γh)) is upper-bounded in norm L∞(0, T, L∞
h ) by β′′ = ‖∂x∇γg‖L∞(0,T,L∞) +

‖∇2
γg‖L∞(0,T,L∞). It follows that

(

∆̃ghuh,∆ghuh

)

h
≤ β′|D−uh|L∞

h
|∆ghuh|2h + β′|D+uh|L∞

h
|τ+D2uh|h|∆ghuh|h

+ββ′′|D+uh|L∞

h
|D+uh|h. (2.82)

Furthermore, we have ∆gt
h
uh = D+gthD

−uh + τ+gthD
2uh, then the two terms τ+gth and D+gth are

upper-bounded in norm L∞(0, T, L∞
h ) by β1 = ‖∂tg‖L∞(0,T,L∞) and β′

1 = ‖∂t∂xg‖L∞(0,T,L∞) +
‖∂t∇γg‖L∞(0,T,L∞) respectively. Then we have

(

∆gt
h
uh,∆ghuh

)

h
≤ (β′

1|D−uh|h + β1|D2uh|h)|∆ghuh|h. (2.83)

Using inequality |τ+D2uh|h ≤ |∆ghuh|h + β′|D+uh|h together with (2.77), (2.81), (2.83) and (2.82),
we find that there exists C = C(α, β, β1, β

′, β′
1, β

′′) such that

d

dt

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|h + h
∑

i

[gh|D+uh|2](xi)
)

≤ C
(

|D+uh|2L∞

h
+ |D+uh|L∞

h

)

×
(

|∆ghuh|2h + |D+uh|2h + |D+uh|h +

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

)

.

In view of Lemma 1.15, there exist C̃ > 0 and C = C(α, β′) > 0 such that

|D+uh|2L∞

h
≤ C|D+uh|2H1

h
≤ CC̃(|∆ghuh|2h + |D+uh|2h).

This implies the existence of two constants C1, C2 > 0 depending on α, β, β1, β
′ β′

1, and β
′′ such that

d

dt

(

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

+ |∆ghuh|h + h
∑

i

[gh|D+uh|2](xi)
)

≤ C1

(

|∆ghuh|2h + |D+uh|2h +

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

)2

+ C2.

(2.84)
We construct now the sequence {γ0h} such that



















Qhγ
0
h → γ0 in L2

loc(R),

QhD
+γ0h → dγ0

dx
in L2

loc(R),

QhD
2γ0h → d2γ0

dx2 in L2(R),

QhD
3γ0h → d3γ0

dx3 in L2(R).

(2.85)

Thus we have

Lemma 2.13 There exists T1 > 0 such that
i) The two sequences {Phγh}h and {Phuh}h are upper-bounded in L∞(0, T1, H

1
loc(R)).

ii) The sequences {∂tPhuh}h, {∂tPhγh}h, {PhD
+uh}h and {PhD

2uh}h are upper-bounded in L∞(0, T1, L
2(R)).
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Proof. Following the same steps in the proof of Lemma 2.8, we find that there exists T1 > 0 and
M > 0 such that for almost every t ∈]0, T1[, we have

|D+uh|2h + |D2uh|2h +

∣

∣

∣

∣

duh
dt

∣

∣

∣

∣

2

h

≤M. (2.86)

To prove i), let L > 0. For some 1 > h > 0, we denote N = E(L
h
) + 1. Since

‖Phγh(t)‖H1(−L,L) ≤
√
2L|Phγh(t, 0)|+ (2L+ 1)‖∂xPhγh(t)‖L2(−L,L), (2.87)

and

|Phγh(t, 0)| = |γh(t, 0)|

≤ |γh(0, 0)|+ T1

∥

∥

∥

∥

d

dt
γh(., 0)

∥

∥

∥

∥

L∞(0,T1)

≤ |γh(0, 0)|+ T1β‖D−uh(., 0)‖L∞(0,T1)

≤ |γh(0, 0)|+ T1β sup
τ∈[0,T ]

|D−uh(τ, .)|L∞

h
,

inequality (2.86) together with Lemma 1.15 imply the existence of a constant C > 0 such that

|Phγh(t, 0)| ≤ |γ0h(0)|+ CT1β
√
M, (2.88)

for almost every t ∈]0, T1[. To treat the second term of the right-hand side of (2.87), we write

‖∂xPhγh‖2L2(−L,L) =

N−1
∑

i=−N

∫ xi+1

xi

|D+γh(xi)|2dx ≤ 2L+ h, (2.89)

hence we find that for almost every t ∈]0, T1[, 4

‖Phγh(t)‖H1(−L,L) ≤
√
2L(|γ0(0)|+ CT1β

√
M) + (2L+ 1)2.

On the other hand, we have

‖Phuh‖2H1(−L,L) =

N−1
∑

i=−N

∫ xi+1

xi

∣

∣

∣

∣

xi − x

h
uh(xi) +

x− xi
h

uh(xi+1)

∣

∣

∣

∣

2

dx+
∑

i

h

∣

∣

∣

∣

uh(xi)− uh(xi+1)

h

∣

∣

∣

∣

2

dx

≤
N−1
∑

i=−N

h

3

(

|uh(xi)|2 + |uh(xi+1)|2 + uh(xi)uh(xi+1)
)

+ |D+uh|2h

≤ 2L+ 1+M.

This completes the proof of i).

Property ii) is an immediate result of (2.88) and Lemma 1.14.

Lemma 2.13 together with Lemma 2.3 imply the existence of u, γ ∈ L∞(0, T1, L
2
loc(R)), ω, v ∈

L∞(0, T1, L
2(R)), and two subsequences {γh}h and {uh}h such that























Phγh → γ in L2(0, T1, L
2
loc(R)) and almost everywhere,

∂tPhγh → ∂tγ in L∞(0, T1, L
2(R)) weak star,

Phuh → u in L2(0, T1, L
2
loc(R)) and almost everywhere,

PhD
−uh → v in L∞(0, T1, L

2(R)) weak star,
PhD

2uh → w in L∞(0, T1, L
2(R)) weak star.

(2.90)

4It is possible to define {γ0
h
}h by

γ0
h
(xi) = γ0(xi), ∀i ∈ Z,

hence γ0
h
(0) = γ0(0).
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It follows that {∂xPhuh}h converges to ∂xu in the sense of distributions and, since ∂xPhuh = QhD
+uh,

we also have ∂xu = v ∈ L∞(0, T1, L
2(R)).

We now prove that {Ph(ghuh ∧D−uh)}h converges to g(γ)u ∧ ∂xu in L∞(0, T1, L
2(R)) weak star.

We first note that
Qh(ghuh ∧D−uh) = g(Qhγh)Qhuh ∧QhD

−uh.

This implies that the sequence {Qh(ghuh ∧ D−uh)}h converges to g(γ)u ∧ ∂xu in L∞(0, T1, L
2(R))

weak star. In view of Lemma 2.1, the two sequences {Qh(ghuh ∧D−uh)}h and {Ph(ghuh ∧D−uh)}h
converge to the same limit. Since {∂tPhγh}h converges to ∂tγ in L∞(0, T1, L

2(R)) weak star, we finally
get

∂tγ = g(γ)u ∧ ∂xu. (2.91)

Thus to complete this proof, it suffices to show that ∂xγ = u and that ∂2xu ∈ L∞(0, T1, L
2(R)). The

sequence {∂xPhγh}h converges to ∂xγ in the sense of distributions. On the other hand, we have
∂xPhγh = QhD

+γh = Qhuh, and the sequence {Qhuh}h converges to u in L∞(0, T1, L
2
loc(R)). Indeed,

for L > 0 and N = E(L
h
) + 1, we have

‖Qhuh − Phuh‖2L2(−L,L) ≤
N−1
∑

i=−N

∫ xi+1

xi

|D+uh(xi)|2(x− xi)
2dx

≤ 2

3
N |D+uh|2L∞

h
h3

≤ 2

3
C(L + h)|D+uh|2H1

h
h2

≤ 2

3
CM(L+ h)h2,

hence
∂xγ = u.

The sequence {∂xPhD
−uh}h converges to ∂2xu in the sense of distributions. We have ∂xPhD

−uh =
QhD

2uh, and in view of Lemma 2.1, the two sequences {QhD
2uh}h and {PhD

2uh}h converge to the
same limit in L∞(0, T1, L

2(R)) weak star. Thus ∂2xu = w ∈ L∞(0, T1, L
2(R)).
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