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Abstract

We establish some existence results for the modified binormal curvature flow equation from
(R or T' ) to R® where the velocity of the curve depends not only on the binormal vector but
the parametrization of the curve, the time and the position of the point in the space. We achieve
our objective via the Schrédinger map equation. A Local well-posedness result is proved for the
Schrédinger map equation in the space L*(0, Ty, HE .(R)).
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1 Introduction

The modified binormal curvature flow equation for 7 : [0, T[xR — R3 is

Oy = g (9.7 N O%), (1.1)

where T' € R U {400}, z is the arc-length parameter of the curve y(¢,.) for all t € [0,7] and g is a
real function.

The first goal of this article will be to consider the case where g = g(¢,2) and to prove the existence
of solution v € L>([0,T[, H2.(R)). Then, we prove a well-posedness result in more regular space

loc
(y € L>=([0, T[, H} (R))) via the Schrédinger map equation

Oy = 0y (u A gOzu) = u A Ag(u), (1.2)

where Ay(u) = 0, (9(x)0,u) and u = 0.
Finally, we consider the case where g = g(t,x,7v) and we prove a local existence result of solution
v € L=([0, T4 [, HE .(R)), with T1 > 0 depending on 7y = (0, .) and g. The transition from results for

(1.2) to results for (1.1) occurs by Lemma 1.7.

Theorem 1.1 Let ug : R — S? be such that %2 € L2(R), T > 0 and let g € WH°(R*, L>(R)) be
such there exists o > 0 with g > . Then the equation (1.2) has a solution w € L>(0,T, H. (R, S?))
with u(0,.) = ug. Moreover, if g = g(z), then u € L= (R*, H} (R, S5?%))

Theorem 1.2 Let [ > 0 and T > 0. We denote T' ~ R/IZ. Let ug : T — S2%, and let g €
WLHoo(RY, L(TY)) such that there exists o > 0 with g > . Then the equation (1.2) has a solution
u € L>=(0,T, HY(T!, 52)) with u(0,.) = ug. Moreover, if g = g(x), then u € L>®(R*, H} (T!,5?)).

loc

Theorem 1.3 Let ug : R — S? be such that 2 belongs to H*(R), and let g € WH=(RT, W32 (R)).
Assume that there exists a > 0 with g > «. Then there exists Ty = T1(g,uo) > 0 such that equation
(1.2) has a unique solution v € L°(0,Ty, H3 (R)) with u(0,.) = u.

loc
The uniqueness is deduced from the following quantitative theorem

Theorem 1.4 Let T > 0 and g : R — R be a function verifying the conditions of Theorem 1.3. Let u
and @ be two solutions for (1.2) with initial datum ug, o : R — S? respectively. Assume that Oyu, 0,1
belong to L°°(0,T, H*(R)). There exists two positive constants Cy,Cy depending on g, T and the H?
norm of % and % with

u(t,.) —alt, )o@ < Cilluo — ol m (w)»
[u(t,.) —alt, ) a2®) < Colluo — tollr2(r)»
for almost every t €]0,T1.

In what concerns the case g = g(t, z,v), we have

Theorem 1.5 Assume that g = g(t,x,v) and let g € WH(RT W3>2(R3 x R). We further assume

that there exists o > 0 with ¢ > «. Let vo : R — R3, be such that ddZZ'VZ“ € HY(R). There exists

T1 = T1(g,70) such that equation (1.1) has a solution v € L*>(0,Ty, H} .(R)) with v(0,.) = vo.

Equation (1.1) (with ¢ = 1) forms a model of the motion of a very thin vortex with radius e and
arc-length parameter = in an incompressible fluid by its own induction. The original equation for this
model is given by

Oy = GkB, (1.3)



where k is the curvature of v, B is the binormal vector of the Frenet-Serret formula

T 0 w O T
0| N |=|l-« 0 7 N |, (1.4)
B 0 -7 0 B

and

G- % <log (%) + 0(1)> ,

is the coefficient of local induction which is proportional to the circulation I" of the vortex and may
be regarded as constant if we neglect the slow variation of the logarithm with respect to ¢~!. In this
approximation, the local motion is approximated by that of a very thin circular ring with the same
curvature and the tangential motion due to stretching is neglected. This model is called Localized
Induction Approximation (LIA). It was developed in 1965 by Arms and Hama [1]. More analysis
concerning the limitation of this model was realized in [3, 6].

Figure 1: Approximation (LIA).

Our aim in this paper is to prove some existence results for Cauchy problem associated to some
generalization of (1.1). Namely, in the formula (1.1) the velocity is proportional to the curvature with
identical coefficient in every point of the curve. In our case, we assume that this coefficient can be
depending on the time ¢, the arc-length parameter  and eventually on the position of the point in
the space (¢, z) :

Oy = gk B, (1.5)
with (¢ = g(t,z,v(t,z))). Since we have 9,7 =T and B = N AT, (1.5) becomes
Oy = g0y N 02. (1.6)

Equation (1.6) (with g = 1) was presented in 1906 by Da Rios [5]. We denote u = 0,7, then by
deriving (1.6) with respect to x, we obtain at least formally

Oru = u A 0, (g u). (1.7)

When g = ¢(t, 2) does not depend on v, we use the last formula together with Lemme 1.7 in the next

part to study the Cauchy problem of (1.6). The case g = 1 belongs to the Schrodinger map equation

Opu = u A 0%u, (1.8)

whose Cauchy problem was first studied by Zhou and Guo [4] in 1984 when wu(t,.) is defined on an
interval I C R into S? = {v € R® s. t. |v] =1}, and by Sulem, Sulem and Bardos [2] in 1986 when
u(t,.) is defined on RY (N > 1) into S2. They proved that (1.8) has a weak solution in L>(H}. ).
Namely,

Theorem 1.6 Let ug : RY — S2 to be such that Vug € (L*(RN))YN. Then there exists a weak solution
uw:RT xRN — 82 for (1.8) such that V,u € L= (R*,RN) with u(0,.) = ug.



1.1 Reconstruction of flow ~y

1.1 Reconstruction of flow ~

Let I C RT be an interval containing 0, and let u € L (I, H} .(R)) be a solution for (1.2). We define
the function I'y, € L>=(I, H? (R)) by

L.(t,z) = / u(t, z)dz. (1.9)
0
We have, In the sense of distributions on I x R,
9 (O — g0, AN O2T,) = 0. (1.10)

By construction, the curves I',(¢,.) all have the same base point T',(¢,0) fixed at the origin. If they
were smooth, equation (1.10) would directly imply the existence of a function ¢, = ¢,(t) such that
the function

Yu(t, ) =Ty (t, ) + cu(t)

is a solution for (1.1) (with g = g(¢,x)). In this case, we have
cu(t) = Fu(t,z) —Ty(t,x)

= 7,(0,) +/O g(7, 2)u(r, ) A Opu(r, x)dr — /OI u(t, z)dz

= 7(0,0)+ /O”” (u(0,2) —u(t,z))dz + /0 g(7, x)u(r, ) A Ozu(T, x)dT.

In fact, the function ¢, represents the evolution in time of the actual base point of the curves.

The relation between the modified binormal curvature flow equation and the Schrédinger map
equation is specified in the following lemma.

Lemma 1.7 Let w € L>=(I,H} (R, SY)) be a solution for (1.2) such that d,w € L>(I, L*(R,Sh)).

Let T, be defined by (1.9). Then there exists a unique continuous function c, : I — R satisfying
¢, (0) = 0 such that the function v, € L°>°(I, H? (R, R?)) defined by
Yolt, z) =Tu(t, z) + cu(t)

is a solution for equation (1.1) on I x R.

Proof. We define a € D'(I x R,R?) by
T t
a(t,z) = / (w(0,2) —w(t, 2))dz —|—/ g(1, 2)w(T, x) A Opw(r, x)dT.
0 0
Let x € D(R,R) be such that [; x(z)dz = 1. We set
cw(t) = / x(2)a(t, z)dz.
R

By construction, we have c,,(0) = 0, and since w € W1>°(I, H=1(R)), we have ¢, € C(I,R3). On the
other hand, we have

0. (0pa) = 0:0,T, — 0 (gw A Opw)
= Ow—wAAyw
= 0, (1.11)



1.2 Approzimation by discretization of the Schridinger map equation

since w is a solution to (1.2). Since d;a(t, z) does not depend on z, we have for all ¢ € D(I,R3)
[et-swa = [ [ @)oo
I 1JR
= - / x(2) / Oalt, z) - p(t)dtdz
R I
f/ﬁta(t,z) - (t)dt, (1.12)
I

Relation (1.12) means that
d,=0a=—-0T +gwAduw in D(I,R?). (1.13)
We show now that the function ~,,, defined on I x R by
Yolt, ) =Tyt z) + cu(t),

is a solution to (1.1) on I x R. For this aim, assume that ¢ € D(I x R, R?) and
o) = [ wit.2)dz € DR,
R
Using (1.13), we finally find that

<at7w - gaﬂc’)/w A 63’70.” w>1><R = <6t1—‘w — gw A\ azwa w>1><R + <Cwa 'L/J>I><]R
—(Ora, @)1 + (e )1
- 0,

where (,)7xr is the duality pairing between D’ (I x R,R3) and D(I x R,R?), and (,); is that between
D'(I,R3) and D(I,R3). This proves the existence of c,. Since ¢, is required to be continuous with
¢w(0) = 0 and since its distributional derivative ¢/, = d:a, its uniqueness follows. =

1.2 Approximation by discretization of the Schrodinger map equation

We present here the strategy of proof of theorems 1.1, 1.2 and 1.3. We discretise, in space, the
continuous system

{atuzam(u/\gazu):u/\am(gazu), t>0, ze€R, (1.14)

U(O, ) = Ug-

in the following sense:
For some h > 0, we consider the sequence up, = {up(t, z;) }iez satisfying the semi-discrete system

{ (ZA—{I = D% (up AgnD~up) = up ADV (gnD~up), t>0, (1.15)
up(0,2;) = ud (x;), i€Z '

where {x;}icz, is a uniform subdivision of R with step h, gn = {g(¢, ;) }icz, and DT, D~ are two
operators approximating the derivative operator d,. The sequence {ul)(z;)}icz is constructed such
that it converges to ug in certain sense (for example: since ug € H}. (R), we can choose ul)(z;) =
uo(z;) Vi € Z). We solve the problem (1.15) in some space discretising the space L>(R*, H} (R))
where our research for solving the continuous problem (1.14) takes a place. Then, we prove the
boundedness properties for discrete derivatives (DTuy in the case of Theorems 1.1 and 1.2; and
D~ D% uy, DTD™D%uy in the case of Theorem 1.3) which allows us, using the compactness properties



1.2 Approzimation by discretization of the Schridinger map equation

in spaces L?(R) and H} _(R), to extract a subsequence {u}, ! converging to a solution of (1.14). The
proof of Theorem 1.4 is standard. It consists of considering two solutions v and @ with initial datum
uo and g respectively and then proving Gréonwall-type inequalities for ||u — || g1 and ||u — @|| g2. For
Theorem 1.5, we follow the same strategy followed in the proof of Theorem 1.3.

In what follows, we define the elements of the discrete problem (1.15). Then, we prove some
convergence properties before we skip to the proofs of previous theorems.

Definition 1.8 Let h > 0. Let
Zh:{.TiER, xi+1—xi:h V’LGZ}

We define the two spaces L,% and L7° by

Lj, = {vn = {va(@:)}: € (R®)™, Z [on ()] < +o0},

= {on = {on(@)}s € R®)™, supfop(2)] < +o0}.
We define the scalar product (), on L3 by

(up,vp)p = thh(xi) cup(x;),  up,vp € L,%.

3

Its associated norm |.|, is defined by
[onl = h ) lon ().
i

Letl >0, NeNand h = % We define the space of N -periodic sequences
Py = {on € ®)™, wn(a) = vn(@isn), @ €Z}.

We define the scalar product (, )i n by

N

(un,vp)i,n = hZUh(xi) “up ().

i=1

Its associated norm |.|; N is defined by
i=N
Jonlf = h Y lon (o).
i=1

Let v, € (R3)%r. We define the left and the right approzimations of the derivatives in z; by the form

D~ vp () = led=pnlrioy),
D+vh($i) = 7%(%“;}%(“).

It is clear that for two sequences up, = {up(z;)}i and vy, = {vp(z;)}i we have
Di(uhvh) = 7w, DTy, + DY upop,

with
Tiuh(zi) = up(Tit1).

I To give sense to the notation {uy }5, we can consider h : N — R¥ to be a strictly decreasing function which goes to
zero when n — 4o00. We have made this choice for its simplicity.



1.2 Approzimation by discretization of the Schridinger map equation

The two spaces L? and P v verify the following property

Lemma 1.9 1) If v, € L}, then we have DV vy, € L, and
. 2
| DT op|n < E|'Uh|h-
2) If vy, € P, N, then we have also

2 l
DT <= h=—.
|IDT ol N < h|vh|l,N7 N

Proof. It follows directly from the inequality

2
Dy on(@i)* < w5 (fon(@a)|” + [on(@i1) ).
]
Definition 1.10 We define the norm
lonlzy = lonli + [DFonls,  on € L,

and the space

Uh, U
Hh_1 =<{ oy € (R?’)Zh, sup 7< o ) < 400 .
unerz  |unlm

Its clear that L? C H, ' and the function vj, — |Uh|H;1 = SUp,, cr2 %&TZ’” define a norm on H, '
h
Similarly, we define the norms
2 2 12
[onl = lonlin + DT onlin,
(v, wn)iN
fonl s = sup RN gy

un €PN |Uh|Hll,N
The two norms |.|H;1 and |.|Hf1 are the dual norms of .|y and |.|g1 = with respect to scalar product
N :

(,)n et (,),N respectively.

Lemma 1.11 For each (vp,up) € L§°x € L2, we have (discrete integration by parts formula)

th(aci) D up(x;) = — Zuh(xl) - D™ op(x5). (1.16)

K2

Similarly, for all vy, up, € PN, we have

th(aci) D up(x;) = — Zuh(xl) - D™ op(x5). (1.17)

i=1

Proof. Let v, € Li°, up, € L? and K € N. We develop the sum Zfi_K vp(z5) - DT up(x;) and
we make a change in index, then (1.16) holds by using the property lim;_, 4o [un(2z;)| = 0 and the

assemption (v, € LY°). In the second case, we simply develop the sum sz\; vp(z;) - DY up(x;) and
make a change in index, then we use the periodicity of v, and uy. =



1.2 Approzimation by discretization of the Schridinger map equation

Definition 1.12 Let h > 0. We set C; = [x;,xi41[,i € Z. Let Py, and Qp, be the two interpolation
operators defined, for all vy, = {v(z;)}; € (R)%r, by the functions

Quun: R—=R3  zw Quup(z) = vn(z;), Vo€ CVieZ,

Poop: R—=R3 2 Poop(x) = vp(2i) + DV op(2:)(x — 25), Vo € Cy, Vi€ Z.
In all that follows we keep the notation of this definition. We have the following important lemma

Lemma 1.13 1) Let {vp}n be a sequence satisfying

vy € Hy', Vh >0,
3C > 0, |vh|H;1 <C

Then the sequence { Pyvp}n is bounded in H~*(R).
2) Let 1 > 0 and {vp}p be a sequence satisfying

_ 1
h=+L,

v € Pl7N7 VN € N,
3C >0, |’Uh|Hl—Jb <(C, VN eN.

Then the sequence { Pyvy}p, is bounded in H~1(T).

Proof. 1) We have

(Pron, 9)12(®)

||Ph'UhHH*1(]R) = sup
vep®)  lellmw)
P v ,P 2 P Vh —P 2
< swp (Prhvn, Pron) 2 ®) L sup (Pron, o — Prgn)r ® (1.18)

»€D(R) H@HHI(R) »€D(R) H@HHI(R)

with ¢p = {©(x;)};. Since
o — Papnllrzmy < hll(¢ — Pugn)llL2r)  (Poincaré),
we have
ol = IPhnl3scey + o = Panliscey +2 [ (Pagon) (e = Pagnddo+ 2 | (Puon o = Pugn) do
R R

Y

1 Pun I gy + 0 = PrnllFn gy — 220 Panll 2@l (@ = Paon)' Il L2 m)-

Then there exists hg > 0 such that for all h < hg, we have

Y

1
leltne = 5 (IPaenliin + ke = Prenllin e))
1
> Smax (Pl ey e = Paenllin ) -
We obtain by substituting in (1.18)

(Prvn, Phipn) L2 (v
||PhUhHH*1(]R) < sup (R) + \/ihHPhUh”L?(]R)- (1.19)

ven® 5 Phenlla r)




1.2 Approzimation by discretization of the Schridinger map equation

Next, we have

| Paonl|Fr (ry

T; — X xr — Ty
. o) + " o(wiy1)

/$i+1
i v

= Z g (|<P(9€i)|2 + |90($i+1)|2 + @($i+1)@($i)) + |D+‘Ph|’21

%

2 o(z) — plair) |*
der;h‘f dz

h
> 5 (@) +le(@ir1)[*) + 1D enl,

%

from which we can write

1 1
| Phonll i my > §|90h|}2L + DT gnli > §|<Ph|§{,ll- (1.20)

‘We have on the one hand

(P Pugnhisy = 30 [ (onle) + D unn)(o = a0)-(o(a) + D n(a) o — )

2

h h h
= (n,on)n + = (n, DT or)n + = (D on, on)n + = (D vp, DY op)n
2 2 3

h h h?
= (v, en)n + 5, DY op)n — = (vn, D" on)n + — (DVon, DY op)n

and on the other hand

2 2 3
+ gy +
< (vn,n)n + hlop|n|D <Ph|h+§|D Vnln| DT enln, (1.21)
2 st + 2
1Pl = 3 / fon () + Do () (& — 1) P

i+1

< QZ/I (|vn(x:)|* + | DV op () |* (2 — 25)?)dx

o 202 L
= 2|Uh|h+T|D vp3- (1.22)

Then by combining (1.19), (1.20), (1.21) and (1.22) we get

”PhUhHH*l(]R)

<

IN

IN

IN

IN

2
(Vhs n)n + hlon|n| DT onln + 2 DY o) n| DY onln
sup 3

oEeD(R) Telonlu
h2
V6(lonl g1 + hlonln + = [D* onln

+2 v + — D™y

~—

+2h| | + 2hQ|D+ |

v ~— D%

hln+ 75 A
2

+ —)h|vn|n?

7

“|S

V6lunl -1 + (VG + 2)hlon|n + 2(

2+/2
V3

w

\/6|'Uh|H;1 +(V6+2+2 Yh|v |k

C|Uh|H;1,



1.2 Approzimation by discretization of the Schridinger map equation

since
(Vn, un)n
Vh| -1 = sup —m
| |H’” uhp |Uh|H,1
> sup 2(Uh;'lih)h -
wn [[unlp + gzlunlz]?

(Vh, un)n

h
su
VvVh2+4 uhp lun|n

h
> ———Ivnln, Vh = ho.
Vh+4

The proof of 2) is similar to that of 1). m

The following lemma shows that the space L,QL, equipped with the norm |[.| ") is continuously
embedded in L§°.

Lemma 1.14 There exist two constants Cv,Cy > 0 such that for all h > 0 and vy, € L% we have

Colvn|n < || Pronllz2m) < Cilvnla.

Proof. Since

wit1 1 1
/ lun (z5) + D up (z) (2 — zi)|2d:c h|uh(zi)|2 + §h2uh(xi)D+uh(xi) + §h3|D+uh(xi)|2

7

5 1 1
= 6h|uh(aci)|2 — Ehuh(xi)DJruh(xi) + §h|uh(aci+1)|2,
and

3 1 5 1 1 11 5
o ()P lun i )P < Sl ()P g () D (0)+ 5 Jun (i) P < 5l (@) 5 un (i)

we have 4
lonli < 1Pronll 72y < §|vh|l2r

Corollary 1.15 Ifv, € L? C L5°, then Pyv, € H'(R) and there exists C > 0 (which does not depend
on h) such that
lvnlzze < Clon|gy-

Proof. Since 2 = @, Do), € L*(R), we have Pyu, € H'(R) (Lemma 1.9). On the other hand,
we have

[ Poonlle = sup  sup |un(zi) + DT up(a)(z — ;)|
€L z€lwi,Tit1]

= sup max(|up(@:)], [un(2it1)])
€L

= |Uh|Lh°° .
The space L°(R) is continuously embedded in the space H*(R) (Sobolev) and there exists C' > 0

such that ~
||’U|Loo(]R) < CH'UlHl(]R)a Yo € HI(R)

10



Consequently,

|0n[Z 00 | Prvn| oo gy

< CQHPhUhH?{l(R)
< C*(CPlonl;, + 1QuD T vnl 32 (g))
<

02|Uh|12q;b-

2 Proofs of principal theorems

Let us first show some important properties.

2.1 Convergence properties

Lemma 2.1 1) Let {vp}1 be a sequence satisfying
v € L3, Vh,

and

C' > 0, |'Uh|h <C. (2.1)

Then the sequence {Pyvy, — Qpup tn converges weakly to zero in L*(R).
2) Let 1l > 0 and {v,}1 be a sequence satisfying

h=+,
’UhGPl,N, VN € N,
and

C' > 0, |Uh|l,N <C. (2.2)

Then { P,vn, — Quon}n converges weakly to zero in L*(T'). Moreover, if {Qnvn 1 converges to v in L?
(L2(R) or L3(T')), then {Pyvn}n converges to the same limit in L.

Proof. 1) We write

Tit1
1Pan = Quunltey = 30 [ 1D unlm e - s

1
3" 2D P

IN

1
- §h2|D+vh|i

4
< §|Uh|f2L
4
< g02. (2.3)

Furthermore, for all ¢ € D(R), we have

[(Pron — Quon, ©) 2wyl < [(Prhvn — Quon, Qne) 2 w)l
+[|Pron — Qnonl| L2l — Qnenll 2y (2.4)

11



2.1 Convergence properties

where ¢y, = {¢;)}i. We have on the one hand
2 s 2
o= Qugnllam = X[ lola) ~ plaldo

Ti41 xT
S / | / o/ (s)ds[2de

Ti41 T
< 3 [ WP - ads
h2 * / 2
< D5 [were
h2
= e (25)
On the other hand, we can write
byt
[{Pron — Quon, Que) 2| = 5D o, on)nl
h _
= §|<Uh,D ©n)nl
h _
< §|'Uh|h|D ©nln
1
1 o ’
/ 2
< Lo hz|/mso<s>ds|]
1 /
< ORI L) (2:6)

Then combining (2.3), (2.4), (2.5) and (2.6), we obtain

2 1
[(Prhvn — Quon, ©) 2| < (% + §)C||50/”L2(]R)h-

Thus the proof of 1) is completed. The proof of 2) is similar to that of 1). To prove the strong
convergence property, let v € L2, then it suffices to note that

Tit1
[Paon = Quunls = Y [ D e Pl - i
1
= §h32|D+Uh($i)|2
1 2
= gHT—thvh*thhHLz,

with 7w = w(- — h), and

|T—nQnvn — vl 12 + [|@rvn — v 12
[Thv — o[22 + 2[|@nvn — v 2.

|- Qrvr — Qronl L2

Thus the convergence limy_,q ||[7hv — v||L2 = 0 completes the proof. m

12



2.1 Convergence properties

Lemma 2.2 1) Let v € H-Y(R), and {v,}n be a sequence such that the sequence {Qnvp}n converges
to v in H~1(R) weak star. Then the sequence {Pyvp}y converges to v in H~*(R) weak star.
2) Let1 >0, v' € H-Y(T') and {vn}n be a sequence satisfying

h=+
N’
vp €ly, VN €N,
Quon, — vt in HYTY)  weak star.

Then {Plvp} converges to v' in H=1(T') weak star.
Proof. 1) First, we prove that P,v, € H~1(R),Vh. To this end, we first write

Ppop, = Quop + (Pr — Qn)up.

Then it suffices to prove that (P, — Qn)vn, € H™1(R),Vh. Let ¢ € D(R), and ), = {¢(x;)}i. We have

[(Prhon — Quons )2yl < [(Pron — Quvn, Qup) L2w)| + {(Prvh — Qnrvn, ¢ — Qnp) L2(w)|
h Ti+41 T
< §|(D+vh, On)n| + |Z/ (D+vh(xi)./ ¢'(s)ds)(z — z;)dx|
h Tiq1
< 5lwn, D7 ¢n)nl + |h2\/EZ|D+Uh($i)|-/ |/ ()| *de|
h _
< §|vh|h|D enln + B2 D vplnlle | L2y

h

< §|Uh|h||50/”L2(]R)+2h|vh|h”50/”L2(]R)
5

< Shlonlall¢ o

where the sequence {h|vy|s}s is bounded. Indeed, the sequence {Qpv}n converges to v in H~1(R)
weak star. Then there exists C' > 0 such that ||Qpvp||g-1(r) < C for all h, hence we have

(Qnon, Ry vp) 12

HRhNUhHHl(]R)

® <0, VhVNEeN, (2.7)

where RY vy, is a piecwise function with compact support (hence Ry v, € H'(R)) such that

(Qnon, R vp) 12wy = hNZ]fN |vs]?,
IRy onllF gy < AP0 vl

For example, we can take
Ry v = Qnin + > _ DV onx(z — x;),

Uh(‘ri)’ |’L| <N

0 il > N and x is given by

where 0y, = {0 (x;)}; with 0p(x;) = {

0, z<0 or xz>h
—3x, x€ O,Q
X(@) =19 3 L [zg’e[[@ 21
2 ’ 37 3
-2y ze kL

13



2.1 Convergence properties

(Sl

Figure 2: The function x.

Since

N
AY [oif?
[ 2y 2

we get h|vp|p < C,Vh. Finally, we have ||(P, — Qh)vhHHq(R) < C,Vh, then
||Ph'UhHH*1(]R) S C, Vh.

To show that {P,vp, }5 converges to v in H~1(R) weak star, we need to prove that

<O, VhVN €N,

W=

Pyvp = v, in D/(R).
To this end, let ¢ € D(R). We denote 7,9 = 3(¢ + (. — h)). Then we have
Ti+41
(Prhon,p)r2m) = Z/ (vn(z:) + DFon(z:) (2 — 24)) - p(x)da
Ti+41 h
_ Z/ ( n (i +2Uh($z+1) + Doy (z:) (2 — @i — 5)) - p(z)dz
Ti41 h €T
= (Qnvy, ThY) L2(R) + Z/ (D+Uh (zi)(x — x; — 5) / @(t)dt) dx

i

vy 2 - = Dt (z;) - ¢ (s dpd

(Qnvw, Th) 1, (]R)JF/O /O (s 2) (Z vp(xi) - @' (z +p)> ods

= (Qnvv, ThP)L2(R) + 7 / / 5= (Z op(2i) - (@' (ic1 +p) — ' (x5 +p))> dpds
= (Qnvv, ThP)L2(R) + 7 / / (Z on (2;) / - ¢ (z +/))dx> dpds,

T

where
Qnup, — v, dans H~Y(R) weak star,
The = @, in HY(R);

hence (Qnvy, Tho) L2r) — (v, ¥) L2(R). On the other hand, we have
i+1
sz / (a4 p)da < onlnll@” || L2 w)-

14



2.2 Proof of Theorem 1.1

It follows that

i ' / (e (va» -/ <P”($+p)dw> dpds

i

IN

B2 |vnlnlle” | L2 (r)

IN

Chlle"[lz2®),
and thus the proof of 1) is completed. The proof of 2) is similar to that of 1). m

We establish now a compactness result which will be useful in the proofs of principal theorems.

Lemma 2.3 LetT > 0 and {up} be a sequence whose elements belong to the space L>=(0,T, H. .(R)).
Assume that {up}p is bounded in L>=(0,T, H. (R)) and further the sequence {Oyun}y is bounded in

loc

L>(0,T, H~Y(R)). Then we can extract from {up}n a subsequence converging in C(0,T, L} (R)).
Proof. The proof is a consequence of the following proposition

Proposition 2.4 ([7]) Let X,B and Y be three Banach spaces such that X C B C Y. Assume that
the embedding X C B is compact. Let F be some bounded subset in L°°(0,T,X) such that the subset
G = {0:f, f € F} is bounded in L"(0,T,Y), with 1 < r < oo. Then F is relatively compact in
(0, T, B).

We denote by I, =] — k, k[ with k¥ € N. We consider the three spaces X = H'(I), B = L*(I;) and
Y = H~!(I}). The embedding H'(I;) C L?(I;) is compact, hence using previous proposition, we

can extract from {uy}, a subsequence (depending on k) which converges in C(0,T, L?(I;)). Thus the
diagonal subsequence of Cantor converges in C(0,7T, L%(I)) for all k € N. m

2.2 Proof of Theorem 1.1

We construct a weak solution for the system

0w = 0y (u A g(x)0pu) = u A0y (gOu), t>0, x€eR, (2.10)
u(0,2) = uo(x), '

as a limit, when h — 0, of a sequence {uy }, of solutions for the semi-discrete system
d:;—t’l = D+O(uh N ghD_uh) =up ADT (ghD_uh) , t>0, (2-11)
up(0) = up,

where u) = {u (z;)}; € (R®)Z» with |u(z;)| =1 and gn, = {g(t, z:)}:.

Proposition 2.5 Let u) = {u))(z:)}; € (R®)%* be such that |ul)(z;)| = 1, and DY ul € L?. Let
g € Wh(RT, L>(R)) such that there exists o > 0 with g > «. Then equation (2.11) has a global
solution up, = {up(z;)}; € CLRT, (R3)Zn) with |up(t,z;)| =1 and D uy € CLRT, L?).

Proof. Let h > 0. We endow the space
Ep={v, € R®Z, v, € LY and DY, € L1},

with the norm
[onlln = [vnlLge + 1D vpln,  Vun € By,

for which the space (Ep, ||.||n) is a Banach space. Let R > 0 and Q = Bg, (u}, R). We define the
function

{ F:Q— Ep: vy F(uy),
(F(vn))(xi) = DF(vp A (gnD~on)) (@) = 5z (9(@i)vn(@s) Avn(zi-1) — gn(i + Do (@it1) Avn(:)) -

15



2.2 Proof of Theorem 1.1

In what follows we denote 8 = ||g|| L (). Let un,vn € Q. We have on the one hand

Fln) @)~ Fon)) = 28 funan) A Gun(sr) — on i) + () — enai)) A enr)]
P (1) — i) A () + (o) (o) — wn(z)],
then 48
[ (vn) = F(un)loge < 55 (R + [uplln)lvn — unlLse, (2.12)

On the other hand, using Lemma 1.9 we get
[DT(F(vn) = F(un))ln |DT[D™ (gn(vn A D™ vn — up A D™ up))]ln

4
< h—§|’l}h/\D_’Uh—uh/\D_uh|h
48 _ _ _
< g onlege D™ (vn = un)ln + |D7un|n| D™ (vn = un)ln
< TR+ (1D (e~ wi)ls + 1D (e — ).
It follows that ﬁ
[ (on) = F(un)ln < 53 —5 (R + [[up] [ — ul|n, (2.13)

where, combining (2.12) et (2.13), we deduce that

8
[1F'(vn) — F(un)|[n < hg(RJr lupln)lon — wnlln.

Thus F' is locally Lipschitz-continuous and Cauchy-Lipschitz theorem holds. Hence there exists T €
Rf U {+o0} and up, : [0,T*[— (En,||||n) satisfying (2.11). Taking the usual R®—scalar product in
(2.11) with up, we find that 2 |uy (¢, 2;)| = 0, hence |up(t, z;)| = u)(2;)| = 1 on [0,7*[. Then we have
llunlln = 1+ |DVuplp which gives T* the following characterisation

limsup |[DFup(t)]p = +oo  if T* < +oo.
t—T*
Taking the L? —scalar product in (2.11) with D (gD~ uy), we get
d
dt zl: gn| D un (i) *(t,2:) = zl: Oeg(t, i)| D™ un(x:)* (¢, 22),
from which and by using the Gronwall lemma, we obtain

t
|DFun(t)ln = [D™un(t)|n < \/7|D+u |n exp <ﬁ1 > Vi € [0,T7].

This means that lim;_,7~

up||p # 400, hence we finally get T* = +00. ®

In what follows, we consider T' > 0 fixed. For each sequence {vj}; of elements in Li, we have
(%’Uh)h = — (un A gnD~up, D™ vy),, , hence

t
< B/ = |D+u | exp (ﬁl ) (2.14)
Hh
Let {ul}), be a sequence satisfying

Qpuy —ug in L} _(R),
QnD*u) — Lo iy L2(R).

%

(2.15)

Then we have

16



2.2 Proof of Theorem 1.1

Lemma 2.6 The sequence of solutions {up}y satisfying (2.11), with initial data {u}, satisfying
(2.15), has the properties

i) {0y Pnup }tn is bounded in L>°(0,T, H=1(R)).

i) {Poup}n is bounded in L>=(0,T, H. (R)).

Proof. Property i) is an immediate result of (2.14) and Lemma 1.13.
ii) Let I = [a,b] C R. Then we have

Tit1 2
1Pty = 3 / dr+ 3 h

h
> 3 (lun(z)]? + lun(zir1)|? + un (@) un(@ipr)) + DV,

< b—a+2h+|DTul?,

€Ty Xr — Ty

h

—z
up(x;) +

2
Up\T5) — UR\ L5
- Uh(l'iJrl) h( ) - h( +1) dx

IN

where the sequence {|D¥u)|5}; is bounded, since Q,DFuf) — %2 in L*(R). m

Since {Ppup}n and {9:Pyup}y are bounded in L>(0,T, H} (R)) and L>°(0,T, H *(R)) respec-
tively and in view of Lemma 2.3, there exists a subsequence {up}, and w such that {P,up}; con-
verges to w in L?(0,7T,L? .(R)) and almost everywhere. Moreover, {0;Pyuy}y converges to dyu in
L*(0,T, H-*(R)) weak star. The sequence {Qpup} converges also to u almost everywhere. To show
that the second member { P, DT (up A gn D™ up)}n converges to 9, (u A g(x)d,u), we note first that by
Lemma 2.1, the two sequences { Py (up A gn D~ up)}p and {Qp(un A gn D~ up)}n converge to the same

limit in L>°(0, T, L?(R)) weak star. Since

Qn(un A gnD™up) = Qrup A (QrgnQnD ™ up),

and
Qrgn — g almost everywhere,
Qnrup — v almost everywhere, (2.16)
QnD~up — dyu in L>®(0,T,L*(R)) weak star,
we have
Qn(un A gnD~up) = u A (gdzu) in  L¥(0,T,L*(R)) weak star,
and

{ Py (un A gnD~up) — u A (gyu) in L>*(0,T,L*(R)) weak star,

By P (un A gnD~up) — 9 (u A (99,u)) in L(0,T, H-\(R)) weak star. (2.17)

It is clear that
QnDY (un A gnD~up) = 0xPu(un A gnD~up),

then using lemma 2.2, the sequence { P, DT (up, A gn D~ up) }, converges to 9, (u A (90,u)) in L (0, T, H1(R))
weak star.

When g = g(z) does not depend on time, we have

d
pn Rg($)|8mu(t,x)|2dac =0,
then ol
gllLee(r) || duo
A (t)]|? 2y < LEZE®) HIET0 ,
a2 P

and u € L®°(R*, H}

loc

(R)). Thus the proof of Theorem 1.1 is completed.
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2.3 Proof of Theorem 1.2

2.3 Proof of Theorem 1.2

In this proof we use, without details, the same techniques of previous proof. Let [ > 0. We construct
a solution u € L>®(R*, H(T!, $?)) for the system

{atuax(u/\gazu)u/\@z(gamu), t>0, zeT, (2.18)

u(0,x) = up(x).

as a limit, when h — 0, of a sequence {up = {un(z;)}; € Pin}n (with h = £) of solutions for the
semi-discrete system

‘ZA—th = DV (up A gD~ up) = up A DT (gnD~up), t>0,
un(0) = up, (2.19)
un(t,xo) = up(t,zn), t>0,

with |up(z;)°] = 1, and g5, = {g(x;)}; such that g(t,z¢) = g(t,zn).
Proposition 2.7 Let u) € P n (with h = L) be such that |u)(z;)| = 1, and g € WH=(R*, L>(T"))

be such that there exists a > 0 with g > «. Then there exists a solution up, = {up(x;)}; € CH(RY, P, )
for (2.19) with |up(t,z;)| = 1 for every i.

Proof. Let [ > 0 and N € N. We denote h = % We endow the space Py by the norm

|vn|Lse = sup lvp(z:)|, Von € PN,
i€Z

which makes (P, n,|.|r) a Banach space. Let R > 0 and Q = Bp, ,, (uj, R). We define the function
F:Q— Py by
(F(on))(xi) = DT (v A(gnD~vn))(w:)
1
= 2 (gn(xi)vn (@) Avn(iz1) — gn(Tir1)vn(@ig1) Avp(a)) -

Then we follow the same steps followed to demonstrate Proposition 2.5. m

The rest of proof is similar to that of Theorem 1.1 and requires property (1.17) and results of
Lemmas 1.13, 2.1 and 2.2.

2.4 Proof of Theorem 1.3
We denote
Ag,vn =D (gnDvy) = D™ (gD vy), D*=DTD™ =D"D™,D3>=DVtD DT,

and g}, = {0:g(t,x;)};. Since g is given in WH(R*, W3°(R,R)), then there exist 3, 81, 8, 81, 8, B4
and (" such that

lgnlze < B, lghlee < B

|D:9h|L;§° =D gnlrze < B, |DTgflrze =D ghlr < B
|D39h|L;° < 5Z; |D?g} | < B3

|D?gnlpe < B

Our proof consists of several steps

18



2.4  Proof of Theorem 1.8

2.4.1 Step1

In this step, we establish two a priori estimates in 2% D*‘Z‘—t’l, Ag,up and D™Ay, up.

dt
We start by proving that

d 2
— + Ay, unl? | <Oy
dt ( N 9h h

where C; and Cy are two positive constants independent of h. For any two sequences up = {up(z;)};
and vy, = {up(x;)}:, we have

duh

2
du 2
b | T |Aghuh|l27,> + Oy, (2.20)
t h

dt

Ay, (upvr) = DT (g~ v D~ uh + grup D~ vp)
= 77 Ay un + g DT (7 vR) D up + 7 (g DT on) D up + unl g, vn
= v lAguh+ gn DR D up + 7 gn DT op D up, + upAg, vp. (2.21)

We derive (2.11) with respect to ¢

d*u
W; = (’u,h A Aghuh) A Aghuh + up A Agh (uh A Aghuh) + up A Agzuh. (222)

Using (2.21) and |up (¢, z;)| = 1, we deduce from equation (2.22) that

dQuh
dt?

= (un - Ag,un)Dg,un — |Ag, up*up

+up A (gnD~"un A D™ Ag, up + gD upn A D+Aghuh +up A Aihuh)
= up AN Agiuh + (uh . Aghuh)Aghuh - |Aghuh|2uh + (uh . A;huh)uh - A;huh

+E, (2.23)
where

E = gpun AN(D up AD” Ay, up) + 7 gpun A (DTup A DTA,, up)
= gn(un- D™ Ay, up)D”up + T gn (up, - D+Aghuh)D+uh
—gn(un - D™ up)D™ Ay, up, — T gn(up - D+uh)D+Aghuh.

Furthermore, we have

h
Up - Diuh = $§(Diuh)2,

hence
7 gn(un - DT up) DT Ay, up, = _gT+9h(D+“h)2D+Agh“h
= D D e g )] - D an (D)) Ay, )
— _g {D*[gn(D™un)?Ag, un] — D (gn(D~un)*) Ag, un }
and

h
gh(uh~D7uh)D7Aghuh = Egh(Dfuh)QDnghuh

h
= 5 {DJr[gh(Diuh)QTiAghuh] — D+(gh(D7uh)2)Aghuh} ,
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2.4  Proof of Theorem 1.8

which together give

_ _ h? _ _
—7 T gn(up, - D+uh)D+Aghuh —gn(up - D™ up)D™ Ay, up, = ?DJr[gh(D uh)QD Ag, up)].

On the other hand, we have

up - Ag,up, = up - (Dt gD~ up, + 7 gD D™ up)
_ gD""gh(D_uh)Q _ %#gh((D—W + (Dt un)?)
= _%(gh(D_Uh)2 + 7 gn(DFup)?),
hence
up, - DiAghuh = Di(uh - Ag, up) — D*uy, - Ti(Aghuh)

1
= ngi (gn(D~up)® + 71 gn(DTup)?) — D*¥uy, - (A, up).
Combining (2.24) and (2.25) we find that
h? 9
E = ?DJr[gh(D*uh) Dnghuh]

1 _ _ _ _ _ _
—EghD (gh(D uh)2+T+gh(D+uh)2)D up — gn(D"up - 77 Ag, up) D" uy,

1 _
—§T+ghD+ (gh(D up)® + T+gh(D+uh)2) Dty — 7T gn(D uy, - T+Aghuh)D+uh.

Taking the L? —scalar product in (2.23) with d;th and using uy, - d“h =0, Ay, up - %o =0 and
duh d
Agh(ﬂ) = EAgh (uh) - Ag;‘luha

we obtain by integration by parts
1d (|duy|’ ) e
5% — +|Aghuh|h :J1+J2+II+IQ +12 +I3 +Iga
h

dt

where
Jl = (AgfluhaAghuh)h)
Jo = (uh A Agfluh,uh A\ Aghuh)h,
h2

duh
L = 5 (D+[9h(D up)?D™ Aghuh]aﬁ)

1 B du,
If = ~3 (T+ghD+ (gn(D~un)® + 75 gn(D¥un)?) D*up, dth)

_ 1 _ _ du
I, = —3 <9hD (gn(D~up)® + 77 gn (DT up)?) D™y, h>
h

1 du
Igr:—§ <T+gh(D+uh T Aghuh)D Up, dth)

_ 1 du
I :—5 (gh(D Up - T Aghuh)D U, dth)

(2.24)

(2.25)
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2.4  Proof of Theorem 1.8

To bound from above these terms we apply essentially the Holder inequality and Lemmas 1.9 and
1.15. We start by

Ji+Jo < 2[Ag unln|Ag,unln
< 2(B|DTun|n + Br|D%unln)|Ag, una- (2.26)
Then, we have on the one hand
+ duh
L < |D gh(D uh) D™ Aghuh|h dt
h
duh
< hlgn(D"un)’D™ Ag, unln o
t
duh
< hBIDTup|ix | DT Ay, unln I
tln
du
< 20ﬁ|D uh|H1|Aghuh|h dth (2.27)

and on the other hand I} = I, + L5, with

duh

dt dt

1 _
I3 = —3 (TJrghDJr(gh(D up)?) D up, —

1 d
) , 12"'2 =—3 (TJrghDJr(T+gh(D+uh)2)D+uh, ﬂ) .
h
Moreover,

1 _ _ du
1;1:*5 <T+9h (DT gn(D up)? 4+ 7 gn(D” + 7D uy, - DYD™ up) Dt up, h)

dt
hence
+ - + - -2 dup,
Iy < 5B (FID unln+ 28D D unln) [D”unlie | —=
1 du
< 508 (B1D wnln+ 22 80, unb ) 107wy | 2ot
2 h|odt
Similarly, we find that
+ 1 2 duh
Ip < ;0B H'ID” Uh|h+2—|Aghuh|h 1D unlmy ||
then 5 J
_ _ u
I;SCﬂ (ﬂ/|D uh|h+25|Aghuh|h> |D ’LL}74|§{’11 d—ﬁh (228)
For Igr we easily note that
du
I < Cﬂ|D unl 3 [ Ag, unln dth (2.29)

The two terms I; and I, can be treated in the same way followed to bound I~ and I, . Since

D7 unlfyy = [D7unly + DT DTl

IN

_ 1
D unl} + =18, unl}, (2:30)
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2.4  Proof of Theorem 1.8

we get by combining (2.26), (2.27), (2.28), (2.29), (2.30) and (2.14)

d 2
— + Ay, unli | <G
dt ( b 9h

where C1,Cy > 0 are two constants depending on «, 3, 81, ', B and |DFu?|,. Then we establish an
a priori estimate in D’%ﬁ and D™Ay, uyp,. Let

duh

duh

dt

9 2
+ |Aghuh|i> + Oy, (2.31)
h

(gn(D~un)® + 7 g(DFup)?).

N =

Aghuh =

We have found that

d2uh
72 + A;huh = (uh . Aghuh)Aghuh — |Aghuh|2uh + (Uh . A;huh)uh + up A Agfzuh + F, (2.32)
where

h? _ _
E = ?DJF[gh(D up)? D™ Ay, up]

_ghD_(Aghuh)D_uh — gh(D_uh . T_Aghuh)D_uh
fTJrghDJr(Aghuh)DJruh — 7 gn(D uy, - T+Aghuh)D+uh. (2.33)

Moreover, we deduce from (2.21) that

up, - Aih (un) = Ay, (un-Ag,un) — |Aghuh|2 —gnD" Ay, u- D7 up — T+ghD+Aghu - Dty
= _Agh(Aghuh) - |Aghuh|2 _ghD_Aghu'D_uh
1Y, DT Ay, u- DT uy,. (2.34)

Thus Combining (2.32), (2.33) and (2.34), we get

o2 + A;huh = —Ay, (Ag, un)un — AgunAg, up — 719DV (Ag, un) D up — gn D™ (Ay, up) D~ uy,
—gn(D™up - 7 Ay, up)D"u— gn DT Ay, u - D7 up — | Ay, up|?
—7 g (DY up, - 71 Ay, un) D up — 7T g DY Ay, u - DT up — |A,, un |
+%2D+[gh(D*uh)2D*Aghuh] + un A Ayt up, (2.35)
where

—gn(D~up - 7" Ay, up)D"u — g DT Ay, u- D™ uy, — |Aghuh|2 =—D (T gn(DTup - Ay, up)up),
—1 g (DT up - 7 Ay, up)DTup — g DT Ay, u - DTy, — |Aghuh|2 = —DH(gn(D"up - Ay, up)up).
We have

DFuy, - Ag,up, = DY gp| DY up 2 4+ 29, DT (ID~up|?) + Lgn| DY D~ up?,
D~up - Ay, up, = D™ gp|D~up|* + %T+ghD_(|D+uh|2) + %T"’gh|D+D—uh|2,

and
{ gn DT (ID~up|?)un = DF (gn|D~up|*un) — 7 (1D~ unl*) DT (gnun),
79D~ (|D up)?)up, = D= (77 gn| DV up|?un) — 7= (|DTunl?) D~ (grus),
then
_ 1 _ 1 _
D™ (r"gn(DFun - Ag,un)un) = 524, (gnlD upun) + 3D (T gD un*[DF ghun — 71 gD  up))
h
+§D_(T+ghgh|D+D_uh|2),
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2.4  Proof of Theorem 1.8

and
D (gn(D~up - Ag,up)up) = %Agh (7 gn| Dt up Pup) + %D+(gh|D+Uh|2[D+ghUh — gnD ™ uy))
+gD+(T+9hgh|D+D7uh|2)-
Thus equation (2.35) can be rewritten as

d2uh
dt?

+ A;huh = —2Agh((Aghuh)uh) —+ up N Ag;zuh

1 _ _ _
+§D+ (gn|DFun|?29n D~ up — D grup, — D™ gnm " up))

h h?
f§(D+ + D7) (7" gngn| DT D" unl?) + ?DJF (gn(D™up)*D™ Ay, up) (2.36)

Applying operator D~ on (2.36) and taking the L —scalar product with g, D~ dth, we get, after
integration by parts,

duh 2
2dtzgh %) (‘ @ )

+ |D_Aghuh(:ci)|2> =h+L+L+L+J+J2+Js,

with

du
I =2 (D Ay, ((Ag, un)up), gn D™ dt")

. - B 3 _du
L= (D_D+(gh|D+Uh|2[29hD un = D grun = D™ g un]), gnD dth) ’

1 du
Iy =3 (hD(D+ + D7) (7 gngn| DT D" up|?), gn D~ dth)

du
Li=3 <h2D D gn(D~up)?D™ Ay, up), gD~ dth)

du
J1 = ( (uh/\A ¢ Upy g gn D™ dth))

Jo = (ghD_Aghuh; D_Ag;luh)h,

hd . _duy,
=-= )| |D
JS 2 dt ;gh(‘mz) (‘ dt (xz

We start by bounding Ji, Jo and J3. We have

= |D-Aghuh<xi>|2> .

- _du
[l < BID unl e (Bu| Dunln + 8D  unln) | D d—;
h
2 + duh
+B(281 D% upn + BY|DF up|n + B1D>un|n) rr (2.37)
h
| Jo| < B(2B1D*unln + BY DY unln + BID>unln) |D~ Ay, unl, , (2.38)
1 _ 2 7duh

73] < 561 <|D Ag,unl, + ‘D — h) : (2.39)

23



2.4  Proof of Theorem 1.8

For the term Iy, we have

1 _
o] < —5{2|D2(g;21|D+Uh|2D up)|n + | D*(gn Dt gn| DV up|*un)|n

_du
+D*(9n D~ gn| DF unl* 7" un)|n} ’D —2 (2.40)
and
|D*(gi| DY un 2D~ up) - < C{((B? + BB")|DF unlfee + 82| D*un| T )| D unln
+BB'|DF up[f e |D*unln + B%| D un|Foo| D2upn}- (2.41)

We also have

|D*(gn D gn| D unPun)ln - < CL(BB™ +26"8")|DF un|rze + (87 + BB") D unli)IDF unln

+(BB' D  upli~ + (87 + BB")| DT un| g ) D>unln

+B6'| D up|Lze | D un|n}- (2.42)
The term | D? (g, D~ gn| D up|?>7~up)|n can be bounded from above by the same term of the right-hand
side of (2.42). To find a suitable bound for I, we write first
D™ Ay, (gn| D™ up*un) = D*(gnD~ (gn| D un|*un))

= D*(gpr |D™un* D7 up + gn D~ gn7 | D" un > un + g7 D™ (ID " un|*)un).

Thus the two terms |D? (g7~ | D~ up|?D~up)|n and |D? (gD~ gn ™ | D~ up|*7up)|n can be bounded

from above by the members of right-hand side of (2.41) and (2.42) respectively. For the term
DQ(Q}%D_(|D_U}1|2)U}L), we have

— duh

dt

(DQ(gﬁD(|Duh|2)uh gnD yr

_du
) _121+( 31D~ un|*)un, g3 D h) (2.43)
with

Iy < CB{B%ID*un|toe D up b+ ((BB" + )| DY uprse + BB'|D*un|rge + BB/ | DY up|] o ) D> upln
duh

+(BB' DT un| e 4 B2 D*up|poe )| DPup|n }| D™ —+ 7

(2.44)

Integrating by parts the second term of the right-hand side member of (2.43), we obtain

d d

Y DD ) D D*ddt )Gza).

Moreover, since uy, - 7& = 0, we have

,duh duh duh duh
D+ D = DTu,-DtT—= -D*— — D?*(up, - ——
(un - D™ =) n ar dt (un =)
duh _ 7duh
= —D?up-—— D u,-D”——.
Ut n dt
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2.4  Proof of Theorem 1.8

Consequently, we get

_du
(D3(|D up|*)un, gD d;) < C{B|D*up|p e | D unln + B'B%| D*un|Lge |D*unln

du
WWWWW+WWMWW%MPh

+8%{|DF un| g | D*un| Loe | D un |

du
+|D2Uh|Loo|D2uh|h} —h (2.45)
According to the definition of I3 and I, we have
_du
13| < hBID*(gn7* gn| DPun|*)|n | D™ =
and ) J
_ _ _du
L] < 5h2BID(gnl D un 2D~ Ag,un)|n (D™ 2|
h
where, applying Lemma 1.9, we get
h| D (gn7* gn|D*un|)|n < 2|DF (ga7™" gn| D*unl*) n,
and
h?|D?(gn| D*un|* D™ Ag, un)ln < 4lgn| D~ un|* D™ Ag, up|n,
which gives together with previous estimates of I3 and Iy
_du
|| < CB% | D?un| gz (B'|D*unli + B1D un|n)| D™=, (2.46)
and p
_du
14| < 2B%| D" un} | D™ Ag, un|n| D dth
Since
D™ Ay, up = D*g, D" uyp, + gnD*up, + DV gy, D*up, + D™ g, D™ D™ uy,, (2.47)
we obtain .
_ _ _du
|I4| < 2ﬁ2|D uh|%hco(ﬁ/1|D uh|h + 2ﬁ’|D2uh|h + ﬁ|D3uh|h) D d—th (248)
h
Combining (2.37 - 2.46) and (2.48), we finally get
duh 2
ththh zi) (’ @) + |DAghUh($i)|2> < CAL Ay, (2.49)

with Ay = [DVup|re + |D"’uh|%oo + |D?up| e + |D2uh|%ao, Ay = |‘Z‘—t’1 if}z + |D2uh|§q}z + |D%up|? and
C > 0 is some constant depending on 3, 51 5', 81, 8", 8] and .

2.4.2 Step 2

We construct the sequence {u}), such that

Quruy —uo in L7 _(R),
QnDtuf — o in L(R),

¢
QuD?uf — C; 4 in L*(R), (2:50)
QnD%uf) — T4 in L2(R),

then
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2.4  Proof of Theorem 1.8

Lemma 2.8 There exists Th > 0 such that the sequences {0y Pnup tn, {0:Pn D~ up}n, {PnD?*up}pn and
{P,D3up}y, are bounded in L>(0, T, L*(R)).

Proof. Let T > \/ﬁ For ¢ € [0, T] we denote

2 2

2
du
hoy| + |Aghuh<r>|%> dr,
h

dt

G(t) = CoT + %(0) (7)

t
+|AghUh(0)|i+Cl/ <
0

h

where Cy and Cy are the constants of inequality (2.31), hence & € W'(0,T) and in view of (2.31)
we have

1 li
(%) < (1, for almost everywhere on 0, 7.

then we have

Cht + % > %, vt € 0,71,
and a0
Glt) < g ¥ € 0.(CIGO) L
Since
duh 2 2
G(0) = G + | 0]+ 18g,m(0)f

2|Ag, un(0)[7 + CoT

48| D up|y + 48%| DY D™ [f + CoT,

the sequences {|D"u) |}y and {|DTD~u)|,}, are bounded. Thus there exists M > 0 such that
48" Dl |} + 48%| DT D ul|7 + CoT < M,

<
<

GO)y™*>M1t>o.
Let T = 1(C1M)~". Then, for all ¢ € [0, 7], we have

2 M

+|A 2<G(t) < ————— < 2M. 2.51
A [Aguunlh < G1) < 1—iM-1G(0) ~ (2:51)
According to Corollary 1.15, there exists C' > 0 such that

|D+uh|Lzo < C|D+uh|H}11, |D2Uh|Lh°° < C|D2uh|H’11.

duh

dt

Thus combining (2.49) and (2.51), we have for all ¢ € [0, 7]

1 d 7duh
-z § NI D2 (g
sai’ i 9n(w:) (’ )

where C1,Cy > 0 depend on 3, 81, ', B, B, B, B, a, and M. Following the same argument in the
previous part of this step, we find that there exists K > 0 and 0 < 77 < T such that, for all ¢ € [0, T3],
we have

2
duh

Eﬁl + D™ Ag, unli)? + Ca, (2.52)

+ |DAghUh($i)|2> <Gi(ID™

_dup,
D -
‘ dt

+ |D7Aghuh|h < K. (253)
h
Since
Ay, up, = D g, D uy + g, D?up,,
Dnghuh = DQgthuh + ghDguh + DJrghDQuh + D gn D™ D™ uy,
we deduce from (2.51) and (2.53) that sequences {’D“Z‘—t’l |, dns { du, |, Yo LI D2unln}n, and {| D3up[n}n
are bounded in L>°(0,7}). The result then yields from Lemma 1.14. m
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2.5 Proof of Theorem 1.4

2.4.3 Etape 3

We already proved, by Lemma (2.6), that there exists u € L>(0,7, H} (R)) and a subsequence {up, },
such that
P,D up — O,u in L>®(0,T,L*(R)) weak star,

for all T > 0. According to lemma 2.8, there exist v, w € L>(0,T}, L?(R)) and a subsequence {up }n
such that

(2.54)

PyD%*up, v in L*(0,Ty, L*(R)) weak star,
PyD3up, - w in L*(0,Ti,L*(R)) weak star.

Consequently, the sequence {9, P, D~ uy, }1, converges to 92u in the sense of distributions. On the other
hand, 0, P,D~up, = QpD*uy, and the two sequences {QnD?uy}n and {P,D?up}, converge to the
same limit in L>° (0,7, L?(R)) weak star (Lemma 2.1). It follows that 92u = v € L>(0,T%, L*(R)),
hence {P,D?up}p converges to 02u in L>(0, Ty, L?(R)) weak star. A similar argument shows that
92u € L>(0,T1, L*(R)) and thus the proof is completed.

2.5 Proof of Theorem 1.4

First, we establishing the following two lemmas

Lemma 2.9 Let g € WH°(R* R) be such that there exists a > 0 with g > «. Let T > 0 and
w: [0,7] x R — 5% be some solution for (1.2) such that d,u € L>(0,T, H'(R)). Then there exist
C1,Cy > 0 depending on g and ||0,u(0,.)|| g1 (r) such that for almost every t € [0,T] we have

t
106l 32z + 1B gullF2zy < Cr+ Co / (10() 322 + 1850 3oy ) dr- (2:55)

Proof. Taking the L?—scalar product in (1.2) with Aju and integrating by parts, we obtain

d

— g(m)|8zu|2dx:/atg(x)|8zu|2dx,

which gives

109l

o ) Vit € [0,T). (2.56)

9!z~
10z u(t, 2y < A/ 7 1050, )l L2y exp
Since 2u - 9,u = d;|u|? = 0, and by deriving (1.2) with respect to ¢, we obtain

Ru = (uAAu)AAu+uADg(un Agu) +uA Ap,gu
= (u-Ayu)Agu —|Agul®u+uA (Agu A Agu+ 290,u A OpAgu+ u A Aiu) +uA Ay,
= (u-Agu)Agu — |AgulPu+ 2g(u - 0xAgu)dpu + (u - Aiu)u - A;u +uAAggu.  (2.57)
It is clear that O;u - u = 0, then we get by taking the L?—scalar product in (2.57) with dyu

d
pn (|0sul® + |Agu*)dz = 4/ g(u - O Agu)(Opu - Opu)de
R R

+2 / (u A Ap,gu) - (u A Agu)de
R

+2/ Ap,qu - Agudz.
R
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2.5 Proof of Theorem 1.4

Furthermore, we have

u-08gu = Oy(u-Agu) — dgu- Agu

= —20(gl0suP) ~ 50.010u? (2:59)
and
(uNDpqu) - (UANAgu) = Apgu- Agu— (u-Ag,gu)(u- Agu)
= Ap,gu-Agu— %8t92|azu|4. (2.59)
Then, integrating by parts, we get
337 Lol + 18,0 = 35 [ loctds — [ g0.glo. 0. Do
—gA@tg2|8Iu|4d$ + Q/RABth - Agudz (2.60)

Let 3
1) = ol + 18gulae — 5 [ o7l0.ul'de,

J(u) =— / 90:9|0,u|? (O - Opu)dx — Z/ 01g?|0pu) dx + 2/ Ap,qu - Agudz.
R R R

Relation (2.60) can be rewritten as

3 t
ol + 180l = 10(0.)+ 5 [ g*0ltde+2 [ Suoyar. o0
Then applying Gagliardo-Nirenberg inequalities on d,u, we get

(|0wul| Lor) < K6||8zu||§2(R)H3§U||§2(R)’
3 1

5 g (2.62)
0l ocry < KallOwtllfaguy 102l gy
with K4, K4 > 0. On the other hand, we have
19050172y < 2[1Agull72ry + 2[102905ull7 2wy (2.63)
To find a suitable uper bound for I(u(0,.)), we use the relation
|Ovul® = u A Agul* = Agul* — g|0sul*,
which implies that
)
T0.)) = 28500, — 5 [ 100,
)
< 201890, )1y + 5 Kil102u(0, )2 107100, ) L2 (2.64)

Thus, inequalities (2.56), (2.62), (2.63) and (2.64) together with ¢ € W1°°(RT R) allow, by using
Holder inequality, to upper-bound the second member of (2.61) by

t
Cr+Co [ (1000 ey + 18,00 ey ) .

where the two constants above depend on g and [|0,u(0, .)|| g1 (r)-
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2.5 Proof of Theorem 1.4

Corollary 2.10 Under the assumptions of lemma 2.9, we have for all t €]0,T]
[02u(t, |72 @) < DieP?",
where Dy and Dy are two positive constants depending on g and ||0zu(0,.)|| g1 (r)-

Proof. Let
(1) = 0eu(t) |7 2my + [05u(®)|72(m)-
Inequality (2.55) implies that

¢@sa+@4wmm

then conclusion follows from Gronwall lemma. =

Lemma 2.11 Let g € WH(RT, W3°(R)) be such that there exists o > 0 with g > . Let T > 0
and u : [0,T] x R — S? be a solution for (1.2) such that d,u € L>(0,T, H*(R)). Then there exist
C1,Cy > 0 depending on g and ||0,u(0,.)||g2(r) such that for almost every t €]0,T[ we have

t
H@%uﬁam+H@MEam§<h+C&A (100132 gy + 110307 |3 2xy )

Proof. Since
U - Aiu = Ay(u-Agu) — 2g0,u - O Agu — |Agul?, (2.65)

we get by combining (2.57), (2.58) and (2.65)

Fu+Alu = uh Dy gu—Ag(gl0:ul’) — glosul®Agu — 20, (g|0xul*)dpu
—29(0zu - Agu)Opu — 2¢(0zu - g Agu)u — 2|Agu|2
= uADpy— Ay(g|0sul®u) — 20, (g(0ru - Agu)u)
= uADpg— 204 (|0,ul*u) 4+ 0, (|10:ul*(90:u — Dpgu)) . (2.66)

Deriving (2.66) with respect to z and taking the L2—scalar product with gd;0,u, we get by integrating
by parts

N | =
Sl

/Rg(|8tazu|2+|81Agu|2) de = —Q/Rg@zAg(quFu) - OpOpuds
—l—/Rg@g (|0ul*(g0u — g'u)) - 8¢ 0y udx
+ /R 90 (u A Ag,gu) - 8,0y udx
+/RgazAatgu-azatAguder/RatngAguFdz.(Q.G?)

We upper-bound the L? norm of the right-hand side member of (2.66) by applying the chain rule on
operators 9, A, and §2. All the terms of the right hand side member of (2.67) except for

Ji = —2/930§(|8zu|2)u - 0y Oyude,
R
can be upper-bounded by C (Hatazu(T)H%z(R) + ||8§’u(7)||%2(R)) . To upper-bound Jy, we integrate by
parts hence we get

J = 2/ 02(10,u|?)0x (g u - 0;0pu)dr,
R
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2.5 Proof of Theorem 1.4

then we develop
Oz (u- 0p0zu) = Oyt - OpOru+u- 8t8§u = 0pu- 0,0, u+u- 8t8§u - 8§(u -Opu) = —0pu - O 0pu — 8§u - Ot
Thus we get
Ji= 6/ g g*02(|0,u|?)u - 910y udx — 2 / g*0%(|105u|?) (0w - 040z u + O2u - Dpu)dz,
R R
and the conclusion holds from Hoélder inequality and Sobolev embedding. m
Corollary 2.12 Under the assumptions of Lemma 2.11, we have for all t €]0,T|
10zu(t, )|72@) < Die”*,
where Dy and Dy are two positive constants depending on g and ||0zu(0, )| g2 (wr)-

Proof. The proof is an immediate result of Gronwall lemma. m

2.5.1 Proof of Theorem 1.4

Let u and @ be two regular solutions for (1.2) with initial data wy and o respectively such that

ddiz", % € H? (R). We denote w = u — @ and wg = up — @o. In what follows, we prove that there exist
dug

Cr >0, k=1,.,5, depending on g and the H? norm of % and <72, such that for almost every
t €]0,T1[ we have

t
wli3rs gy < Callwollfys gy + Ca / () 3 gy (2.68)
and
10oll3aqgy + 102032y < Callwols ey + Ct (10lemollfaqe) + 19203 r))

t
+C5/O (||atw(7')||2L2(R) + ||a§w(T>||2L2(]R)) dr. (269)

Applying (2.10) and (2.66) on u and @ and subtracting, we get

Ow =2 NAgw +w A Ayz, (2.70)
and
02w + Agw = 2ANApgw+wA Ay gz —204(gQw) + 0y (Q(g0rw — Dpgw))
—4A (g(Opz - Opw)z) 4 205 ((032 - Opw) (902 — 0zg2)), (2.71)

with z = (u+ @) and Q = 1 (|9,ul* + |9,a[*) . Multiplying (2.70) by w, we find that |w|?> = 2(z A
A,w) - w, which means that w € L?(R). Then, integrating by parts and using Holder’s inequality, we

get
d
& [t
dt Jo

-2 / g(w A 0y2) - Opw
R

2[99z oo ) |lwl| L2(®) | Oz || L2 (m)

19022 Lo m) ]| 11 - (2.72)

IN A
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2.6 Proof of Theorem 1.5

Next, we take the L?—scalar product in (2.70) with A,w. Integrating by parts and using Holder’s
inequality, we get

d

— [ glo,w]? = /8t|8xw|272/g<9z(w/\Agz)~8mw
dt Jg R R

= /8t|3mw|2—2/g(w/\8mAgz)~8mw
R R

< (10gllL=®) + 1902892l Lo @) 1wl 711 () - (2.73)

A

Thus, (2.68) holds from Corollaries 2.10 and 2.12 and from Sobolev’s embedding 3 after summing
(2.72) and (2.73).

Finally, taking the L?—scalar product in (2.71) with d;w and integrating by parts, we get

1d

5@/(|5tw|2 +1Aw) =1 + I + I3 — 2Fy — AFy + B3 + 2F4,
R

with
Il = / Aatgw : Agw,
R

I :/z/\Aatgw~8tw, I3 :/ wA Do, g% - O,
R R
FE = / Ag(gQw) - Ow, Ez= / 0, (Q(g0w — g'w)) - Ow,
R R

Ey, = / Ay (g(0y2 - Opw)z) - Ow, FEy= / Op (02 - 0pw)(g0sz — g'2)) - Opw.
R R

The terms Iy, Is, I3, F1, Es and E; can be treated by applying Holder’s inequality and Sobolev’s
embedding H*(R) C L>(R). Applying the chain rule on Ay, the term F» can be written

By = / g2(8zz . 8§’w)(z - Oww) + Faq,
R

where Fo1 can be treated by Holder’s inequality and Sobolev’s embedding. Finally, we have z - yw =
—w - Oz (since |u|? — |i|*> = 0) and

/ g2(8xz . 8§w)(z cOw) = —2 / g'9(0xz - in)(z - Ow) + / 928§w < Op (w - 0¢2)0:2)
R R R

which is now in a suitable form to be upper-bounded as above. This yields the desired claim at the
H? level.

2.6 Proof of Theorem 1.5

We construct a solution v € L>(0, Ty, H? .(R)) for the system

Oy = g(t, x,7)0,y A 02,
z 2.74

3There exists C' > 0 such that
l[ull Lo ry < Cllull g (), Vu € H (R).
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2.6 Proof of Theorem 1.5

as a limit, when h — 0, of a sequence {7} of solutions for the semi-discrete system

d
{ G = gnDtyn A Dy, >0, (2.75)

Y (0) = 7y,

where 79 = {¥2(z;)}; € (R®)%» is such that |[DTY(z;)| = 1, and g, = {g(t, zi, 72 (2;))}i. We denote
up, = Dy, gl = 0g(t, xi,v(2;)) and Ag, up, = DT (gD~ uyp). Then, applying DT on (2.75), we get

% =up A Ay, up. (2.76)
We have
d -2 dyn () - 2
S mID P = 30 LVt () D (1)

_ _ _du
+Zgﬁ($z‘)|D Uh($z‘)|2+z (ghD up - D d—th> (25).

Then, using Lemma 1.16, we obtain

_ 7duh duh
h;(ghD un - D7) (i) = — <Aghuha E)h =0

Thus, using ddith = gpup N D™ up, we can write

d

o7 > (gD un)(@i) < ([Vyglloe D unle > (gn| D7 unl?) (i)

i i

H1Owgllz= Y 1D un(z) . (2.77)

To get another estimate in |Ay, |, we derive (2.76) with respect to ¢. This yields

dzuh duh d
W = ﬂ /\Aghuh+Uh/\%AghUh
= (uh A Aghuh) A Aghuh
d d
Ty A <D+ (% : Vg(’yh)Duh> + A, <%) + Agguh) . (2.78)

Next, we denote R
A, up = DT (gh(uh AD uy, - Vg(vh))D_uh) ,
then (2.78) becomes
d2uh ~
W = (Uh A Aghuh) A Aghuh + up A Agh (uh A Aghuh) + up A (Aghuh + Agiuh). (2.79)

Repeating the same calculus as in (2.32), we get
d2uh
dt?

where

+A2, un = (un- Ag,un) Ag, un—|Ag, un*un+(un- A2 un)un+unA(Ag, un+ Ay up)+E, (2.80)

h2
E = 7D+[gh(th)QD*Aghuh]

—gn D™ (Ag,un)D " up — gn(D™up - 77 Ag, up)D " uy,
—1 g DT (Ag, un) D up, — 75 gn (DY uy - 7T Ay, up) D up,.
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2.6 Proof of Theorem 1.5

Taking the L? —scalar product in (2.80) with %% and using both uy, - 2 = 0 and Ay, up, - L =0,
we get by integration by parts

2
duy, dup,
. + (AghUh,Agh (W))h = I+ (Uh A\ AghU}“ dt )

where I = (E, Cl;‘—th)h. We have

1d

1d |dup
2 dt

dt

du d <
A,, <—h> = =Dy, un — Dg,un — Ay up.

dt dt =" 8
Consequently,
1d (|duy|? . _
5@ E + |Aghuh|h = IJF(Aghuh+Ag2uh7Aghuh)h+(Uh/\ (Aghuh+Ag2Uh),Uh/\AghUh)h

We know that g, and DT gy, are upper-bounded in norm L*(0,T, Lj°) by f = |gllLe(0,1,) and
B = [|0z9ll Lo (0,7,0) + IV~ Lo 0,1,y respectively. Thus by following the same calculus in the
proof Theorem 1.3, we find that there exists Cy = Cy(«, 8,8") > 0 such that

duh

1< D unlf (18, unlf + D% unff + | =2

) (2.81)

To find a suitable upper bound for the term (Agh Un, Ag, uh) , we first rewrite
h

Aghuh = D7t (gh(uh AD up - V,Yg('yh))D_uh)
= (un AD " up.Vag(yn)Ag,un + 77 g DT (up A D™ up.Vag(yn)) D up
= (un A D" un.Vog(yn)) Ay, un + 7 gn(un A D*up. Vo g(vn)) D up
+7%gn (un A D™ w,. DT (Vo g(71))) D up.

The term D' (V,g(y1)) is upper-bounded in norm L*(0,T,L{°) by f” = 10249 Loe (0.7,1) +
||V,2,g||Loo(0,T,Loo). It follows that

(Aghuthghuh)h < BID unlre|Ag, unly + 81DV un|poe |7 D2 un|n|Ag, unln
+B8"|D ¥ un| Lz | DF un . (2.82)

Furthermore, we have Ay uj, = D*gt D™uy, + 77 g} D*uy, then the two terms 77g! and DTg! are
upper-bounded in norm L*(0,T,Ly°) by B1 = |0igllrec(o,r,L~) and B = [|0:92g| 1 (0,1,L°0) +
10:V4 gl Lo (0,1,L) respectively. Then we have

(Agg s Agyun) < (B1ID 7 unln + B11D%un ) A g, unln: (2.83)

Using inequality |7 D?up|n < |Ag, unln + 8| DV up|n together with (2.77), (2.81), (2.83) and (2.82),
we find that there exists C = C(a, 8, 81,8, 81, 8") such that

4
dt

duh

2
- h+|Aghuh|h+hZ[gh|D+uh|2]<wi>> < C(ID%wnlEe + D% sy )

duh

<|Aghuh|h+|D+uh|h+|D+uh|h+ =

) |
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In view of Lemma 1.15, there exist C' > 0 and C' = C(a, #') > 0 such that
|D¥up|fe < ClDTunfzyy < CO(|Ag, unli, + D unl).

This implies the existence of two constants Cy, Cy > 0 depending on «, 8, f1, 5’ B1, and 5" such that

2
d [|dun|? dun P
Tt < |, + [Ag, unln + h;[gh|D+Uh|2](-Ti)> < <|Aghuh|% + | Db 2 + e N

(2.84)

We construct now the sequence {vj} such that

Qi =0 in L (R),
Dty — 40 in L2 (R),
Qh Th T loc( ) (285)

QU™+ 428 in I2(R),
QnD3y) — 222 in  L2(R).

Thus we have

Lemma 2.13 There exists T7 > 0 such that
i) The two sequences {Pyyn}n and {Pyup}y are upper-bounded in L>(0, Ty, H} (R)).
ii) The sequences {0y Poup tny {0:Prnyn Y hy {Pn DY up}n and { Py D*up}y are upper-bounded in L>(0, Ty, L*(R)).

Proof. Following the same steps in the proof of Lemma 2.8, we find that there exists 77 > 0 and
M > 0 such that for almost every ¢ €]0, T}, we have

dup, |?
Rl < (2.86)

|Dupl; + |D?unl; + 7

To prove i), let L > 0. For some 1 > h > 0, we denote N = E(%) + 1. Since

1Pwyn ()]st~ 2,2y < V2LIPayn (8 0)] + (2L + 1)[[02 Payn () 221,15 (2.87)
and
Pen(t,0) = Fu(t,0)
< 00+ 71 | Lr(.0)
L~ (0,T1)

|7h(05 0)| + TlﬂHD_uh('v O)HL“’(O,Tl)

<
< w(0,0)[+T1B sup D7 up(r,.)|Lee,
T€[0,T]

inequality (2.86) together with Lemma 1.15 imply the existence of a constant C' > 0 such that
|[Pan (£, 0)] < [74(0)] + CT1 BV M, (2.88)

for almost every ¢ €]0,T1[. To treat the second term of the right-hand side of (2.87), we write

N-1 i
0Py = >, [ ID*wm(ePde <20+ b, (2.89)
2 /.

i=—
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hence we find that for almost every t €]0, 7], 4

HPth(t)HHl(fL,L) S V 2L(|’YQ(O)| + CTlﬁ\/ M) + (2L + 1)2.
On the other hand, we have

Tit1 T — T up(x;) T; 2
Pl = X un(:) + = (wi11) dz+z nlre) = unl@in) | g,
i=—N Y Ti
N—-1 h
< > 3 (lun(@)|* + lun(zis)]? + un(@i)un(@ipr)) + DV}
i=—N

< 2L+1+ M.

This completes the proof of i).

Property ii) is an immediate result of (2.88) and Lemma 1.14. m

Lemma 2.13 together with Lemma 2.3 imply the existence of u,y € L*(0,T%, L7 .(R)), w,v €
L*(0,T1, L3(R)), and two subsequences {~,}» and {uy} such that

Pyyn = in  L*(0,T3, L .(R))

Oy Ppyn — Oy in L>®(0,T1,L%*(R)) weak star,

Pyup, —w in L*(0,Ty, L} (R )) and almost everywhere, (2.90)
PyD~up —wv in L%(0,Ty,L*(R)) weak star,

PyD?up —w in  L%°(0,Ty,L*(R)) weak star.

and almost everywhere,

It follows that {0, Phup }n converges to 9,u in the sense of distributions and, since 9, Ppup = QDT up,
we also have d,u = v € L>(0,T1, L*(R)).

We now prove that { Py (grun A D™ up)}n converges to g(y)u A dyu in L>(0, Ty, L?(R)) weak star.
We first note that

Qn(gnun A D™ up) = g(Qnyn)Qnun A QD™ up,.

This implies that the sequence {Qn(gnun A D~ up)}n converges to g(y)u A dzu in L>(0, Ty, L*(R))
weak star. In view of Lemma 2.1, the two sequences {Qp(grhun A D™ up)}p and {Pr(grnun A D™ up)}n
converge to the same limit. Since {9;P,yp }1 converges to 9y in L>(0, T4, L?(R)) weak star, we finally
get

Oy = g(y)u A Oz u. (2.91)

Thus to complete this proof, it suffices to show that 9,7 = u and that 92u € L°(0,T1, L*(R)). The
sequence {0, Pnyn}n converges to 9,7 in the sense of distributions. On the other hand, we have
0 Pnyn = QnD Ty, = Qpup, and the sequence {Qpup}p, converges to u in L>°(0,T1, LIQOC(R)). Indeed,
for L >0 and N = E(£) + 1, we have

i+1
|Qnttn — Prunll3e_pny < Z / Fun(es) P o - 2:)%da

< §N1D+uﬂifh3

2

“ +92 12
< 200+ WD unlyh

2
< §OM@+hm%

41t is possible to define {2}, by
Th (i) = 70(w:), Vi € Z,
hence 2 (0) = ~0(0).
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hence
0,y = u.

The sequence {9, P, D~ up}p converges to d2u in the sense of distributions. We have 9, P, D~ uy, =
QnD?uy, and in view of Lemma 2.1, the two sequences {QpD?up}p, and {P, D?uy}y, converge to the
same limit in L°°(0, 71, L?(R)) weak star. Thus 02u = w € L*°(0,T1, L?(R)).
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