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Abstract

In optimal control, sensitivity relations are usually understood as inclusions
that identify the pair formed by the dual arc and the Hamiltonian, evaluated
along the associated minimizing trajectory, as a suitable generalized gradient
of the value function. In this paper, sensitivity relations are obtained for the
Mayer problem associated with the differential inclusion ẋ ∈ F (x) and applied
to derive optimality conditions. Our first application concerns the maximum
principle and consists in showing that a dual arc can be constructed for every
element of the superdifferential of the final cost. As our second application,
with every nonzero limiting gradient of the value function at some point (t, x)
we associate a family of optimal trajectories at (t, x) with the property that
families corresponding to distinct limiting gradients have empty intersection.

1 Introduction

Given a complete separable metric space U and a vector field f : Rn×U → R
n,

smooth with respect to x, for any point (t0, x0) ∈ [0, T ] × R
n and Lebesgue

measurable map u : [t0, T ] → U let us denote by x(·; t0, x0, u) the solution of
the Cauchy problem

{

ẋ(t) = f(x(t), u(t)) t ∈ [t0, T ] a.e.

x(t0) = x0,
(1.1)

that we suppose to exist on the whole interval [t0, T ]. Then, given a smooth func-
tion φ : Rn → R, we are interested in minimizing the final cost φ(x(T ; t0, x0, u))
over all controls u.

In the Dynamic Programming approach to such a problem, one seeks to
characterize the value function V , that is,

V (t0, x0) = inf
u(·)

φ(x(T ; t0, x0, u(·))) (t0, x0) ∈ [0, T ]× R
n, (1.2)

as the unique solution, in a suitable sense, of the Hamilton-Jacobi equation
{

−∂tv(t, x) +H(x,−vx(t, x)) = 0 in (0, T )× R
n

v(T, x) = φ(x) x ∈ R
n,
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where the Hamiltonian H is defined as

H(x, p) = sup
u∈U

〈p, f(x, u)〉 (x, p) ∈ R
n × R

n.

Now, the classical method of characteristics ensures that, as long as V is smooth,
along any solution of the system of ODEs

{

ẋ(t) = ∇pH(x(t), p(t)), x(T ) = z

−ṗ(t) = ∇xH(x(t), p(t)), p(T ) = −∇φ(z)
t ∈ [0, T ], (1.3)

the gradient of V satisfies

(H(x(t), p(t)),−p(t)) = ∇V (t, x(t)), ∀ t ∈ [0, T ]. (1.4)

It is well known that the characteristic system (1.3) is also a set of necessary
optimality conditions for any optimal solution x(·) of the Mayer problem (1.2).
The mapping p(·) is called a dual arc. Observe that ∇V (t, x) allows to “measure”
sensitivity of the optimal cost with respect to (t, x). For this reason, (1.4) is
called a sensitivity relation for problem (1.2). Obviously, the above calculation
is just formal because, in general, V cannot be expected to be smooth. On
the other hand, relation (1.4) is important for deriving sufficient optimality
conditions, as we recall in Section 2. This fact motivates interest in generalized
sensitivity relations for nonsmooth value functions.

To the best of our knowledge, the first “nonsmooth result” in the above
direction was obtained by Clarke and Vinter in [10] for the Bolza problem, where,
given an optimal trajectory x0(·), an associated dual arc p(·) is constructed to
satisfy the partial sensitivity relation

− p(t) ∈ ∂xV (t, x0(t)) a.e. t ∈ [t0, T ]. (1.5)

Here, ∂xV denotes Clarke’s generalized gradient of V in the second variable.
Subsequently, for the same problem, Vinter [17] proved the existence of a dual
arc satisfying the full sensitivity relation

(H(x0(t), p(t)),−p(t)) ∈ ∂V (t, x0(t)) for all t ∈ [t0, T ], (1.6)

with ∂V equal to Clarke’s generalized gradient in (t, x).
Full sensitivity relations were recognized as necessary and sufficient condi-

tions for optimality in [4], where the first two authors of this paper studied the
Mayer problem for the parameterized control system (1.1), with f depending
also on time. More precisely, replacing the Clarke generalized gradient with the
Fréchet superdifferential ∂+V , the full sensitivity relation

(H(t, x0(t), p(t)),−p(t)) ∈ ∂+V (t, x0(t)) a.e. t ∈ [t0, T ], (1.7)

together with the maximum principle

〈p(t), ẋ0(t)〉 = H(t, x0(t), p(t)) a.e. t ∈ [t0, T ], (1.8)

was shown to actually characterize optimal trajectories. A similar result was
proved in [15], under stronger regularity assumptions.

2



Following the above papers, the analysis has been extended in several direc-
tions. For instance, in [5], sensitivity relations were adapted to the minimum
time problem for the parameterized control system

ẋ(t) = f(x(t), u(t)) t ≥ 0, (1.9)

taking the form of the inclusion

− p(t) ∈ ∂+T (x0(t)) for all t ∈ [0, T (x0)), (1.10)

where T (·) denotes the minimum time function for a target K, and x0(·) an
optimal trajectory starting from x0 which attains K at time T (x0). In [6],
the above result has been extended to nonparameterized systems described by
differential inclusions. As for optimal control problems with state constraints,
sensitivity relations were derived in [3] and [12] using a suitable relaxation of
the limiting subdifferential of the value function.

Deriving sensitivity relations in terms of the Fréchet and/or proximal su-
perdifferential of the value function for the differential inclusion

ẋ(s) ∈ F (x(s)) a.e. s ∈ [t0, T ], (1.11)

with the initial condition
x(t0) = x0, (1.12)

is far from straightforward, when F cannot be parameterized as

F (x) = {f(x, u) : u ∈ U}

with f smooth in x. The main goal of the present work is to obtain both partial
and full sensitivity relations for the Mayer problem

inf φ(x(T )), (1.13)

the infimum being taken over all absolutely continuous arcs x : [t0, T ] → R
n that

satisfy (1.11)-(1.12). The main assumptions we impose on the data, expressed
in terms of the Hamiltonian

H(x, p) = sup
v∈F (x)

〈v, p〉 (x, p) ∈ R
n × R

n, (1.14)

require H(·, p) to be semiconvex, H(x, ·) to be differentiable for p 6= 0, and
∇pH(·, p) locally Lipschitz continuous. We refer the reader to [8], where this
set of hypotheses was used to obtain the semiconcavity of the value function,
for a detailed discussion of their role in lack of a smooth parameterization of F .

For the Mayer problem (1.13), we shall derive sensitivity relations like (1.5)
and (1.6) for both the proximal and Fréchet superdifferential of the value func-
tion. More precisely, let x : [t0, T ] → R

n be an optimal trajectory of problem
(1.13) and let p : [t0, T ] → R

n be any arc satisfying
{

−ṗ(t) ∈ ∂−
x H(x(t), p(t))

ẋ(t) ∈ ∂pH(x(t), p(t))
a.e. in [t0, T ] , (1.15)

and
− p(T ) ∈ ∂+,prφ(x(T )), (1.16)
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where ∂+,prφ denotes the proximal superdifferential of φ, and ∂−
x H denotes the

Fréchet subdifferential of H with respect to x. 1 Then we show that p(·) satisfies
the proximal partial sensitivity relation

− p(t) ∈ ∂+,pr
x V (t, x(t)) for all t ∈ [t0, T ]. (1.17)

Moreover, replacing ∂+,prφ(x(T )) by the Fréchet superdifferential ∂+φ(x(T )) in
(1.16), we derive the full sensitivity relation

(H(x(t), p(t)),−p(t)) ∈ ∂+V (t, x(t)) for all t ∈ (t0, T ). (1.18)

Thanks to (1.18) we can recover, under suitable assumptions, the same set of
necessary and sufficient conditions for optimality that appears in the context of
smooth parameterized systems.

From a technical viewpoint, we note that the proof of (1.17) and (1.18) is
entirely different from the one which is used for parameterized control systems.
Indeed, in the latter case, the conclusion is obtained appealing to the variational
equation of (1.1). In the present context, such a strategy is impossible to follow
because F admits no smooth parameterization, in general. As in [8], the role of
the variational equation is here played by the maximum principle.

After obtaining sensitivity relations, we discuss two applications of (1.17)
to the Mayer problem. Our first application is concerned with optimality con-
ditions. Under our assumptions on H , the maximum principle in its available
forms associates, with any optimal trajectory x : [t0, T ] → R

n of problem (1.13),
a dual arc p : [t0, T ] → R

n such that (x, p) satisfies (1.15) and the transversality
condition

− p(T ) ∈ ∂φ(x(T )), (1.19)

see, for instance, [9]. Here, for F locally strongly convex, we show how to con-
struct multiple dual arcs p(·) satisfying the maximum principle

H(x(t), p(t)) = 〈p(t), ẋ(t)〉 a.e. in [t0, T ], (1.20)

by solving, for any q ∈ ∂+,prφ(x(T )), the terminal value problem
{

−ṗ(s) ∈ ∂−
x H(x(s), p(s)) a.e. in s ∈ [t0, T ] ,

−p(T ) = q.

Our second application aims to clarify the connection between the limiting
gradients of V at some point (t, x), ∂∗V (t, x), and the optimal trajectories at
(t, x). When the control system is parameterized as in (1.1), such a connection
is fairly well understood: one can show that any nonzero limiting gradient of V
at (t, x) can be associated with an optimal trajectory starting from (t, x), and
the map from ∂∗V (t, x)\{0} into the family of optimal trajectories is one-to-one
(see [7, Theorem 7.3.10]). In this paper, we use a suitable version of (1.17) to
prove an analogue of the above result (Theorem 5.2) which takes inot account
the lack of uniqueness for the initial value problem (1.15)-(1.16).

This paper is organized as follows. In Section 2, we set our notation, in-
troduce the main assumptions of the paper, and recall preliminary results from

1We will see that solutions (x(·), p(·)) of (1.15) are in the set of differentiability of the
map H(x, ·) when p(T ) 6= 0. In that case, the second equation of (1.15) becomes ẋ(t) =
∇pH(x(t), p(t)) for all t ∈ [t0, T ].
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nonsmooth analysis and control theory. In Section 3, sensitivity relations are
derived in terms of the proximal and Fréchet superdifferentials. Finally, an
application to the maximum principle is obtained in Section 4, and a result
connecting limiting gradients of V with optimal trajectories in Section 5.

2 Preliminaries

2.1 Notation

Let us start by listing various basic notations and quickly reviewing some gen-
eral facts for future use. Standard references are [7, 9].

We denote by R
+ the set of strictly positive real numbers, by | · | the Eu-

clidean norm in R
n, and by 〈·, ·〉 the inner product. B(x, ǫ) is the closed ball of

radius ǫ > 0 and center x. ∂E is the boundary of a subset E of Rn.
For any continuous function f : [t0, t1] → R

n, let ‖f‖∞ = maxt∈[t0,t1] |f(t)|.
When f is Lebesgue integrable, let ‖f‖L1([t0,t1]) =

∫ t1

t0
|f(t)| dt. W 1,1 ([t0, T ];R

n)

is the set of all absolutely continuous functions x : [t0, T ] → R
n.

Consider now a real-valued function f : Ω ⊂ R
n → R, where Ω is an open set,

and suppose that f is locally Lipschitz. We denote by ∇f(·) its gradient, which
exists a.e. in Ω. A vector ζ is in the reachable gradient ∂∗f(x) of f at x ∈ Ω if
there exists a sequence {xi} ⊂ Ω such that f is differentiable at xi for all i ∈ N

and
x = lim

i→∞
xi, ζ = lim

i→∞
∇f(xi).

Furthermore, the (Clarke’s) generalized gradient of f at x ∈ Ω, denoted by
∂f(x), is the set of all the vectors ζ such that

〈ζ, v〉 ≤ lim sup
y → x,

h → 0+

f(y + hv)− f(y)

h
, ∀v ∈ R

n. (2.1)

It is known that co(∂∗f(x)) = ∂f(x), where co(A) denotes the convex hull of a
subset A of Rn.
Let f : Ω ⊂ R

n → R be any real-valued function defined on a open set Ω ⊂ R
n.

For any x ∈ Ω, the sets

∂−f(x) =

{

p ∈ R
n : lim inf

y→x

f(y)− f(x)− 〈p, y − x〉
| y − x | ≥ 0

}

,

∂+f(x) =

{

p ∈ R
n : lim sup

y→x

f(y)− f(x)− 〈p, y − x〉
| y − x | ≤ 0

}

are called the (Fréchet) subdifferential and superdifferential of f at x, respec-
tively. A vector p ∈ R

n is a proximal supergradient of f at x ∈ Ω if there exist
two constants c, ρ ≥ 0 such that

f(y)− f(x)− 〈p, y − x〉 ≤ c|y − x|2, ∀y ∈ B(x, ρ).

The set of all proximal supergradients of f at x is called the proximal superdif-
ferential of f at x, and is denoted by ∂+

prf(x). Note that ∂+
prf(x) is a subset of
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the Fréchet superdifferential of f at x.
For a mapping f : Rn×R

m → R, associating to each x ∈ R
n and y ∈ R

m a real
number, ∇xf , ∇yf are its partial derivatives (when they do exist). The partial
generalized gradient or partial Fréchet/proximal sub/superdifferential will be
denoted in a similar way.
Let Ω be an open subset of Rn. C1(Ω) and C1,1(Ω) are the spaces of all the
functions with continuous and Lipschitz continuous first order derivatives on Ω,
respectively.
Let K ⊂ R

n be a convex set. For v ∈ K, recall that the normal cone to K at v
(in the sense of convex analysis) is the set

NK(v) = {p ∈ R
n : 〈p, v − v〉 ≤ 0, ∀v ∈ K}.

A well-known separation theorem implies that the normal cone at any v ∈ ∂K
contains a half line. Moreover, if K is not a singleton and has a C1 boundary
when n > 1, then all normal cones at the boundary points of K are half lines.
Finally, recall that a set-valued map F : X ⇉ Y is strongly injective if F (x) ∩
F (y) = ∅ for any two distinct points x, y ∈ X .

2.2 Locally semiconcave functions

Here, we recall the notion of semiconcave function in R
n and list some results

useful in this paper. Further details may be found, for instance, in [7].

We write [x, y] to denote the segment with endpoints x, y for any x, y ∈ R
n.

Definition 2.1. Let A ⊂ R
n be an open set. We say that a function u : A → R

is (linearly) semiconcave if it is continuous in A and there exists a constant c
such that

u(x+ h) + u(x− h)− 2u(x) ≤ c|h|2,
for all x, h ∈ R

n such that [x − h, x + h] ⊂ A. The constant c above is called
a semiconcavity constant for u in A. We denote by SC(A) the set of functions
which are semiconcave in A. We say that a function u is semiconvex on A if
and only if −u is semiconcave on A.

Finally recall that u is locally semiconcave in A if for each x ∈ A there exists
an open neighborhood of x where u is semiconcave.
In the literature, semiconcave functions are sometimes defined in a more general
way. However, in the sequel we will mainly use the previous definition and
properties recalled in the following proposition.

Proposition 2.2. Let A ⊂ R
n be an open set, let u : A → R be a semiconcave

function with a constant of semiconcavity c, and let x ∈ A. Then,

1. a vector p ∈ R
n belongs to ∂u(x) if and only if

u(y)− u(x)− 〈p, y − x〉 ≤ c|y − x|2 (2.2)

for any point y ∈ A such that [y, x] ⊂ A. Consequently, ∂+u(x) =
∂+,pru(x).

2. ∂u(x) = ∂+u(x) = co(∂∗u(x)).

6



3. If ∂+u(x) is a singleton, then u is differentiable at x.

If u is semiconvex, then (2.2) holds reversing the inequality and the sign of
the quadratic term and the other two statements are true with the Fréchet/proximal
subdifferential instead of the Frećhet/proximal superdifferential.
In proving our main results we shall require the semiconvexity on the map
x 7→ H(x, p). Let us recall a consequence which we will use later on.

Lemma 2.3 ([8, Corollary 1]). Suppose that H is locally Lipschitz and the map
x 7→ H(x, p) is locally semiconvex, where H is as in (1.14). Then,

∂H(x, p) ⊂ ∂−
x H(x, p)× ∂pH(x, p), ∀x ∈ R

n, p ∈ R
n \ {0}.

2.3 Differential Inclusions and Standing Assumptions

We recall that the Hausdorff distance between two compact sets Ai ⊂ R
n, i =

1, 2, is
distH(A1, A2) = max{dist+H(A1, A2), dist

+
H(A2, A1)},

where dist+H(A1, A2) = inf{ǫ : A1 ⊂ A2 + B(0, ǫ)} is the semidistance. We say
that a multifunction F : Rn

⇉ R
n with nonempty and compact values is locally

Lipschitz if for each x ∈ R
n there exists a neighborhood K of x and a constant

c > 0 depending on K so that distH(F (z), F (y)) ≤ c | z − y | for all z, y ∈ K.

Throughout this paper, we assume that the multifunction F satisfies a col-
lection of classical conditions of the theory of differential inclusions, the so-called
Standing Hypotheses :

(SH)







(i) F (x) is nonempty, convex, compact for each x ∈ R
n,

(ii) F is locally Lipschitz with respect to the Hausdorff metric,
(iii) ∃r > 0 so that max{|v| : v ∈ F (x)} ≤ r(1 + |x|)∀x ∈ R

n.

Assumptions (SH)(i)-(ii) guarantee the existence of local solutions of (1.11)-
(1.12) and (SH)(iii) guarantees that solutions are defined on [t0, T ].

For the sake of brevity, we usually refer to the Mayer problem (1.11)-
(1.12)-(1.13) as P(t0, x0). Assuming (SH) and φ lower semicontinuous im-
plies that P(t0, x0) has at least one optimal solution, that means a solution
x(·) ∈ W 1,1 ([t0, T ];R

n) of (1.11) satisfying (1.12) such that

φ(x(T )) ≤ φ(x(T )),

for any trajectory x(·) ∈ W 1,1 ([t0, T ];R
n) of (1.11) satisfying (1.12). Actually,

the Standing Hypotheses were first introduced with the only property of upper
semicontinuity of F instead of (SH)(ii) and that would be enough to deduce the
existence of optimal trajectories, but in this paper we will often take advantage
of the local Lipschitzianity of F . For the basics of the theory of differential
inclusions we refer, e.g., to [1].

Under assumption (SH) one can show that it is possible to associate with
each optimal trajectory x(·) for P(t0, x0) an arc p(·) such that the pair (x(·), p(·))
satisfies a Hamiltonian inclusion. See, e.g., [9, Theorem 3.2.6].
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Theorem 2.4. Assume (SH) and that φ : Rn → R is locally Lipschitz. If x(·)
is an optimal solution for P(t0, x0), then there exists an arc p : [t0, T ] → R

n

which, togheter with x(·), satisfies

(−ṗ(s), ẋ(s)) ∈ ∂H(x(s), p(s)), a.e. s ∈ [t0, T ] , (2.3)

and
− p(T ) ∈ ∂φ(x(T )). (2.4)

Given an optimal trajectory x(·), any arc p(·) satisfying the adjoint system
(2.3) and the tranversality condition (2.4) is called a dual arc associated with
x(·). Furthermore, if (q, v) belongs to ∂H(x, p), then v ∈ F (x) and 〈p, v〉 =
H(x, p). Thus the system (2.3) encodes the equality

H(x(t), p(t)) = 〈p(t), ẋ(t)〉 for a.e. t ∈ [t0, T ]. (2.5)

This equality shows that the scalar product 〈v, p(t)〉 is maximized over F (x(t))
by v = ẋ(t). For this reason, the previous result is known as the maximum
principle (in Hamiltonian form).

Remark 2.5. If the dual arc introduced in Theorem 2.4 is equal to zero at some
time t ∈ [t0, T ], then it is equal to zero at every time. Indeed, consider a compact
set K ⊂ R

n containing x([t0, T ]). If we denote by cK the Lipschitz constant of
F on K, it follows that cK |p| is the Lipschitz constant for H(·, p) on the same
set. Indeed, let x, y ∈ K and vx be such that H(x, p) = 〈vx, p〉. By (SH), there
exists vy ∈ F (y) such that

H(x, p)−H(y, p) ≤ 〈vx − vy, p〉 ≤ cK |p||x− y|. (2.6)

Recalling (2.1), it follows that

|ζ| ≤ cK |p|, ∀ζ ∈ ∂xH(x, p), ∀x ∈ K, ∀p ∈ R
n. (2.7)

Hence, in view of the differential inclusion verified by p(·),

|ṗ(s)| ≤ cK |p(s)|, for a.e. s ∈ [t0, T ]. (2.8)

By Gronwall’s Lemma, we obtain that either p(s) 6= 0 for every s ∈ [t0, T ], or
p(s) = 0 for every s ∈ [t0, T ].

Recall now that the value function V : [0, T ] × R
n → R associated to the

Mayer problem is defined by: for all (t0, x0) ∈ [0, T ]× R
n

V (t0, x0) = inf
{

φ(x(T )) : x ∈ W 1,1 ([t0, T ];R
n) satisfies (1.11) and (1.12)

}

.
(2.9)

As far as V is concerned, recall that, under assumptions (SH), V is locally
Lipschitz and solves in the viscosity sense the Hamilton-Jacobi equation

{

−∂tu(t, x) +H(x,−ux(t, x)) = 0 in (0, T )× R
n,

u(T, x) = φ(x), x ∈ R
n,

(2.10)

where H is the Hamiltonian associated to F . Indeed, if the multifunction F
satisfies assumption (SH), then it always admits a parameterization by locally
Lipschitz function (see, e.g., [2, Theorem 7.9.2]) and the result is well-known for
the Lipschitz-parametric case (see, e.g., [7]).
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Proposition 2.6. Assume (SH) and that φ : Rn → R is locally Lipschitz. Then
the value function of the Mayer problem is the unique viscosity solution of the
problem (2.10), where the Hamiltonian H is given by (1.14).

We conclude this part recalling that V satisfies the dynamic programming
principle. Hence, if y(·) is any trajectory of the system (1.11)-(1.12), then the
function s → V (s, y(s)) is nondecreasing, and it is constant if and only if y(·) is
optimal.

2.4 Sufficient conditions for optimality

In the control literature, it is well known that the full sensitivity relation involv-
ing the Fréchet superdifferential of V , coupled with the maximum principle, is a
sufficient condition for optimality. For reader’s convenience, we shall recall this
result in our context. The proof uses the same arguments of Theorem 4.1. in [4]
and it is omitted here. In [4], the authors have used the fact that (see, e.g., [2])

∂+V (t, x(t)) = {(p′, p′′) ∈ R× R
n :

∀(θ′, θ′′) ∈ R× R
n, D↓V (t, x(t))(θ′, θ′′) ≤ p′θ′ + 〈p′′, θ′′〉} , (2.11)

where the upper Dini derivative of V at (t, x(t)) in the direction (θ′, θ′′) is given
by

D↓V (t, x(t))(θ′, θ′′) := lim sup
τ→0+

V (t+ τθ′, x(t) + τθ′′)− V (t, x(t))

τ
. (2.12)

Theorem 2.7. Assume (SH) and let x : [t0, T ] → R
n be a solution of the system

(1.11)-(1.12). If, for almost every t ∈ [t0, T ], there exists p(t) ∈ R
n such that

〈p(t), ẋ(t)〉 = H(x(t), p(t)),
(H(x(t), p(t)),−p(t)) ∈ ∂+V (t, x(t)),

(2.13)

then x is optimal for problem P(t0, x0).

2.5 Main assumptions

We impose further conditions on the Hamiltonian associated to F . For each
nonempty, convex and compact subset K ⊆ R

n,

(H1)















(i) ∃ c ≥ 0 so that x 7→ H(x, p) is semiconvex on K with constant
c | p |,

(ii) the gradient ∇pH(x, p) exists and is locally Lipschitz in x on
K, uniformly over p in any compact subset of Rn

r {0}.

Some examples of multifunctions satisfying (SH) and (H1) are given in [8].

Let us start by analyzing the meaning of the assumption (H1)(i). The semi-
convexity of the map x 7→ H(x, p) on a convex compact subset K of Rn with
constant c | p | is equivalent to the mid-point property of the multifunction F
on K, that is

dist+H (2F (x), F (x+ z) + F (x− z)) ≤ c | z |2,
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for all x, z so that x, x ± z ∈ K. A consequence of the above hypotheses is
that the generalized gradient of H splits into two components, as described in
Lemma 2.3. This implies that the adjoint system (2.3) takes the form (2.14)
below.

Theorem 2.8 ([8, Corollary 2]). Assume that (SH) and (H1)(i) hold and φ :
R

n → R is locally Lipschitz. If x(·) is an optimal solution for P(t0, x0), then
there exists an arc p : [t0, T ] → R

n which, together with x(·), satisfies
{

−ṗ(s) ∈ ∂−
x H(x(s), p(s)),

ẋ(s) ∈ ∂pH(x(s), p(s)),
a.e. s ∈ [t0, T ] (2.14)

and
− p(T ) ∈ ∂φ(x(T )). (2.15)

Concerning the assumption (H1)(ii), the existence of the gradient of H with
respect to p is equivalent to the fact that the argmax set of 〈v, p〉 over v ∈ F (x)
is the singleton {∇pH(x, p)}, for each p 6= 0. Thus, the following relation holds:

H(x, p) = 〈∇pH(x, p), p〉, ∀p 6= 0. (2.16)

Moreover, it is easy to see that, for every x, the boundary of the sets F (x)
contains no line segment.
The main impact of the local Lipschitzianity of the map x 7→ ∇pH(x, p) is the
following result, whose proof is straightforward.

Lemma 2.9 ([8, Proposition 3]). Assume (SH) and (H1). Let p : [t, T ] → R
n

be an absolutely continuous arc with p(s) 6= 0 for all s ∈ [t, T ]. Then, for each
x ∈ R

n, the Cauchy problem
{

ẏ(s) = ∇pH(y(s), p(s)) for all s ∈ [t, T ] ,
y(t) = x,

(2.17)

has a unique solution y(·; t, x). Moreover, there exists a constant k such that

|y(s; t, x)− y(s; t, z)| ≤ ek(T−t)|z − x|, ∀z, x ∈ R
n, ∀s ∈ [t, T ]. (2.18)

Remark 2.10. Note that the map p 7→ ∇pH(x, p) is continuous for p 6= 0. Thus,
the Lipschitzianity of the map x 7→ ∇pH(x, p) implies that (x, p) 7→ ∇pH(x, p)
is a continuous map, for p 6= 0. This is the reason why the system of ODEs
(2.17) is verified everywhere on [t, T ], not just almost everywhere. Suppose now
x(·) is optimal for P(t0, x0) and p(·) is any nonvanishing dual arc associated
with x(·)—if they do exist. Then, Lemma 2.9 implies that x(·) is the unique
solution of the Cauchy problem (2.17) with t = t0, x(t0) = x0, and p(·) equal to
such a dual arc. Furthermore, in this case, x(·) is of class C1 and the maximum
principle (2.5) holds true for all t ∈ [t0, T ].

2.6 R-convex sets

Let A be a compact and convex subset of Rn and R > 0.

Definition 2.11. The set A is R−convex if, for each z, y ∈ ∂A and any vectors
n ∈ NA(z),m ∈ NA(y) with | n |=| m |= 1, the following inequality holds true

| z − y |≤ R | n−m | . (2.19)
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The concept of R−convex set is not new. It is a special case of hyperconvex
sets (with respect to the ball of radius R and center zero) introduced by Mayer
in [13]. A study of hyperconvexity appears also in [16, 14]. The notion of R-
convexity was considered, among others, by Levitin, Poljak, Frankowska, Olech,
Pliś, Lojasiewicz, and Vian (they called these sets R-regular, R-convex, as well
strongly convex). We first recall some interesting characterizations of R−convex
sets.

Proposition 2.12 ([11, Proposition 3.1]). Let A be a compact and convex subset
of Rn. Then the following conditions are equivalent

1. A is R−convex,

2. A is the intersection of a family of closed balls of radius R,

3. for any two points x, y ∈ ∂A such that |x − y| ≤ 2R, each arc of a circle
of radius R which joins x and y and whose lenght is not greater that πR
is contained in A,

4. for each z ∈ ∂A and any n ∈ NA(z), | n |= 1, the ball of center z − Rn
and radius R contains A, that is | z −Rn− x |≤ R for each x ∈ A,

5. for each z ∈ ∂A and any vector n ∈ NA(z) with |n| = 1, we have the
inequality

|z − x| ≤
√
2R〈z − x, n〉 1

2 , ∀x ∈ A. (2.20)

R-convex sets are obviously convex. Moreover, the boundary of an R-convex
set A satisfies a generalized lower bound for the curvature, even though ∂A may
be a nonsmooth set. Indeed, for every point x ∈ ∂A there exists a closed ball
Bx of radius R such that x ∈ ∂Bx and A ⊂ Bx. This fact suggests that, in some
sense, the curvature of ∂A is bounded below by 1/R.

Definition 2.13. A multifunction F : Rn
⇉ R

n is locally strongly convex if for
each compact set K ⊂ R

n there exists R > 0 such that F (x) is R-convex for
every x ∈ K.

We can reformulate the above property of F in an equivalent Hamiltonian
form. Here, we denote by Fp(x) the argmax set of 〈v, p〉 over v ∈ F (x). The
existence of ∇pH(x, p) is equivalent to the fact that the set Fp(x) is the singleton
{∇pH(x, p)}.

(H2)







For every compact K ⊂ R
n, there exists a constant

c′ = c′(K) > 0 such that for all x ∈ K, p ∈ R
n, we have :

vp ∈ Fp(x) ⇒ 〈v − vp, p〉 ≤ −c′|p||v − vp|2, ∀v ∈ F (x).

In the next lemma we show that the local strong convexity of F is equivalent to
assumption (H2) for the associated Hamiltonian, giving also a result connecting
(H2) with the regularity of H .

Lemma 2.14. Suppose F : Rn
⇉ R

n is a multifunction satisfying (SH). Let K
be any convex and compact subset of Rn. Then

1. (H2) holds with a constant c′ on K if and only if F (x) satisfies the R-
convexity property for all x ∈ K with radius R = (2c′)−1.
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2. If (H2) holds, then ∇pH(x, p) exists for all x ∈ K and p ∈ R
n
r {0} and

is Hölder continuous in x on K with exponent 1/2, uniformly for p in any
compact subset of Rn

r {0}.
Proof. For all x ∈ K and v ∈ ∂F (x), we have v ∈ Fyv

(x) for all yv ∈ NF (x)(v).
Therefore, (H2) holds with constant c′ on K if and only if for any yv ∈ NF (x)(v)
with | yv |= 1 we have

〈v − v, yv〉 ≥ c′|v − v|2, ∀v ∈ F (x),

or equivalently,

| v − v |≤
√

2
1

2c′
〈v − v, yv〉

1
2 , ∀v ∈ F (x),

for all yv ∈ NF (x)(v) with | yv |= 1. By Proposition 2.12, this is equivalent
to the (2c′)−1−convexity of F (x) for each x ∈ K. For the proof of the second
statement we refer to [8, Proposition 4].

The second statement of the above lemma is not an equivalence, in general,
as is shown by the example below. Moreover, assumption (H1) does not follow
from (H2).

Example 2.15. Let us denote by M ⊂ R
2 the intersection of the epigraph of the

function f : R → R, f(x) = x4, and the closed ball B(0, R), R > 0. Let us
consider the multifunction F : R2

⇉ R
2 that associates set M with any x ∈ R

2.
Observe that M fails to be strongly convex, since the curvature at x = 0 is equal
to zero. Moreover, since M is a closed convex set and its boundary contains
no line, the argmax of 〈v, p〉 over v ∈ M is a singleton for each p 6= 0. So, the
Hamiltonian H(p) = supv∈M 〈v, p〉 is differentiable for each p 6= 0. Note that
the gradient ∇pH is constant with respect to the x variable. Consequently, the
Hamiltonian satisfies (H1) and not (H2).

3 Sensitivity relations

In this section we discuss sensitivity relations. First we prove, under suitable
assumptions, the validity of the partial sensitivity relations and then the full
sensitivity relations, involving both Fréchet and proximal superdifferential of
the value function.

Theorem 3.1. Assume (SH), (H1) and let φ : Rn → R be locally Lipschitz.
Let x : [t0, T ] → R

n be an optimal solution for P(t0, x0) and p : [t0, T ] → R
n be

any solution of the differential inclusion
{

−ṗ(t) ∈ ∂−
x H(x(t), p(t))

ẋ(t) ∈ ∂pH(x(t), p(t))
a.e. in [t0, T ] , (3.1)

with the transversality condition

− p(T ) ∈ ∂+,prφ(x(T )). (3.2)

Then, there exist constants c0, r > 0 such that, for all t ∈ [t0, T ] and all h ∈
B(0, r),

V (t, x(t) + h)− V (t, x(t)) ≤ 〈−p(t), h〉+ c0 | h |2 . (3.3)
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Consequently, p(·) satisfies the proximal partial sensitivity relation

− p(t) ∈ ∂+,pr
x V (t, x(t)) for all t ∈ [t0, T ]. (3.4)

To prove the above theorem, we need the following lemma.

Lemma 3.2. Assume p(T ) 6= 0 and fix t ∈ [t0, T ). For each h ∈ B(0, 1), let
xh : [t, T ] → R

n be the solution of the problem

{

ẋ(s) = ∇pH(x(s), p(s)), s ∈ [t, T ] ,
x(t) = x(t) + h.

(3.5)

Then, there exist constants c1,K1, independent of t ∈ [t0, T ), such that

‖ xh − x ‖∞≤ eK1T | h |, (3.6)

and
〈p(t), h〉+ 〈−p(T ), xh(T )− x(T )〉 ≤ c1 | h |2 . (3.7)

Proof. Thanks to Remark 2.5, we have that p(t) 6= 0 for all t ∈ [t0, T ]. Hence,
x(·) is the unique solution of the Cauchy problem

{

ẋ(s) = ∇pH(x(s), p(s)) for all s ∈ [t, T ] ,
x(t) = x(t).

(3.8)

Since F has sublinear growth and ∇pH(·, p) is locally Lipschitz, by standard
arguments based on Gronwall’s Lemma we conclude that there exists a constant
K1, independent of t ∈ [t0, T ), such (3.6) holds true. In order to prove (3.7),
note that

〈p(t), h〉+ 〈−p(T ), xh(T )− x(T )〉 =
∫ T

t

d

ds
〈−p(s), xh(s)− x(s)〉ds

=

∫ T

t

〈−ṗ(s), xh(s)− x(s)〉ds +

∫ T

t

〈−p(s), ẋh(s)− ẋ(s)〉 ds := (I) + (II).

Since −ṗ(s) ∈ ∂−
x H(x(s), p(s)) a.e. in [t0, T ], we obtain

(I) ≤
∫ T

t

(

c | p(s) | · | xh(s)− x(s) |2 +H(xh(s), p(s))−H(x(s), p(s))
)

ds

≤
∫ T

t

(

c | p(s) | · | h |2 e2K1T +H(xh(s), p(s))−H(x(s), p(s))
)

ds,

for some nonnegative constant c. Now recalling (2.16), (3.5) and (3.8), we get

(II) =

∫ T

t

〈−p(s),∇pH(xh(s), p(s))−∇pH(x(s), p(s))〉ds

=

∫ T

t

(−H(xh(s), p(s)) +H(x(s), p(s))) ds.

Adding up the previous relations, it follows that there exists a constant c1,
independent of t ∈ [t0, T ), such that (3.7) holds true. The lemma is proved.
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Proof of Theorem 3.1. First note that the estimate (3.3) is immediate for t = T .
Let us observe that in view of Remark 2.5 the above dual arc p(·) satisfies the
following:

(i) either p(t) 6= 0 for all t ∈ [t0, T ],

(ii) or p(t) = 0 for all t ∈ [t0, T ].

We shall analyze each of the above cases separately. Suppose, first, that p(t) 6= 0
for all t ∈ [t0, T ] and fix t ∈ [t0, T ). Then x(·) is the unique solution of the
Cauchy problem

{

ẋ(s) = ∇pH(x(s), p(s)) for all s ∈ [t, T ] ,
x(t) = x(t).

(3.9)

For each h ∈ B(0, 1), let xh(·) be the solution of the problem (3.5). By the
optimality of x(·), the very definition of the value function, and the dynamic
programming principle, we have that, for all h ∈ B(0, 1),

V (t, x(t) + h)− V (t, x(t)) + 〈p(t), h〉 ≤ φ(xh(T ))− φ(x(T )) + 〈p(t), h〉. (3.10)

Moreover, owing to (3.2), there exist constants c, R > 0 so that, for all z ∈
B(0, R),

φ(x(T ) + z)− φ(x(T )) ≤ 〈−p(T ), z〉+ c|z|2. (3.11)

Observe that, by (3.6),

‖ xh − x ‖∞< R, ∀ h ∈ R
n such that | h |< r1 := min{1, Re−K1T }. (3.12)

Then, on account of (3.10), (3.11) and (3.12), we conclude that for each h ∈
B(0, r1),

V (t,x(t) + h)− V (t, x(t)) + 〈p(t), h〉
≤ 〈p(t), h〉+ 〈−p(T ), xh(T )− x(T )〉+ c | xh(T )− x(T ) |2 .

(3.13)

Therefore, in view of (3.13) and Lemma 3.2, there exists a constant c2, inde-
pendent of t, so that for all h ∈ B(0, r1) and t ∈ [t0, T ),

V (t, x(t) + h)− V (t, x(t)) + 〈p(t), h〉 ≤ c2 | h |2 . (3.14)

The proof of (3.3) in the case (i) is complete.
Next, suppose we are in case (ii), that is p(t) = 0 for all t ∈ [t0, T ]. Let t ∈ [t0, T )
be fixed. Then, by Filippov’s Theorem (see, e.g., Theorem 10.4.1 in [2]), there
exist constants r2,K2, independent of t ∈ [t0, T ], such that, for any h ∈ R

n with
| h |≤ r2, the initial value problem

{

ẋ(s) ∈ F (x(s)) a.e. in [t, T ],
x(t) = x(t) + h.

(3.15)

has a solution, xh(·), that satisfies the inequality

‖ xh − x ‖∞≤ eK2T | h | . (3.16)
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By the optimality of x(·), the very definition of the value function, and the
dynamic programming principle it follows that

V (t, x(t) + h)− V (t, x(t))〉 ≤ φ(xh(T ))− φ(x(T )). (3.17)

Moreover, owing to (3.2) an recalling that p(·) is equal to zero at each point,
there exist constants c, R > 0 so that, for all z ∈ B(0, R),

φ(x(T ) + z)− φ(x(T )) ≤ c|z|2. (3.18)

In view of (3.16), (3.17) and (3.18), we obtain that there exists a constants c4
such that, for all t ∈ [t0, T ] and h ∈ B(0, r3) whit r3 := min{r2, Re−K2T }, it
holds that

V (t, x(t) + h)− V (t, x(t)) ≤ c4 | h |2 . (3.19)

The proof is complete also in case (ii).

Remark 3.3. One can easily adapt the previous proof to show that the above
inclusion holds true with the Fréchet superdifferential as well, that is if −p(T ) ∈
∂+φ(x(T )), then

−p(t) ∈ ∂+
x V (t, x(t)) for all t ∈ [t0, T ].

In this case, the term c0 | h |2 in (3.3) is replaced by o(| xh(T )− x(T ) |).
Theorem 3.4. Assume (SH), (H1) and let φ : Rn → R be locally Lipschitz.
Let x : [t0, T ] → R

n be an optimal solution for the problem P(t0, x0) and p :
[t0, T ] → R

n be any solution of the differential inclusion

{

−ṗ(t) ∈ ∂−
x H(x(t), p(t))

ẋ(t) ∈ ∂pH(x(t), p(t))
a.e. in [t0, T ] , (3.20)

satisfying the transversality condition

− p(T ) ∈ ∂+φ(x(T )). (3.21)

Then, p(·) satisfies the full sensitivity relation

(H(x(t), p(t)),−p(t)) ∈ ∂+V (t, x(t)) for all t ∈ (t0, T ). (3.22)

Proof. In view of Remark 2.5, the above dual arc p(·) satisfies the following:

(i) either p(t) 6= 0 for all t ∈ [t0, T ],

(ii) or p(t) = 0 for all t ∈ [t0, T ].

Suppose to be in case (i), that is p(t) 6= 0 for all t ∈ [t0, T ]. Let t ∈ (t0, T ) be
fixed. Hence, x(·) is the unique solution of the Cauchy problem

{

ẋ(s) = ∇pH(x(s), p(s)) for all s ∈ [t, T ] ,
x(t) = x(t).

(3.23)

Consider now any (α, θ) ∈ R× R
n and, for every τ > 0, let xτ be the solution

of the differential equation
{

ẋ(s) = ∇pH(x(s), p(s)) for all s ∈ [t, T ] ,
x(t) = x(t) + τθ.

(3.24)
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By (2.12) and (3.24), we have that

D↓V (t, x(t))(α, αẋ(t) + θ) = lim sup
τ→0+

V (t+ ατ, xτ (t) + ταẋ(t))− V (t, x(t))

τ
.

(3.25)
Moreover, from (3.23) and (3.24),

| xτ (t+ ατ) − xτ (t)− ταẋ(t) |≤
∫ t+ατ

t

|∇pH(xτ (s), p(s))−∇pH(x(t), p(t))| ds

≤
∫ t+ατ

t

|∇pH(xτ (s), p(s))−∇pH(x(s), p(s))| ds

+

∫ t+ατ

t

|∇pH(x(s), p(s))−∇pH(x(t), p(t))| ds.

(3.26)

By (3.6), (3.26), using also that the map x 7→ ∇pH(x, p) is locally Lipschitz and
the map s 7→ ∇pH(x(s), p(s)) is continuous, we conclude that

| xτ (t+ ατ) − xτ (t)− ταẋ(t) |= o(τ). (3.27)

Hence, from (3.25), (3.27), using that V is locally Lipschitz, the dynamic pro-
gramming principle, and the transversality condition (3.21) we deduce that

D↓V (t, x(t))(α, αẋ(t) + θ) ≤ lim sup
τ→0+

V (t+ ατ, xτ (t+ ατ)) − V (t, x(t))

τ

≤ lim sup
τ→0+

φ(xτ (T ))− φ(x(T ))

τ
≤ lim sup

τ→0+

〈−p(T ), xτ (T )− x(T )〉
τ

.

(3.28)

In view of (3.7), the above upper limit does not exceede 〈−p(t), θ〉. Recalling
that H(x(t), p(t)) = 〈ẋ(t), p(t)〉 we finally obtain

D↓V (t, x(t))(α, αẋ(t) + θ) ≤ αH(x(t), p(t)) + 〈−p(t), αẋ(t) + θ〉. (3.29)

Hence, for all α ∈ R and θ1 ∈ R
n,

D↓V (t, x(t))(α, θ1) ≤ αH(x(t), p(t)) + 〈−p(t), θ1〉. (3.30)

The proof of (3.22), in the case (i), follows from (2.11), (2.12), and (3.30).
Now suppose to be in case (ii), that is p(s) = 0 for all s ∈ [t0, T ]. Thanks to
(2.11), (2.12), and the fact that H(x, 0) = 0 the inclusion (3.22) holds true if
and only if, for all (α, θ) ∈ R× R

n,

D↓V (t, x(t))(α, θ) ≤ 0 for all t ∈ (t0, T ). (3.31)

Let t ∈ (t0, T ) be fixed. Then, by Filippov’s Theorem (see, e.g., Theorem 10.4.1
in [2]), there exist constants r,K1,K2 such that, for any 0 < τ < K1, the initial
value problem

{

ẋ(s) ∈ F (x(s)) a.e. in [t+ ατ, T ],
x(t+ ατ) = x(t) + τθ,

(3.32)

has a solution, xτ (·), that satisfies the inequality

‖ xτ − x ‖∞≤ K2τ. (3.33)
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Hence, from the dynamic programming principle, (3.6), (3.21), and (2.12) we
deduce that

D↓V (t, x(t))(α, θ) = lim sup
τ→0+

V (t+ ατ, xτ (t+ ατ)) − V (t, x(t))

τ

≤ lim sup
τ→0+

φ(xτ (T ))− φ(x(T ))

τ
≤ 0.

(3.34)

Then, the conclusion holds true also in case (ii).

Remark 3.5. If in addition the map ∇pH(·, ·) is locally Lipschitz, one can show
that the proximal full sensitivity relation

(H(x(t), p(t)),−p(t)) ∈ ∂+,prV (t, x(t)) for all t ∈ [t0, T ] (3.35)

holds true when −p(T ) ∈ ∂+,prφ(x(T )). Note that the full sensitivity relation
(3.35) implies the partial version (3.4). However, in Theorem 3.1 we have proved
(3.35) without assuming the local Lipschitzianity of ∇pH(·, ·).

4 Necessary and sufficient conditions for optimal-

ity

The first result of this section can be seen as a strengthening of the maximum
principle. Roughly speaking, we want to prove the existence of a dual arc that
verifies the final condition −p(T ) = q for any q in the proximal superdifferential
of the final cost. In proving a result of this kind for smooth optimal control prob-
lems (see, e.g., [7, Theorem in 7.3.1.]), a crucial role is played by the construction
of a variation of control and the analysis of the behaviour of the optimal trajec-
tory, depending on the parameters of the variation. This approach is not valid
in general for differential inclusions. Here, in order to replace the variational
equation, we shall introduce a further assumption on the multifunction F and
make use of the partial sensitivity relations proved in the previous section.

Theorem 4.1. Assume (SH), (H1), that F : R
n

⇉ R
n is locally strongly

convex, and φ : Rn → R is locally Lipschitz. Let x : [t0, T ] → R
n be an optimal

solution for P(t0, x0). Then, for any q ∈ ∂+,prφ(x(T )), there exists a solution
p : [t0, T ] → R

n of the differential inclusion

{

−ṗ(s) ∈ ∂−
x H(x(s), p(s)) a.e. in s ∈ [t0, T ] ,

−p(T ) = q.
(4.1)

Furthermore, every such solution p(·) satisfies the maximum principle

H(x(t), p(t)) = 〈ẋ(t), p(t)〉 a.e. in [t0, T ]. (4.2)

If q 6= 0, then (4.2) holds true everywhere in [t0, T ].

Proof. Let x(·) be an optimal solution for P(t0, x0). Define the multifunction
G : [t0, T ]× R

n
⇉ R

n by G(s, p) = ∂−
x H(x(s), p). Observe that:

• for each (t, p) ∈ [t0, T ]×R
n, G(t, p) is nonempty compact and convex set;
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• by a known property of the generalized gradient, there exists a constant
k > 0 such that, ∀(s, p) ∈ [t0, T ] × R

n and ∀v ∈ G(s, p), it holds that
|v| ≤ k|p|;

• G is upper semicontinuous.

In order to verify the last property, let us prove that G has a closed graph in
[t0, T ]×R

n ×R
n. The conclusion follows because a multifunction taking values

in a compact set and having a closed graph is upper semicontinuous (see e.g.
Corollary 1 p. 41 in [1]). The graph of G is

Graph(G) = {((t, p), q) , (t, p) ∈ [t0, T ]× R
n : q ∈ ∂xH(x(t), p)}.

Let ((ti, pi), qi) be a sequence in Graph(G) which converges to some ((t, p), q).
Thus, by qi ∈ ∂−

x H(x(ti), pi), there exists an open set A containing x([t0, T ])
and a constant c = c(A) so that

H(y, pi)−H(x(ti), pi)− 〈qi, y − x(ti)〉 ≥ −c|pi||y − x(ti)|2 (4.3)

for any point y ∈ A and i large enough. Passing to the limit in (4.3), we see
that q ∈ ∂−

x H(x(t), p). This proves that the graph of G is closed.

We deduce from the above three properties the existence of at least one
solution p(·) of (4.1) on [t0, T ].
Now let us investigate the equality (4.2). Consider, first, the case where q = 0.
Then, thanks to Remark 2.5, we conclude that the solution of (4.1) vanishes on
[t0, T ] and so the equality (4.2) is obvious. Let now p(·) be any solution of (4.1)
for some q ∈ ∂+,prφ(x(T )) r {0}. In this case, since Remark 2.5 ensures that
p(·) never vanishes on [t0, T ], recalling Remark 2.10, we conclude that our claim
(4.2) is equivalent to the identity

ẋ(t) = ∇pH(x(t), p(t)) for all t ∈ [t0, T ]. (4.4)

Now let τ be such that 0 < τ < T − t0 and define an admissible trajectory
x : [t0, T ] → R

n in the following way:

• on the interval [t0, T − τ), x(·) coincides with the optimal trajectory x(·),
• on the interval [T − τ, T ], x(·) is the solution of the Cauchy problem:

{

ẋ(t) = ∇pH(x(t), p(t)) for all t ∈ [T − τ, T ],
x(T − τ) = x(T − τ).

(4.5)

We are going to give a first estimate of ‖x − x‖∞. By (4.5) and the local
Lipschitzianity of the map ∇pH(·, p), there exist 0 < τ1 < T − t0 and c ≥ 0 such
that, for every τ < τ1 and t ∈ [T − τ, T ],

|x(t)− x(t)| ≤
∫ t

T−τ

|ẋ(s)−∇pH(x(s), p(s))| ds

≤
∫ t

T−τ

(

|∇pH(x(s), p(s))−∇pH(x(s), p(s))|+ |ẋ(s)−∇pH(x(s), p(s))|
)

ds

≤ c

∫ t

T−τ

|x(s)− x(s)|ds +
∫ t

T−τ

|ẋ(s)−∇pH(x(s), p(s))|ds.

(4.6)
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By the Gronwall inequality, the above estimate yields that, for every t ∈ [T −
τ, T ],

|x(t)− x(t)| ≤ ecτ
∫ T

T−τ

|ẋ(s)−∇pH(x(s), p(s))|ds. (4.7)

The next point is to find a good estimate for the integral on the right side
of (4.7). Since −p(T ) ∈ ∂+,prφ(x(T )), there exist constant c1, r such that, if
x(T ) ∈ B(x(T ), r), it holds that

φ(x(T ))− φ(x(T )) + 〈p(T ), x(T )− x(T )〉 ≤ c1|x(T )− x(T )|2. (4.8)

From (4.7) we deduce that if τ < min{τ2, τ1}, where

τ2 :=
1

c
ln

(

r

‖ ẋ ‖L1([t0,T ]) + ‖ ∇pH(x, p) ‖L1([t0,T ])

)

,

then x(T ) ∈ B(x(T ), r) and so (4.8) is true. Hence, by the optimality of x(·)
and (4.8), it follows that

〈p(T ), x(T )− x(T )〉 ≤ c1|x(T )− x(T )|2. (4.9)

Furthermore, since x(T − τ) = x(T − τ), we have that

〈p(T ), x(T )− x(T )〉 =
∫ T

T−τ

〈ṗ(s), x(s)− x(s)〉 ds+
∫ T

T−τ

〈p(s), ẋ(s)− ẋ(s)〉 ds

= (I) + (II)

(4.10)

We can estimate the first term using the assumption (H1)(i):

(I) ≥
∫ T

T−τ

(

H(x(s), p(s))−H(x(s), p(s))− c2|x(s)− x(s)|2
)

ds, (4.11)

where c2 is a suitable constant. The second term can be estimated using Propo-
sition 2.12, 5. and the identity (2.16), to obtain

(II) =

∫ T

T−τ

(

H(x(s), p(s)) −H(x(s), p(s)) + 〈p(s),∇pH(x(s), p(s))− ẋ(s)〉
)

≥
∫ T

T−τ

(

H(x(s), p(s))−H(x(s), p(s)) + c3|p(s)||∇pH(x(s), p(s))− ẋ(s)|2
)

ds,

(4.12)

for some constant c3. The four previous estimates together imply that there
exist constants c4, c5 ≥ 0 such that

∫ T

T−τ

|∇pH(x(s), p(s))− ẋ(s)|2 ds ≤ c4

∫ T

T−τ

|x(s)− x(s)|2 ds+ c5|x(T )− x(T )|2

≤ (c4τ + c5) ‖ x− x ‖2∞ .

(4.13)
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Now we can go back to (4.7) and estimate the integral on the right side using
(4.13) and the Hölder inequality. We obtain that

‖ x− x ‖∞≤ ecττ
1
2 (c4τ + c5)

1
2 ‖ x− x ‖∞ . (4.14)

Let τ3 be such that e2cτ3τ3(c4τ3 + c5) = 1. Then, choosing τ < mini=1,2,3{τi},
it follows that ‖ x− x ‖∞= 0 and so, by (4.13), we finally conclude that

ẋ(t) = ∇pH(x(t), p(t)) a.e. in t ∈ [T − τ, T ]. (4.15)

Since the arc p(·) never vanishes, the pair (x(·), p(·)) stays in the set where H
is differentiable with respect to p. So, (4.15) is true for all t ∈ [T − τ, T ]. In
order to show that the equality in (4.15) holds on the whole interval [t0, T ],
one can iterate the above argument, making use of Theorem 3.1, and reach
the conclusion in a finite number of steps. Let us only sketch the second step.
Recall that the trajectory x|[T−τ,T ] : [T − τ, T ] → R

n is optimal for the Mayer
problem P(T − τ, x(T − τ)) and we have just shown that x(·) is the solution of
the Cauchy problem

{

ẋ(t) = ∇pH(x(t), p(t)), t ∈ [T − τ, T ],
x(T − τ) = x(T − τ).

(4.16)

Hence, by Theorem 3.1, there exist constants k, r1 > 0 such that, for all h ∈
B(0, r1), it holds that

V (T − τ, x(T − τ) + h)− V (T − τ, x(T − τ)) + 〈p(T − τ), h〉 ≤ k|h|2. (4.17)

We define a trajectory x : [t0, T − β] → R
n, with τ < β < T − t0, which on the

interval [t0, T − β) coincides with x(·), and on the interval [T − β, T − τ ] is the
solution of the problem

{

ẋ(t) = ∇pH(x(t), p(t)), t ∈ [T − β, T − τ ],
x(T − β) = x(T − β).

(4.18)

Choosing β such that x(T − τ) ∈ B(x(T − τ), r1), estimate (4.17) yields

V (T−τ, x(T − τ)) − V (T − τ, x(T − τ)) + 〈p(T − τ), x(T − τ)− x(T − τ)〉
≤ k|x(T − τ) − x(T − τ)|2.

(4.19)

Thus, using the dynamic programming principle, we obtain that

V (T − τ,x(T − τ)) − V (T − τ, x(T − τ))

≥ V (T − β, x(T − β))− V (T − β, x(T − β)) = 0.
(4.20)

Then, from (4.19) and (4.20), we deduce that

〈p(T − τ), x(T − τ) − x(T − τ)〉 ≤ k|x(T − τ)− x(T − τ)|2, (4.21)

which replaces (4.9). The estimates right after (4.9) can be easily adapted to
imply, finally, that the equality in (4.15) holds on the interval [T − β, T ], for
some suitable τ < β ≤ T − t0. The conclusion on [t0, T ] can be reached in a
finite number of steps, since the constant r such that (3.3) holds true for all
h ∈ B(0, r) are independent from t ∈ [t0, T ].
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Remark 4.2. The above theorem and Theorem 3.1 give together that for any q ∈
∂+,prφ(x(T )) and for any solution p of (4.1) both the maximum principle and
the full sensitivity relation (3.22) hold true. This is a less restrictive conclusion
that the one of Theorem 2.8, which only affirms that for some q ∈ ∂φ(x(T )) and
some solution p(·) the maximum principle (2.5) holds true. For this reason, using
the proximal superdifferential of φ instead of the generalized gradient seems to
be more appropriate whenever (H1) is satisfied and F is locally strongly convex.

Now we are ready to give a set of necessary and sufficient conditions for
optimality.

Theorem 4.3. Assume (SH) and (H1). Let φ : Rn → R be locally semiconcave
and F : R

n
⇉ R

n locally strongly convex. A solution x : [t0, T ] → R
n of

the system (1.11)-(1.12) is optimal for P(t0, x0) if and only if, for every q ∈
∂+φ(x(T )), any solution p : [t0, T ] → R

n of the differential inclusion

− ṗ(t) ∈ ∂−
x H(x(t), p(t)) a.e. in [t0, T ] (4.22)

with the transversality condition

− p(T ) = q, (4.23)

satisfies the full sensitivity relation

(H(x(t), p(t)),−p(t)) ∈ ∂+V (t, x(t)) for all t ∈ (t0, T ), (4.24)

and the maximum principle

H(x(t), p(t)) = 〈p(t), ẋ(t)〉 a.e. in [t0, T ]. (4.25)

Proof. The sufficiency follows from Theorem 2.7. The fact that the existence of
an arc p(·) satisfying (4.23) and (4.25) is a necessary condition for optimality
consists in Theorem 4.1. We need just to recall that if φ is a locally semiconcave
function, then ∂+,prφ(x(T )) = ∂+φ(x(T )) and this set is nonempty. Finally, the
full sensitivity relation (4.24) comes from Theorem 3.4.

5 Relations between reachable gradients of the

value function and optimal trajectories

In the calculus of variations, the existence of a one-to-one correspondence be-
tween the set of minimizers starting from a point (t, x) and the reachable gradi-
ent of the value function at (t, x) is a well-known fact. This allows, among other
things, to identify the set of singular points of the value function as the set of
starting points for more than one minimizer. The aim of this last section is to
investigate the relations that occur in our context. Here, a difficulty consists in
the singularity of the Hamiltonian at p = 0, that forces us to study separately
the case where 0 ∈ ∂∗V (t, x). When the Hamiltonian and the endpoint cost
are in the class C1,1

loc (R
n × (Rn

r {0})) and C1(Rn), respectively, there is an
injective map from ∂∗V (t, x)r {0} to the set of all optimal trajectories starting
from (t, x). See for instance Theorem 7.3.10 in [7], where the authors give the
proof for optimal control problems with smooth data. However, we assume here
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neither the existence of a smooth parameterization, nor such a regularity of the
Hamiltonian. It is precisely the lack of regularity of H that represents the main
difficulty, since it does not guarantee the uniqueness of solutions of the system
(5.1) below. We shall prove that in our case, under suitable assumptions, there
exists an injective set-valued map from ∂∗V (t, x) r {0} into the set of optimal
trajectories starting from (t, x).

Lemma 5.1. Let (SH), (H1) hold and φ ∈ C1(Rn). Given a point (t, x) ∈
[0, T ]×R

n and a vector p = (pt, px) ∈ ∂∗V (t, x)r {0}, there exists at least one
pair (y(·), p(·)) that satisfies the system

{

ẏ(s) = ∇pH(y(s), p(s)) for all s ∈ [t, T ],
−ṗ(s) ∈ ∂−

x H(y(s), p(s)) a.e. in [t, T ],
(5.1)

and initial conditions
{

y(t) = x,
p(t) = −px,

(5.2)

such that y(·) is optimal for P(t, x).

Proof. Observe, first, that if (pt, px) ∈ ∂∗V (t, x) r {0}, then px 6= 0. Indeed,
every point (pt, px) ∈ ∂∗V (t, x) satisfies the equation −pt + H(x,−px) = 0.
Furthermore, H(x, 0) = 0. Consequently, if (pt, px) 6= 0, then px 6= 0.
Since (pt, px) ∈ ∂∗V (t, x), we can find a sequence {(tk, xk)} such that V is
differentiable at (tk, xk) and

lim
k→∞

(tk, xk) = (t, x), lim
k→∞

∇xV (tk, xk) = −px.

Let yk(·) be an optimal trajectory for P(tk, xk). Let us prove, first, that
∇φ(yk(T )) 6= 0 for k large enough. Since px 6= 0, we have that there exists
k > 0 such that ∇xV (tk, xk) 6= 0 for k > k. Now fix k > k. Then, there exists
θ ∈ R

n such that 〈∇xV (tk, xk), θ〉 > 0. Take a sequence si → 0+ and consider
the problem

{

żi(s) ∈ F (zi(s)) a.e. in [tk, T ] ,
zi(tk) = yk(tk) + siθ.

(5.3)

By Filippov’s Theorem (see, e.g., [2, Theorem 10.4.1]), there exists a solution
zi(·) of (5.3) such that ‖ zi − yk ‖∞≤ csi, for some c > 0 independent of i.
Hence, when i → ∞,

V (tk, yk(tk) + siθ)− V (tk, yk(tk))

si
→ 〈∇xV (tk, xk), θ〉 > 0. (5.4)

Moreover, by the dynamic programming principle, (5.3), and (5.4) we obtain
that

lim sup
i→∞

φ(zi(T ))− φ(yk(T ))

si
≥ lim

i→∞

V (tk, zi(tk))− V (tk, yk(tk))

si

= lim
i→∞

V (tk, yk(tk) + siθ)− V (tk, yk(tk))

si
= 〈∇xV (tk, xk), θ〉 > 0.

(5.5)

Now we can consider a subsequence {zij} and a γ ∈ R
n such that

zij (T )− yk(T )

sij
→ γ.
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Then, by (5.5), it follows that

〈∇φ(yk(T )), γ〉 > 0.

We can conclude that ∇φ(yk(T )) 6= 0. This condition allows to say that there
exists a nonvanishing arc pk(·) such that, for each k large enough, the pair
(yk(·), pk(·)) solves the system (5.1) and −pk(T ) = ∇φ(yk(T )). We note that
−pk(T ) is an element in the set ∂+φ(yk(T )) and so the sensitivity relation
described in Remark 3.3 holds. This means that

− pk(s) ∈ ∂+
x V (s, yk(s)) ∀s ∈ [tk, T ]. (5.6)

Moreover, recalling that V is differentiable at (tk, xk), it holds that −pk(tk) =
∇xV (tk, xk) and so the pair (yk(·), pk(·)) satisfies the initial conditions yk(tk) =
xk,−pk(tk) = ∇xV (tk, xk).
The last argument consists in proving that the sequence (yk(·), pk(·)), after
possibly passing to a subsequence, converges to a pair (y(·), p(·)) that veri-
fies our claims. It is easy to prove that the sequences of functions {pk}k and
{yk}k are uniformly bounded and uniformly Lipschitz continuous in [t, T ], us-
ing Gronwall’s inequality together with estimates (2.8) and (SH)(iii), respec-
tively. Hence, after possibly passing to subsequences, we may assume that the
sequence (yk(·), pk(·)) converges uniformly in [t, T ] to some pair of Lipschitz
functions (y(·), p(·)). Moreover, ṗk(·) converges weakly to ṗ(·) in L1([t, T ];Rn).
Furthermore, we can say that

((yk(s), pk(s)),−ṗk(s)) ∈ Graph(M) a.e. in [tk, T ],

where M is given by M(x, p) = ∂−
x H(x, p). The multifunction M is upper

semicontinuous on its domain; this can be easily derived as done for G in the
proof of Theorem 4.1. Hence, from Theorem 7.2.2. in [2] it follows that −ṗ(s) ∈
∂−
x H(y(s), p(s)) for a.e. s ∈ [t, T ]. By the continuous differentiability of φ,

we get that −p(T ) = ∇φ(y(T )) 6= 0 and so, recalling Remark 2.5, the arc
p(·) never vanishes. Hence, recalling also that the map (x, p) 7→ ∇pH(x, p) is
continuous for p 6= 0, we easily get that ẏ(s) = ∇pH(y(s), p(s)) for all s ∈ [t, T ].
In conclusion, (y(·), p(·)) is a solution of the adjoint system (5.1) with initial
conditions y(t) = x, p(t) = −px 6= 0. This implies of course that ẏ(s) ∈ F (y(s))
for all s ∈ [t, T ]. Moreover, since V is continuous and yk(·) are optimal, we have

φ(y(T )) = lim
k→∞

φ(yk(T )) = lim
k→∞

V (t, yk(t)) = V (t, y(t)),

which means that y(·) is optimal for P(t, x).

For any p = (pt, px) ∈ ∂∗V (t, x) r {0}, we denote by R(p) the set of all
trajectories y(·) that are solution of (5.1)-(5.2), and optimal for P(t, x). The
above theorem guarantees that the set-valued map R that associates with any
p ∈ ∂∗V (t, x) r {0} the set R(p) has nonempty values. Now let us prove that
R is strongly injective. We will use the “difference set”:

∂−
x H(x, p)− ∂−

x H(x, p) := {a− b : a, b ∈ ∂−
x H(x, p)}.

Theorem 5.2. Under all the hypotheses of Lemma 5.1, if we assume in addition
that
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(H3) for each x ∈ R
n, F (x) is not a singleton and, if n > 1, it has a C1

boundary,

(H4) R
+p ∩ (∂−

x H(x, p)− ∂−
x H(x, p)) = ∅ ∀p 6= 0,

then for any p1, p2 ∈ ∂∗V (t, x)r{0} with p1 6= p2, we have that R(p1)∩R(p2) =
∅. Equivalently, the set-valued map R is strongly injective.

Proof. Suppose to have two elements pi = (pi,t, pi,x) ∈ ∂∗V (t, x)r{0}, i = 1, 2,
with p1 6= p2. Note that the Hamilton-Jacobi equation implies that p1,x 6=
p2,x if and only p1 6= p2. Furthermore, suppose that there exist two pairs
(y(·), pi(·)), i = 1, 2 that are solutions of the system (5.1) with pi(t) = pi,x and
y(·) is optimal for P(t, x). Then, we get

ẏ(s) = ∇pH(y(s), p1(s)) = ∇pH(y(s), p2(s)) for all s ∈ [t, T ].

This implies that

pi(s) ∈ NF (y(s)) (ẏ(s)) , i = 1, 2 for all s ∈ [t, T ].

By (H3), the normal cone NF (y(s)) (ẏ(s)) is a half-line. Recalling also that
pi, i = 1, 2 never vanish, it follows that there exists λ(s) > 0 such that p2(s) =
λ(s)p1(s), for every s ∈ [t, T ]. The function λ(·) is differentiable a.e. on [t, T ]
because

λ(s) =
| p2(s) |
| p1(s) |

.

By (5.1) and since β∂−
x H(x, p) = ∂−

x H(x, βp) for each β > 0, it follows that

−ṗ2(s) = −λ(s)ṗ1(s)− λ̇(s)p1(s) ∈ λ(s)∂−
x H(y(s), p1(s)) for a.e. s ∈ [t, T ].

Dividing by λ(s),

− λ̇(s)

λ(s)
p1(s) ∈ ∂−

x H(y(s), p1(s))− ∂−
x H(y(s), p1(s)) for a.e. s ∈ [t, T ]. (5.7)

Since the “difference set” in (H4) is symmetric, (H4) is equivalent to the condition

(R r {0}) p ∩
(

∂−
x H(x, p)− ∂−

x H(x, p)
)

= ∅ ∀p 6= 0. (5.8)

From (5.7) and (5.8) we obtain that λ̇(s) = 0 a.e. in [t, T ]. This implies that λ
is constant and since ∇φ(y(T )) = −pi(T ), i = 1, 2, this constant must be λ = 1.
But this yelds p1,x = p2,x, which contradicts the inequality p1 6= p2. Hence, we
can assert that the functions yi(·), i = 1, 2, are different.

Remark 5.3. Recall that the assumption φ ∈ C1(Rn) is essential; see, e.g.,
Example 7.2.10 in [7] where the value function is singular at points from which
an unique optimal solution starts. Concerning (H4), note that it is verified, for
instance, when x 7→ H(x, p) is differentiable, without any Lipschitz regularity
of the map x 7→ ∇pH(x, p).

Now let us consider the case when p = 0 ∈ ∂∗V (t, x).

Theorem 5.4. Assume (SH), (H1) and that φ ∈ C1(Rn), and let (t, x) ∈
[t0, T [×R

n be such that 0 ∈ ∂∗V (t, x). Then there exists an optimal trajectory
y : [t, T ] → R

n for P(t, x) such that ∇φ(y(T )) = 0. Consequently, the unique
corresponding dual arc is equal to zero.
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Proof. Since 0 ∈ ∂∗V (t, x), we can find a sequence {(tk, xk)} such that V is
differentiable at (tk, xk) and

lim
k→∞

(tk, xk) = (t, x), lim
k→∞

∇V (tk, xk) = 0.

Let yk(·) be an optimal trajectory for P(tk, xk) and pk(·) be a dual arc. By
Theorem 7.2.2 in [2], we can assume, after possibly passing to a subsequence,
that yk(·) converges uniformly to y(·) which is a trajectory of our system. Since

φ(y(T )) = lim
k→∞

φ(yk(T )) = lim
k→∞

V (tk, xk) = V (t, x),

it follows that y is optimal for P(t, x). Furthermore, the sensitivity relation in
Remark 3.3 holds true and so, recalling that V is differentiable at (tk, xk), we
have

− pk(tk) = ∇xV (tk, xk) → 0. (5.9)

By (5.9), (2.8) and the Gronwall’s inequality, we get that pk(T ) → 0 when
k → ∞. We conclude that

∇φ(y(T )) = lim
k→∞

∇φ(yk(T )) = lim
k→∞

−pk(T ) = 0.

Remark 5.5. The conclusion of this theorem is weaker than the previous one;
it gives only the existence of an optimal trajectory without saying that y(·) is
the solution of a system like (5.1), because in this case the dual arc associated
to y(·) must be null everywhere.

Corollary 5.6. Assume (SH), (H1), φ ∈ C1(Rn) and suppose also that ∇φ(x) 6=
0 for all x ∈ R

n. Then 0 6∈ ∂∗V (t, x) for all (t, x) ∈ [t0, T ]× R
n.

The previous theorems imply that, if (t, x) is a singular point of V , then
P(t, x) admits more than one optimal trajectory, as proved in the following
proposition.

Proposition 5.7. Assume (SH), (H1), (H3), (H4) and let φ ∈ C1(Rn) ∩
SC(Rn). If V fails to be differentiable at a point (t, x), then there exist two
or more optimal trajectory starting from (t, x).

Proof. Since V is semiconcave (see [8]), if it is not differentiable at a point
(t, x) ∈ [t0, T ]×R

n, then we can find two distinct elements p1, p2 ∈ ∂∗V (t, x). If
p1, p2 are both nonzero, we can apply Theorem 5.2 to find two distinct optimal
trajectories. If one of the two vectors is zero, for instance p1, then there exists
at least an associated optimal trajectory y1(·) such that ∇φ(y1(T )) = 0 by
Theorem 5.4, but for any optimal trajectory y2(·) associated to p2 it holds that
∇φ(y2(T )) 6= 0 by Theorem 5.2.

It might happen that two or more optimal trajectories actually start from a
point (t, x) at which V is differentiable. However, if H ∈ C1,1

loc (R
n× (Rn

r{0})),
then it is well-know that such a behaviour can only occur when the gradient
of V at (t, x) vanishes (see e.g. Theorem 7.3.14 and Example 7.2.10(iii) in [7]).
More is true in one space dimension, as we explain below.
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Example 5.8. In the one dimensional case it is easy to show that, if V is differen-
tiable at some point (t0, x0) with Vx(t0, x0) 6= 0, then there exists a unique op-
timal trajectory starting from (t0, x0). Indeed, in this case, F (x) = [f(x), g(x)]
for suitable functions f, g : R → R, with f ≤ g, such that −f and g are locally
semiconvex. So,

H(x, p) =

{

f(x)p, p < 0,
g(x)p, p ≥ 0.

(5.10)

If x0(·) is an optimal trajectory at (t0, x0) and p0(·) is a dual arc associated with
x0(·), then by Remark 3.3 we have that 0 6= Vx(t0, x0) = −p0(t0). Therefore,
0 6= p0(t) for all t ∈ [t0, T ] by Remark 2.5. Thus, (5.10) and the Maximum
Principle yield

ẋ0(t) =

{

f(x0(t)), if Vx(t0, x0) > 0,
g(x0(t)), if Vx(t0, x0) < 0.

(5.11)

Since f and g are both locally Lipschitz, x0(·) is the unique solution of (5.11)
satisfying x(t0) = x0.
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