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ISOPERIMETRY AND STABILITY PROPERTIES OF BALLS WITH RESPECT TO NONLOCAL ENERGIES

 

Introduction

In the recent paper [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF], Caffarelli, Roquejoffre, and Savin have initiated the study of Plateautype problems with respect to a family of nonlocal perimeter functionals. A regularity theory for such nonlocal minimal surfaces has been developed by several authors [START_REF] Caputo | Regularity for non-local almost minimal boundaries and applications[END_REF][START_REF] Barrios Barrera | Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces[END_REF][START_REF] Figalli | Regularity and Bernstein-type results for nonlocal minimal surfaces[END_REF][START_REF] Savin | Regularity of nonlocal minimal cones in dimension 2[END_REF][START_REF] Davila | Nonlocal Minimal Lawson Cones[END_REF], while the relation of nonlocal perimeters with their local counterpart has been investigated in [START_REF] Caffarelli | Uniform estimates and limiting arguments for nonlocal minimal surfaces[END_REF][START_REF] De Philippis | Gamma-convergence of nonlocal perimeter functionals[END_REF]. The isoperimetry of balls in nonlocal isoperimetric problems has been addressed in [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF]. Precisely, given s ∈ (0, 1) and n ≥ 2, one defines the s-perimeter of a set E ⊂ R n as

P s (E) := E E c dx dy |x -y| n+s ∈ [0, ∞] .
As proved in [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF], if 0 < |E| < ∞ then we have the nonlocal isoperimetric inequality P s (E) ≥ P s (B) |B| (n-s)/n |E| (n-s)/n , (

where B r := {x ∈ R n : |x| < r}, B := B 1 , and |E| is the Lebesgue measure of E. Notice that the right-hand side of (1.1) is equal to P s (B r E ), the s-perimeter of a ball of radius r E = (|E|/|B|) 1/n -so that |E| = |B r E |. Moreover, again in [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF] it is shown that equality holds in (1.1) if and only if E = x + B r E for some x ∈ R n . In [START_REF] Fusco | A quantitative isoperimetric inequality for fractional perimeters[END_REF] the following stronger form of (1.1) was proved:

P s (E) ≥ P s (B) |B| (n-s)/n |E| (n-s)/n 1 + A(E) 4/s C(n, s) , (1.2) 
where C(n, s) is a non-explicit positive constant depending on n and s only, while

A(E) := inf |E∆(x + B r E )| |E| : x ∈ R n (1.3)
measures the L 1 -distance of E from the set of balls of volume |E| and is commonly known as the Fraenkel asymmetry of E (recall that, given two sets E and F , |E∆F | := |E \ F | + |F \ E|). Our first main result improves (1.2) by providing the sharp decay rate for A(E) in (1.4). Moreover, we control the constant C(n, s) appearing in (1.2) and make sure it does not degenerate as long as s stays away from 0.

Theorem 1.1. For every n ≥ 2 and s 0 ∈ (0, 1) there exists a positive constant C(n, s 0 ) such that P s (E) ≥ P s (B) |B| (n-s)/n |E| (n-s)/n 1 +

A(E) 2 C(n, s 0 ) , (1.4) 
whenever s ∈ [s 0 , 1] and 0 < |E| < ∞.

Remark 1.2. The constant C(n, s 0 ) we obtain in (1.4) is not explicit. It is natural to conjecture that C(n, s 0 ) ≈ 1/s 0 as s 0 → 0 + , see (4.3) below. Letting s → 1 we recover the sharp stability result for the classical perimeter, that was first proved in [START_REF] Fusco | The sharp quantitative isoperimetric inequality[END_REF] by symmetrization methods and later extended to anisotropic perimeters in [START_REF] Figalli | A mass transportation approach to quantitative isoperimetric inequalities[END_REF] by mass transportation. The latter approach yields an explicit constant C(n) in (1.4) when s = 1, that grows polynomially in n.

It remains an open problem to prove (1.4) with an explicit constant C(n, s).

We next turn to consider nonlocal isoperimetric problems in presence of nonlocal repulsive interaction terms. The starting point is provided by Gamow model for the nucleus, which consists in the volume constraint minimization of the energy P (E)+V α (E), where P (E) is the (distributional) perimeter of E ⊂ R n defines as

P (E) := sup E divX(x) dx : X ∈ C 1 c (R n ; R n ), |X| ≤ 1 , while, given α ∈ (0, n), V α (E) is the Riesz potential V α (E) := E E
dx dy |x -y| n-α .

(

By minimizing P (E) + V α (E) with |E| = m fixed, we observe a competition between the perimeter term, that tries to round up candidate minimizers into balls, and the Riesz potential, that tries to smear them around. (Notice also that, by Riesz inequality, balls are actually the volume constrained maximizers of V α .) It was recently proved by Knüpfer and Muratov that: (a) If n = 2 and α ∈ (0, 2), then there exists m 0 = m 0 (n, α) such that Euclidean balls of volume m ≤ m 0 are the only minimizers of P (E) + V α (E) under the volume constraint |E| = m [START_REF] Knuepfer | On an Isoperimetric Problem with a Competing Nonlocal Term I: The Planar Case[END_REF] . (b) If n = 2 and α is sufficiently close to 2, then balls are the unique minimizers for m ≤ m 0 while for m > m 0 there are no minimizers [START_REF] Knuepfer | On an Isoperimetric Problem with a Competing Nonlocal Term I: The Planar Case[END_REF]. (c) If 3 ≤ n ≤ 7 and α ∈ (1, n), then the result in (a) holds [START_REF] Knuepfer | On an isoperimetric problem with a competing non-local term. II. The general case[END_REF].

In [START_REF] Bonacini | Local and global minimality results for a nonlocal isoperimetric problem on R N[END_REF], Bonacini and Cristoferi have recently extended both (b) and (c) above to the case n ≥ 3, and have also shown that balls of volume m are volume-constrained L 1 -local minimizers of P (E) + V α (E) if m < m ⋆ (n, α), while they are never volume-constrained L 1 -local minimizers if m > m ⋆ (n, α). The constant m ⋆ (n, α) is characterized in terms of a minimization problem, that is explicitly solved in the case n = 3 (in particular, in the physically relevant case n = 3, s = 1, and α = 2 (Coulomb kernel), one finds m ⋆ (3, 1, 2) = 5, a result that was actually already known in the physics literature since the 30's [START_REF] Bohr | The mechanism of nuclear fission[END_REF][START_REF] Feenberg | On the Shape and Stability of Heavy Nuclei[END_REF][START_REF] Frenkel | On the Splitting of Heavy Nuclei by Slow Neutrons[END_REF]). Let us also mention that, in addition to (b), further nonexistence results are contained in [START_REF] Knuepfer | On an isoperimetric problem with a competing non-local term. II. The general case[END_REF][START_REF] Lu | Nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model[END_REF].

We stress that, apart from the special case n = 2, all these results are limited to the case α ∈ (1, n), named the far-field dominated regime by Knüpfer and Muratov to mark its contrast to the near-field dominated regime α ∈ (0, 1]. Our second and third main results extend (a) and (c) above in two directions: first, by covering the full range α ∈ (0, n) for all n ≥ 3, and second, by including the possibility for the dominant perimeter term to be a nonlocal s-perimeter. The global minimality threshold m 0 is shown to be uniformly positive with respect to s and α provided they both stay away from zero.

The local minimality threshold m ⋆ (n, s, α) is characterized in terms of a minimization problem. In order to include the classical perimeter as a limiting case when s → 1, we recall that, by combining [8, Theorem 1] with [START_REF] De Philippis | Gamma-convergence of nonlocal perimeter functionals[END_REF]Lemma 9 and Lemma 14], one finds that lim s→1 - (1 -s) P s (E) = ω n-1 P (E) (1.6) whenever E is an open set with C 1,γ -boundary for some γ > 0 (from now on, ω n denotes the volume of the n-dimensional ball of radius 1). Hence, to recover the classical perimeter we need to suitably renormalize the s-perimeter.

Theorem 1.3. For every n ≥ 2, s 0 ∈ (0, 1), and α 0 ∈ (0, n), there exists m 0 = m 0 (n, s 0 , α 0 ) > 0 such that, if m ∈ (0, m 0 ), s ∈ (s 0 , 1), and α ∈ (α 0 , n), then the variational problems

inf 1 -s ω n-1 P s (E) + V α (E) : |E| = m , inf P (E) + V α (E) : |E| = m ,
admit balls of volume m as their (unique up to translations) minimizers.

Remark 1. [START_REF] Barrios Barrera | Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces[END_REF]. An important open problem is, of course, to provide explicit lower bounds on m 0 .

Let us now define a positive constant m ⋆ by setting

m ⋆ (n, s, α) :=          ω n n + s n -α s (1 -s) P s (B) ω n-1 α V α (B) n/(α+s)
, if s ∈ (0, 1) ,

ω n n + 1 n -α P (B) α V α (B)
n/(α+1)

, if s = 1 .

(

The constant m ⋆ (n, s, α) is the threshold for volume-constrained L 1 -local minimality of balls with respect to the functional 1-s ωn-1 P s + V α , as shown in the next theorem: Theorem 1.5. For every n ≥ 2, s ∈ (0, 1), and α ∈ (0, n), let m ⋆ = m ⋆ (n, s, α) be as in (1.7). For every m ∈ (0, m ⋆ ) there exists ε ⋆ = ε ⋆ (n, s, α, m) > 0 such that, if B[m] denotes a ball of volume m, then Both Theorem 1.1 and Theorem 1.3 are obtained by combining a Taylor's expansion of nonlocal perimeters near balls, discussed in section 2, with a uniform version of the regularity theory developed in [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF][START_REF] Caputo | Regularity for non-local almost minimal boundaries and applications[END_REF], presented in section 3. In the case of Theorem 1.1, these two tools are combined in section 4 through a suitable version of Ekeland's variational principle. We implement this approach, that was introduced in the case s = 1 by Cicalese and Leonardi [START_REF] Cicalese | A Selection Principle for the Sharp Quantitative Isoperimetric Inequality[END_REF], through a penalization argument closer to the one adopted in [START_REF] Acerbi | Minimality via second variation for a nonlocal isoperimetric problem[END_REF]. Due to the nonlocality of s-perimeters, the implementation itself will not be straightforward, and will require to develop some lemmas of independent interest, like the nucleation lemma (Lemma 4.3) and the truncation lemma (Lemma 4.5).

1 -s ω n-1 P s (B[m]) + V α (B[m]) ≤ 1 -s ω n-1 P s (E) + V α (E) , (1.8 
Concerning Theorem 1.3, our proof is inspired by the strategy used in [START_REF] Figalli | On the isoperimetric problem for radial log-convex densities[END_REF] (see also [START_REF] Figalli | On the shape of liquid drops and crystals in the small mass regime[END_REF] for a related argument) to show the isoperimetry of balls in isoperimetric problems with log-convex densities. Starting from the results in sections 2 and 3, the proof of Theorem 1.3 is given in section 5.

Finally, the proof of Theorem 1.5 is based on some second variation formulae for nonlocal functionals (discussed in section 6), which are then exploited to characterize the threshold for volume-constrained stability (in the sense of second variation) of balls in section 7. The passage from stability to L 1 -local minimality is finally addressed in section 8. The proof of this last result is pretty delicate since we do not know that the ball is a global minimizer, a fact that usually plays a crucial role in this kind of arguments.
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A Fuglede-type result for the fractional perimeter

In this section we are going to prove Theorem 1.1 on nearly spherical sets. Precisely, we shall consider bounded open sets E with |E| = |B|, E x dx = 0, and whose boundary satisfies

∂E = {(1 + u(x))x : x ∈ ∂B} , where u ∈ C 1 (∂B) , (2.1) 
for some u with u C 1 (∂B) small. We correspondingly seek for a control on some fractional Sobolev norm of u in terms of P s (E) -P s (B). More precisely, we shall control

[u] 2 Theorem 2.1. There exist constants ε 0 ∈ (0, 1/2) and c 0 > 0, depending only on n, with the following property: If E is a nearly spherical set as in (2.1), with |E| = |B|, E x dx = 0, and u C 1 (∂B) < ε 0 , then

P s (E) -P s (B) ≥ c 0 [u] 2 1+s 2
+ s P s (B) u 2 L 2 (∂B) , ∀s ∈ (0, 1) .

(2.2)

Remark 2.2. If we multiply by 1 -s in (2.2) and then take the limit s → 1 -, then by (1.6) and (8.4) we get P (E) -P (B) ≥ c(n) u 2 H 1 whenever u ∈ C 1,γ (∂B) for some γ ∈ (0, 1) (thus, on every Lipschitz function u : ∂B → R by density). Thus Theorem 2.1 implies [START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF]Theorem 1.2(4)].

In order to prove Theorem 2.1, we need to premise some facts concerning hypersingular Riesz operators on the sphere. Following [34, pp. 159-160], one defines the hypersingular Riesz operator on the sphere of order γ ∈ (0, 1) ∪ (1, 2) as

D γ u(x) := γ 2 γ-1 π n-1 2 Γ( n-1+γ 2 ) Γ(1 -γ 2 ) p.v. ∂B u(x) -u(y) |x -y| n-1+γ dH n-1 y , x ∈ ∂B , (2.3) 
cf. [START_REF] Samko | Hypersingular integrals and their applications[END_REF]Equations (6.22) and (6.47)]. (Here, Γ denotes the usual Euler's Gamma function, and the symbol p.v. means that the integral is taken in the Cauchy principal value sense.) By [START_REF] Samko | Hypersingular integrals and their applications[END_REF]Lemma 6.26], the k-th eigenvalue of D γ is given by

λ * k (γ) := Γ(k + n-1+γ 2 ) Γ(k + n-1-γ 2 ) - Γ( n-1+γ 2 ) Γ( n-1-γ 2 ) , k ∈ N ∪ {0} , (2.4) 
(so that λ * k (γ) ≥ 0, λ * k (γ) is strictly increasing in k, and λ * k (γ) ↑ ∞ as k → ∞).
Moreover, if we denote by S k the finite dimensional subspace of spherical harmonics of degree k, and by

{Y i k } d(k) i=1
an orthonormal basis for S k in L 2 (∂B), then

D γ Y k = λ * k (γ) Y k , ∀k ∈ N ∪ {0} . (2.5)
When no confusion arises, we shall often denote by Y k a generic element in S k . Given s ∈ (0, 1), let us now introduce the operator

I s u(x) := 2 p.v. ∂B u(x) -u(y) |x -y| n+s dH n-1 y , u ∈ C 2 (∂B) , (2.6) 
so that, for every u ∈ C 2 (∂B),

I s u = 2 1-s π n-1 2 1 + s Γ( 1-s 2 ) Γ( n+s 2 ) D 1+s u , (2.7) 
and

[u] 2 1+s 2 = ∂B u I s u dH n-1 . (2.8)
Let us denote by λ s k the k-th eigenvalue of I s . By (2.4), (2.5), and (2.7) we find that λ s k satisfies

λ s 0 = 0 , λ s k+1 > λ s k , I s Y k = λ s k Y k , ∀k ∈ N ∪ {0} , (2.9) 
and λ s k ↑ ∞ as k → ∞. If we denote by

a i k (u) := ∂B u Y i k dH n-1
the Fourier coefficient of u corresponding to Y i k , then we obtain

[u] 2 1+s 2 = ∞ k=0 d(k) i=1 λ s k a i k (u) 2 .
(2.10)

Concerning the value of λ s 1 and λ s 2 , we shall need the following proposition.

Proposition 2.3. One has

λ s 1 = s(n -s) P s (B) P (B) . (2.11) λ s 2 = 2n n -s λ s 1 .
(2.12)

Proof. Since each coordinate function x i , i = 1, . . . , n, belongs to S 1 , we have I s x i = λ s 1 x i . Hence, inserting x i in (2.8) and adding up over i, yields

λ s 1 = 1 P (B) ∂B×∂B dH n-1 x dH n-1 y |x -y| n+s-2 .
(2.13)

For z ∈ R n \ {0}, we now set

K(z) := - 1 n + s -2 1 |z| n+s-2 .
Splitting ∇K into its tangential and normal components to ∂B, we compute for y ∈ B the integral

L(y) := ∂B (x -y) • (x -y) |x -y| n+s dH n-1 x (2.14) = ∂B ∇ x K(x -y) • x dH n-1 x - ∂B ∇ x K(x -y) • y dH n-1 x = ∂B (1 -x • y) ∂K ∂ν(x) (x -y) dH n-1 x - ∂B ∇ τ K(x -y)∇ τ (x • y) dH n-1 x = : A(y) -B(y) .
We now evaluate separately A(y) and B(y). Noticing that ∆K(z) = -s/|z| n+s , we first integrate A(y) by parts to obtain

A(y) = B ∆ x K(x -y)(1 -x • y) dx + B ∇ x K(x -y)∇ x (1 -x • y) dx = -s B 1 -x • y |x -y| n+s dx + B |y| 2 -x • y |x -y| n+s dx = (1 -s) B 1 -x • y |x -y| n+s dx + B |y| 2 -1 |x -y| n+s dx .
We now denote by ∆ S n-1 the standard Laplace-Beltrami operator on the sphere and recall that -∆ S n-1 x i = (n -1)x i for i = 1, . . . , n. Integrating B(y) by parts leads to

B(y) = - ∂B K(x -y)∆ S n-1 (x • y) dH n-1 x = (n -1) ∂B K(x -y)x • y dH n-1 x = - n -1 n + s -2 ∂B x • y |x -y| n+s-2 dH n-1 x .
From the above expressions of A and B, we can let y converge to a point on ∂B to find

L(y) = (1 -s) B 1 -x • y |x -y| n+s dx + n -1 n + s -2 ∂B x • y |x -y| n+s-2 dH n-1 x , y ∈ ∂B .
(2.15)

Integrating over ∂B the first integral on the right hand side of the previous equality, and using the divergence theorem again, we get

B dx ∂B 1 -x • y |x -y| n+s dH n-1 y = B dx ∂B (y -x) • y |x -y| n+s dH n-1 y dx = B dx ∂B ∂K ∂ν (y -x) dH n-1 y = - B dx B c ∆ y K(y -x) dy = s B B c 1 |x -y| n+s dx dy = sP s (B) .
From this formula, integrating both sides of (2.15) and recalling (2.13) and (2.14), we obtain

λ s 1 = s(1 -s) P s (B) P (B) + n -1 (n + s -2)P (B) ∂B×∂B x • y |x -y| n+s-2 dH n-1 x dH n-1 y .
(2.16)

To deal with the last integral of the previous equality we need to rewrite P s (B) as follows

P s (B) = B c dy B (x -y) • (x -y) |x -y| n+s+2 dx = - 1 n + s B c dy B ∇ x 1 |x -y| n+s • (x -y) dx = - 1 n + s B c -n B dx |x -y| n+s + ∂B (x -y) • x |x -y| n+s dH n-1 x dy = n n + s P s (B) - 1 n + s B c dy ∂B (x -y) • x |x -y| n+s dH n-1 x . Therefore P s (B) = 1 s ∂B dH n-1 x B c (y -x) • x |x -y| n+s dy = - 1 s(n + s -2) ∂B dH n-1 x B c ∇ y 1 |x -y| n+s-2 • x dy = 1 s(n + s -2) ∂B×∂B x • y |x -y| n+s-2 dH n-1 x dH n-1 y .
Combining this last equality with (2.16) leads to the proof of (2.11).

Finally, using (2.4) and exploiting the factorial property of the Gamma function

Γ(z + 1) = Γ(z) z for every z ∈ C \ {-k : k ∈ N ∪ {0}}, we see that λ * 1 (α) = α κ Γ(α + κ) Γ(κ) , λ * 2 (α) = 1 + α + 2κ 1 + κ λ * 1 (α) , κ := n -1 -α 2 .
(2.17)

Since α = 1 + s, we infer from (2.7) and (2.17

) that λ s 2 /λ s 1 = λ * 2 (α)/λ * 1 (α) = 2n
n-s which is precisely identity (2.12).

Proof of Theorem 2.1. Step 1. We start by slightly rephrasing the assumption. Precisely, we consider a function u ∈ C 1 (∂B) with u C 1 (∂B) ≤ 1/2 such that there exists t ∈ (0, 2ε 0 ) with the property that the bounded open set F t whose boundary is given by

∂F t = {(1 + tu(x))x : x ∈ ∂B} , satisfies |F t | = |B| , Ft x dx = 0 .
We thus aim to prove that, if ε 0 and c 0 are small enough, then

P s (F t ) -P s (B) ≥ c 0 t 2 [u] 2 1+s 2 + s P s (B) u 2 L 2 , ∀s ∈ (0, 1) . (2.18)
Changing to polar coordinates, we first rewrite

P s (F t ) = ∂B×∂B 1+tu(x) 0 +∞ 1+tu(y) r n-1 ̺ n-1 (|r -̺| 2 + r̺|x -y| 2 ) n+s 2 dr d̺ dH n-1 x dH n-1 y .
Then, symmetrizing this formula leads to

P s (F t ) = 1 2 ∂B×∂B 1+tu(x) 0 +∞ 1+tu(y) f |x-y| (r, ̺) dr d̺ + 1+tu(y) 0 +∞ 1+tu(x) f |x-y| (r, ̺) dr d̺ dH n-1 x dH n-1 y ,
where, for r, ̺, θ > 0, we have set

f θ (r, ̺) := r n-1 ̺ n-1 (|r -̺| 2 + r̺ θ 2 ) n+s 2
. 

Using the convention

P s (F t ) = 1 2 ∂B×∂B 1+tu(x) 1+tu(y) 1+tu(x) 1+tu(y) f |x-y| (r, ̺) dr d̺ dH n-1 x dH n-1 y + ∂B×∂B 1+tu(x) 0 +∞ 1+tu(x) f |x-y| (r, ̺) dr d̺ dH n-1 x dH n-1 y . (2.19)
Rescaling variables, we find that

∂B 1+tu(x) 0 +∞ 1+tu(x) f |x-y| (r, ̺) dr d̺ dH n-1 y = (1 + tu(x)) n-s ∂B 1 0 +∞ 1 f |x-y| (r, ̺) dr d̺ dH n-1 y , ∀x ∈ ∂B .
By symmetry, the triple integral on the right hand side of this identity does not depend on x ∈ ∂B. Its constant value is easily deduced by evaluating (2.19) at t = 0 and yields

P s (B) = P (B) ∂B 1 0 +∞ 1 f |x-y| (r, ̺) dr d̺ dH n-1 y , ∀x ∈ ∂B .
Combining the last two identities with (2.19), we conclude that

P s (F t ) = 1 2 ∂B×∂B 1+tu (x) 1+tu(y) 1+tu(x) 1+tu(y) 
f |x-y| (r, ̺) dr d̺ dH n-1 x dH n-1 y + P s (B) P (B) ∂B (1 + tu(x)) n-s dH n-1 x .
With a last change of variable in the first term on the right hand side of this identity, we reach the following formula for P s (F t ):

P s (F t ) = t 2 2 g(t) + P s (B) P (B) h(t) , (2.20) 
where we have set

g(t) := ∂B×∂B u(x) u(y) u(x) u(y) f |x-y| (1 + tr, 1 + t̺) dr d̺ dH n-1 x dH n-1 y , and 
h(t) := ∂B (1 + tu(x)) n-s dH n-1 x .
Since g depends smoothly on t, we can find τ ∈ (0, t) such that g(t) = g(0) + t g ′ (τ ). In addition, observing that

r ∂f θ ∂r (1 + τ r, 1 + τ ̺) + ̺ ∂f θ ∂̺ (1 + τ r, 1 + τ ̺) ≤ C(n) θ n+s , ∀r, ̺ ∈ - 1 2 , 1 2 
,
for a suitable dimensional constant C(n) (whose value is allowed to change from line to line), one can estimate

|g ′ (τ )| ≤ C(n) ∂B×∂B |u(x) -u(y)| 2 |x -y| n+s dH n-1 x dH n-1 y = C(n) [u] 2 1+s 2 
.

Taking into account that g(0)

= [u] 2 1+s 2
and h(0) = P (B), we then infer from (2.20) that

P s (F t ) -P s (B) ≥ t 2 2 [u] 2 1+s 2 + P s (B) P (B) h(t) -h(0) -C(n) t 3 [u] 2 1+s 2 
.

(2.21)

We now exploit the volume constraint

|F t | = |B| to deduce that ∂B (1 + t u) n dH n-1 = n |F t | = n |B| = P (B) = h(0) , so that h(t) -h(0) = ∂B (1 + t u) n (1 + t u) -s -1 dH n-1 x .
By a Taylor expansion, we find that for every |z| ≤ 1/2,

(1 + z) -s -1 (1 + z) n = -sz + s(s + 1) 2 z 2 + sR 1 (z) 1 + nz + n(n -1) 2 z 2 + R 2 (z) , with |R 1 (z)| + |R 2 (z)| ≤ C(n)|z| 3 . Thus h(t) -h(0) ≥ -s ∂B t u + n - s + 1 2 t 2 u 2 dH n-1 -C(n)s t 3 u 2 L 2 . (2.22)
Exploiting the volume constraint again, i.e., ∂B (1 + t u) n -1 = 0, and expanding the term (1 + t u) n , we get

- ∂B t u dH n-1 ≥ (n -1) 2 ∂B t 2 u 2 dH n-1 -C(n) t 3 u 2 L 2 .
(2.23)

We may now combine (2.23) with (2.22) and (2.11) to obtain

P s (B) P (B) h(t) -h(0) ≥ - t 2 2 s(n -s)P s (B) P (B) ∂B u 2 dH n-1 -C(n) s P s (B) P (B) t 3 u 2 L 2 = - t 2 2 λ s 1 ∂B u 2 dH n-1 - C(n) n -s λ s 1 t 3 u 2 L 2 .
We plug this last inequality into (2.21) to find that

P s (F t ) -P s (B) ≥ t 2 2 [u] 2 1+s 2 -λ s 1 u 2 L 2 -C(n) t 3 [u] 2 1+s 2 + λ s 1 u 2 L 2 . (2.24)
Setting for brevity a i k := a i k (u), we now apply (2.10) to deduce that, for every η ∈ (0, 1),

[u] 2 1+s 2 -λ s 1 u 2 L 2 ≥ ∞ k=1 d(k) i=1 λ s k |a i k | 2 -λ s 1 ∞ k=0 d(k) i=1 |a i k | 2 = 1 4 ∞ k=2 d(k) i=1 λ s k |a i k | 2 + ∞ k=2 d(k) i=1 3 4 λ s k -λ s 1 |a i k | 2 -λ s 1 |a 0 | 2 ≥ 1 4 [u] 2 1+s 2 + ∞ k=2 d(k) i=1 3 4 λ s k -λ s 1 |a i k | 2 -λ s 1 n i=1 |a i 1 | 2 -λ s 1 |a 0 | 2 .
Thanks to (2.9) and (2.12),

3 4 λ s k -λ s 1 ≥ λ s 1 /2 for every k ≥ 2. Hence, [u] 2 1+s 2 -λ s 1 u 2 L 2 ≥ 1 4 [u] 2 1+s 2 + λ s 1 1 2 ∞ k=2 d(k) i=1 |a i k | 2 - n i=1 |a i 1 | 2 -|a 0 | 2 . (2.25)
Using the volume constraint again and taking into account that a 0 = P (B) -1/2 ∂B u , one easily estimates for a suitably small value of ε 0 ,

|a 0 | ≤ C(n) t u 2 L 2 . (2.26)
Similarly, the barycenter constraint 0 = ∂B x i (1 + t u) n+1 dH n-1 yields

∂B x i u dH n-1 ≤ C(n) t u 2 L 2 ,
so that, taking into account that Y i 1 = c(n) x i for some constant c(n) depending on n only,

|a i 1 | ≤ C(n) t u 2 2 , i = 1, ..., n . (2.27) 
We can now combine (2.26) and (2.27) with

u 2 L 2 = ∞ k=0 d(k) i=1 |a i k | 2 , to conclude that |a 0 | 2 + n i=1 |a i 1 | 2 ≤ C(n) t ∞ k=2 d(k) i=1 |a i k | 2 .
This last inequality implies of course that, for ε 0 small, 

1 2 ∞ k=2 d(k) i=1 |a i k | 2 - n i=1 |a i 1 | 2 -|a 0 | 2 ≥ u 2 L 2 4 . ( 2 
+ λ s 1 u 2 L 2 -C(n) t 3 [u] 2 1+s 2 + λ s 1 u 2 L 2 ≥ t 2 16 [u] 2 1+s 2 + λ s 1 u 2 L 2 ,
provided ε 0 , hence t, is small enough with respect to n. Since λ s 1 ≥ s P s (B), we have completed the proof of (2.18), thus of Theorem 2.1.

Uniform estimates for almost-minimizers of nonlocal perimeters

A crucial step in our proof of Theorem 1.1 and Theorem 1.3 is the application of the regularity theory for nonlocal perimeter minimizers: indeed, this is the step where we reduce to consider small normal deformations of balls, and thus become able to apply Theorem 2.1. The parts of the regularity theory for nonlocal perimeter minimizers that are relevant to us have been developed in [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF][START_REF] Caputo | Regularity for non-local almost minimal boundaries and applications[END_REF] with the parameter s fixed. In other words, there is no explicit discussion on how the regularity estimates should behave as s approaches the limit values 0 or 1, although it is pretty clear [START_REF] Caffarelli | Uniform estimates and limiting arguments for nonlocal minimal surfaces[END_REF][START_REF] De Philippis | Gamma-convergence of nonlocal perimeter functionals[END_REF][START_REF] Dipierro | Asymptotics of the s-perimeter as s → 0[END_REF] that they should degenerate when s → 0 + , and that they should be stable, after scaling s-perimeter by the factor (1 -s), in the limit s → 1 -. Since we shall need to exploit these natural uniformity properties, in this section we explain how to deduce these results from the results contained in [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF][START_REF] Caputo | Regularity for non-local almost minimal boundaries and applications[END_REF], with the aim of proving Corollary 3.6 below. In order to minimize the amount of technicalities, we shall discuss these issues working with a rather special notion of almost-minimality, that we now introduce. It goes without saying, the results we present should hold true in the more general class of almost-minimizers considered in [START_REF] Caputo | Regularity for non-local almost minimal boundaries and applications[END_REF].

We thus introduce the special class of almost-minimizers we shall consider. Given Λ ≥ 0, s ∈ (0, 1), and a bounded Borel set E ⊂ R n , we say that E is a (global) Λ-minimizer of the s-perimeter if

P s (E) ≤ P s (F ) + Λ 1 -s |E∆F | , (3.1) 
for every bounded set F ⊂ R n . Since the validity of (3.1) is not affected if we replace E with some E ′ with |E∆E ′ | = 0, we shall always assume that a Λ-minimizer of the s-perimeter has been normalized so that

E is Borel, with ∂E = x ∈ R n : 0 < |E ∩ B(x, r)| < ω n r n for every r > 0 (3.2)
(as show for instance in [START_REF] Maggi | Sets of finite perimeter and geometric variational problems. An introduction to Geometric Measure Theory[END_REF]Proposition 12.19,step two], this can always be done). As explained, we shall need some regularity estimates for Λ-minimizers of the s-perimeter to be uniform with respect to s ∈ [s 0 , 1], for s 0 ∈ (0, 1) fixed. We start with the following uniform density estimates.

(The proof is classical, compare with [START_REF] Maggi | Sets of finite perimeter and geometric variational problems. An introduction to Geometric Measure Theory[END_REF]Theorem 21.11] for the local case, and with [7, Theorem 4.1] for the nonlocal case, but we give the details here in order to keep track of the constants.) Lemma 3.1. If s ∈ (0, 1), Λ ≥ 0, and E satisfies the minimality property (3.1) and the normalization condition (3.2), then we have

|B| (1 -c 0 ) r n ≥ |E ∩ B(x 0 , r)| ≥ |B| c 0 r n , (3.3) 
whenever x 0 ∈ ∂E and r ≤ r 0 , where

c 0 = s 8 |B| 2 n/s (1 -s)P s (B) P (B) n/s , r 0 = (1 -s) P s (B) 2 Λ |B| 1/s .
The following elementary lemma (De Giorgi iteration) is needed in the proof.

Lemma 3.2. Let α ∈ (0, 1), N > 1, M > 0, and {u k } k∈N be a decreasing sequence of positive numbers such that

u 1-α k+1 ≤ N k M u k , ∀k ∈ N . (3.4) If u 0 ≤ 1 N (1-α)/α 2 M 1/α , (3.5 
)

then u k → 0 as k → ∞.
Proof of Lemma 3.2. By (3.4) and (3.5), induction proves that u k ≤ N -k/α u 0 for every k ∈ N.

Proof of Lemma 3.1. Being the two proofs analogous, we only prove the lower bound in (3.3). Up to a translation we may also assume that x 0 = 0. We fix r > 0, set u(r) 

:= |E ∩ B r |,
= P (B) s E∩Br dx (r -|x|) s = P (B) s r 0 u ′ (t) (r -t) s dt , (3.7) 
where we have also taken into account that u ′ (t) = H n-1 (E ∩ ∂B t ) for a.e. t > 0. By combining these two facts with (3.6) we find

P s (B) |B| (n-s)/n u(r) (n-s)/n ≤ 2 P (B) s r 0 u ′ (t) (r -t) s dt + Λ 1 -s u(r) , ∀r > 0 . (3.8)
Since u(r) ≤ |B| r n for every r > 0, our choice of r 0 implies that Λ 1 -s u(r) ≤ P s (B) 2 |B| (n-s)/n u(r) (n-s)/n , ∀r ≤ r 0 , and enables us to deduce from (3.8) that

u(r) (n-s)/n ≤ 4 P (B) |B| (n-s)/n s P s (B) r 0 u ′ (t) (r -t) s dt , ∀r ≤ r 0 . (3.9) 
By integrating (3.9) on (0, ℓ) ⊂ (0, r 0 ) and by Fubini's theorem, we thus obtain

ℓ 0 u(r) (n-s)/n dr ≤ 4 P (B) |B| (n-s)/n s (1 -s) P s (B) ℓ 1-s u(ℓ), ∀ℓ ≤ r 0 . (3.10) 
We now argue by contradiction, and assume the existence of ℓ 0 ≤ r 0 such that u(ℓ 0 ) ≤ c 0 |B| ℓ n 0 . Correspondingly we set

ℓ k := ℓ 0 2 + ℓ 0 2 k+1 , u k := u(ℓ k ) , C 1 := 4 P (B) |B| (n-s)/n s (1 -s) P s (B) ,
and notice that (3.10) implies

ℓ 0 2 k+2 u (n-s)/n k+1 = (ℓ k -ℓ k+1 )u (n-s)/n k+1 ≤ ℓ k ℓ k+1 u (n-s)/n ≤ C 1 ℓ 1-s k u k ≤ C 1 ℓ 1-s 0 u k , that is, u 1-α k+1 ≤ 2 k M u k for M := 4 C 1 ℓ -s 0 and α = s/n. Since u k → u(ℓ 0 /2) = |E ∩ B ℓ0/2 | > 0 (indeed, 0 ∈ ∂E and (3.2) is in force), by Lemma 3.2 we deduce that u(ℓ 0 ) = u 0 > 1 2 (1-α)/α 2 M 1/α = 2 n/s ℓ n 0 2 (n/s) 2 (4 C 1 ) n/s = c 0 |B| ℓ n 0 .
However, this is a contradiction to u(ℓ 0 ) ≤ c 0 |B| ℓ n 0 , and the lemma is proved. Introducing a further bit of special terminology, we say that a bounded Borel set E ⊂ R n is a Λ-minimizer of the 1-perimeter if

P (E) ≤ P (F ) + Λ ω n-1 |E∆F | ,
for every bounded F ⊂ R n , and if (3.2) holds true. We have the following compactness theorem. 

) P s h (E h ) ≤ 2Λ |B R | + sup h∈N (1 -s h ) P s h (B R ) < ∞ , (3.11) 
where we have used the fact that (1 -s) P s (B) → ω n-1 P (B) as s → 1 + (recall (1.6)).

Step one: We prove the theorem in the case s * = 1. By (3.11) and by [3, 

P s * (E) ≤ lim inf h→∞ P s h (E h ) ≤ lim sup h→∞ P s h (F ) + Λ 1 -s h |E h ∆F h | ≤ P s * (F ) + Λ 1 -s * |E∆F | ,
where the first inequality follows by Fatou's lemma, and the last one by (3.12). Since the Hausdorff convergence of ∂E h to ∂E is again consequence of Lemma 3.1, the proof is complete.

The next result is a uniform (with respect to s) version of the classical "improvement of flatness" statement. Theorem 3.4. Given n ≥ 2, Λ ≥ 0, and s 0 ∈ (0, 1), there exist τ, η, q ∈ (0, 1), depending on n, Λ and s 0 only, with the following property: If E is a Λ-minimizer of the s-perimeter for some s ∈ [s 0 , 1] with 0 ∈ ∂E and

B ∩ ∂E ⊂ y ∈ R n : |(y -x) • e| < τ
for some e ∈ S n-1 , then there exists e 0 ∈ S n-1 such that

B η ∩ ∂E ⊂ y ∈ R n : |(y -x) • e 0 | < q τ η .

Proof.

Step one: We prove that if s ∈ (0, 1], then there exist δ > 0 and τ , η, q ∈ (0, 1) (depending on n, s and Λ only), such that if s ∈ (s -δ, s + δ) ∩ (0, 1] and E is a Λ-minimizer of the s-perimeter with 0 ∈ ∂E and

B ∩ ∂E ⊂ y ∈ R n : |(y -x) • e| < τ
for some e ∈ S n-1 , then there exists e 0 ∈ S n-1 such that

B η ∩ ∂E ⊂ y ∈ R n : |(y -x) • e 0 | < q τ η .
Indeed, it follows from [31, Theorems 24.1 and 26.3] in the case s = 1, and from [10, Theorem 1.1] if s < 1, that there exist τ , η, q ∈ (0, 1/2) (depending on n, s and Λ only) such that if F is a Λ-minimizer of the s-perimeter with

0 ∈ ∂F , B ∩ ∂F ⊂ y ∈ R n : |(y -x) • e| < 2 τ (3.13)
for some e ∈ S n-1 , then there exists e 0 ∈ S n-1 such that

B η ∩ ∂F ⊂ y ∈ R n : |(y -x) • e 0 | < q 4 (2 τ ) η . (3.14) 
Let us now assume by contradiction that our claim is false. Then we can find a sequence s h → s as h → ∞, and, for every h ∈ N, E h Λ-minimizer of the s h -perimeter such that, for some

e h ∈ S n-1 , 0 ∈ ∂E h , B ∩ ∂E h ⊂ y ∈ R n : |(y -x) • e h | < τ , ∀h ∈ N , (3.15) but B η ∩ ∂E h ⊂ y ∈ R n : |(y -x) • e 0 | < q τ η , ∀h ∈ N , ∀e 0 ∈ S n-1 . (3.16)
By the compactness theorem, there exists a Λ-minimizer of the s-perimeter F such that ∂E h converges to ∂F with respect to the Hausdorff distance on compact sets. By the latter information we have 0 ∈ ∂F , and we find from (3.15) that F is a Λ-minimizer of the s-perimeter such that (3.13) holds true. In particular, there exists e 0 ∈ S n-1 such that (3.14) holds true. By exploiting the local Hausdorff convergence of ∂E h to ∂F one more time, we thus find that, if h is large enough, then

B η ∩ ∂E h ⊂ y ∈ R n : |(y -x) • e 0 | < q τ η ,
a contradiction to (3.16). We have completed the proof of step one.

Step two: We complete the proof of the theorem by covering [s 0 , 1] with a finite number of intervals (s i -δ i , si + δ i ) of the form constructed in step one.

Improvement of flatness implies C 1,α -regularity by a standard argument. By exploiting the uniformity of the constants obtained in Theorem 3.4 one thus gets the following uniform regularity criterion.

Corollary 3.5. If n ≥ 2, Λ ≥ 0 and s 0 ∈ (0, 1), then there exist positive constants ε 0 < 1, C 0 > 0, and α < 1, depending on n, Λ and s 0 only, with the following property: If E is a Λ-minimizer of the s-perimeter for some s ∈ [s 0 , 1) and

0 ∈ ∂E , B ∩ ∂E ⊂ y ∈ R n : |(y -x) • e| < ε 0 (3.17)
for some e ∈ S n-1 , then B 1/2 ∩ ∂E is the graph of a function with C 1,α -norm bounded by C 0 .

Finally, by Hausdorff convergence of sequences of minimizers, we can exploit the regularity criterion (3.17) and the smoothness of the limit set B via a standard argument (see, e.g., [START_REF] Maggi | Sets of finite perimeter and geometric variational problems. An introduction to Geometric Measure Theory[END_REF]Theorem 26.6]) in order to obtain the following result, that plays a crucial role in the proof of our main results. [START_REF] Acerbi | Minimality via second variation for a nonlocal isoperimetric problem[END_REF], and E h converges in measure to B, then there exists a bounded sequence {u h } h∈N ⊂ C 1,α (∂B) (for some α ∈ (0, 1) independent of h) such that

Corollary 3.6. If n ≥ 2, Λ ≥ 0, s 0 ∈ (0, 1), E h (h ∈ N) is a Λ-minimizer of the s h -perimeter for some s h ∈ [s 0 ,
∂E h = (1 + u h (x))x : x ∈ ∂B , lim h→∞ u h C 1 (∂B) = 0 . 4. Proof of Theorem 1.1 Given s ∈ (0, 1], we introduce the fractional isoperimetric gap of E ⊂ R n (with 0 < |E| < ∞) D s (E) := P s (E) P s (B r E ) -1 ,
where r E = (|E|/|B|) 1/n and P 1 (E) = P (E) denotes the distributional perimeter of E. We shall also set

δ s0 (E) := inf s0≤s<1 D s (E) .
With this notation at hand, the quantitative isoperimetric inequality (1.4) takes the form

A(E) 2 ≤ C(n, s 0 ) δ s0 (E) . (4.1)
We begin by noticing that we can easily obtain (4.1) in the case of nearly spherical sets as a consequence of Theorem 2.1.

Remark 4.1. Starting from Corollary 4.2, we shall coherently enumerate the constants appearing in the various statements of this section. For example, thorough this section, the symbol C 0 will always denote the constant appearing in (4.2). No confusion will arise as we shall not need to refer to constants defined in other sections of the paper. Symbols like C(n, s) shall be used to denote generic constants (depending on n and s only) whose precise value shall be inessential to us.

Corollary 4.2. For every n ≥ 2 there exist positive constants C 0 (n) and ε 0 (n) such that

C 0 (n) s D s (E) ≥ A(E) 2 (4.2)
whenever s ∈ (0, 1) and E is a nearly spherical set as in (2.1), with |E| = |B|, E xdx = 0, and

u C 1 (∂B) ≤ ε 0 (n).
In particular, under these assumptions on E, we have that

C 0 (n) s 0 δ s0 (E) ≥ A(E) 2 , ∀s 0 ∈ (0, 1) . (4.3)
Proof. This follows immediately by (2.2) since

A(E) ≤ C(n) ∂B |u| dH n-1 ≤ C(n) ∂B |u| 2 dH n-1 .
The proof of Theorem 1.1 is thus based on a reduction argument to the case considered in Corollary 4.2, much as in the spirit of what done [START_REF] Cicalese | A Selection Principle for the Sharp Quantitative Isoperimetric Inequality[END_REF] in the case s = 1. To this end, we argue by contradiction and assume (4.1) to fail. This gives us a sequence 2 , for a constant M as large as we want. By Lemma 4.4 below, the first information allows us to deduce that, up to translations, |E h ∆B| → 0 as h → ∞. We next "round-up" our sets E h by solving a penalized isoperimetric problem, see Lemma 4.6, to obtain a new sequence {F h } h∈N -with the same properties of {E h } h∈N concerning isoperimetric gaps and asymmetry -but with the additional feature of being nearly spherical sets associated to functions {u h } h∈N ⊂ C 1 (∂B) with u h C 1 (∂B) → 0 as h → ∞. By (4.3) this means that C 0 (n)/s 0 ≥ M , which gives a contradiction if we started the argument with M large enough.

{E h } h∈N of almost- isoperimetric sets (that is, D s h (E h ) → 0 as h → ∞ for some s h ∈ [s 0 , 1)) with |E h | = |B| such that D s h (E h ) < M A(E h )
In order to make this argument rigorous we need to premise a series of remarks that seem interesting in their own. The first one is a nucleation lemma for nonlocal perimeters in the spirit of [2, VI.13], see also [START_REF] Maggi | Sets of finite perimeter and geometric variational problems. An introduction to Geometric Measure Theory[END_REF]Lemma 29.10]. Here, E (1) stands for the set of points of density 1 of a measurable set E. Lemma 4.3. If n ≥ 2, s ∈ (0, 1), P s (E) < ∞, and 0 < |E| < ∞, then there exists x ∈ E (1) such that

|E ∩ B(x, 1)| ≥ min χ 1 |E| (1 -s) P s (E) , 1 χ 2 n/s , (4.4) 
where

χ 1 (n, s) := (1 -s) P s (B) 4 |B| (n-s)/n ξ(n) , χ 2 (n, s) := 2 3+(n/s) |B| (n-s)/n P (B) s(1 -s) P s (B)
,

and where ξ(n) is Besicovitch's covering constant (see for instance [31, Theorem 5.1]). In partic- ular, 0 < inf{χ 1 (n, s), χ 2 (n, s) -1 : s ∈ [s 0 , 1)} < ∞ for every s 0 ∈ (0, 1).
Proof.

Step one: We show that if x ∈ E (1) with

|E ∩ B(x, 1)| ≤ (1 -s) P s (B) 2 |B| (n-s)/n α n/s (4.5)
for some α satisfying

α ≥ 2 2+(n/s) P (B) s , (4.6) 
then there exists r x ∈ (0, 1] such that 

|E ∩ B(x, r x )| ≤ (1 -s) α E∩B(x,rx) E c
P s (E ∩ B(x, r)) ≤ E\B(x,r) E∩B(x,r) dz dy |z -y| n+s + α 1 -s u(r)
for every r ≤ 1 so that, arguing as in the proof of Lemma 3.1, we get

P s (B) |B| (n-s)/n u(r) (n-s)/n ≤ P (B) s r 0 u ′ (t) (r -t) s dt + α 1 -s u(r) , ∀r ≤ 1 , (4.8) 
cf. with (3.8). By (4.5) we have

α 1 -s u(r) ≤ α 1 -s u(1) s/n u(r) (n-s)/n ≤ P s (B) 2 |B| (n-s)/n u(r) (n-s)/n , so that (4.8) gives u(r) (n-s)/n ≤ 2 P (B) |B| (n-s)/n s P s (B) r 0 u ′ (t) (r -t) s dt , ∀r ≤ 1 . (4.9) 
Notice that (4.9) implies (3.9) with 1 in place of r 0 . Moreover, (4.6) implies that u(1) ≤ c 0 |B|, where

c 0 = s 8 |B| 2 n/s (1 -s)P s (B) P (B) n/s
, is the constant defined in Lemma 3.1. Therefore, by repeating the very same iteration argument seen in the proof of Lemma 3.1 (notice that u(r) > 0 for every r > 0 since x ∈ E (1) ), we see that u(1) > c 0 |B|, and thus find a contradiction. This completes the proof of step one.

Step two: We complete the proof of the lemma. We argue by contradiction, and assume that for every x ∈ E (1) we have

|E ∩ B(x, 1)| ≤ min χ 1 |E| (1 -s) P s (E) , 1 χ 2 n/s . (4.10) 
If we set

α := (1 -s) P s (B) 2 |B| (n-s)/n min χ 1 |E| (1 -s) P s (E) , 1 χ 2 -1 , (4.11) 
then (4.10) takes the form of (4.5) for a value of α that (by definition of χ 2 ) satisfies (4.6). Hence, by step one, for every x ∈ E (1) there exists r x ∈ (0, 1] such that (4.7) holds true with α as in (4.11). By applying Besicovitch covering theorem, see [31, Corollary 5.2], we find a countable disjoint family of balls {B(x h , r h )} h∈N such that x h ∈ E (1) , r h = r x h is such that (4.7) holds true with x = x h , and thus

|E| ≤ ξ(n) h∈N |E ∩ B(x h , r h )| ≤ ξ(n)(1 -s) α h∈N E∩B(x h ,r h ) E c dz dy |z -y| n+s ≤ ξ(n)(1 -s)P s (E) α ≤ χ 1 ξ(n) 2 |B| (n-s)/n (1 -s) P s (B) |E| = |E| 2 ,
by definition of χ 1 . This is a contradiction, and the lemma is proved.

Next, we prove the following "soft" stability lemma. An analogous statement was proved in [24, Lemma 3.1] in the case one works with D s0 (E) in place of δ s0 (E), and under the additional assumption that A(E) ≤ 3/2. This last assumption was not a real restriction in [START_REF] Fusco | A quantitative isoperimetric inequality for fractional perimeters[END_REF], as the soft stability lemma was applied to sets enjoying certain symmetry properties that, in turn, were granting that A(E) ≤ 3/2. We avoid here the use of symmetrization arguments by exploiting the more general tool provided us by the nucleation lemma, Lemma 4.3.

Lemma 4.4. If n ≥ 2 and s 0 ∈ (0, 1), then for every ε > 0 there exists δ > 0 (depending on n, s 0 , and ε) such that if δ s0 (E) < δ then A(E) < ε.

Proof. By contradiction, we assume the existence of a sequence of sets

E h ⊂ R n , h ∈ N, such that |E h | = |B| , A(E h ) ≥ ε , lim h→∞ δ s0 (E h ) = 0 , (4.12) 
where ε is a positive constant. In particular there exist

s h ∈ [s 0 , 1), h ∈ N, such that lim h→∞ P s h (E h ) P s h (B) = 1 . (4.13)
Without loss of generality, we assume that

s h → s * ∈ [s 0 , 1] as h → ∞. Since (1 -s) P s (B) → ω n-1 P (B) as s → 1 -, we find that sup h∈N (1 -s h ) P s h (E h ) < ∞ . (4.14) 
By Lemma 4.3, see (4.4), we find that, up to translations,

|E h ∩ B| ≥ min χ 1 (n, s h ) |B| (1 -s h ) P s h (E h ) , 1 χ 2 (n, s h ) n/s h ≥ κ * , (4.15) 
for some positive constant κ * independent of h. By compactness of the embedding of

H s/2 (R n ) into L 1 loc (R n ) when s * < 1,
or by [3, Theorem 1] in case s * = 1, we exploit (4.14) to deduce that, up to extracting subsequences, there exists a measurable set E such that for every K ⊂⊂ R n we have |(E h ∆E) ∩ K| → 0 as h → ∞. By local convergence of E h to E and by (4.12), we have |E| ≤ |B|. If s * = 1, then by [START_REF] De Philippis | Gamma-convergence of nonlocal perimeter functionals[END_REF]Theorem 2] and by (4.13) we find

ω n-1 P (E) ≤ lim inf h→∞ (1 -s h ) P s h (E h ) = lim inf h→∞ (1 -s h ) P s h (B) = ω n-1 P (B) ,
that is, P (E) ≤ P (B). If, instead, s * < 1, then (4.13) gives

P s * (B) = lim h→∞ P s h (E h ) = lim h→∞ R n R n 1 E h (x)1 E c h (y) |x -y| n+s h dxdy ≥ P s * (E) ,
where the last inequality follows by Fatou's lemma. In both cases, P s * (E) ≤ P s * (B). Should it be |E| = |B|, then, by the (nonlocal, if s * < 1) isoperimetric theorem, we would be able to conclude that A(E) = 0, against A(E h ) ≥ ε for every h ∈ N. Should it be |E| = 0, then we would get a contradiction with (4.15). Therefore, it must be 0 < |E| < |B|. By a standard application of the concentration-compactness lemma (see, e.g., [24, Lemma 3.1]), 0 < |E| < |B| can happen only if there exists λ ∈ (0, 1) such that for every σ > 0 and h large enough there exist n+s) , and thus

F σ h , G σ h ⊂ E h with the property that |E h \ (F σ h ∪ G σ h )| < σ , ||F σ h | -λ |B|| < σ , ||G σ h | -(1 -λ) |B|| < σ , and dist(F σ h , G σ h ) → +∞ as h → ∞. Let us now set K s,η (z) := 1 {η<|z|<η -1 } |z| n+s + 1 {|z|<η} η n+s , z ∈ R n , so that K s,η (x -y) ≤ |x -y| -(
P s h (E h ) ≥ F σ h E c h K s h ,η (x -y) dxdy + G σ h E c h K s h ,η (x -y) dxdy ≥ F σ h (F σ h ) c K s h ,η (x -y) dxdy + G σ h (G σ h ) c K s h ,η (x -y) dxdy - C(n)σ η n+s h ≥ B a σ h (B a σ h ) c K s h ,η (x -y) dxdy + B b σ h (B b σ h ) c K s h ,η (x -y) dxdy - C(n)σ η n+s h ,
where in the last inequality we have used [20, Lemma A.2] and we have chosen

a σ h , b σ h > 0 in such a way that |B a σ h | = |F σ h | and |B b σ h | = |G σ h |.
We now first let σ → 0 + , to obtain 

P s h (E h ) ≥ Ba (Ba) c K s h ,η (x -y) dxdy + B b (B b ) c K s h ,η (x -y) dxdy ,
P s * (B) = λ (n-s * )/n + (1 -λ) (n-s * )/n > 1 .
This completes the proof of the lemma.

Next, we introduce the variational problems with penalization needed to round-up the nearlyisoperimetric sets E h into nearly-spherical sets F h . Precisely, we shall consider the problems

inf (1 -s) P s (E) + Λ |E| -|B| + |α(E) -α| : E ⊂ R n , (4.16) 
where s ∈ (0, 1), Λ ≥ 0, α > 0, and

α(E) := inf |E∆(x + B)| : x ∈ R n , E ⊂ R n .
Notice that the existence of minimizers in (4. where

⊂ R n . If |E \ B| ≤ η < 1, then there exists 1 ≤ r E ≤ 1 + C 1 (n, s) η 1/n such that (1 -s) P s (E ∩ B r E ) ≤ (1 -s) P s (E) - |E \ B r E | C 2 (n, s) η s/n , (4.17 
C 1 (n, s) := 2 1+(n-s)/s 4 |B| (n-s)/n P (B) s (1 -s) P s (B) 1/s , C 2 (n, s) := 2|B| (n-s)/n (1 -s) P s (B) . (4.18)
In particular, sup{C 1 (n, s)

+ C 2 (n, s) : s 0 ≤ s < 1} < ∞.
Proof. Without loss of generality we consider a set E with |E \B| ≤ η < 1 and

|E \B 1+C1 η 1/n | > 0. Correspondingly, if we set u(r) := |E \ B r |, r > 0, then u is a decreasing function with [0, 1 + c 1 η 1/n ] ⊂ spt u u(1) ≤ η , u ′ (r) = -H n-1 (E ∩ ∂B r ) for a.e. r > 0 . (4.19)
Arguing by contradiction, we now assume that

(1 -s) P s (E) ≤ (1 -s) P s (E ∩ B r ) + u(r) C 2 η s/n , ∀r ∈ (1, 1 + C 1 η 1/n ) . (4.20)
First, we notice that we have the identity

P s (E ∩ B r ) -P s (E) = 2 E∩Br E∩B c r dx dy |x -y| n+s -P s (E \ B r ) , ∀r > 0 ;
second, by arguing as in the proof of (3.7), and by (4. [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF], we see that

E∩Br E∩B c r dx dy |x -y| n+s ≤ P (B) s ∞ r -u ′ (t) (t -r) s dt , ∀r > 0 ;
finally, by (1.1), P s (E \ B r ) ≥ P s (B)|B| (s-n)/n u(r) (n-s)/n . We may thus combine these three remarks with (4.20

) to conclude that, if r ∈ (1, 1 + C 1 η 1/n ), then 0 ≤ 2 P (B) s ∞ r -u ′ (t) (t -r) s dt - P s (B) |B| (n-s)/n u(r) (n-s)/n + u(r) (1 -s) C 2 η s/n ≤ 2 P (B) s ∞ r -u ′ (t) (t -r) s dt - P s (B) 2|B| (n-s)/n u(r) (n-s)/n , (4.21) 
where in the last inequality we have used our choice of C 2 and the fact that u(r) ≤ η for every r > 1. We rewrite (4.21) in the more convenient form

u(r) (n-s)/n ≤ C 3 ∞ r -u ′ (t) (t -r) s dt , ∀r ∈ (1, 1 + c η 1/n ) , (4.22) 
where we have set

C 3 (n, s) := 4 |B| (n-s)/n P (B) s P s (B) . Let us set r k := 1 + (1 -2 -k ) C 1 η 1/n , so that r 0 = 1, r k < r k+1 , and r ∞ = 1 + C 1 η 1/n .
Correspondingly, if we set u k = u(r k ), then by (4. [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF]) we find that u 0 ≤ η, u k ≥ u k+1 , and u ∞ = lim k→∞ u k > 0. We are now going to show that (4.22) implies u ∞ = 0, thus obtaining a contradiction and proving the lemma. Indeed, if we integrate (4.22) on (r k , r k+1 ) we get

(r k+1 -r k ) u (n-s)/n k+1 ≤ C 3 r k+1 r k dr ∞ r -u ′ (t) (t -r) s dt (4.23) = C 3 r k+1 r k (-u ′ (t)) dt t r k dr (t -r) s + C 3 ∞ r k+1 (-u ′ (t)) dt r k+1 r k dr (t -r) s .
On the one hand we easily find that

r k+1 r k (-u ′ (t)) dt t r k dr (t -r) s ≤ (r k+1 -r k ) 1-s 1 -s (u k -u k+1 ) ; (4.24)
on the other hand we notice that, for every t > r k+1 , since

|b 1-s -a 1-s | ≤ |b -a| 1-s for a, b ≥ 0, r k+1 r k dr (t -r) s = (t -r k ) 1-s -(t -r k+1 ) 1-s 1 -s ≤ (r k+1 -r k ) 1-s 1 -s . Hence, since |E| < ∞ implies lim r→∞ u(r) = 0, ∞ r k+1 (-u ′ (t)) dt r k+1 r k dr (t -r) s ≤ (r k+1 -r k ) 1-s 1 -s u k+1 . (4.25)
We combine (4.23), (4.24), and (4.25) to find

(r k+1 -r k ) u (n-s)/n k+1 ≤ C 3 1 -s (r k+1 -r k ) 1-s u k . Since r k+1 -r k = C 1 η 1/n 2 -k-1 , we conclude that u 1-α k+1 ≤ N k M u k , where α = s n , N = 2 s , M = 2 C 1 η 1/n s C 3 1 -s .
We notice that, since u 0 ≤ η < 1, we have u 0 ≤ (N (1-α)/a 2 M 1/α ) -1 thanks to our choice of C 1 . We are thus in the position to apply Lemma 3.2 to get u ∞ = 0 and obtain the required contradiction.

Given n ≥ 2, s ∈ (0, 1), α > 0, and E ⊂ R n , let us set for the sake of brevity

F s,Λ,α (E) := (1 -s) P s (E) + Λ |E| -|B| + |α(E) -α| .
We now prove the existence of global minimizers of F s,Λ,α .

Lemma 4.6. If n ≥ 2, s ∈ (0, 1), Λ > Λ 0 (n, s) and α < ε 1 (n, s), then there exists a minimizer E in the variational problem (4.16), that is, F s,Λ,α (E) ≤ F s,Λ,α (F ) for every F ⊂ R n . Moreover, up to a translation, this minimizer satisfies

E ⊂ B C4(n,s) .
Here we have set

Λ 0 (n, s) := (1 -s) P s (B) |B| , ε 1 (n, s) := 1 2 min 1, 1 (Λ + 1)C 2 (n, s) n/s , 4|B| , C 4 (n, s) := 1 + C 1 (n, s) (2ε 1 (n, s)) 1/n .
In particular, inf{ε 1 (n, s) : s 0 ≤ s < 1} > 0 and sup{Λ 0 (n, s) + C 4 (n, s) : s 0 ≤ s < 1} < ∞.

Proof.

Step one: We first show that, since s ∈ (0, 1) and Λ > (1 -s) P s (B)/|B|, then the unit ball B is the unique solution, up to a translation, of the minimization problem

min (1 -s) P s (E) + Λ |E| -|B| : E ⊂ R n . (4.26)
Indeed, by comparing any set E with a ball having its same volume and thanks to (1.1), we immediately reduce the competition class in (4.26) to the family of balls in R n . Note that, if r > 1, then P s (B) < P s (B r ), so that only balls with radius r ≤ 1 have to be considered. At the same time, if Λ > (1 -s) P s (B)/ω n , then one immediately gets that

(1 -s) P s (B r ) + Λ |B r | -|B| = r n-s (1 -s) P s (B) + Λω n (1 -r n )
as a function of r ∈ [0, 1] attains its minimum at r = 1.

Step two: Let us denote by γ the infimum value in (4.16), and let us consider sets

E h (h ∈ N) with F s,Λ,α (E h ) ≤ γ + h -1 α. Since α < ε 1 ≤ 2|B|, we immediately get that γ ≤ (1 -s)P s (B). Therefore, since by step one (1 -s) P s (B) ≤ (1 -s) P s (E h ) + Λ ||E h | -|B||, we conclude that |α(E h ) -α| ≤ h -1 α.
Hence, up to translations, we obtain that

|E h \ B| ≤ |E h ∆B| ≤ 2 α < 2ε 1 < 1 , ∀h ∈ N .
If we set η := 2 α, then by Lemma 4.5 we can find 1

≤ r h ≤ 1 + C 1 (n, s) η 1/n such that (1 -s) P s (E h ∩ B r h ) ≤ (1 -s) P s (E h ) - |E h \ B r h | C 2 (n, s) η s/n . (4.27) Since |α(I) -α(J)| ≤ |I∆J| for every I, J ⊂ R n , if we set F h := E h ∩ B r h then Λ ||F h | -|B|| + |α(F h ) -α| ≤ Λ ||E h | -|B|| + |α(E h ) -α| + (Λ + 1) |E h \ B r h | ,
so that (4.27) implies (by our choice of ε 1 > η/2)

F s,Λ,α (F h ) ≤ F s,Λ,α (E h ) + (Λ + 1) - 1 C 2 (n, s) η s/n |E h \ B r h | ≤ F s,Λ,α (E h ) .
From this we conclude that F s,Λ,α (F h ) → γ as h → ∞, that is, {F h } h∈N is still a minimizing sequence for (4.16) with the additional feature that, by construction,

F h ⊂ B 1+C1 (2ε1) 1/n , ∀h ∈ N .
It is now easy to prove the existence of a minimizer in (4.16).

Proof of Theorem 1.1. Since both sides of (4.1) are scaling invariant, we may assume that |E| = |B|. We want to show the existence of δ 0 = δ 0 (n, s 0 ) > 0 such that, if M > 0 is large enough, then 

A(E) 2 ≤ M δ s0 (E) , whenever δ s0 (E) ≤ δ 0 . ( 4 
| = |B|, δ s0 (E h ) → 0 as h → ∞, but δ s0 (E h ) < A(E h ) 2 M . ( 4 
P s h (E h ) P s h (B) = 1 , D s h (E h ) ≤ |E h ∆B| 2 M |B| 2 , lim h→∞ α(E h ) = 0 . (4.30) 
We set α h := α(E h ) (so that, up to translations, α h = |E h ∆B|) and consider the minimization problems

inf (1 -s h ) P s h (E) + Λ |E| -|B| + |α(E) -α h | : E ⊂ R n , (4.31) 
where Λ is chosen so that

Λ > sup s∈[s0,1) (1 -s) P s (B) |B| ; (4.32)
notice that the right-hand side of (4.32) is finite since (1 -s) P s (B) → ω n-1 P (B) as s → 1 -. For the same reason, inf s∈[s0,1) ε 1 (n, s) > 0, and thus for every h large enough we may entail that

α h < inf s∈[s0,1) ε 1 (n, s) .
We can thus apply Lemma 4.6 to prove the existence of minimizers F h in (4.31) with

F h ⊂ B C4(n,s h ) ⊂ B C5(n,s0) , with C 5 (n, s 0 ) := sup s∈[s0,1) C 4 (n, s) < ∞ . (4.33)
We shall assume (as we can do up to translations) that

F h x dx = 0 , ∀h ∈ N . (4.34)
By the minimality of each F h , recalling (4.29) and (4.30) we have that

F s h ,Λ,α h (F h ) ≤ F s h ,Λ,α h (E h ) = (1 -s h ) P s h (E h ) ≤ (1 -s h ) P s h (B) + (1 -s h )α 2 h P s h (B) M |B| 2 (4.35) ≤ (1 -s h ) P s h (F h ) + Λ |F h | -|B| + (1 -s h )α 2 h P s h (B) M |B| 2 ,
where in the last inequality we used step one in the proof of Lemma 4. 

-s h ) P s h (G h ) -P s h (B) = (1 -s h ) P s h (F h ) (λ n-s h -1) + (1 -s h ) P s h (F h ) -P s h (B) ≤ (1 -s h ) P s h (F h ) (λ n-s h -1) -Λ ||F h | -|B|| + (1 -s h )α 2 h P s h (B) M |B| 2 . 1 
Again by (4.35), we have (1

-s h ) P s h (F h ) ≤ (1 -s h ) P s h (B) + (1 -s h )α 2 h P s h (B)/(M |B| 2 ) ≤ C 6 , provided we set C 6 (n, s 0 ) := sup s∈[s0,1) (1 -s) P s (B) 1 + |B| -2 inf s∈[s0,1) ε 1 (n, s) 2 ,
and assume M ≥ 1. Thus, by taking into account that λ n-s -1 ≤ |λ n -1| for every λ > 0 and that λ h → 1, we get

(1 -s h ) P s h (G h ) -P s h (B) ≤ C 6 (λ n-s h -1) - Λ 2 |B| |λ n h -1| + (1 -s h )α 2 h P s h (B) M |B| 2 ≤ C 6 - Λ 2 |B| |λ n h -1| + (1 -s h )α 2 h P s h (B) M |B| 2 .
We thus strengthen (4.32) into Λ > C 6 /|B| to find that

P s h (G h ) -P s h (B) ≤ α 2 h P s h (B)/(M |B| 2 ), that is D s h (G h ) ≤ α 2 h M |B| 2 ,
that we combine with Corollary 4.2 to get

A(G h ) 2 ≤ C 0 (n) s 0 D s h (G h ) ≤ C 0 s 0 M |B| 2 α 2 h .

Now, by scale invariance A(G

h ) = A(F h ); moreover, by (4.36), |F h | → |B| as h → ∞, and thus A(F h ) 2 ≥ α(F h ) 2 /(2|B| 2
) for h large enough; finally, as noticed in proving (4.36), α(F h )/α h → 1 as h → ∞, so that A(F h ) 2 ≥ α h /(4|B| 2 ) for every h large enough, and we conclude that

α 2 h 4 ≤ C 0 s 0 M α 2 h .
We may thus choose

M > max 1, 4 C 0 (n) s 0 ,
in order to find a contradiction. This completes the proof of Theorem 1.1.

Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We shall continue the enumeration of constants that we started in section 4, working with the same convention set in Remark 4.1. We begin with an existence result. In the following, given a set E ⊂ R n we shall set Per s (E) :=

1-s ωn-1 P s (E) , if s ∈ (0, 1) , P (E) , if s = 1 .
Notice that, by (1.6), at least on smooth sets Per s is continuous as a function of s ∈ (0, 1]. Recall that V α denotes the Riesz potential defined in (1.5).

Lemma 5.1. If n ≥ 2, s ∈ (0, 1], and α ∈ (0, n), then there exist positive constants m 1 (n, α, s) and R 0 (n, s) with the following property: For every m < m 1 , the variational problem

inf Per s (E) + V α (E) : |E| = m (5.1)
admits minimizers, and every minimizer E in (5.1) satisfies (up to a translation) the uniform bound

E ⊂ B (m/|B|) 1/n R0 .
Moreover,

sup 1 m 1 (n, α, s) + R 0 (n, s) : α ∈ [α 0 , n) , s ∈ [s 0 , 1] < ∞ , ∀s 0 ∈ (0, 1), α 0 ∈ (0, n) . (5.2)
Proof of Lemma 5.1. We first notice that, as expected, the truncation lemma for nonlocal perimeters, namely Lemma 4.5, holds true as well for classical perimeters. This can be seen either by adapting the argument of Lemma 4.5 to the local case, or can be inferred as a particular case of [START_REF] Maggi | Sets of finite perimeter and geometric variational problems. An introduction to Geometric Measure Theory[END_REF]Lemma 29.12]. Either ways, one ends up showing that if n ≥ 2 and E ⊂ R n is such that |E \ B| ≤ η < 1, then there exists 1 ≤ r E ≤ 1 + C * 1 η 1/n such that

P (E ∩ B r E ) ≤ P (E) - |E \ B r E | C * 2 η 1/n
, where C * 1 and C * 2 are positive constants that depend on the dimension n only. We then extend the definition of C 1 (n, s) and C 2 (n, s) given in (4.18) to the case s = 1 by setting

C 1 (n, 1) = C * 1 and C 2 (n, 1) = C * 2 .
In conclusion, this shows that for every n ≥ 2, s ∈ (0, 1] and

E ⊂ R n is such that |E \ B| ≤ η < 1, there exists 1 ≤ r E ≤ 1 + C 1 (n, s) η 1/n such that Per s (E ∩ B r E ) ≤ Per s (E) - |E \ B r E | C 2 (n, s) η 1/n , where C 1 (n, s) a C 2 (n, s) are such that sup C 1 (n, s) + C 2 (n, s) : s ∈ [s 0 , 1] < ∞ , ∀s 0 ∈ (0, 1) .
With this tool at hand, we now pick n ≥ 2, α ∈ (0, n), s ∈ (0, 1], and denote by γ the infimum in (5.1). We claim that for every m < m 1 ,

γ = inf Per s (E) + V α (E) : |E| = m , E ⊂ B (m/|B|) 1/n R0 , (5.3) 
where 

m 1 = m 1 (n, s, α) := |B| min 1, Per s (B) 8|B| 2 C(n, s) V α (B) , Per s (B) 2|B| 2 C(n, s) V α (B)
γ ≤ Per s (B[m]) + V α (B[m]) = m |B| (n-s)/n Per s (B) + m |B| (n+α)/n V α (B) (5.4) ≤ C 7 m |B| (n-s)/n
, where in the last inequality we have used the definition of C 7 . If E is a generic set with

|E| = m , Per s (E) + V α (E) ≤ γ + V α (B) m |B| (n+α)/n , (5.5) 
then by (5.4) we find In particular, scaling back to E and setting r m = r * /λ, we find

D s (E) ≤ 2 (m/|B|) (n+α)/n V α (B) (m/|B|) (n-s)/n Per s (B) = 2 V α (B) Per s (B) m |B| (α+s)/n . ( 5 
Per s (E ∩ B rm ) ≤ Per s (E) - m |B| (n-s)/n |B| C 2 η s/n |E \ B rm | m . Since trivially V α (E ∩ B rm ) ≤ V α (E), we conclude that Per s (E ∩ B rm ) + V α (E ∩ B rm ) ≤ Per s (E) + V α (E) - m |B| (n-s)/n u|B| C 2 η s/n , (5.7) 
where we have set u

:= |E \ B rm |/m. Let us now consider F := µ(E ∩ B rm ) for µ > 0 such that |F | = m. Since µ = (1 -u) -1
/n with u < η, if we assume that η ≤ 1/2, and take into account that

1 (1 -u) p ≤ 1 + 2 p+1 u ∀u ∈ [0, 1/2] ,
then, by max{µ n-s , µ n+α } = µ n+α ≤ 1 + 8 u and by (5.7), we conclude that

Per s (F ) + V α (F ) = µ n-s Per s (E ∩ B rm ) + µ n+α V α (E ∩ B rm ) ≤ (1 + 8 u) Per s (E ∩ B rm ) + V α (E ∩ B rm ) ≤ Per s (E) + V α (E) + 8 C 7 - |B| C 2 η s/n m |B| (n-s)/n u ,
where we have also taken into account that, by (5.7), (5.5), (5.4), and m ≤ |B|,

Per s (E ∩ B rm ) + V α (E ∩ B rm ) ≤ m |B| (n-s)/n Per s (B) + 2 m |B| (n+α)/n V α (B) ≤ C 7 m |B| (n-s)/n
.

Since the definition of m 1 implies that η s/n ≤ |B|/(8 C 2 C 7 ), we have proved that for every set E as in (5.5) we can find a set F with |F | = m and F ⊂ B µrm such that Per s (F ) + V α (F ) ≤ Per s (E) + V α (E). This implies (5.3) and completes the proof of the lemma by observing that µ ≤ 1 + 2 1+1/n u < 3 and

r m = r * /λ ≤ (1 + C 1 )(m/|B|) 1 n .
Next, we want to show that minimizers in (5.1), once rescaled to have the volume of the unit ball, are Λ-minimizers of the s-perimeter for some uniform value of Λ.

Lemma 5.2. If n ≥ 2, s ∈ (0, 1], α ∈ (0, n), E is a minimizer in (5.1) for m < m 1 , and E * = λ E for λ > 0 such that |E * | = |B|, then E * ⊂ B R0 and Per s (E * ) ≤ Per s (F ) + Λ 1 |E * ∆F | , (5.8) 
for every F ⊂ R n . Here,

Λ 1 (n, α, s) := 4 C 7 |B| + 6 |B| (1 + C 8 ) C α/n 8 α , C 8 (n, α, s) := 1 + V α (B) Per s (B) n/(n-s)
.

In particular, sup

s∈[s0,1],α∈[α0,n) Λ 1 (n, s, α) < ∞ , ∀s 0 ∈ (0, 1) , α 0 ∈ (0, n) .
Proof. We first notice that, if 

F, G ⊂ R n with |F | < ∞, then V α (F ) -V α (G) ≤ 2 P (B) α |F | |B| α/n |F \ G| . ( 5 
V α (F ) -V α (G) ≤ 2 F F \G dx dy |x -y| n-α = 2 F \G dx F dy |x -y| n-α ≤ 2|F \ G| Br F dz |z| n-α ,
that is (5.9). We now prove that E * satisfies (5.8). Of course, we may directly assume that Per s (F ) ≤ Per s (E * ). We also claim that we can reduce to prove (5.8) in the case that

1 2 ≤ |F | |B| ≤ C 8 .
(5.10)

Indeed, if we compare E with a ball of volume m (see (5.4)) and then multiply the resulting inequality by λ n-s , we find 

Per s (E * ) + V α (E * ) λ α+s ≤ Per s (B) + V α (B) λ α+s ≤ Per s (B) + V α (B) , ( 5 
(µ F ) + V α (µ F ) -V α (E) = Per s (µ F ) + µ n+α V α (F ) -V α (E * ) + (λ µ) n+α -1 V α (E) ,
where in the last identity we have added and subtracted V α (λ µ E). We multiply this inequality by λ n-s , apply (5.9) and (5.10) to the second term on the right-hand side, and take into account that

λ n-s V α (E) = λ -s-α V α (E * ), to find that Per s (E * ) ≤ (λ µ) n-s Per s (F ) + λ n-s µ n+α 2 P (B) C α/n 8 α |F \ E * | (5.12) + (λ µ) n+α -1 V α (E * )
λ α+s . We now estimate the various terms on the right-hand side of (5.12). Since |F | ≥ |B|/2 and 

|B| -|F | = |E * | -|F | ≤ |E * ∆F | give (λ µ) n-s = 1 + |B| -|F | |F | (n-s)/n ≤ 1 + n -s n |E * ∆F | |B|/2 ≤ 1 + 2 |B| |E * ∆F | , (5.13 
(λ µ) n+α -1 V α (E * ) λ α+s ≤ 3 C 7 |B| |E * ∆F | .
We now plug (5.14), (5.15), (5.16), and (5.11) into (5.12) to complete the proof of (5.8).

Proof of Theorem 1.3. Let us fix s 0 ∈ (0, 1) and α 0 ∈ (0, n), and let

m1 := inf m 1 (n, α, s) : α ∈ [α 0 , n) , s ∈ [s 0 , 1) ,
so that, by Lemma 5.1 and Lemma 5.2, m1 > 0 and for every m < m1 , α ∈ [α 0 , n), and s ∈ [s 0 , 1), there exists a minimizer E m,α,s of inf Per

s (E) + V α (E) : |E| = m such that Per s (E m,α,s ) ≤ Per s (F ) + Λ1 |E m,α,s ∆F | , ∀F ⊂ R n , where Λ1 := sup Λ 1 (n, α, s) : α ∈ [α 0 , n) , s ∈ [s 0 , 1) < ∞ .
We now want to show the existence of m 0 ≤ m1 such that A(E m,α,s ) = 0 for m < m 0 , which implies that E m,α,s is a ball (recall (1.3)).

We argue by contradiction and construct sequences {s

h } h∈N ⊂ [s 0 , 1], {α h } h∈N ⊂ [α 0 , n), and {E h } h∈N minimizers of Per s h + V α h at volume m h , such that m h → 0 + as h → ∞ and, if we set λ h = (|B|/m h ) 1/n , then E h, * = λ h E h is a Λ1 -minimizers of the s h -perimeter with |E h, * | = |B| , A(E h, * ) = A(E h ) > 0 , ∀h ∈ N .
By (5.6) and either by Theorem 1.1 if s h < 1, or by [22, Theorem 1.1] in the case s h = 1, we have that, for a suitable positive constant C(n, s 0 ),

A(E h ) 2 C 0 (n, s 0 ) ≤ D s h (E h ) ≤ 2 V α h (B) Per s h (B) m h |B| (α h +s h )/n
, so that

A(E h, * ) ≤ C(n, s 0 , α 0 ) m (α0+s0)/2n h , ∀h ∈ N .
Up to translations, we may thus assume lim h→∞ |E h, * ∆B| = 0 .

By Corollary 3.6, we thus have

∂E h, * = (1 + u h (x)) x : x ∈ ∂B , u h ∈ C 1 (∂B) , ∀h ∈ N , where u h C 1 (∂B) → 0 as h → ∞. Since |E h, * | = |B|, by Lemma 5.3 below we find that V α (B) -V α (E h, * ) ≤ C(n) [u h ] 2 1-α 2 + u h 2 L 2 (∂B) , ∀α ∈ (0, n) ,
where

[u] 2 1-α 2 := ∂B×∂B |u(x) -u(y)| 2 |x -y| n-α dH n-1 x dH n-1 y .
Notice, in particular, that

[u] 2 1-α 2 ≤ 2 α+s [u] 2 1+s 2 
, ∀α ∈ (0, n) , s ∈ (0, 1) .

(5.17)

At the same time, by Per

s h (E h ) + V α h (E h ) ≤ Per s h (B r h ) + V α h (B r h ), where |B r h | = m h , we have δ s0 (E h ) ≤ D s h (E h ) ≤ V α h (B r h ) -V α h (E h ) Per s h (B r h ) ≤ m (α h +s h )/n h C(n) [u h ] 2 1-α 2 + u h 2 L 2 (∂B) inf s∈[s0,1) Per s (B) ≤ C(n, s 0 ) m (α h +s h )/n h [u h ] 2 1+s 0 2 + u h 2 L 2 (∂B) ,
where we used (5.17). On the other hand, by Theorem 2.1 (notice that we can assume without loss of generality that E h x dx = 0 for every h ∈ N)

δ s0 (E h ) ≥ s 0 C(n) [u h ] 2 1+s 0 2 + u h 2 L 2 (∂B) .
We have thus proved

s 0 C(n) ≤ C(n, s 0 ) m (α h +s h )/n h ,
and since α h ≥ α 0 , s h ≥ s 0 , and m h → 0, this inequality leads to a contradiction for h sufficiently large.

Let us recall that, by Riesz's rearrangement inequality, for every α ∈ (0, n)

V α (B) ≥ V α (E) whenever |E| = |B| , (5.18) 
with equality if and only if E = x + B for some x ∈ R n . (Indeed, the radial convolution kernel |z| α-n is strictly decreasing.) Due to the maximality property of balls expressed in (5.18), one expect the quantity V α to satisfy an estimate of the form V α (E) ≥ V α (B) -C(n, α) u 2 on nearly spherical sets of volume |B|, for some suitable norm • . This is exactly the content of the following lemma.

Lemma 5.3. There exist positive constants ε 0 and C 0 , depending on n only, with the following property:

If E ⊂ R n is an open set such that |E| = |B| and ∂E = (1 + u(x)) x : x ∈ ∂B , for some function u ∈ C 1 (∂B) with u C 1 (∂B) ≤ ε 0 , then V α (B) -V α (E) ≤ C 0 [u] 2 1-α 2 + αV α (B) u 2 L 2 (∂B) , ∀α ∈ (0, n) .
Proof. The proof of this result is very similar to the one of Theorem 2.1.

As in that proof, we slightly change notation and assume that E t is an open set with |E t | = |B| and

E t = (1 + t u(x)) x : x ∈ ∂B , u C 1 (∂B) ≤ 1 2 , t ∈ (0, 2ε 0 ) .
Given r, ρ, θ ≥ 0 we now set 

f θ (r, ρ) := r n-1 ρ n-1 (|r -ρ| 2 + r ρ θ 2 ) (n-α)/2 , so that V α (E t ) = ∂B dH n-1 x ∂B dH n-1 y 1+t u(x)
V α (E t ) = ∂B dH n-1 x ∂B dH n-1 y 1+t u(x) 0 dr 1+t u(x) 0 f |x-y| (r, ρ) dρ (5.19) - 1 2 ∂B dH n-1 x ∂B dH n-1 y 1+t u(x) 1+t u(y) dr 1+t u(x) 1+t u(y) f |x-y| (r, ρ) dρ .
By a change of variable, for every x ∈ ∂B we find

∂B dH n-1 y 1+t u(x) 0 dr 1+t u(x) 0 f |x-y| (r, ρ) dρ = (1 + t u(x)) n+α ∂B dH n-1 y 1 0 dr 1 0 f |x-y| (r, ρ) dρ = (1 + t u(x)) n+α V α (B) P (B) ,
where in the last identity we have used (5.19) with u = 0. Hence,

V α (E t ) = - 1 2 ∂B dH n-1 x ∂B dH n-1 y 1+t u(x) 1+t u(y) dr 1+t u(x) 1+t u(y) f |x-y| (r, ρ) dρ + V α (B) P (B) ∂B (1 + t u) n+α dH n-1 ,
from which we conclude that

V α (B) -V α (E t ) = t 2 2 g(t) + V α (B) P (B) (h(0) -h(t)) ,
provided we set h(t) := ∂B (1 + t u) n+α dH n-1 and

g(t) := ∂B dH n-1 x ∂B dH n-1 y u(x) u(y) dr u(x) u(y) f |x-y| (1 + t r, 1 + t ρ) dρ . Since |B| = |E t | implies ∂B (1 + t u) n = n |E t | = n |B| = P (B) = h(0), we get h(0) -h(t) = ∂B (1 + tu) n 1 -(1 + tu) α dH n-1 ≤ -α t ∂B u dH n-1 -α (2n + α -1) t 2 2 ∂B u 2 dH n-1 + C(n) α t 3 u 2 L 2 .
In addition, because |B| = |E t | also gives 0 = ∂B (1 + t u) n -1 , we can likewise deduce that

-t ∂B u dH n-1 ≤ (n -1) t 2 2 ∂B u 2 dH n-1 + C(n) t 3 u 2 L 2 , therefore h(0) -h(t) ≤ -α (n + α) t 2 2 ∂B u 2 dH n-1 + α C(n) t 3 u 2 L 2 . Furthermore, we notice that g(0) = ∂B×∂B |u(x) -u(y)| 2 |x -y| n-α dH n-1 x dH n-1 y = [u] 2 1-α 2 .
Arguing as in the proof of Theorem 2.1, we infer that g(t) = g(0) + t g ′ (τ ) for some τ ∈ (0, t) and with |g ′ (τ )| ≤ C(n) g(0). Hence,

V α (B) -V α (E t ) ≤ t 2 2 [u] 2 1-α 2 -α(n + α) V α (B) P (B) u 2 L 2 + C(n) t 3 [u] 2 1-α 2 + αV α (B) u 2 L 2 .
(5.20) This last estimate obviously implies the announced result.

First and second variation formulae and local minimizers

In this section we provide first and second variation formulae for the functionals P s (compare with [START_REF] Davila | Nonlocal Minimal Lawson Cones[END_REF]Section 4]) and V α , and actually for generic nonlocal functionals behaving like P s and V α . Before introducing our precise setting, let us recall what is the situation in the case of the classical perimeter functional (see, e.g., [ Given an open set Ω and a vector field X ∈ C ∞ c (Ω; R n ), we denote by {Φ t } t∈R the flow induced by X, that is the smooth map (t, x) ∈ R × R n → Φ t (x) ∈ R n defined by solving the family of ODEs (parameterized by

x ∈ R n ) ∂ t Φ t (x) = X(Φ t (x)) , t ∈ R , Φ 0 (x) = x . (6.1)
By the implicit function theorem, there always exists ε > 0 such that {Φ t } |t|<ε is a smooth family of diffeomorphisms. Given E ⊂ R n with |E| < ∞, one says that X induces a volume-preserving flow on E if |Φ t (E)| = |E| for every |t| < ε. If E is a set of finite perimeter in Ω and E t := Φ t (E), then {E t } |t|<ε is a family of sets of finite perimeter in Ω, t → P (E t ; Ω) is a smooth function on |t| < ε (thanks to the area formula for rectifiable sets), and it makes sense to define the first and second variations of the perimeter at E along X (or, more precisely, along the flow induced by X via (6.1)) as

δP (E; Ω)[X] := d dt P (E t ; Ω) t=0 , δ 2 P (E; Ω)[X] := d 2 dt 2 P (E t ; Ω) t=0 .
One says that E is a volume-constrained stationary set for the perimeter in Ω if δP (E; Ω)[X] = 0 whenever X induces a volume-preserving flow on E; if in addition δ 2 P (E; Ω)[X] ≥ 0 for every X inducing a volume-preserving flow on E, then E is said to be a volume-constrained stable set for the perimeter in Ω. The interest into these properties stems from the immediate fact that if E is a local volume-constrained perimeter minimizer in Ω, that is, if P (E; Ω) < ∞ and, for some δ > 0,

P (E; Ω) ≤ P (F ; Ω) , ∀F ⊂ Ω , |E| = |F | , |E∆F | < δ , (6.2) 
then E is automatically a volume-constrained stable set for the perimeter in Ω. In order to effectively exploit stability one needs explicit formulas for δP (E; Ω)[X] and 

δ 2 P (E; Ω)[X] in terms of X. When ∂E ∩ Ω is a C 2 -
δP (E; Ω)[X] = ∂E∩Ω H ∂E ζ dH n-1 , (6.3) 
δ 2 P (E; Ω)[X] = ∂E |∇ τ ζ| 2 -c 2 ∂E ζ 2 dH n-1 (6.4) + ∂E H ∂E (divX) ζ -div τ ζ X τ dH n-1 .
(Here, X τ = X -ζ ν E is the tangential projection of X along ∂E, while ∇ τ and div τ denote the tangential gradient and the tangential divergence operators to ∂E.) If E is a volume-constrained stationary set for the perimeter in Ω, then H ∂E is constant on ∂E ∩ Ω and

δ 2 P (E; Ω)[X] = ∂E |∇ τ ζ| 2 -c 2 ∂E ζ 2 dH n-1 (6.5)
whenever X induces a volume-preserving flow on E. Indeed,

|E t | = |E| for every |t| < ε implies 0 = d dt |E t | t=0 = ∂E ζ dH n-1 , 0 = d 2 dt 2 |E t | t=0 = ∂E (divX) ζ dH n-1 . (6.6)
By combining the first condition in (6.6) with δP (E; Ω)[X] = 0 and (6.3), one finds that H ∂E is constant on ∂E ∩ Ω. By combining (6.4), the second condition in (6.6), the fact that H ∂E is constant on ∂E ∩ Ω, and the identity ∂E div τ ζ X τ dH n-1 = 0 (which follows by the tangential divergence theorem), one deduces (6.5).

We now want to obtain these kind of variation formulas for the nonlocal functionals considered in this paper. We shall actually work in a broader framework. Precisely, given s ∈ (0, 1) and α ∈ (0, n), we fix thorough this section two convolution kernels K, G ∈ C 1 (R n \ {0}; [0, ∞)) which are symmetric by the origin (i.e., K(-z) = K(z) and G(-z) = G(z) for every z ∈ R n \ {0}) and satisfy the pointwise bounds

K(z) ≤ C K |z| n+s , G(z) ≤ C G |z| n-α , ∀z ∈ R n \ {0} , (6.7) 
for some constants C K and C G . Correspondingly, given E ⊂ R n , we consider the nonlocal functionals (defined in [0, ∞])

P K (E) = E×E c K(x -y) dx dy , V G (E) = E×E G(x -y) dx dy .
Notice that the two functionals are substantially different only in presence of the singularities allowed in (6.7). Indeed, by virtue of (6.7), K is possibly singular only close to the origin, while G is possibly singular only at infinity (in the sense that the integral of G may diverge at infinity). When no singularity is present, then the two functionals are essentially equivalent in the sense that one has

P K (E) = |E| K L 1 (R n ) -V K (E) , if K ∈ L 1 (R n ) and |E| < ∞. (6.8)
We next introduce the restrictions of P K and V G to a given open set Ω. Following [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF], we set

P K (E, Ω) := E∩Ω E c ∩Ω K(x -y) dx dy + E∩Ω E c \Ω K(x -y) dx dy + E\Ω E c ∩Ω K(x -y) dx dy , V G (E, Ω) := E∩Ω E∩Ω G(x -y) dx dy + 2 E∩Ω E\Ω
G(x -y) dx dy .

If P K (E; Ω) < ∞, X ∈ C ∞ c (Ω; R n )
, and E t = Φ t (E) as before, then one finds from the area formula that t → P K (E t ; Ω) is a smooth function for |t| < ε, and correspondingly is able to define the first and second variations of

P K (•, Ω) at E along X as δP K (E; Ω)[X] = d dt P K (E t ; Ω) t=0 , δ 2 P K (E; Ω)[X] = d 2 dt 2 P K (E t ; Ω) t=0 .
Identical definitions are adopted when V G is considered in place of P K and E is such that V G (E; Ω) < ∞ (as it is the case, for example, whenever E is bounded).

Having set our terminology, we now turn to the problem of expressing first and second variations along X in terms of boundary integrals involving X and its derivatives, in the spirit of (6.3) and (6.4). These formulas involve some "nonlocal" variants of the quantities H ∂E and c 2 ∂E , that are introduced as follows. Given E ⊂ R n , x ∈ R n , and a non-negative Borel function J on R n , we define (as elements of [-∞, ∞]) The functions H J,∂E and H * J,∂E will play the role of nonlocal mean curvatures for P K when J = K and for V G when J = G, respectively. As it turns out, if J ∈ L 1 (R n ) then the two quantities are equivalent up to a constant and a change of sign, that is,

H J,∂E (x) := p.v. R n χ E c (y) -χ E (y) J(x -y) dy (6.9) = lim sup ε→0 + R n \B(x,ε) χ E c (y) -χ E (y) J(x -y) dy , H * J,∂E ( 
H J,∂E (x) = J L 1 (R n ) -H * J,∂E (x) , ∀x ∈ R n ,
a result that, of course, is in accord with (6.8). We are now in the position to the state the main theorem of this section.

Theorem 6.1. Let K, G ∈ C 1 (R n \{0}; [0, ∞)) be even functions satisfying (6.7) for some s ∈ (0, 1)

and α ∈ (0, n), let Ω be an open set in R n , let E ⊂ R n be an open set with C 1,1 -boundary such that ∂E ∩ Ω is a C 2 -hypersurface, and, given X ∈ C ∞ c (Ω; R n ), set ζ = X • ν E . If P K (E; Ω) < ∞ and ∂E (1 + |z|) -n-s dH n-1 z < ∞, then δP K (E; Ω)[X] = ∂E H K,∂E ζ dH n-1 ,
(6.12)

δ 2 P K (E; Ω)[X] = ∂E×∂E K(x -y)|ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y - ∂E c 2 K,∂E ζ 2 dH n-1 + ∂E H K,∂E (divX) ζ -div τ ζ X τ dH n-1 . (6.13) If V G (E; Ω) < ∞ and E |z| -n+α dz < ∞, then δV G (E; Ω)[X] = ∂E H * G,∂E ζ dH n-1 . δ 2 V G (E; Ω)[X] = - ∂E×∂E G(x -y)|ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y + ∂E c 2 G,∂E ζ 2 dH n-1 + ∂E H * G,∂E (divX) ζ -div τ ζ X τ dH n-1 . (6.14)
Remark 6.2. Let E be as in Theorem 6.1. By arguing as in the deduction of (6.5) from ( 6.3) and (6.4), we see that if E is a volume-constrained stationary set for P K , then

δ 2 P K (E; Ω)[X] = ∂E×∂E K(x -y)|ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y - ∂E c 2 K,∂E ζ 2 dH n-1 .
whenever X is volume-preserving on E. Similarly, if E is a volume-constrained stationary set for V G , then

δ 2 V G (E; Ω)[X] = - ∂E×∂E G(x -y)|ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y + ∂E c 2 G,∂E ζ 2 dH n-1 ,
whenever X is volume-preserving on E.

The fact that ∂E is of class C 1,1 guarantees that c 2 K,∂E (x) ∈ R for every x ∈ ∂E. It also implies that ζ = X • ν E is a Lipschitz function, which in turn guarantees that the first-integral on the right-hand side of (6.13) converge. The convergence of c 2 G,∂E and of the first integral on the right-hand side of (6.14) is trivial. In the next two propositions we address the continuity properties of H K,∂E and H * G,∂E .

Proposition 6.3. If s ∈ (0, 1), K ∈ C 1 (R n \ {0}; [0, ∞)) is even and satisfies K(z) ≤ C K /|z| n+s for every z ∈ R n \ {0}
, Ω and E are open sets, and ∂E ∩ Ω is an hypersurface of class C 1,σ for some σ ∈ (s, 1), then (6.9) defines a continuous real-valued function H K,∂E on ∂E ∩ Ω. ), and η δ (s) ↓ 0 for every s > 0 as δ → 0 + . If we set and thus H K δ ,∂E is a continuous function on R n for every δ > 0. In fact, we notice for future use that

Proof. Given δ ∈ [0, 1/2), let η δ ∈ C ∞ ([0, ∞); [0, 1]) be such that η δ = 1 on [0, δ) ∪ (1/δ, ∞), η δ = 0 on [2δ, 1/2δ), and |η ′ δ | ≤ 2/δ on [0, ∞
K δ (z) = (1 -η δ (|z|)) K(z), z ∈ R n , then K δ ∈ C 1 c (R n ) ⊂ L 1 (R n ), so that H K δ ,∂E (x) = E c K δ (x -y) dy - E K δ (x -y) dy , ∀x ∈ R n , Q x (E) xn = γ |x ′ | 1+σ xn = -γ |x ′ | 1+σ
H K δ ,∂E ∈ C 1 (R n ), with ∇H K δ ,∂E (x) = E c ∇K δ (x -y) dy - E ∇K δ (x -y) dy , ∀x ∈ R n . (6.15) 
Let us now decompose x ∈ R n as (x ′ , x n ) ∈ R n-1 × R, and set

C r = x ∈ R n : |x ′ | < r , |x n | < r , P r,γ = x ∈ C r : γ |x ′ | 1+σ < x n ,
for r > 0 and γ > 0. If Ω ′ ⊂⊂ Ω, then we can find r > 0 and γ > 0 such that for every x ∈ ∂E ∩ Ω ′ there exists a rotation around the origin followed by a translation, denoted by Q x , such that

C r \ P r,γ ∩ {x n > 0} ⊂ Q x (E c ) , C r \ P r,γ ∩ {x n < 0} ⊂ Q x (E) , (6.16) 
see Figure 1. Provided ε < δ < 2δ < r, we thus find that

R n \B(x,ε) (χ E c (y) -χ E (y)) K(x -y) dy - R n \B(x,ε) (χ E c (y) -χ E (y)) K δ (x -y) dy = E c \B(x,ε) η δ (|x -y|) K(x -y) dy - E\B(x,ε) η δ (|x -y|) K(x -y) dy ≤ (Cr∩E c )\B(x,ε) η δ (|x -y|) K(x -y) dy - (Cr∩E)\B(x,ε) η δ (|x -y|) K(x -y) dy +2 R n \B 1/2δ K(z) dz ≤ Q -1 x (Pr,γ )\B(x,ε) η δ (|x -y|) K(x -y) dy + 2 R n \B 1/2δ K(z) dz ,
where in the last inequality we have used (6.16) and the symmetry of K to cancel out opposite contributions from the points in E c and in E lying in Q -1 x (C r \ P r,γ ). We now notice that ω(δ) :=

Q -1 x (Pr,γ )\B(x,ε) η δ (|x -y|) K(x -y) dy ≤ Q -1 x (Pr,γ ) η δ (|x -y|) K(x -y) dy = |z ′ |<r dz ′ γ |z ′ | 1+σ -γ |z ′ | 1+σ η δ (|z|) K(z) dz n ≤ C K |z ′ |<r dz ′ γ |z ′ | 1+σ -γ |z ′ | 1+σ dz n (|z ′ | 2 + |z n | 2 ) (n+s)/2 .
Since η δ (z) → 0 for every z ∈ R n \ {0} as δ → 0 + , and since

|z ′ |<r dz ′ γ |z ′ | 1+σ -γ |z ′ | 1+σ dz n (|z ′ | 2 + |z n | 2 ) (n+s)/2 < ∞ ,
we conclude that ω(δ) → 0 as δ → 0 (with a velocity that depends on C K , s, r, γ and σ only). Since R n \B 1/2δ K(z) dz → 0 as δ → 0 + (with a velocity that depends on C K and s only), we

conclude that, if ω 0 (δ) = ω(δ) + 2 R n \B 1/2δ K(z) dz, then R n \B(x,ε) (χ E c (y) -χ E (y)) K(x -y) dy - R n \B(x,ε) (χ E c (y) -χ E (y)) K δ (x -y) dy ≤ ω 0 (δ) ,
for every x ∈ ∂E ∩ Ω ′ and every ε < δ < 2δ < r. We thus conclude that H K,∂E (x) ∈ R for every x ∈ ∂E ∩ Ω ′ , and that H K δ ,∂E → H K,∂E uniformly on ∂E ∩ Ω ′ . In particular, H K,∂E is real-valued and continuous on ∂E ∩ Ω.

Since the function z → |z| -n+α belongs to L 1 loc (R n ), we also have the following result:

Proposition 6.4. If G ∈ C 1 (R n \ {0}; [0, ∞)
) is even and satisfies (6.7) for some α ∈ (0, n) and E |z| -n+α dz < ∞ (this is the case for instance if E is bounded), then (6.10) defines a continuous real-valued function H * G,∂E on R n .

Proof of Theorem 6.1. We shall detail the proof of the theorem only in the case of P K , being the discussion for V G similar. We denote by ε the positive number such that {Φ t } |t|<ε is a smooth family of diffeomorphisms of R n .

Step one: Given δ ≥ 0, we define K δ as in the proof of Proposition 6.3. Our goal here is proving (6.12) and (6.13) with K δ in place of K. We first claim that H K δ ,∂E ∈ C 1 (R n ), and that ∇H K δ ,∂E can be expressed both as in (6.15) and as in (6.17) below. Since E is an open set with Lipschitz boundary and

K δ ∈ C 1 c (R n )
, by the Gauss-Green theorem, the symmetry of K δ , and (6.15), we find that

∇H K δ ,∂E (x) = 2 ∂E K δ (y -x) ν E (y) dH n-1 y , ∀x ∈ R n . (6.17) 
We now notice that, since E t+h = Φ h (E t ), by the area formula we get, whenever |t| < ε and |t + h| < ε,

P K δ (E t+h , Ω) = Et∩Ω E c t ∩Ω K δ (Φ h (x) -Φ h (y))J Φ h (x)J Φ h (y) dx dy + Et∩Ω E c t \Ω K δ (Φ h (x) -y)J Φ h (x) dx dy + Et\Ω E c t ∩Ω K δ (x -Φ h (y))J Φ h (y) dx dy ,
where J Φ h stands for the Jacobian of the map Φ h . Since Φ h = Id + h X + O(h 2 ) and J Φ h = 1 + h divX + O(h 2 ) uniformly on R n as h → 0, we deduce from

d dt P K δ (E t , Ω) = d dh P K δ (E t+h , Ω) h=0 ,
and by the smoothness of K δ that

d dt P K δ (E t , Ω) = Et∩Ω E c t ∩Ω ∇K δ (x -y) • (X(x) -X(y)) dx dy + Et∩Ω E c t ∩Ω K δ (x -y)(divX(x) + divX(y)) dx dy + Et∩Ω E c t \Ω ∇K δ (x -y) • X(x) + K δ (x -y)divX(x) dx dy + Et\Ω E c t ∩Ω ∇K δ (x -y) • X(y) + K δ (x -y)divX(y) dx dy = I 1 + I 2 + I 3 + I 4 .
By symmetry of K δ and by the divergence theorem, we find

I 1 = E c t ∩Ω Et ∇K δ (x -y) • X(x) dx dy + Et∩Ω E c t ∇K δ (y -x) • X(y) dy dx = - E c t ∩Ω Et K δ (x -y)divX(x) dx dy + E c t ∩Ω ∂Et K δ (x -y)X(x) • ν Et (x) dH n-1 x dy - Et∩Ω E c t K δ (x -y)divX(y) dy dx - Et∩Ω ∂Et K δ (x -y)X(y) • ν Et (y) dH n-1 y dx ,
which leads to

I 1 +I 2 = E c t ∩Ω ∂Et K δ (x-y)X(x)•ν Et (x)dH n-1 x dy- Et∩Ω ∂Et K δ (x-y)X(y)•ν Et (y)dH n-1 y dx .
Similarly, we get that

I 3 = E c t \Ω ∂Et K δ (x -y)X(x) • ν Et (x) dH n-1 x dy, I 4 = - Et\Ω ∂Et K δ (x -y)X(y) • ν Et (y) dH n-1 y dx .
By exploiting once more the symmetry of K δ we thus conclude that (for every t small enough)

d dt P K δ (E t , Ω) = ∂Et H K δ ,∂Et (X • ν Et ) dH n-1 , (6.18) 
which of course implies (6.12) with K δ in place of K by setting t = 0. Having in mind to differentiate (6.18), we now notice that, by the area formula, ∂Et

H K δ ,∂Et (X • ν Et ) dH n-1 = ∂E H K δ ,∂Et (Φ t ) (X(Φ t ) • ν Et (Φ t )) J ∂E Φt dH n-1 ,
where J ∂E Φt denotes the tangential Jacobian of Φ t with respect to ∂E. Therefore,

d 2 dt 2 P K δ (E t , Ω) t=0 = d dt ∂Et H K δ ,∂Et (X • ν Et ) dH n-1 t=0 (6.19) = ∂E d dt H K δ ,∂Et (Φ t ) t=0 (X • ν E ) dH n-1 + ∂E H K δ ,∂E d dt X(Φ t ) • ν Et (Φ t )) J ∂Et Φt t=0 dH n-1 = J 1 + J 2 .
In order to compute J 1 we begin noticing that, by the area formula and since

K δ ∈ L 1 (R n ), H K δ ,∂Et (Φ t (x)) = R n χ E c (y) -χ E (y) K δ (Φ t (x) -Φ t (y)) J Φt (y) dy .
By symmetry and smoothness of K δ , by the Taylor's expansions in t of Φ t and J Φt mentioned above, by recalling that H K δ ,∂E ∈ C 1 (R n ) and (6.15), and by the divergence theorem, we get

d dt H K δ ,∂Et (Φ t (x)) t=0 = R n (χ E c (y) -χ E (y))∇K δ (x -y) • (X(x) -X(y)) dy + R n (χ E c (y) -χ E (y))K δ (x -y)divX(y) dy = ∇H K δ ,∂E (x) • X(x) + E c ∇K δ (y -x) • X(y) dy - E ∇K δ (y -x) • X(y) dy + R n (χ E c (y) -χ E (y))K δ (x -y)divX(y) dy = ∇H K δ ,∂E (x) • X(x) -2 ∂E K δ (x -y)X(y) • ν E (y) dy .
By this last identity and by the symmetry of K δ , setting ζ = X • ν E we find that

J 1 = -2 ∂E×∂E K δ (x -y) ζ(x) ζ(y) dH n-1 x dH n-1 y + ∂E ∇H K δ ,∂E • X ζ dH n-1 = ∂E×∂E K δ (x -y)|ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y -2 ∂E×∂E K δ (x -y) ζ(x) 2 dH n-1 x dH n-1 y + ∂E ∇H K δ ,∂E • ν E ζ 2 dH n-1 + ∂E ∇ τ H K δ ,∂E • X τ ζ dH n-1 , (6.20) 
where in the last identities we have simply completed a square and used the identity X = ζ ν + X τ . By (6.17) we also get

∇H K δ ,∂E (x) • ν E (x) = - ∂E K δ (x -y)|ν E (x) -ν E (y)| 2 dH n-1 y + 2 ∂E K δ (x -y) dH n-1 y = -c 2 K δ ,∂E (x) + 2 ∂E K δ (x -y) dH n-1 y ,
and thus we conclude from (6.20) that

J 1 = ∂E×∂E K δ (x -y) |ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y - ∂E c 2 K δ ,∂E ζ 2 dH n-1 + ∂E ∇ τ H K δ ,∂E • X τ ζ dH n-1 . (6.21) 
In order to compute J 2 , we notice that, by arguing as in [9, Step three, proof of Proposition 3.9] (see also [START_REF] Simon | Lectures on geometric measure theory[END_REF]Section 9]), one finds

d dt X(Φ t ) • ν Et (Φ t )J ∂E Φt t=0 = Z • ν E -2X τ • ∇ τ ζ + B ∂E [X τ , X τ ] + div τ ζ X ,
where Z is the vector field defined by

Z(x) = ∂ 2 tt Φ t (x) t=0 , x ∈ R n ,
and where B ∂E denotes the second fundamental form of ∂E. Hence,

J 2 = ∂E H K δ ,∂E Z • ν E -2X τ • ∇ τ ζ + B ∂E [X τ , X τ ] dH n-1 (6.22) 
+ ∂E H K δ ,∂E div τ ζ X dH n-1 .
By the tangential divergence theorem

∂E div τ Y dH n-1 = ∂E Y • ν E H E dH n-1 ∀Y ∈ C 1 c (Ω; R n )
(recall that H ∂E denotes the scalar mean curvature of ∂E taken with respect to ν E ), so that the sum of the second lines of (6.21) and (6.22) is equal to

∂E H K δ ,∂E div τ ζ X dH n-1 + ∂E ∇ τ H K δ ,∂E • X τ ζ dH n-1 = ∂E div τ H K δ ,∂E ζ X dH n-1 = ∂E H K δ ,∂E H ∂E ζ 2 dH n-1 .
We thus deduce from (6.19), (6.21), and (6.22), that

d 2 dt 2 P K δ (E t , Ω) t=0 = ∂E×∂E K δ (x -y) |ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y - ∂E c 2 K δ ,∂E ζ 2 dH n-1 + ∂E H K δ ,∂E Z • ν E -2X τ • ∇ τ ζ + B ∂E [X τ , X τ ] + H ∂E ζ 2 dH n-1 .
By exploiting the identity

Z • ν E -2X τ • ∇ τ ζ + B ∂E [X τ , X τ ] + H ∂E ζ 2 = -div τ ζ X τ ) + (divX) ζ (see, for example, [1, Proof of Theorem 3.1]
), we thus come to prove (6.13) with K δ in place of K.

Step two: We now prove (6.12) and (6.13) by taking the limit as δ → 0 + in (6.12) and (6.13) with K δ in place of K. Let us set ϕ δ (t) := P K δ (E t ; Ω) and ϕ(t) := P K (E t ; Ω), so that ϕ δ and ϕ are smooth functions on (-ε, ε) with

lim δ→0 + ϕ δ (t) = ϕ(t) , ∀|t| < ε . (6.23) 
(This follows by monotone convergence, as η δ ↓ 0 + as δ → 0 + on (0, ∞).) Let Ω ′ ⊂⊂ Ω be an open set such that sptX ⊂⊂ Ω ′ . Thanks to the smoothness of {Φ t } |t|<ε , the argument in the proof of Proposition 6.3 can be repeated for every set E t = Φ t (E) corresponding to |t| < ε with the same constants r and γ, thus showing that

lim δ→0 + sup |t|<ε sup ∂Et∩Ω ′ |H K δ ,∂Et -H K,∂Et | = 0 . (6.24) 
At the same time, by step one,

ϕ ′ δ (t) = ∂Et H K δ ,∂Et ζ dH n-1 , ∀|t| < ε , (6.25) 
so that (6.24) and (6.25) imply that lim

δ→0 + sup |t|<ε ϕ ′ δ (t) - ∂Et H K,∂Et ζ dH n-1 = 0 . (6.26) 
By the mean value theorem, (6.23) and (6.26) give

ϕ ′ (t) = ∂Et H K,∂Et ζ dH n-1 , ∀|t| < ε ,
which implies (6.12) for t = 0. In order to prove (6.13), we first notice that, by step one,

ϕ ′′ δ (t) = ∂Et×∂Et K δ (x -y)|ζ(x) -ζ(y)| 2 dH n-1 x dH n-1 y - ∂Et c 2 K δ ,∂Et ζ 2 dH n-1 + ∂Et H K δ ,∂Et (divX) ζ -div τ ζ X τ dH n-1 , ∀|t| < ε . (6.27) 
Let A 1 (t, δ), A 2 (t, δ) and A 3 (t, δ) denote the three integrals on the right-hand side of (6.27), and let A 1 (t), A 2 (t) and A 3 (t) stand for the corresponding integrals obtained by replacing K δ with K. By arguing as above, we just need to prove that for i = 1, 2, 3 we have A i (t, δ) → A i (t) uniformly on |t| < ε as δ → 0 + . The fact that A 3 (t, δ) → A 3 (t) uniformly on |t| < ε as δ → 0 + follows from (6.24) and of the smoothness of X. Finally, when i = 1, 2, the uniform convergence of A i (t, δ) → A i (t) for |t| < ε as δ → 0 + is a simple consequence of the fact that ζ is Lipschitz and compactly supported in Ω ′ , and that {Ω ′ ∩ ∂E t } |t|<ε is a uniform family of C 2 -hypersurfaces. This completes the proof of the theorem.

The stability threshold

In this section we consider the family of functionals Per s + β V α (β > 0) and discuss in terms of the value of β the volume-constrained stability of Per s + β V α around the unit ball B. Our interest in this problem lies in the fact that, as we shall prove in section 8, stability is actually a necessary and sufficient condition for volume-constrained local minimality. Therefore the analysis carried on in this section will provide the basis for the proof of Theorem 1.5. We set

β ⋆ (n, s, α) :=          1 -s ω n-1 inf k≥2 λ s k -λ s 1 µ α k -µ α 1 , if s ∈ (0, 1) , inf k≥2 λ 1 k -λ 1 1 µ α k -µ α 1 , if s = 1 , (7.1) 
where, for every k ∈ N ∪ {0},

λ 1 k = k(k + n -2) , (7.2) 
λ s k = 2 1-s π n-1 2 1 + s Γ( 1-s 2 ) Γ( n+s 2 ) Γ(k + n+s 2 ) Γ(k + n-2-s 2 ) - Γ( n+s 2 ) Γ( n-2-s 2 ) , s ∈ (0, 1) , (7.3) 
µ α k = 2 1+α π n-1 2 1 -α Γ( 1+α 2 ) Γ( n-α 2 ) Γ(k + n-α 2 ) Γ(k + n-2+α 2 ) - Γ( n-α 2 ) Γ( n-2+α 2 ) , α ∈ (0, 1) , (7.4) 
µ α k = 2 α π n-1 2 Γ( α-1 2 ) Γ( n-α 2 ) Γ( n-α 2 ) Γ( n-2+α 2 ) - Γ(k + n-α 2 ) Γ(k + n-2+α 2 ) , α ∈ (1, n) , (7.5) 
µ 1 k = 4 π n-1 2 Γ( n-1 2 ) Γ ′ (k + n-1 2 ) Γ(k + n-1 2 ) - Γ ′ ( n-1 2 ) Γ( n-1 2 ) . (7.6) 
Here Γ denotes the Euler's Gamma function, while Γ ′ is the derivative of Γ, so that Γ ′ /Γ is the digamma function. By exploiting basic properties of the Gamma function, it is straightforward to check that λ s k /µ α k → ∞ as k → ∞, so that the infimum in (7.1) is achieved, and β ⋆ > 0. We shall actually prove that the infimum is always achieved at k = 2 and the formula for β ⋆ considerably simplifies (see Proposition 7.4).

Theorem 7.1. The unit ball B is a volume-constrained stable set for Per s + β V α if and only if

β ∈ (0, β ⋆ ].
Let us first of all explain the origin of the formula (7.1) for β ⋆ . Since B is a volume-constrained stationary set for P , P s , and V α (indeed, B is a global volume-constrained minimizer of P and P s , and a global volume-constrained maximizer of V α ), by Remark 6.2 we find that (setting K s (z) = |z| -(n+s) and G α (z) = |z| -(n-α) for every z ∈ R n \ {0})

δ 2 P (B)[X] = ∂B |∇ τ ζ| 2 dH n-1 - ∂B c 2 ∂B ζ 2 dH n-1 , (7.7 
) i=1 for an orthonormal basis in L 2 (∂B) of the space S k of spherical harmonics of degree k, we have proved in (2.10) that

δ 2 P s (B)[X] = ∂B×∂B |ζ(x) -ζ(y)| 2 |x -y| n+s dH n-1 x dH n-1 y - ∂B c 2 Ks,∂B ζ 2 dH n-1 , (7.8) 
δ 2 V α (B)[X] = - ∂B×∂B |ζ(x) -ζ(y)| 2 |x -y| n-α dH n-1 x dH n-1 y + ∂B c 2 
∂B×∂B |u(x) -u(y)| 2 |x -y| n+s dH n-1 x dH n-1 y = ∞ k=0 d(k) i=1 λ s k a i k (u) 2 , (7.10) 
where

a i k (u) = ∂B u Y i k dH n-1 . Similarly, it is well-known that ∂B |∇ τ u| 2 dH n-1 = ∞ k=0 d(k) i=1 λ 1 k a i k (u) 2 , (7.11) 
with λ 1 k defined as in (7.2); see, for example, [START_REF] Müller | Spherical harmonics[END_REF]. We finally claim that for every α ∈ (0, n) we have

∂B×∂B |u(x) -u(y)| 2 |x -y| n-α dH n-1 x H n-1 y = ∞ k=0 d(k) i=1 µ α k a i k (u) 2 , (7.12) 
for µ α k defined as in (7.4), (7.5), and (7.6). Indeed, following [34, p. 151], one defines the Riesz operator on the sphere of order γ ∈ (0, n -1) as

R γ u(x) := 1 2 γ π n-1 2 Γ( n-1-γ 2 ) Γ( γ 2 ) ∂B u(y) |x -y| n-1-γ dH n-1 y , x ∈ ∂B .
By [START_REF] Samko | Hypersingular integrals and their applications[END_REF]Lemma 6.14], the k-th eigenvalue of R γ is given by

µ * k (γ) = Γ(k + n-1-γ 2 ) Γ(k + n-1+γ 2 ) , k ∈ N ∪ {0} , (7.13) so that µ * k (γ) > 0, µ * k (γ) is strictly decreasing in k, and µ * k (γ) ↓ 0 as k → ∞. Moreover R γ Y k = µ * k (γ) Y k , ∀k ∈ N ∪ {0} , (7.14) 
where Y k denotes a generic spherical harmonic of degree k. In particular

1 2 γ π n-1 2 Γ( n-1-γ 2 ) Γ( γ 2 ) ∂B dH n-1 y |x -y| n-1-γ = µ * 0 (γ)
for every x ∈ ∂B . (7.15) Next, similarly to what we have done in section 2, we introduce for every α ∈ (0, n) the operator

R α u(x) := 2 ∂B u(x) -u(y) |x -y| n-α dH n-1 y , u ∈ C 1 (∂B) , so that, for every u ∈ C 1 (∂B), [u] 2 1-α 2 = ∂B×∂B |u(x) -u(y)| 2 |x -y| n-α dH n-1 x H n-1 y = ∂B u R α u dH n-1 . (7.16) If α ∈ (1, n) then γ = α -1 ∈ (0, n -1)
, and thus we can deduce from (7.15) and (7.16) that

R α = 2 α π n-1 2 Γ( α-1 2 ) Γ( n-α 2 ) µ * 0 (α -1)Id -R α-1 , α ∈ (1, n) .
In particular, we deduce from (7.13) and (7.14) that (7.12) holds true with µ α k defined as in (7.5) whenever α ∈ (1, n). If α ∈ (0, 1), then R α becomes singular and by applying (2.3) with γ = 1 -α ∈ (0, 1) we have

R α = 2 1+α π n-1 2 1 -α Γ( 1+α 2 ) Γ( n-α 2 ) D 1-α , α ∈ (0, 1) .
In particular, it follows from (2.4) and (2.5) that (7.12) holds true with µ α k defined as in (7.4). Finally, to prove (7.12) in the case α = 1, it just suffice to notice that R α Y → R 1 Y as α → 1 for every spherical harmonic Y : therefore the eigenvalue µ 1 k of R 1 can be simply computed by taking the limit of µ α k as α → 1 + in (7.5) or as α → 1 -in (7.4). In both ways one verifies the validity of (7.12) with α = 1 and with µ 1 k defined as in (7.6). As a last preparatory remark to the proof of Theorem 7.1, let us notice that by (7.4), (7.5), and (7.6) (and by exploiting some classical properties of the Gamma and digamma functions), one has

µ α 0 = 0 , µ α k+1 > µ α k , R α Y k = µ α k Y k , ∀k ∈ N ∪ {0} , ∀α ∈ (0, n) . (7.17) 
In addition, {µ α k } is bounded for α ∈ (1, n), and µ α k ↑ ∞ as k → ∞ for α ∈ (0, 1]. Finally, we notice that since the coordinate functions x i , i = 1, . . . , n, belong to S 1 , we have R α x i = µ α 1 x i by (7.17). Inserting x i in (7.16) and adding up over i, yields

µ α 1 = 1 P (B) ∂B×∂B dH n-1 x dH n-1 y |x -y| n-2-α = ∂B dH n-1 y |z -y| n-2-α , ∀z ∈ ∂B . (7.18) 
We can thus conclude that

c 2 ∂B = n -1 , c 2 Ks,∂B = λ s 1 , c 2 
Vα,∂B = µ α 1 , for every s ∈ (0, 1) and α ∈ (0, n): indeed, the first identity is trivial, while the second and the third one follow from (6.11), (2.13), and (7.18).

Starting from the above considerations, given s ∈ (0, 1] and α ∈ (0, n) we are led to consider the following quadratic functionals

QP 1 (u) := ∂B |∇ τ u| 2 dH n-1 -(n -1) ∂B u 2 dH n-1 , QP s (u) := 1 -s ω n-1 ∂B×∂B |u(x) -u(y)| 2 |x -y| n+s dH n-1 x H n-1 y -λ s 1 ∂B u 2 dH n-1 , QV α (u) := ∂B×∂B |u(x) -u(y)| 2 |x -y| n-α dH n-1 x H n-1 y -µ α 1 ∂B u 2 dH n-1 .
We set H 

QP s (u) -β QV α (u) =              ∞ k=2 d(k) i=1 1 -s ω n-1 (λ s k -λ s 1 ) -β(µ α k -µ α 1 ) a i k (u) 2 , if s ∈ (0, 1) , ∞ k=2 d(k) i=1 (λ 1 k -λ 1 1 ) -β(µ α k -µ α 1 ) a i k (u) 2 , if s = 1 .
for every u ∈ H Proof. This is immediate from the definition of β ⋆ and from (7.10), (7.11), and (7.12), once one takes into account that a 0 (u) = 0 for every u ∈ L 2 (∂B) with ∂B u dH n-1 = 0. (Indeed, S 0 is the space of constant functions on ∂B.)

We premise a final lemma to the proof of Theorem 7.1.

Lemma 7.3. Given n ≥ 2, there exist positive constants C 0 and δ 0 , depending on n only, with the following property:

If v ∈ C ∞ (∂B) and v C 1 (∂B) ≤ δ 0 , then there exists X ∈ C ∞ c (R n ; R n ) such that (i) divX = 0 on B 2 \ B 1/2 ; (ii) the flow Φ t induced by X satisfies Φ 1 (x) = (1 + v(x))x for every x ∈ ∂B; (iii) X • ν B -v C 1 (∂B) ≤ C 0 v 2 C 1 (∂B) . If in addition |Φ 1 (B)| = |B|, then |Φ t (B)| = |B| for every t ∈ (-1, 1).
Proof. Let χ : [0, ∞) → [0, 1] be a smooth cut-off function such that χ(r) = 1 for r ∈ [1/2, 2] and χ(r) = 0 for r ∈ [0, 1/4] ∪ [3, ∞), and define X ∈ C ∞ c (R n ; R n ) by setting

X(x) = χ(|x|) n 1 + v x |x| n -1 x |x| n , x ∈ R n .
Direct computations show the validity of (i) and (iii) (the latter with a constant C 0 that depends on δ 0 ). Up to further decrease the value of δ 0 we can ensure that Φ t is a diffeomorphism for every |t| ≤ 1. By a direct computation we see that

Φ t (x) = 1 + t 1 + v(x) n -1 1 n x ,
for every x ∈ ∂B and |t| ≤ 1. In particular, (ii) holds true. By (6.6) and by (i) we infer that

d 2 dt 2 |E t | = ∂Et (divX)(X • ν Et ) dH n-1 = 0 ∀|t| ≤ 1 , that is, t → |E t | is affine on [-1, 1]. In particular, if |E 1 | = |B| = |E 0 |, then |E t | = |B| for every t ∈ [-1, 1].
Proof of Theorem 7.1. We fix β > 0 and claim that B is a volume-constrained stable set for Per s + β V α if and only if

QP s (u) -β QV α (u) ≥ 0 , ∀u ∈ C ∞ (∂B) with ∂B u dH n-1 = 0 ; (7.19)
the theorem will then follow by a standard density argument and by Proposition 7.2. By (7.7), (7.8), and (7.9), we see that B is a volume-constrained stable set for Per s + β V α if and only if

QP s (X • ν B ) -β QV α (X • ν B ) ≥ 0 , ∀X ∈ C ∞ c (R n ; R n ) inducing (7.20)
a volume-preserving flow on B .

Remark 8.2. If β ∈ (0, β ⋆ (n, 1, α)) and u satisfies the assumptions of Theorem 8.1, then

P + βV α (E) -P + βV α (B) ≥ c 0 1 - β β ⋆ (n, 1, α) u 2 H 1 (∂B) . (8.3) 
To prove this observe that, by a standard approximation argument, it suffices to consider the case when u ∈ C 1,γ (∂B) for some γ ∈ (0, 1), and thus Per s (E) → P (E) as s → 1 -by (1.6). By (7.21) and again by (1.6), β ⋆ (n, s, α) → β ⋆ (n, 1, α) as s → 1 -. In particular, we can find τ > 0 such that β < β ⋆ (n, s, α) and ε β (n, 1, α) < ε β (n, s, α) for every s ∈ (1 -τ, 1). We may thus apply (8.1) with s ∈ (1 -τ, 1) and then let τ → 0 + , to find that

P + βV α (E) -P + βV α (B) ≥ c 0 1 - β β ⋆ (n, 1, α) lim sup s→1 -1 (1 -s)[u] 2 1+s 2 
.

Finally, by (7.2) and ( 7.3) we find that 

λ s k → ω n-1 λ 1 k as s → 1 -,
-λ s 1 ) ≥ (1 -s)(λ s 2 -λ s 1 ) = n + s n -s (1 -s)λ s 1 ≥ 1 C .
We thus conclude from (7.1) that

β ⋆ (n, s, α) ≥ c(n) n -α ,
for a suitable positive constant c(n). In particular, β ⋆ (n, s, α) → ∞ as α → n -uniformly with respect to s ∈ (0, 1), and (2.2) follows by letting α → n -in (8.1).

Before discussing the proof of Theorem 8.1 we need the following observation, which parallels Proposition 2.3. Proposition 8.4. For every α ∈ (0, n), one has

µ α 1 = α(n + α) V α (B) P (B) , (8.5) 
µ α 2 = 2n n + α µ α 1 . (8.6) 
Proof. By scaling, V α (B r ) = r n+α V α (B). Hence,

(n + α)V α (B) = d dr r=1 V α (B r ) = 2 B dx ∂B dH n-1 y |x -y| n-α . Since 1 |x -y| n-α = 1 α div x
x -y |x -y| n-α by the divergence theorem we get

α(n + α)V α (B) = 2 ∂B×∂B (x -y) • x |x -y| n-α dH n-1 x dH n-1 y .
By symmetry, the right-hand side of the last identity is equal to

∂B×∂B (x -y) • x |x -y| n+s dH n-1 x dH n-1 y + ∂B×∂B (y -x) • y |x -y| n+s dH n-1 y dH n-1 x = ∂B×∂B dH n-1 x dH n-1 y |x -y| n+s-2 ,
so that (8.5) follows from (7.18). One can deduce (8.6) from (7.4), (7.6), and (7.5) (depending on whether α ∈ (1, n), α = 1 or α ∈ (0, 1)) by exploiting the factorial property of the Gamma function. Since a similar argument was presented in Proposition 2.3, we omit the details.

Proof of Theorem 8.1. We consider u ∈ C 1 (∂B) with u C 1 (∂B) ≤ 1/2 and assume the existence of t ∈ (0, 2 ε β ) such that the open set E t whose boundary is given by (5.20), and (8.5) imply that

∂E t = (1 + t u(x)) x : x ∈ ∂B satisfies |E t | = |B| and Et x dx = 0. If ε β is small enough then (2.24),
Per s + βV α (E t ) -Per s + βV α (B) ≥ t 2 2 QP s (u) -βQV α (u) -C(n)t 3 1 -s ω n-1 [u] 2 1+s 2 + λ s 1 u 2 L 2 + β [u] 2 1-α 2 + µ α 1 u 2 L 2 . (8.7) 
By Proposition 7.2 and by definition of β ⋆ we have

QP s (u) -βQV α (u) = ∞ k=2 d(k) i=1 1 -s ω n-1 (λ s k -λ s 1 ) -β(µ α k -µ α 1 ) |a i k | 2 ≥ 1 -s ω n-1 1 - β β ⋆ ∞ k=2 d(k) i=1 (λ s k -λ s 1 )|a i k | 2 = 1 -s ω n-1 1 - β β ⋆ [u] 2 1+s 2 -λ s 1 u 2 L 2 ,
thus using (2.25) and (2.28) we find

QP s (u) -βQV α (u) ≥ 1 -s 4 1 - β β ⋆ [u] 2 1+s 2 + λ s 1 u 2 L 2 . (8.8) 
Choosing ε β small enough, we can apply (2.28) and (8.6) to estimate

µ α 1 u 2 L 2 ≤ 2µ α 1 ∞ k=2 d(k) i=1 |a i k | 2 ≤ 2(n + α) n -α ∞ k=2 d(k) i=1 (µ α k -µ α 1 )|a i k | 2 ≤ C(n)QV α (u) , (8.9) 
where in the last inequality we have used the temporary assumption that

α ≤ n - 1 2 . ( 8.10) 
By (8.9) and by (8.8) (which gives, in particular, QP s (u) ≥ βQV α (u)), we find 

β [u] 2 1-α 2 + µ α 1 u 2 L 2 = βQV α (u) + 2βµ α 1 u 2 L 2 ≤ C(n)β QV α (u) ≤ C(n)QP s (u) . ( 8 
(B) ≥ 1 -s ω n-1 t 2 8 1 - β β ⋆ -C(n)t 3 [u] 2 1+s 2 + λ s 1 u 2 L 2 .
By choosing ε 0 (n) suitably small in (8.2), and by exploiting (2.4), (2.7), and (2.9) to deduce that (1 -s) λ s 1 ≥ c(n) > 0 for a suitable positive constant c(n), we deduce that

Per s + βV α (E t ) -Per s + βV α (B) ≥ c 0 t 2 1 - β β ⋆ (1 -s)[u] 2 1+s 2 + u 2 L 2 ,
for a constant c 0 which only depends on n. This completes the proof of the theorem in the case (8.10) holds true. Let us now assume that α ∈ (n -1/2, n), and prove a stronger version of (5.20). Since |E t | = |B|, we can write

V α (B) -V α (E t ) = V α (B) -|B| 2 -V α (E t ) -|E t | 2 .
If we set

f θ (r, ρ) := r n-1 ̺ n-1 (|r -̺| 2 + r ̺ θ 2 ) n-α 2 -r n-1 ρ n-1 , r, ρ, θ ≥ 0 , then we find V α (E t ) -|E t | 2 = ∂B×∂B 1+tu(x) 0 1+tu(y) 0 f |x-y| (r, ρ) dr d̺ dH n-1 x dH n-1 y ,
Arguing as in the proof of Lemma 5.3, we derive that we conclude that

V α (E t ) -|E t | 2 = - t 2 2 g(t) + V α (B) P (B) ∂B (1 + tu) n+α dH n-1 - |B| 2 P (B) ∂B (1 + tu) 2n dH n-1 = - t 2 2 g(t) + V α (B) -|B| 2 P (B) ∂B (1 + tu) n+α dH n-1 - |B| 2 P (B) ∂B (1 + tu) 2n 1 -(1 + tu) α-n dH n-
V α (B) -V α (E t ) = t 2 2 g(t) + V α (B) -|B| 2 P (B) h(0) -h(t) + |B| 2 P (B) ℓ(t) .
In the proof of Lemma 5.3 we showed that

h(0) -h(t) ≤ -α (n + α) t 2 2 ∂B u 2 dH n-1 + C(n) t 3 u 2 L 2 . (8.12)
In the same way (using Taylor expansion and

|E t | = |B|) we obtain that ℓ(t) ≤ (n -α)(2n + α) t 2 2 u 2 L 2 + (n -α)C(n)t 3 u 2 L 2 . (8.13) Then, noticing that α(n + α) = 2n 2 -(n -α)(2n + α)
and using (8.5), we compute

V α (B) -|B| 2 P (B) = 1 α(n + α) µ α 1 -α(n + α) |B| 2 P (B) = 1 α(n + α) µ α 1 -2n 2 |B| 2 P (B) + (n -α) (2n + α)|B| 2 α(n + α)P (B) . (8.14)
On the other hand, (8.5) implies

µ α 1 -→ α→n 2n 2 |B| 2 P (B) =: µ n 1 .
From the explicit value of µ α 1 given by (7.5), we easily infer that |µ α

1 -µ n 1 | ≤ (n -α)C(n). Hence, V α (B) -|B| 2 P (B) ≤ (n -α)C(n) . (8.15) 
Gathering (8.12), (8.13), (8.14), and (8.15), we are led to

V α (B) -|B| 2 P (B) h(0) -h(t) + |B| 2 P (B) ℓ(t) ≤ -(µ α 1 -µ n 1 ) t 2 2 u 2 L 2 + (n -α)C(n)t 3 u 2 L 2 .
Next, from the smooth dependence g on t, we can find τ ∈ (0, t) such that g(t) = g(0) + t g′ (τ ). Since α ∈ (n -1/2, n), we have the estimate

r ∂f θ ∂r (1 + τ r, 1 + τ ̺) + ̺ ∂f θ ∂̺ (1 + τ r, 1 + τ ̺) ≤ (n -α) C(n) θ n-α 1 + | log(θ)| ≤ (n -α) C(n) θ 3/4 , for all r, ̺ ∈ (-1 2 , 1 
2 ), all θ ∈ (0, 2], and a suitable constant C(n). In turn, the sequence {µ n-3/4 k } is bounded and one can estimate

|g ′ (τ )| ≤ (n -α)C(n) ∂B×∂B |u(x) -u(y)| 2 |x -y| 3/4 dH n-1 x dH n-1 y ≤ (n -α)C(n) u 2 L 2 , therefore V α (B) -V α (E t ) ≤ t 2 2 g(0) -(µ α 1 -µ n 1 ) t 2 2 u 2 L 2 + (n -α)C(n)t 3 u 2 L 2 . Then, we notice that g(0) = [u] 2 1-α 2 - ∂B×∂B |u(x) -u(y)| 2 dH n-1 x dH n-1 y .
Also, from (7.5) we infer that lim

α→n µ α k = µ n 1 , ∀k ≥ 1 .
Hence, by dominated convergence we have

[u] 2 1-α 2 = ∞ k=1 d(k) i=1 µ α k |a i k | 2 -→ α→n µ n 1 ∞ k=1 d(k) i=1 |a i k | 2 .
Since we obviously have

[u] 2 1-α 2 -→ α→n ∂B×∂B |u(x) -u(y)| 2 dH n-1 x dH n-1 y , we have thus proved that ∂B×∂B |u(x) -u(y)| 2 dH n-1 x dH n-1 y = µ n 1 ∞ k=1 d(k) i=1 |a i k | 2 .
As a consequence,

V α (B) -V α (E t ) ≤ t 2 2 ∞ k=2 d(k) i=1 (µ α k -µ α 1 )|a i k | 2 -(µ α 1 -µ n 1 ) t 2 2 |a 0 | 2 + (n -α)C(n)t 3 u 2 L 2 .
Recalling (2.26) and the fact that

|µ α 1 -µ n 1 | ≤ (n -α)C(n), we conclude that V α (B) -V α (E t ) ≤ t 2 2 QV α (u) + (n -α)C(n)t 3 u 2 L 2 , (8.16) 
that is the required strengthening of (5.20). Now we can apply (2.24) together with (8.16) to find that

Per s + βV α (E t ) -Per s + βV α (B) ≥ t 2 2 QP s (u) -βQV α (u) -C(n)t 3 1 -s ω n-1 [u] 2 1+s 2 + λ s 1 u 2 L 2 + (n -α)β u 2 L 2 . (8.17)
Arguing as in the previous case, it yields

Per s + βV α (E t ) -Per s + βV α (B) ≥ t 2 8 1 - β β ⋆ 1 -s ω n-1 [u] 2 1+s 2 + (1 -s)λ s 1 u 2 L 2 -C(n)t 3 1 -s ω n-1 [u] 2 1+s 2 + (1 -s)λ s 1 u 2 L 2 + (n -α)β ⋆ u 2 L 2 .
Since (n -α)β ⋆ ≤ C(n) by (7.21), we conclude as in the previous case.

As a last tool in the proof of Theorem 1.5 we prove the following lemma. 

|E h | = |B| , lim h→∞ |E h ∆B| = 0 , Per s (E h ) + β V α (E h ) < Per s (B) + β V α (B) , ∀h ∈ N .
(8.18) We divide the proof in two steps.

Step one: We show the existence of a radius R > 0 (depending on n, s and α only) such that the sequence E h in (8.18) can actually be assumed to satisfy the additional constraint

E h ⊂ B R , ∀h ∈ N . (8.19) 
To show this, let us introduce a parameter η < 1 (whose precise value will be chosen shortly depending on n, s and α) and let us assume without loss of generality and thanks to (8.18) that |E h ∆B| < η for every h ∈ N. By Lemma 4.5, see in particular (4.17), there exists a sequence

{r h } h∈N with 1 ≤ r h ≤ 1 + C 1 η 1/n such that Per s (E h ∩ B r h ) ≤ Per s (E h ) - |E h \ B r h | C 2 η 1/n , (8.20) 
where C 1 and C 2 depend on n and s only. Next, we consider µ h > 0 such that

F h := µ h (E h ∩ B r h ) satisfies |F h | = |B|. Since |E h ∆B| → 0 as h → ∞, it must be that µ h → 1 and |F h ∆B| → 0 as h → ∞.
In particular, we can assume without loss of generality that F h ⊂ B R for every h ∈ N, provided we set R := 2 + C 1 η 1/n . We finally show that (8.20), and (8.18), we conclude that

Per s (F h ) + β V α (F h ) ≤ Per s (E h ) + β V α (E h ) . ( 8 
(F h ) + β V α (F h ) = µ n-s h Per s (E h ∩ B r h ) + µ n+α h β V α (E h ∩ B r h ) ≤ (1 + C u h ) Per s (E h ∩ B r h ) + β V α (E h ∩ B r h ) , where C = C(n, s, α). By V α (E h ∩ B r h ) ≤ V α (E h ),
Per s (F h ) + β V α (F h ) ≤ Per s (E h ) + β V α (E h ) + C Per s (B) + β ⋆ V α (B) - 1 C 2 η 1/n u h ,
so that (8.21) follows provided η was suitably chosen in terms of n, s and α only.

Step two: Given M > 0 and a sequence E h satisfying (8.18) and (8. [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF]) we now consider the variational problems

γ h := inf Per s (E) + β V α (E) + M |E∆E h | : E ⊂ R n , h ∈ N , (8.22) 
and prove the existence of minimizers. Indeed, if R is as in (8.19), then

V α (E ∩ B R ) ≤ V α (E) by set inclusion, Per s (E ∩ B R ) ≤ Per s (E) by Lemma B.1, while, if we set F = E ∩ B R , then by (8.19), |F ∆E h | = |F \ E h | + |E h \ F | ≤ |E \ E h | + |(E h ∩ B R ) \ F | + |E h \ B R | = |E \ E h | + |(E h ∩ B R ) \ E| ≤ |E∆E h | .
Thus the value of γ h is not changed if we restrict the minimization class by imposing E ⊂ B R . By the Direct Method, there exists a minimizer F h in (8.22) for every h ∈ N, with F h ⊂ B R . We now claim that there exists Λ > 0 such that

Per s (F h ) ≤ Per s (E) + Λ |E∆F h | , ∀E ⊂ R n , (8.23) 
for every h ∈ N. Indeed, by minimality of F h in (8.22) and by (5.9), we find that for every bounded set E ⊂ R n one has

Per s (F h ) -Per s (E) ≤ 2 P (B) β α |E| |B| α/n |E \ F h | + M |E∆E h | -|F h ∆E h | .
In particular, (8.23) follows provided

Λ ≥ 2 1+α P (B) β R α α + M , (8.24) 
whenever |E| ≤ |B 2R |. To address the complementary case, we just notice that, setting for the sake of brevity F := Per s + β V α , by (8.18) and by minimality of F h one has We choose Λ to be the maximum between the right-hand sides of (8. We thus find a contradiction also in the case that t h > 1 for every h ∈ N. This completes the proof of the lemma. We now observe that (just by doing the above steps backward) the last term is formally equal to P s (F ) -P s (H). However, this does not really make sense as both P s (F ) and P s (H) are actually infinite. For this reason, we have to consider a local version of P s : given a set G and a domain A, we define the s-perimeter of G inside A as With this notation, if B R is a large ball which contains E (recall that E is bounded), since F is equal to H outside B R it is easy to check that Applying [START_REF] De Philippis | Gamma-convergence of nonlocal perimeter functionals[END_REF]Proposition 17] we deduce that P s (F ; B R )-P s (H; B R ) ≥ 0, concluding the proof.

F(B) > F(E h ) ≥ F(F h ) + M |F h ∆E h | . ( 8 

Appendix C. About the constant β ⋆

We have already noticed that, in order to show the equivalence between the two formulas (1.7) and (7.1) for β ⋆ , it suffices to show that, for every s ∈ (0, 1] and α ∈ (0, n), one has

λ s k -λ s 1 µ α k -µ α 1 ≥ λ s 2 -λ s 1 µ α 2 -µ α 1 ∀k ≥ 2 . (C.1)
Proof of (C.1) in the case that s ∈ (0, 1) and α ∈ (0, 1). In this case, the repeated application of the factorial property of the gamma function shows that (C.1) is equivalent in proving that the quantity where

α k := k + n -1 2 + t, β k := k + n -1 2 -t, γ k := k + n -1 2 + τ, δ k := k + n -1 2 -τ.
In this way, X k ≥ X 1 for every k ≥ 2 can be rephrased into We now observe that, setting ℓ := (n + 1)/2, we have

α 1 = ℓ + t, β 1 = ℓ -t, γ 1 = ℓ + τ, δ 1 = ℓ -τ, α 1 δ 1 -β 1 γ 1 = 2ℓ(t -τ ).
Hence, substituting these formulas into the above expression we find that left-hand side of (C. Finally, this inequality holds true because of (C.5) and the fact that δ k+1 ≥ β k+1 . This complete the proof of (C.6), and thus of (C.1) in the case that σ ∈ (0, 1) and α ∈ (0, 1).

Proof of (C.1) in the case that s ∈ (0, 1) and α ∈ (1, n). By the factorial property of the gamma function (C.1) is now equivalent in proving that X k ≥ X 1 for every k ≥ 2, where we have now set .

We notice that

X k = k j=1 (j+ n-1 2 +t) k j=1 (j+ n-1 2 -t) -1 1 - k j=1 (j+ n-1 2 -τ ) k j=1 (j+ n-1 2 +τ )
, where t := 1 + s 2 , τ := α -1 2 .

We next define a k , b k , c k and d k as in (C.2), with α k , β k , γ k and δ k given by

α k := k + n -1 2 + t, β k := k + n -1 2 -t, γ k := k + n -1 2 -τ, δ k := k + n -1 2 + τ.
We have thus reformulated (C.1) as

a k α1 b k β1 -1 1 -c k γ1 d k δ1 ≥ α1 β1 -1 1 -γ1 δ1 , ∀k ≥ 2 ,
which is in turn equivalent to

a k d k α 1 (δ 1 -γ 1 ) + b k d k (β 1 γ 1 -α 1 δ 1 ) + b k c k γ 1 (α 1 -β 1 ) ≥ 0 , ∀k ≥ 2 . (C.8)
If we set ℓ = (n + 1)/2, then we find We are thus left to prove that

a k d k ≥ b k c k , ∀ k ≥ 2 , (C.9) (a k -b k )d k τ ≥ (d k -c k )b k t , ∀ k ≥ 2 . (C.10)
To prove (C.9) it suffices to observe that

α j δ j -β j γ j = 2 j + n -1 2 (t + τ ) ≥ 0 ∀ j ≥ 1,
where t > 0 and τ > 0. To prove (C.10) we argue once again by induction. One easily sees that (C.6) in the case k = 2 is equivalent to say that d 2 ≥ b 2 , which is true also in the present case. We now check the inductive hypothesis. The (k + 1)-case of (C. Proof of (C.1) in the remaining cases. The case that s ∈ (0, 1) and α = 1 is covered by taking the limit as α → 1 -with s fixed in (C.1) for α ∈ (0, 1). This proves (C.1) for every s ∈ (0, 1) and α ∈ (0, n). The case s = 1 is recovered by multiplying (C.1) by 1 -s when s ∈ (0, 1) and then taking the limit as s → 1 -with α fixed. The proof of (C.1) is now complete.

  )whenever |E| = m and |E∆B[m]| ≤ ε ⋆ m. Moreover, if m > m ⋆ , then there exists a sequence of sets {E h } h∈N with |E h | = m and |E h ∆B[m]| → 0 as h → ∞ such that (1.8) fails with E = E h for every h ∈ N.

1 x dH n- 1 y,

 11 ) -u(y)| 2 |x -y| n+s dH n-as well as the L 2 -norm of u. This kind of result is well-known in the local case (see Fuglede[START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF] Theorem 1.2]), and takes the following form in the nonlocal case.

  not, setting for brevity u(r) := |E∩B(x, r)| we have (1-s) E∩B(x,r) E c dz dy |z-y| n+s ≤ α u(r) for every r ≤ 1. By adding up (1 -s) E\B(x,r) E∩B(x,r) dz dy |z-y| n+s to both sides, we get

  where a and b are such that |B a | = λ |B| and |B b | = (1 -λ)|B|. Next we let η → 0 + , divide by P s h (B), and then let h → ∞ to reach the contradiction 1 ≥ P s * (B a ) P s * (B) + P s * (B b )
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 8 2 C 7 2n/s n/(α+s) , R 0 (n, s) := 3(1 + C 1 ) , C(n, s) is a constant such that (1.4) holds, and C 7 is defined as C 7 (n, s, α) := 2 Per s (B) + V α (B) .(Note that (5.2) follows immediately from (1 -s) P s (B) → ω n-1 P (B) as s → 1 + and from the fact that C(n, s) ≤ C(n, s 0 ) if s ≥ s 0 .) We start noting that if B[m] denotes the ball of volume m then, since m ≤ |B|,

. 6 ) 2 =

 62 Let us set E * := λ E where λ := (|B|/m) 1/n , so that |E * | = |B|. Since D s (E) = D s (E * ), up to a translation we have, recalling (1.4), |E * ∆B| ≤ |B| C(n, s) m |B| (α+s)/n 2 V α (B) Per s (B) 1/: η . By Lemma 4.5 we can find r * ≤ 1 + C 1 η 1/n such that Per s (E * ∩ B r * ) ≤ Per s (E * ) -|E * \ B r * | C 2 η s/n .

. 9 )(

 9 This is a more precise version of [33, Lemma 5.2.1].) Indeed, if r F = (|F |/|B|) 1/n is the radius of the ball of volume |F |, then

x) := 2 E

 2 J(x -y) dy . (6.10) Moreover, given an orientable hypersurface M of class C 1 in R n , and denoting by ν M an orientation of M , we define c 2 J,M : M → [0, ∞] by setting c 2 J,M (x) := M J(x -y)|ν M (x) -ν M (y)| 2 dH n

Figure 1 .

 1 Figure 1. The sets defined in (6.16). The region Pr,γ is that part of Cr encolosed by the graphs xn = ±γ|x ′ | 1+σ .

1+s 2 (Proposition 7 . 2 .

 272 ∂B) := u ∈ H 1+s 2 (∂B) : ∂B u dH n-1 = 0 ,and notice the validity of the following proposition. If s ∈ (0, 1], α ∈ (0, n), and β > 0, then

1+s 2 (

 2 ∂B). In particular, QP s -β QV α ≥ 0 on H 1+s 2 (∂B) if and only if β ∈ (0, β ⋆ ].

f 1 x dH n- 1 y.( 1 +

 111 |x-y| (1 + tr, 1 + tρ) drdρ dH n-Setting h(t) := ∂B (1 + tu) n+α and ℓ(t) := ∂B tu) 2n 1 -(1 + tu) α-n dH n-1 ,

. 25 )

 25 In particular Pers (F h ) ≤ F(B) for every h ∈ N. Hence, if |E| ≥ |B 2R | then by F h ⊂ B R we have Per s (E) + Λ |E∆F h | ≥ Λ(|E| -|F h |) ≥ Λ |B|(2 n -1) R n ≥ Per s (F h ) ,

Proof of Theorem 1 . 5 ..(

 15 Given m > 0 let us define β > 0 by setting Notice that β < β ⋆ if and only if m < m ⋆ , since by (1.7) and (7.21) we have m ⋆ = |B| β n/(s+α) ⋆ .) By exploiting this identity and the scaling properties of Per s and V α , and denoting by B[m] a ball of volume m, given δ > 0 we notice that Per s (B) + β V α (B) ≤ Per s (F ) + β V α (F ) , whenever |F | = |B| and |F ∆B| < δ if and only ifPer s (B[m]) + V α (B[m]) ≤ Per s (E) + V α (E) , whenever |E| = m and |E∆B[m]| < m |B| δ .As a consequence, Theorem 1.5 is equivalent to Lemma 8.5.now observe that, if we set F := E ∪ H, using that E ⊂ F , E \ H = F \ H, and F ∩ H = H, we getP s (E) -P s (E ∩ H) = E E cdx dy |x -y| n+s -|x -y| n+s .

P

  s (G; A) := G∩A G c ∩A + G∩A G c ∩A c + G∩A c G c ∩A dx dy |x -y| n+s .

  |x -y| n+s = P s (F ; B R ) -P s (H; B R ).

  value on k ≥ 1 at k = 1. To this end it is convenient to rewrite X k as follows: first, we notice that

a k α1 b k β1 - 1 c k γ1 d k δ1 - 1 ≥ α1 β1 - 1 γ1 δ1 - 1 , ∀k ≥ 2 . (C. 3 )

 111123 It is useful to rearrange the terms in (C.3) and rewrite it asa k d k α 1 (γ 1 -δ 1 ) + b k d k (α 1 δ 1 -β 1 γ 1 ) + b k c k γ 1 (β 1 -α 1 ) ≥ 0 , ∀k ≥ 2 . (C.4)

β j γ j = b k c k , ∀k ≥ 2 ,

 2 4) = 2a k d k (ℓ + t)τ + 2b k d k ℓ(t -τ ) -2b k c k (ℓ + τ )t = 2(a k d k -b k c k )tτ + 2(a k -b k )d k ℓτ -2(c k -d k )b k ℓt .Therefore (C.4) follows by showing thata k d k ≥ b k c k , ∀ k ≥ 2 , (C.5) (a k -b k )d k τ ≥ (c k -d k )b k t , ∀ k ≥ 2 . (C.6)To prove (C.5) it suffices to observe that α j δ j -β j γ j = 2 j + nas desired. We now prove (C.6) by induction. A simple manipulation shows that (C.6) in the case k = 2 is equivalent to d 2 ≥ b 2 , which is true, so that we directly focus on the inductive hypothesis. By noticing that a k+1 = a k α k+1 , and that analogous identities hold for β k , γ k and δ k , we can equivalently reformulate the (k + 1)-case of (C.6) as(a k α k+1 -b k β k+1 )d k δ k+1 τ ≥ (c k γ k+1 -d k δ k+1 )b k β k+1 t .This last inequality can be conveniently rewritten asa k (α k+1 -β k+1 )d k δ k+1 τ + β k+1 δ k+1 (a k -b k )d k τ ≥ c k (γ k+1 -δ k+1 )b k β k+1 t + β k+1 δ k+1 (c k -d k )b k t .Indeed, by the inductive hypothesis (ak -b k )d k τ ≥ (c k -d k )b k t,it is clear that a sufficient condition for this last inequality (and thus, for (C.6)) to hold true, is thata k (α k+1 -β k+1 )d k δ k+1 τ ≥ c k (γ k+1 -δ k+1 )b k β k+1 t . (C.7) By α k+1 -β k+1 = 2t and γ k+1 -δ k+1 = 2τ , (C.7) is equivalent to 2(a k d k δ k+1 -b k c k β k+1 )tτ ≥ 0 .

α 1 =

 1 ℓ + t, β 1 = ℓ -t, γ 1 = ℓ -τ, δ 1 = ℓ + τ, α 1 δ 1 -β 1 γ 1 = 2ℓ(t + τ ) , so that left-hand side of (C.8) = 2a k d k (ℓ + t)τ -2b k d k ℓ(t + τ ) + 2b k c k t(ℓ -τ ) = 2(a k d k -b k c k )tτ + 2(a k -b k )d k ℓτ + 2(c k -d k )b k ℓt .

6 )

 6 is now equivalent to (a k α k+1 -b k β k+1 )d k δ k+1 τ ≥ (d k δ k+1 -c k γ k+1 )b k β k+1 t .We reformulate this asa k (α k+1 -β k+1 )d k δ k+1 τ + β k+1 δ k+1 (a k -b k )d k τ ≥ c k (δ k+1 -γ k+1 )b k β k+1 t + β k+1 δ k+1 (d k -c k )b k t .By the inductive hypothesis (ak -b k )d k τ ≥ (d k -c k )b k t, thus we are left to check that a k (α k+1 -β k+1 )d k δ k+1 τ ≥ c k (δ k+1 -γ k+1 )b k β k+1 t . (C.11) By α k+1 -β k+1 = 2t and δ k+1 -γ k+1 = 2τ , (C.11) is equivalent to 2(a k d k δ k+1 -b k c k β k+1 )tτ ≥ 0,which is true thanks to (C.9) and δ k+1 ≥ β k+1 . The proof of (C.10), thus of (C.1) in the case that σ ∈ (0, 1) and α ∈ (1, n), is now complete.

  Theorem 3.3. If R > 0, s 0 ∈ (0, 1), and E h (h ∈ N) is a Λ-minimizer of the s h -perimeter with s h ∈ [s 0 , 1) and E h ⊂ B R for every h ∈ N, then there exist s * ∈ [s 0 , 1] and a Λ-minimizer of the s * -perimeter E such that, up to extracting subsequences, s h → s * , |E h ∆E| → 0 and ∂E h converges to ∂E in Hausdorff distance as h → ∞.

	Proof. Up to extracting subsequences we may obviously assume that s h → s * as h → ∞, where
	s * ∈ [s 0 , 1]. By exploiting (3.1) with F = B R we see that
	sup h∈N	(1 -s h

  Theorem 1], we find that, up to extracting subsequences,|E h ∆E| → 0 as h → ∞ for some set E ⊂ B R with finite perimeter. -s h ) P s h (E h ) ≤ (1 -s h ) P s h (F h ) + Λ |E h ∆F h |; by letting h → ∞,we find that E is a Λ-minimizer of the 1-perimeter. The fact that ∂E h converges to ∂E in Hausdorff distance as h → ∞ is now a standard consequences of the uniform density estimates proved in Lemma 3.1. We address the case s * < 1. In this case we may notice that (3.11) together with the assumption that E h ⊂ B R allows us to say that {P s (E h )} h∈N is bounded in R for some s ∈ (0, 1). By compactness of the embedding of H s/2 in L 1 loc and by the assumption E h ⊂ B R we find a set E ⊂ B R such that, up to extracting subsequences, |E h ∆E| → 0 as h → ∞. If we pick any bounded set F ⊂ R n , then by Appendix A there exists a sequence of bounded sets {F h } h∈N such that

	By [3, Theorem 2], and, if F ⊂ R n is bounded, then we can find bounded set F h (h ∈ N) such that |F h ∆F | → 0 as ω n-1 P (E) ≤ lim inf h→∞ (1 -s h ) P s h (E h ) , h → ∞ and ω n-1 P (F ) = lim inf h→∞ (1 -s h ) P s h (F h ) . h→∞ |F h ∆F | = 0 , lim sup h→∞ P s h (F h ) ≤ P s * (F ) . (3.12) By (3.1), (1 Step two: lim By applying (3.1) to E h and F h , and then by letting h → ∞, we find that

  [START_REF] Bonacini | Local and global minimality results for a nonlocal isoperimetric problem on R N[END_REF]. Since α h → 0, we infer that α(F h )/α h → 1 as h → ∞. By taking into account(4.34), this implies in particular that If we now exploit the minimality property of each F h together with the Lipschitz properties of t → |t -|B||, t → |tα h |, and the inequality |α(I)α(J)| ≤ |I∆J| for every I, J ⊂ R n , then we find that each F h enjoy a uniform global almost-minimality property of the form(1 -s h )P s h (F h ) ≤ (1 -s h )P s h (G) + (Λ + 1)|F h △G| , ∀G ⊂ R n . (4.37) By (4.33), (4.36), (4.37), and Corollary 3.6, we find that F h is nearly spherical, in the sense that ∂F h = {x (1 + u h (x)) : x ∈ ∂B}, where u h C 1 (∂B) → 0 as h → ∞. Let now λ h > 0 be such that |λ h F h | = |B|, and set G h = λ h F h . We notice that, by (4.35),

	lim h→∞	|F h ∆B| = 0 .	(4.36)
	(		

  36, Section 9], [27, Chapter 10] or [31, Sections 17.3 and 17.6]), and set some useful terminology.

  hypersurface one can obtain such formulas by using the area formula, Taylor's expansions, and the divergence theorem on ∂E ∩ Ω. Denoting by H ∂E the scalar mean curvature of ∂E ∩ Ω (with respect to the orientation induced by the outer unit normal ν E to E), by c 2 ∂E the sum of the squares of the principal curvatures of ∂E ∩ Ω, and setting ζ = X • ν E for the normal component of X with respect to ν E , one gets the classical formulae

  Gα,∂B ζ 2 dH n-1 , (7.9) for every X inducing a volume-preserving flow on B (here, ζ = X • ν B ). The reason why we are able to discuss the volume-constrained stability of Pers + β V α at B is that the Sobolev seminorms [u] H 1 (∂B) , [u] H (1+s)/2 (∂B) , and [u] H (1-α)/2 (∂B), can all be decomposed in terms of the Fourier coefficients of u with respect to a orthonormal basis of spherical harmonics.

	Indeed, recalling our notation {Y i k } d(k)

  Remark 8.3. Theorem 2.1 follows from Theorem 8.1 by letting α → n -in (8.1). Indeed, denoting by C a generic constant depending on n only, we notice that (7.4), (7.5), and (7.6) give µ α k -µ α 1 ≤ C (n -α) for all k ≥ 2. At the same time, by exploiting (2.4), (2.7), and (2.9) we find that

							hence recalling (7.10) and (7.11)
	we get					
	lim s→1 -	(1 -s)[u] 2 1+s 2	= ω n-1	∂B	|∇ τ u| 2	(8.4)
	and (8.3) is proved.					
	(1 -s) λ s 1 ≥	1 C	,	∀s ∈ (0, 1) ,
	so that by Proposition 2.3, again for every k ≥ 2,		
	(1 -s)(λ s k					

  Lemma 8.5. Let s ∈ (0, 1] and α ∈ (0, n).If β < β ⋆ , then B is a local volume-constrained minimizer of Per s + β V α . If β > β ⋆ , then B is not a local volume-constrained minimizer of Per s + β V α .

Proof. If B is a local volume-constrained minimizer of Per s + β V α , then B is automatically a volume-constrained stable set for Per s + β V α , and thus β ≤ β ⋆ by Theorem 7.1. We are thus left to prove that if β < β ⋆ , then B is a local volume-constrained minimizer of Per s + β V α . To this end, we argue by contradiction and assume the existence of some β < β * such that there exists a sequence {E h } h∈N with

  .21) Indeed, by setting u h := |E h \ B r h | we find that Per s

,

  [START_REF] Fusco | A quantitative isoperimetric inequality for fractional perimeters[END_REF] and(8.26), and in this way(8.23) is proved. We now notice that by(8.25),(8.18), and up to discard finitely many h's, we can assume that Let now ε β be defined as in Theorem 8.1. By Corollary 3.6 there exist α ∈ (0, 1) and δ > 0 (depending on n, s and α only) such that the following holds: If F is a Λ-minimizer of the s-Hence, by(8.23) and (8.27), we can choose M large enough (depending on n, s and α) in such a way that, for every h ∈ N, there exists u h ∈ C 1,α (∂B) with∂F h = (1 + u h (x)) x : x ∈ ∂B , u h C 1 (∂B) < ε β .Let us set t h := (|F h |/|B|) 1/n and G h := x h + t h F h for x h such that G h x dx = 0. By (8.27), we can make |t h -1| small enough in terms of ε β to entail that for every h ∈ N there exists v h ∈ C 1,α (∂B) with∂G h = (1 + v h (x)) x : x ∈ ∂B , v h C 1 (∂B) < ε β . |F h ∆E h | ≤ F(B) . (8.29)If t h = 1 for a value of h, then by (8.29) we findF h = E h and thus F(F h ) = F(E h ) < F(B), a contradiction to(8.28). At the same time, since F(B) > 0, (8.29) implies that t h ≥ 1 for every h ∈ N. We may thus assume that t h > 1 for every h ∈ N.Since |F h ∆E h | ≥ ||F h |-|B|| = |B| (t n h -1), by (8.29) we find where, say, t h ∈ (1, 3/2) for every h ∈ N. However, if M is large enough depending on n, s, and α only, we actually have that M |B| (t n -1) > F(B) 1 -1 t n+α , ∀t ∈ (1, 3/2) .

	By Theorem 8.1 we conclude that				
	F(B) ≤ F(G h ) = t n-s h	Per s (F h ) + t n+α h	β V α (F h ) ≤ max{t n-s h	, t n+α h	} F(F h ) ,	(8.28)
	which in turn gives, in combination with (8.25),		
	F(B) max{t n-s h , t n+α h + M M |B| (t n } h -1) ≤ F(B) 1 -	1 t n+α h
		|F h ∆B| ≤	2 F(B) M	,	∀h ∈ N .	(8.27)

perimeter with |F ∆B| < δ (Λ as in (8.23)), then there is u ∈ C 1,α (∂B) such that

∂F = (1 + u(x)) x : x ∈ ∂B , u C 1 (∂B) < ε β .

Now, the fact that (7. [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF]) implies (7.20) is obvious: indeed, recall (6.6), u = X • ν B satisfies ∂B u dH n-1 = 0 whenever X induces a volume-preserving flow on B. To prove the reverse implication, let us fix u ∈ C ∞ (∂B) with ∂B u dH n-1 = 0, and consider the open sets E δ = (1 + δ u(x)) x : x ∈ ∂B , δ ∈ (0, 1) .

Since ∂B u dH n-1 = 0, we have that |E δ | -|B| ≤ Cδ 2 for some constant C depending on u only. Therefore, if F δ = (|B|/|E δ |) 1/n E δ , then we have

does not depend on δ). Provided δ is small enough we can apply Lemma 7.3 to find a vector field

) inducing a volume-preserving flow on B, and with the property that

and thus by (7.20) we have (recall that QP and QV are quadratic forms)

We divide by δ 2 and let δ → 0 + to find that QP s (u) -β QV α (u) ≥ 0. This shows that (7.20) implies (7.19), and thus completes the proof of the theorem.

We close this section with the following result.

Proposition 7.4. For every n ≥ 2, s ∈ (0, 1] and α ∈ (0, n) one has

We then find (7.21) by Proposition 2.3 and by Proposition 8.4 below.

Proof of Theorem 1.5

We are now in the position of proving Theorem 1.5. We begin with the following result, which extends Theorem 2.1 to the family of functionals Per s + β V α with β ∈ (0, β ⋆ ). Theorem 8.1. For every s ∈ (0, 1), α ∈ (0, n), and β ∈ (0, β ⋆ (n, s, α)), there exist positive constants c 0 = c 0 (n) and ε β = ε β (n, s, α) with the following property: If E is a nearly spherical set as in (2.1) with |E| = |B|, E x dx = 0, and u C 1 (∂B) < ε β , then

Moreover, we can take ε β of the form

for a suitable positive constant ε 0 (n).

Appendix A. A simple Γ-convergence result

Here we prove the Γ-convergence of P s to P s * in the limit s → s * , with s * ∈ (0, 1) fixed. Of course, if |(E h ∆E) ∩ K| → 0 for every K ⊂⊂ R n and s h → s * ∈ (0, 1) as h → ∞, then by Fatou's lemma one easily obtains

that is the Γ-liminf inequality. The proof of the Γ-limsup inequality is only slightly longer. For the sake of simplicity, we shall limit ourselves to work with bounded sets (this is the case we need in the paper). Precisely, given a bounded set F ⊂ R n , we want to construct a sequence {F h } h∈N of bounded sets such that

We now prove (A.1). We start by recalling the following nonlocal coarea formula due to Visintin [START_REF] Visintin | Generalized coarea formula and fractal sets[END_REF],

that holds true (as an identity in [0, ∞]) whenever u : R n → [0, 1] is Borel measurable; see [START_REF] De Philippis | Gamma-convergence of nonlocal perimeter functionals[END_REF]Lemma 10]. Next we use [START_REF] Leoni | A First Course in Sobolev Spaces[END_REF]Proposition 14.5] to infer that if P s * (F ) < ∞ and we set

Combining (A.2) and (A.3) with a classical argument by De Giorgi, see, e.g. [START_REF] Maggi | Sets of finite perimeter and geometric variational problems. An introduction to Geometric Measure Theory[END_REF]Theorem 13.8], we reduce the proof of (A.1) to the case that F is a bounded, smooth set. This implies that P s (F ) < ∞ for every s ∈ (0, 1). In particular, if we let s * * ∈ (0, 1) be such that s h < s * * for every h ∈ N, then we trivially find that, for every (x,

where g ∈ L 1 (R n × R n ) thanks to the fact that P s * * (F ) < ∞. In particular, lim h→∞ P s h (F ) = P s * (F ) , whenever s h → s * ∈ (0, 1) as h → ∞ and F is a smooth bounded set. This proves (A.1).

Appendix B. A geometric lemma

The following natural fact, which is well-known in the case of the classical perimeter, was used in the proof of Lemma 8.5. We give a proof since it may be useful elsewhere.

Lemma B.1. If s ∈ (0, 1] and E ⊂ R n is such that P s (E) < ∞, then P s (E ∩ K) ≤ P s (E) for every convex set K ⊂ R n .

Proof. The case s = 1 being classical, we can assume s < 1. Since any convex set can be written as a countable intersections of half-space, it is enough to prove that P s (E ∩ H) ≤ P s (E) whenever H is an half-space. By approximation, it suffices to prove this estimate when E is bounded. We